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Abstract

A longstanding challenge of shared-memory concurrenay [sd-
vide a memory model that allows for efficient implementation
while providing strong and simple guarantees to prograrsnidre
C++0x and Java memory models admit a wide variety of com-
piler and hardware optimizations and provide sequentizdlysis-
tent (SC) semantics for data-race-free programs. Howthey,ei-
ther do not provide any semantics (C++0x) or provide a hard-t
understand semantics (Java) for racy programs, compnagriise
safety and debuggability of such programs.

In earlier work we proposed therRF= memory model, which
addresses this problem by dynamically detecting potemicih-
tions of SC due to the interaction of compiler or hardward-opt
mizations with data races and halting execution upon detedn
this paper, we present a detailed micro-architecture déeigsup-
porting theDRF= memory model, formalize the design and prove
its correctness, and evaluate the design using a hardwardasi
tor. We describe a set afRFz-compliant complexity-effective op-
timizations which allow us to attain performance close tat tbf
TSO (Total Store Model) and DRFO while providing strong guar
antees for all programs.

Categories and Subject Descriptors  C.0 [Computer Systems Or-
ganization}: Hardware/software interfaces

General Terms Design, Performance

Keywords memory models, data-races, memory model exception,
soft fences

1. Introduction

A memory consistency model (or simplynaemory modglforms
the foundation of shared-memory multi-threaded programgmit
defines the order in which memory operations performed by one
thread become visible to other threads. A programmer needs t
understand the memory model in order to determine the behavi
of a concurrent program. Every layer in the compute stackttas
ensure that any transformations it performs retain the séoseof
the source program with respect to the memory model.
Sequential consistency (SC) [27] is the most intuitive memo
model for programmers. SC guarantees that all the memony ope
ations executed across different threads appear in onlectater
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that is consistent with the per-thread program order. Mamm-c
piler and hardware optimizations that are valid for seqgaépto-
grams (such as register promotion, common subexpressioi el
nation, out-of-order execution, store buffers, etc.) caak the SC
semantics of concurrent programs. The resulting perfoceéim-
itation has forced modern hardware architectures and tneama
programming languages to support weaker memory models.

In particular, recently proposed memory models for C++Qx [9
and Java [30] are based on the data-race-free-0 (DRF0) mpemor
model [1]. These models require that a programmer explicits-
sify shared-memory variables insynchronizatioranddata® The
intention is that programmers use synchronization vaembbrall
inter-thread communication and that there are no data macdata
variables. In other words, two threads in the program areahot
lowed to concurrently access the same data variable untghs b
accesses are reads. For such data-race-free programs, RO
antees SC. To provide this guarantee, DRFO requires theidaeg
runtime to execute synchronization accesses in SC ordarfevit
optimizations. On the other hand, the runtime is allowecetdqym
mostsequentially validi.e., correct on a single thread in isolation)
optimizations in synchronization-free regions of the pewg. In
this way DRFO can be efficient and at the same time providagtro
guarantees for data-race-free programs.

However, DRF0-based memory models provide weak or no
guarantees for programs with data races. For instance, XCgiv€s
no semantics to racy programs. As a result, compiler and- hard
ware optimizations can introduce arbitrary behavior foaeyrpro-
gram, potentially compromising the program’s correctrass se-
curity properties. As this situation is unacceptable fpetgafe lan-
guages, the Java memory model (JMM) provides a weak seman-
tics for racy programs that precludes a class of adverdaeiadv-
iors. This semantics is subtle and complex and thereforemak-
derstanding and debugging multithreaded program exewig®-
tremely difficult. It also makes it difficult to develop contgai and
hardware optimizations that properly respect the JIMM [B}, 3

Motivated by this difficulty, prior work [8, 16, 17, 19, 29, B2
has proposed &il-stop semantics for racy programs. The basic
idea is to treat data races as program errors and dynamieaty-
nate racy executions withraemory-model (MM) exceptioBoing
so ensures that programmers are not exposed to the obsfaets ef
of weak memory models by guaranteeing that executions not te
minated with an MM exception are SC.

We recently developed a memory model based on this approach
calledDRFz [32]. Our key observation is that full data-race detec-
tion is unnecessary for the purpose of providing strong nrgmo
model guarantees to programmers. For example, it is addepta
allow a racy program to execute without raising an MM exaapti
as long as the execution is guaranteed to be SC. Accorditigly,

1Synchronization variables are annotated with type quadifisuch as
volatile (in Java) oratomic (in C++). Unannotated variables are data
variables.



DRFz memory model provides two simple and strong properties ond, contiguous soft-fenced regions executed in a processobe

to programmers. First, a program execution that is not teeited
with an MM exception is SC. Second, a program execution that i

coalesced at runtime to form larger regions if space is alvkglin
the region buffer, which reduces the frequency of conflictas.

terminated with an MM exception has a data race. We presented Finally, the conflict checks for regions in different proses can

design for a compiler and runtime system that ensures thege p
erties. The compiler partitions the program imégionsand com-
municates region boundaries to the hardware via memoryefenc
The compiler and hardware may perform most sequentiallig val
optimizations within a region but may not optimize acrosgoe
boundaries. Therefore, thErFz properties can be ensured by dy-
namically detecting conflicting memory accesses betweanuwe
rently executing regions [29, 32]. If no such conflicts ariben
the execution igegion-serializablewhich implies SC; otherwise
the detected conflict indicates the presence of a data ratteein
program.

In this paper, we propose a detailed micro-architecturéggdes
for supporting thedRF= memory model. Our approach builds on a
hardware design sketched in our prior work [32] but extehdsth
several important optimizations. Further, we have cakefidr-
malized the approach, including these optimizations, emnticro-
architectural level and have proven that it ensuresttRe: prop-
erties. Finally, we have built a simulator for our proposexddi
ware which, in conjunction with arFz-compliant compiler [32],
allows us to perform an end-to-end performance comparistn w
the DRFO memory model.

We have made a set of design choices in order to keep the har

ware support fobRF= simple while still allowing optimizations for
efficiency, both of which are critically important for fugiaccep-
tance by processor vendors. First, we propolseaconflict detec-

tion scheme foDRFz that does not change the cache architecture
or the coherence mechanism of the baseline DRFO hardware. Un

like transactional memory (TM) support [23]RF= cannot tolerate
false conflicts arising either from regions accessing téffiéwords
in the same cache line or from accesses occurring in misypeedi
branches. Rather than modifying the cache coherence misohan
to track a region’s access information at word granula2§j[we
instead store the addresses accessed by a region in a dddécat

gion buffer To commit a region, a processor sends the accessed

addresses to other cores for a conflict check. While lazy iconfl
detection can delay an MM exception beyond the first insimact
that results in a non-SC state, our implementation enshegghis
state is not observable to the rest of the system by throwieg t
exception before any subsequent system call.

Second, performing conflict detection over unbounded-sze
gions would tremendously increase the complexity of thelare
support needed, due to the possibility of overflowing theareg
buffer. Indeed, this issue has been one of the main impedéaen
TM support in hardware. We observe that, unlike a TM systém, t
DRF= compiler has the flexibility to choose region boundaries an
can therefore bound the number of memory accesses in edoh reg
in order to allow the hardware to perform conflict detectiathvi-
nite resources. We employ a simple and conservative stalygsis
for this purpose.

While bounded regions simplify conflict detection, they atso
lead to significant performance loss by limiting the instime and
memory parallelism available to the processor. To solv& phob-

lem, theDRFz compiler generates two kinds of fences to demar-

cate regionsHard fences behave like traditional memory fences
and are introduced at synchronization operations in orlgré-
serve the programmer-intended ordering semantics. Imastrgoft
fences indicate region boundaries introduced solely tanddbe

number of memory accesses per region. We propose and ealidat

the following optimizations involving soft fences. First,proces-
sor can execute, and even commit, soft-fenced regionsfeutser
while still properly detecting conflicts as required brFz. Sec-

proceed in parallel, and a processor can continue to exgmitac-
tions while concurrently servicing conflict check requdstsn re-
mote processors.

We have built abRFz-compliant hardware simulator using the
Simics-based FeS2 simulator [34]. In conjunction witlDRFz-
compliant C compiler [32] built on top of LLVM [28], we com-
pared the performance bRF- to that of DRFO compiler and hard-
ware. For additional reference, we also evaluated the pe#ioce
of executing a program compiled by the baseline LLVM compile
on an x86-like total-store-order (TSO) hardware. On a setpof
plications from the PARSEC benchmark suite [5], we find that t
overhead obRFz is 6.49% on average when compared to DRFO.

2. Background

This section provides the motivation for tb&F. memory model
and reviews its guarantees and requirements.

2.1 DRFO0-based Memory Models

Mainstream programming languages have recently convesged

DRFO-based [1] memory models [9, 30]. These models assuahe th
g-Program variables are properly labeledsgachronizatiovariables
(using annotations such &slatiles or atomic) anddata vari-
ables. Adata raceoccurs when two threads simultaneously access
a data variable and at least one of them is a write. A program is
said to contain a data race if there exists a sequentiallgistamt
execution in which a data race occurs. A programdta-race free
otherwise. Programs containing one or more data racesrapysi
referred to asacy programs.

DRFO0-based memory models guarantee sequential consistenc
for data-race-free programs while permitting the compiled the
hardware to perform a large class of optimizations on data va
ables. A programmer still has the flexibility of writing lodkee
code and using shared memory for synchronization, providat
appropriate variables are labeled as synchronizationderdo sat-
isfy the data-race-free requirement.

2.2 Need for a Fail-stop Semantics for Racy Programs

While DRFO-based memory models provide strong (SC) guaran-
tees for data-race-free programs, they only provide weakagu
tees for racy programs. For instance, the C++ memory moefgtisr
data races as program errors and provides no semanticsdoya r
program (akin to programs with buffer-overflow errors). Tdoen-
piler and the hardware are therefore allowed to introdubérary

d effects into a racy program, which can compromise the progra

correctness and safety. Indeed, it is possible for reasercam-
piler optimizations to introduce security vulnerabilgim the pres-
ence of data races [9].

Further, while data races are usually considered prograonsgr
they are easy for programmers to inadvertently introduciedfi-
cult to detect. Therefore, when debugging a large C++ sydigen
programmer has to assume the possibility of a data-racenme so
component of the system and therefore reason about thelaer
of optimizations with races to understand the program’satsigin.
Type-safe languages like Java mitigate these problemsdydsr
ing strong-enough guarantees for racy programs to ensyrerim
tant memory-safety properties [30]. However, this weakamios
is subtle and complex for programmers to reason about, drabit
been challenging to ensure that compiler and hardware @atim
tions in fact respect this semantics [13, 38].

One possible solution to this problem is to design languagds
static analyses that simply prevent programmers from dgloicong



data races, and this is an active area of research (e.gQ,[7.1)).
However, current approaches typically only account fokibased
synchronization, are overly conservative due to impreiciggma-
tion about pointer aliasing, and require programmer arioots A
promising alternative is to instead provide a fail-stop aetits for
racy programs [8, 16, 17, 19, 29, 32]. In this style, the metsys-
tem dynamically detects data races and terminates exaaiftibe
program before the non-SC behavior becomes observable tesh
of the system. Therefore, all program executions are gteedrio
behave in an SC manner, despite the possibility of data races

2.3 Fail-Stop Semantics Requires a Compiler-Hardware
Co-design

We argue that efficiently providing fail-stop semanticsriaey pro-
grams requires an end-to-end solution that involves a s@de
of both the compiler and the hardware. Note that such a faj-s
mechanism has stringent requirements on correctness afw-pe
mance. First, it is unacceptable to halt a data-race-fregram.
This means that any data-race detection mechanism canwet ha
false error reports. Second, the overhead of any fail-stephar
nism has to be smaller than the performance obtained from com
piler and hardware optimizations. Otherwise, one is betffesim-
ply preventing all non-SC transformations in the compiled ¢he
hardware.

The performance requirement clearly rules out existintysuoe-
based data-race detection algorithms that add a runtimdhexe
of 8x or more [18]. More fundamentally, any software-baspd a
proach must take care not to introduce data races as pareof th
detection mechanism itself, since that would expose thehmec

e Safety: If an execution of P invokes a system call, then the
observable program state at that point is reachable thrangh
SC execution of P.

These properties provide a simple and strong guaranteeio pr
grammers. Any program execution that does not raise an MM ex-
ception is guaranteed to be SC. Therefore, a program erecuti
can always be analyzed and debugged under an assumption of SC
behavior, without requiring the programmer to know whetter
program has a race. Further, if an execution of P raises an MM
exception, then the programmer knows that the program ¢kdfini
has a data race.

Despite the strong guarantees in the model, the propemges a
designed to allow flexibility in an implementation. Firstracy
program execution need not be halted unless the executitates
SC. This means that one does not require a full-blown data-ra
detector. On the other hand, the implementation still hasHoice
to halt a racy execution even if it does not violate SC. Thisunse
that one does not require a precise SC-violation detectberei
Finally, the Soundness property only ensures that an S@tiool
will eventuallybe caught, thereby allowing for a lazy detection
scheme in the hardware. However, the Safety property regjthiat
violations are at least caught before the next system tateby
prohibiting undefined program behavior from becoming exd#y
visible.

2.5 The Compiler-Hardware Contract

Our earlier work ondbRF= describes a set of requirements for a
compiler and hardware implementation that provably enshee
DRFz properties defined above [32]. The key idea is for the com-

nism to the weaker guarantees provided by the lower layers of piler to partition a program into single-entry, multiplgiteportions

the runtime platform, making it difficult to ensure correzss. All
existing data-race detection algorithms maintain someadata
per variable and update the metadata on an access to thblearia
When performed without synchronization, these updatesntent
duce data races in an otherwise data-race-free progtémever,
as these updates happen at every memory access, addingessynch
nization for these updates would prevent most optimizatiand
thereby add significant overhead.

On the other hand, a fail-stop mechanism cannot be imple-
mented in the hardware without any support from the compiler

calledregions All compiler optimizations are restricted to instruc-
tions within a region. In additionpRFz imposes two restrictions
on the compiler. First, any transformation shoulddaguentially
valid, meaning that executing the region in isolation from an ar-
bitrary program state should take the program to the sante sta
before and after the transformation. This restrictionvaianany
common optimizations disallowed by the SC memory modehsuc
as common subexpression elimination and register promdiiec-
ond, optimizations are not allowed to introduce reads aritesr
that are not present in the original program, as they candote a

The weak semantics provided by the Java and C++ memory modelsdata rac€.However, an optimization is allowed to eliminate reads

makes it impossible to precisely detect source-level datag in

the binary. For example, a compiler optimization couldadtrce
data races, causing the hardware to detect a false racbeFuat
compiler optimization couldemovea data race, causing the hard-
ware to fail to detect an actual race. Both the Java and C++-mem
ory models allow the compiler to perform transformatioret tiave
these effects [37].

2.4 DRFx Memory Model

Our fail-stop semantics for racy programs is made precisthby
DRFz memory model [32], which introduces the notion of a dy-
namicmemory model (MM) exceptidhat halts a program’s exe-
cution. The model ensures the following properties for aimgpam

P:

e DRF: If P is data-race free then every execution of P is sequen-
tially consistent and does not raise an MM exception.

e Soundness:If an execution is not terminated with an MM
exception, then that execution is SC.

2Two threads in a data-race-free program can simultaneoeatythe same
variable. The corresponding metadata updates result itaaraee.

and writes provided it satisfies the first condition above.

Each synchronization operation must be placed in its own re-
gion, thereby preventing reorderings across such acceEsem-
sure theDRF: model's Safety property, each system call must also
be placed in its own region. Otherwise, region boundariesuar
constrained. The compiler inserts a fence instructioneetitry of
each region in order to communicate these boundaries tcettte h
ware.

The hardware must also respect region boundaries (as edforc
by memory fences), and it additionally detects conflictingesses
to the same memory location (i.e., accesses where at leass an
write) from concurrently executing regions. If such a reggonflict
is detected, the hardware throws a memory-model exceptidn a
the detected conflict is a witness to a data race in the source
program. On the other hand, if there are no region conflibes t
the execution isegion-serializable— equivalent to an execution in
which each region is executed atomically in some global setigi
order consistent with the per-thread order of regions — até
SC.

The following example makes the compiler-hardware contrac
concrete. Consider the C++ program in Figure 1(a), in wHichad

3DRFO already precludes a compiler from introducing writestie pro-
gram.



X* x = null;

bool init = false; // Thread t //
B: init = true;

// Thread t // Thread u C:
A: x = new X(); C: if(init) D:
B: init = true; D: x->f++; A: x = new XQO;

(@) (b)

Thread u // Thread t // Thread u
B: init = true;
if(init) A: x = new X();
x->f++; C: if(init)
D: X=>f++;

(©

Figure 1. (a) Program with a data race. (b) Interleaving that expdse®ffect of a compiler or hardware reordering. (c) Interieg that

does not. [32]

t uses a boolean flaghit to communicate to threadthat variable

x has been properly initialized. In the absence of an anmotati
to declareinit a synchronization variable (e.giplatile in
Java [30] oratomic in C++0x [9]), this program is racy. Suppose
the compiler puts A and B in a single region, and similarlyGaand

D. Because A and B are in the same region, they can be potgntial
reordered, as shown in Figure 1(b). The execution depictéaiit
figure has a concurrent region conflict and so will be haltet amn
MM exception. Indeed, if not halted this execution will réso a
null pointer dereference, which cannot happen on any SQuérec
of the original program. On the other hand, the executionvshia
Figure 1(c) has no concurrent region conflict and so will net b
halted. This execution exhibits SC behavior despite thieuinson
reordering.

2.6 Realizing the DRFx Compiler and Hardware Design

In this paper we present a complete realization and evaluaii
aDRFz-compliant platform, including both a conforming compiler
adapted from our earli@¥RF= work and a hardware simulator. Our
approach is based on two high-level ideas [32]. First, coirditec-
tion for a region is performeldzily, once the region has completed
execution. This design supports conflict detection withewfuir-
ing modifications to the processor’s cache architectureloerence
mechanism, which would otherwise be necessary to avoicttete
ing false conflicts. Second, the compiler bounds the sizeaohe
region to ensure that conflict detection can be performeaguisi
nite hardware resources. While smaller regions limit thapscof
optimizations, a notion a$oft fencesllows the hardware to safely
optimize across most region boundaries.

Compared to a traditional memory model based on DRFO [2],
DRFz has two main sources of inefficiency that must be assessed.
First, there is a loss of performance due to the restrictioartly
optimize within a region. Second, there is additional oeadhdue
to the region conflict detection mechanism. We previousliit bu
a DRFz-compliant compiler and used it to evaluate the first cost
above [32], but the hardware design was not realized. Irpnier,
we propose a concreterRFz compliant hardware design, formalize
the design along with several important optimizations ara/g
the design’s correctness, implement the design in a haedsianu-
lator, and conduct an end-to-end performance evaluatisusehe
traditional DRFO model as well as TSO hardware.

3. DRFx Processor Design

In this section, we discuss our proposerlFz processor architec-
ture. We describe lazy conflict detection using bloom filigna-
tures, and several optimizations that allow efficient ekeouin
spite of the small, bounded regions created byke. compiler.
This section discusses the intuition behind the correstnéthese
optimizations while a more formal presentation will be givie
Section 4.

3.1 Overview

To satisfy DRFz properties, the runtime has to detect a conflict
when region-serializability may be violated due to a dateerand
raise a memory model exception (Section 2.5). Figure 3 ptesas
overview of ourbRF= hardware design which supports this conflict
detection. Additions to the baseline DRFO hardware areeshad
gray. The state of several hardware structures at somentrnsta
time during an execution of a sample program is also shown.

Unlike many hardware transactional memory designs, data-r
detection requires the hardware to perform conflict detecit byte
granularity. Performing precise byte-level eager conflietection
complicates the coherence protocol and cache architg@@ird-or
instance, such a scheme would require us to maintain byg-le
access state for every cache block, maintain the accessesten
after a cache block migrates from one processor to anothdr, a
clear the access state in remote processors when a regionitsom

Instead, we employ lazy conflict detection [21]. Each preoes
core has aegion bufferwhich stores the physical addresses of
memory accesses executed in a region. An entry is creatdebin t
region buffer when a region executes a memory access. A nyemor
access in a regionompletests execution when it icommitted
from the reorder buffer and, in the case of stonegired from
the store buffer. When all the memory accesses in a regioa hav
completed their execution, the processor broadcasts tlresgiset
for the region to other processors for conflict checks. Omee t
requesting processor has received acknowledgments ftathal
processors indicating lack of conflicts, it commits the oegand
reclaims the region buffer entries. We reduce the commtinita
and conflict check overhead by using bloom filter signatuces t
represent sets of addresses [14].siynature bufferis used to
store the read and write signatures for all the in-flight sagiin
a processor core.

The region buffer has to be at least as large as the maximum
number of instructions allowed to be executed in a soft-dene-
gion created by oupRFz compiler. The static analysis used by
our DRF= compiler to guarantee this bound is necessarily conserva-
tive and may create regions that are much smaller than theedes
bound. Frequent soft-fences leads to frequent conflictichat/e
reduce this cost by coalescing the soft-fenced regionsrdinme.

We can support this optimization by using a region buffeghgly
larger than the maximum possible region-size guaranteethédy
compiler.

To execute a hard fence, a processor has to stall the executio
of all future memory accesses until the operations befazehtird
fence have completed. Forcing the frequent soft-fencesdoted
by a conservative compiler analysis to adhere to such steabory
ordering requirements results in prohibitive performaoeerhead
due to the hardware being unable to exploit instruction aachory
level parallelism across small, soft-fenced regions.

We show that treating a soft fence as a hard fence is unnec-
essary and indeed leads to significant performance loss. &{e m
several observations that enable the hardware to optinuzess
soft fences. We show that we can allow memory accesses from a



region to execute even if earlier regions that are sepaiatesbft
fences have not committed. In addition, we demonstrate rerat
gions separated by a soft fence can be committed out of orter.
formal proofs outlined in Section 4 take these optimizatianto
account and establish that th&r. runtime requirements are still
satisfied.

3.2 Signature-based Lazy Conflict Detection

Let us assume that a processor treats soft fences similaartb h
fences, an assumption that we will relax later in the disomss
DRFz hardware employs lazy conflict detection to detect when
region-serializability could have been violated due to @dace.

Each processor core hasegion buffer A region buffer entry
stores the physical address of a memory access in a regi@n. Th
DRFz compiler bounds the size of a soft-fenced region to defined
bound B, which determines the minimum size that a processor
needs to provision for a region buffer.

Similar to DRFO hardware, the memory accesses within amegio
can execute out-of-order, and in the case of stores, retra &
store buffer out-of-order. An entry in the region buffer ieated
for a memory access when it is in the decode stage of the pgeli
Its effective address is eventually written to the regioffdsuonce
itis resolved, but before issuing the memory access.

Once all the memory accesses of a region have committed from
the re-order buffer (ROB), and stores are retired from tloeest
buffer, the corresponding processor broadcasts the addeggo
the other processors to perform conflict checks. On reagiain
conflict check request, a processor detects a conflict ifddessses
in its region buffer intersect with the address set receivethe
intersection is empty, an acknowledgment is sent to theestiqu
On receiving acknowledgments from all the other processmrs
processor commits a region by deleting its address entoesthe
region buffer.

Broadcasting addresses accessed by every region and mfpecki
their membership in every processor’s region buffer isrtyeex-
pensive. To reduce this cost, we propose using bloom filtgrasi
tures [14]. Memory addresses accessed by a region are eefgds
using a read and a write signature. Signatures for the intflig
gions are stored in theignature buffe{more than one region could
be in-flight due to our out-of-order execution optimizatodis-
cussed later in Section 3.5). To perform conflict checks fegion,

a processor first broadcasts only its signatures. Eachgsoceer-
forms AND operations over the incoming signatures with the-c
tents in its signature buffer. On detecting a potential ¢cinfANACK

is sent to the requester. On receivinAZK, a processor sends the
full address set for the region so that precise conflict dietecan
be performed.

The size of signatures needs to be large enough so that false ¢
flicts are rare, avoiding frequent transmission of full abdr sets.
On the other hand, large signatures could incur significamtou-
nication overhead. We observed that the average dynamianreg
size is relatively small (36 in our experiments). But, simee al-
low many regions to be in-flight in a processor at once, theasig
ture may be compared with many remote regions, increasiag th
probability of getting a false conflict. To address this peot, we
use large signatures (1024 bits) to avoid false conflicts cbm-
press the signatures before transmission to reduce coroatiam
overhead. Because many regions have small access setsighei
natures are effectively compressed using a simple, efficiam
length encoding scheme (RLE). Using this strategy, we okser
very high compression ratios which significantly reducechicw-
nication overhead.

Note that our conflict detection architecture does not mequi
additional state to be maintained in the cache, nor doegjitine

changes to the coherence protocol astRex conflict check mes-
sages are independent of coherence messages.

3.3 Concurrent Region Conflict Check and Region Execution

We observe that when a processoreceives a conflict check
request forR’, it need not stall the execution of its current region
R while it performs the conflict check. A conflict check can be
performed in parallel with the execution of a local regiomheT
intuition here is that any memory address that gets resdiwerl
during the conflict check can be shown to have executed dfeer t
memory accesses Ri. Thus, we can ord&t’ beforer in the region
serialization of the execution.

However, care must be taken to not raise a false conflict over a
speculative memory access. The region buffer entry andagign
buffer is updated once the address for a memory access Isgdso
It is possible that a branch before the memory access is eispr
dicted, and therefore there is a risk that the memory acamdsl ¢
get aborted in future. To avoid raising false exceptionseapro-
cessor detects a conflict, it delays the exception until émdlicting
memory access is committed from the ROB. If the memory access
gets aborted due to misprediction, then an acknowledgrsesgrit
if there were no other conflicts for the check. In our experitag
we observed that only very rarely we detect a conflict with ame
ory access in the wrong path. Therefore, the cost of delayirey
sponse to a conflict check due to such conflicts is negligible.

The signature for a region is updated when one of its memory
access’ address is resolved. When a memory access is aborted
due to a branch misprediction we do not update the signatures
corresponding to its region. This could result in additiofzdse
positives, but we expect the performance impact to be ribtgig

3.4 Coalescing Soft-Fence-Bounded Regions

The DRFz compiler uses a conservative static analysis to estimate
the maximum number of instructions executed in a regions Thi
could result in frequent soft fences. We observe that dyoalhgia
processor can ignore a soft fence if the preceding softefénegion
executed fewer memory accesses than a pre-determinetidites

T. Combining two contiguous soft-fenced regions at runtirnesd

not violateDRFz guarantees, because any conflict detected over the
newly constructed larger region is possible only if thera imce,

and ensuring serializability of the larger, coalesced-faited
regions is sufficient to guarantee SC for the original unojzted
program.

However, the processor needs to ensure that the newly con-
structed region does not exceed the size of its region buifer
design guarantees this by using a region buffer that is efBiz
B, whereB is the compiler specified bound for a soft-fenced region,
andT is the threshold used by a processor to determine when to ig-
nore a soft fence. Too high a value for the threshbldould result
in large regions at runtime, which might negatively impaetfor-
mance, because the probability of aliases in signaturegase.
Also, it could undermine out-of-order commit optimization

3.5 Out-of-Order Execution and Commit of Regions

In the discussion so far, we have assumed that a soft fenewdsh

like a hard fence. However, we observe that two importaritices

tions that need to be obeyed for hard fences can be relaxadftor

fences, which allows us to attain performance close to DRFO.
First, we allow out-of-order execution of soft-fenced eg. In

the case of a hard fence, before a processor can execute ynemor

accesses from a region, it has to wait for all the memory aeses

in the preceding regions to complete. We refer to this ret&n

asin-order execution of regiongrhis is clearly a requirement for

hard fences, since we may detect false conflicts if memorgsses

are allowed to be reordered across hard fences that demarcat



synchronization operations. However, we observe thattieimiory
ordering can be relaxed for soft fences. For the examplegarEi2,
I, can be allowed to execute even if regi®sandR; have pending

memory accesses in the ROB or the store buffer. If there is a

pending storeX;) in previous regions, its value can be forwarded
to a load in a later regiori).

The correctness of the above optimization can be intujtivel
understood by observing that executing memory accessesf-out
order only results in more in-flight accesses that needs tob#ict
checked. Therefore, it does not mask any conflicts that would
have been detected before. Also, aggressive reorderin@fof s
fenced regions does not reorder accesses across syneétii@miz
operations, so any conflicts detected guarantees presémzgao
races.

delayed context switches, the hardware waits until allrmegions
are committed and performs the context switch when the negio
buffer is empty.

Certain context switches, such as those induced by pages faul
and device interrupts, are critical and cannot be delayesl ol
serve thabRFz-style conflict detection should be disabled for low-
level system operations such as the page-fault handleruftdlear
if halting such critical functionality with a memory-modekcep-
tion is a good design choice. Instead, we propose that sweh lo
level code be (either manually or statically) verified to la¢edrace
free. This observation leads to a simple solution that do¢seaz
quire virtualizing the region buffer.

When critical context switches occur, the processor rettie
region buffer entries for the switched out thread. When tloegs-

Second, we observe that once a region’s memory accesses arsor is executing the page-fault or the interrupt handlemittinues

completed, a processor can initiate conflict checks and dbthe
region from the region buffer if the check succeeds. SinedROB
commits instructions in-order, it is guaranteed that whegg#on is
ready to commit, all the memory accesses from precedingmsgi
would have also committed from the ROB. There could, however
be stores in the store buffer pending for the earlier regidss

a result, those earlier regions would not yet be ready to cbémm
Under this scenario, we claim that it is correct to conflictckhand
commit a later region as long as all its accesses have coeumitt
from the ROB and retired from the store buffer.
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Figure 2. An Example Binary Compiled UsingrF= Compiler.

For example, in Figure 2, say regi®g is waiting for its store
I, to be retired from the store buffer. In the meantinie,has
completed and has retired from the store buffer. Nig\is ready to
commit. We claim that a processor can perform conflict chregki
for Ry and commit by deleting its corresponding entries from the
region and signature buffers. This optimization can beitinely
understood by observing that evengif commits, as long ago
does not raise a conflict, there would be a global serial datesll
the soft-fenced regions.

These relaxations on concurrent conflict detection ancbregi
execution obviate the need for the arbiter used in otherdanflict
detection schemes [14, 21]. The formalism presented indedt
accounts for out-of-order region execution and commit.

3.6 Handling Context Switches

A thread can incur a context switch at runtime for a variety of
reasons. When possible, we require that the context swidteb
layed until the subsequent soft fence instruction. As ogiores are
bounded in the number of memory instructions, most wellavet
programs will eventually execute a soft fence after a finit@ant
of time. To account for adversarial programs that can perfon-
bounded computation (while still performing a bounded nandf
memory accesses), we require that tirerz compiler insert ad-
ditional soft fences in regions that could potentially axecun-
bounded number of instructions. By doing so, we make it jessi
for scheduler-induced thread context switches be delayttbut
affecting the fairness of the operating system scheduterskch

to perform conflict detection on behalf of the switched-dwead.
Since conflict detection is disabled for the handler, no netsies
are added to the region buffer. When the handler has finished,
require that the operating system schedule the switchethoead
on the same processor core. At this point, the thread caging-
ing the region buffer, which contains the same entries itdtatie
time it was switched out.

While a page fault is being serviced for a thread, a processor
execute other threads instead of waiting for the data to fobde
from the disk. We can allowl context switches while handling a
page-fault by provisioning a region buffer with a size tisat fimes
that of the maximum bound specified by the compiler. For examp
if the compiler bounds the region size to 64 locations andoreg
buffer size is 512, we can allow 8 context switches.

3.7 Debugging Support

When a program is terminated with an MM exception, the pro-
cessor provides the addresses of the starting and ending fien
structions of each conflicting region to assist in debuggixact
addresses of the conflicting instructions could be providitd ad-
ditional storage overhead by extending each region buffey ¢o
track the program counter (PC) of each memory instruction.

A processor may encounter non-MM exceptions such as a null-
pointer dereference, division by zero, etc., while theeutrregion
is yet to complete. In this scenario, the processor stadisiecu-
tion of the current region and performs conflict detectiontfe
partially executed region. If the conflict check succeealdicating
no data race, it raises the non-MM exception. But if a conftict
detected, the processor throws an MM exception instead.

An MM exception in our design is imprecise in the sense that
the state of the program when an exception is raised may rie€be
Because, the compiler or hardware could have already peefbr
SC-violating optimizations in regions that contain racaugesses.
Even an eager conflict detection scheme can only guaraniéte th
the program state at the time of an exception is SC with redpec
the compiled, binary program [29]. The state could still be15C
with respect to the source program due to compiler optirtnat

3.8 System Calls and Safety

TheDbRFz compiler places each system call in its own region, sepa-
rated from other regions by hard fences. Furthermore, thepiter
generates code to ensure that system calls only accesd-boeéh
storage. Any user data potentially read by a system callggedao
thread-local storage before executing the preceding lesuckf and
any user data written by the system call is copied out of thieeal
storage after the succeeding hard fence.

An adversarial program may not obey ther compiler re-
quirement that every region’s size be bounded to a predefiiméd
When a program executes a region that exceeds the bound, the



Figure 3. Architecture Support fobRF= (shown in gray).

DRFz hardware can trivially detect that condition and raise an MM
exception to ensure safety.

3.9 DRFz Hardware Design Details

Region and signature buffers for each processor core amaaire
extensions to the baseline hardware structures. We asssino®p-
based architecture which we extend with additional message
support conflict checking. Conflict check messages are gmep
dent of coherence messages. Figure 3 showsew: hardware
extensions to a baseline out-of-order processor with diofter.
We now describe these extensions in detail.

Instead of allocating one region buffer entry for each megmor
access in a region, we could potentially coalesce acceest t
same memory location into one entry. We opted not to do this in
order to simplify the design, such as the logic required fleting
region buffer entries when memory accesses get abortedodaie t
branch misprediction.

The number of memory accesses decoded as part of the current
region is maintained by incrementing tlhetalOpCount field in
the current region’s signature buffer entry (specified BB reg-
ister). Completion of memory accesses of a region is maiathby
incrementing theompletedOpCount field when a load commits

When a hard fence is decoded, a new region is created by firstfrom the ROB or a store retires from the store buffer. Thesmt

finding a free entry in the signature buffer (one withitslid bit
unset), initializing the entry’s fields, and storing its @xdn the cur-
rent Signature Buffer Index (SBI) register. TBRI register keeps
track of the signature buffer entry corresponding to théore¢hat

is currently being fetched and decoded. When a soft fence-is d
coded, we create a new region only if the current region sizedd

in the totalOpCount field of the region’s signature buffer entry)
exceeds a pre-determined threshol32 in our experiments). If
a soft fence does not start a new region, it is turned integin
the decode stage. If a hard or soft fence starts a new red®n, i
instruction address is stored in tRegion-beginPC field of the
new region’s signature buffer entry. This information idsvhile
reporting an MM exception.

When a memory instruction is decoded, a region buffer entry
is allocated for it. The registerFree keeps track of the total
number of free entries in the region buffer. If no free regemry
is available, the memory access is stalled in the decode sthg
the pipeline. Since regions can commit out-of-order, wentadm
a linked-list to track the free region buffer entries. Thead and
tail registers point to the first and last entries in the free list
respectively. Free entries, and also those allocated tgiarrare
linked through theptr fields. Theptr for the first memory access
of a region is set to null. Thetr for any later memory access
of a region points to its immediately preceding memory agses
region buffer entry. The head and tail of a region is storetha
RBI-begin andRBI-end fields in the signature buffer entry of that
region (RBI stands for Region Buffer Index).

are used to determine when a region is ready to commit.

When a memory operation’s address is resolved, completed or
aborted, corresponding entries in the signature and regidfier
need to be updated. To determine these entries, each ROB entr
contains two pointers: the Region Buffer Index (RBI) thaitn®to
the memory access’ region buffer entry, and the SBI of theoreg
that the memory access corresponds to.

When a memory access is aborted due to a branch mispre-
diction, its region buffer entry is deallocated and its oe(g
totalOpCount is decremented. Note that a store in the store buffer
does not need the RBI pointer as it is non-speculative. I$ thosv-
ever need the SBI pointer to update thepletedOpCount in the
signature buffer when it retires.

When a hard or a soft fence commits from the ROB, its re-
gion's regionDone bhit is set in the signature buffer. Also, its
region’s Region-endPC is updated with its instruction address.
A region is ready to commit, if itregionDone bit is set and
completedOpCount iS equal tototalOpCount. Before commit-
ting a region, its addresses need to be conflict checked Withea
in-flight regions in remote processor cores. During thi<pss, the
region’s SBI is used as its identifier in the conflict check sages.

If the conflict check succeeds, the region is committed by-dea
locating its entries in the signature and region buffere $igna-
ture buffer entry is identified using the region’s SBI usedmiyits
conflict check. The start and end of a region’s entries in égéon
buffer are determined using ti®BI-begin andRBI-end fields



stored in that region’s signature buffer entry. Committedion’s
region buffer entries are added to the free list.

3.9.1 Region Buffer and Signature Buffer Sizes

struction beingcompletedWe consider a store completed when it
has retired from the store buffeb{ a store and M retired =

M completed). Loads and all other instructions will be considered
completed as soon as they have been committed from the reorde

The number of entries in the region buffer needs to be at least buffer (M not a store and M committed = M completed).

as large as the bound assumed by b= compiler for a soft-
fenced region (512 entries for our study). But a larger #flows

us to coalesce regions. Also, a larger region buffer coufsbsa
additional opportunities for out-of-order execution asoegions.
We assume a 544-entry region buffer in our evaluation (51Bes
compiler bound, additional 32 entries support coalescing)

DRFz requires byte-level, precise conflict detection, but sipri
an entry for each byte accessed would be inefficient. To niz@m
region buffer space, we optimize for the common case, wtsch i
word-level access. Thus, a region buffer entry includesvitvel ad-
dress, byte offset, and the number of bytes accessed. Thisee
81 bits per region buffer entry: 8 bytes for double word atidad-
dress, 3 bits for byte offset, 3 bits for access size, a reitd/Wit,
and 10 bits foptr. Thus, the size of a region buffer in each core is
5.38KB.

The region buffer is designed as a banked content addressabl
memory (CAM). This allows us to perform fast membershipgest
using word addresses when performing precise conflict éghgck
for a remote region. Only when a potential word-level confisc
detected do we perform a precise byte-level address cosqpari
We expect that the CAM would be accessed relatively infratiye
only when a signature-based conflict check finds a potenpial ¢
flict.

(R) Send the conflict detection msg for regién

(P + R) Receive a conflict detection msg for regi®at processoP’
(PVR) Send an ack msg faR from P back to originating processar
R committed | CommitregionR, clearing all its entries in region buffer

Table 1. Events in Conflict Detection

We also include irPHB the causal order between instruction
execution events and the events performed as part of codélict
tection, which are shown in Table 1. A processor waits foirall
structions in a region to be completed (all instructions ootied
and all stores flushed from store buffers) before sendingra co
flict detection message. So, for all instructiohs$ in region R
we haveM completed <pus (R). Furthermore, although regions
may be committed out of order, because instructions are ¢gbmm
ted from the reorder buffer in-order, we know that for alltins-
tions M in regions program-ordered before regid) we have
M committed <pue (R). We also know that a processor must
receive a request for conflict detection before it perforetection
and eventually sends an acknowledgment. We als@dsdo cap-
ture this:(P < R) <pus (PV'R).

The fact that the conflict detection mechanism does not find a

Each core has a signature buffer with 17 entries, as there canconflict can also indicate events that are ordereeg. Itis clear

only be a maximum of 17 in-flight regions in our design with
544-entry region buffer and a coalescing thresh@)dof 32. Each

that if a processoP is performing conflict detection in response to
arequest from processét for a regionR?’ and there is an address-

entry has a read and a write signature of size 1024 bits to cap-resolved, conflicting entry in the region buffer for the ety of

ture the addresses accessed in a region. In addition, edgh en
contains a valid bit, aregionDone bit, RBI-begin, RBI-end,
completedOpCount, totalOpCount (10 bits each since there are
544 region buffer entries which is also the maximum number of
memory operations in a coalesced region), and starting radici@
program counter values of a region (64 bits each). Thus reagige
buffer with 17 entries is of size 4.60KB.

4. Correctness of Design

In this section we describe the formal arguments we use ta sho
that our optimized hardware design satisfies the two keyirequ
ments for @DRFz-compliant execution environment: exception-free
executions are region serializable and only compiled progrthat
contain a data race can raise an MM exception. Full proofsief t

lemmas and theorems are omitted, but can be found in the accom

panying technical report [40].

In showing the correctness of the design, we must model cer-

tain orderings that hold between various events in the sydteep
in mind that none of the orderings we describe are violated by
the optimizations described in Section 3. In particular waken

the conflict detection process, then an exception will beedhi
Furthermore, conflict detection fd®’ occurs strictly between the
time that the request is received and the acknowledgmermnis s
This reasoning makes no assumptions about the order oftixecu
of instructions in different regions, the number of regiamflight,
the order of region commit, or whether or not conflict detatfior
multiple requests (or a coalesced request) is proceedipagradlel.

So, the following proposition captures what orderings we ca
infer if a conflict isnotdetected in our fully optimized design.

Proposition 1. If M and M’ are conflicting memory accesses
contained respectively in regioR executing on processar and
region R’ executing on processaP’ where P # P’, and if the
execution does not raise an MM exception, then either:

1. R committed <pws (Pv' R')
or
2. (P + R') <pus M resolued.

We model the fact that a message must be sent by one processor
before it is received by another processor by a partial arelbed
message happens beforeHg). So we have R) <uws (P < R),

no assumptions about the order in which memory accesses fromand also/Pv'R) <ws R committed since the originating proces-

adjacent soft-fenced regions complete or the order in wttiose
regions commit. We consider three events in a (memory agcess
instruction’s execution: address resolution, commit froma re-
order buffer, and (for store instructions) retirement frma store
buffer. For any particular instruction, a processor perforeach

sor must receive acknowledgments from all other processitse

it commits the region. (We've left the reception of the ackteulg-
ment as an implicit event since it won't be needed in the @pof
Since bothpHB andMHB are partial orders that arise from causal
relationships and are consistent with physical time, wenktitat

of these events in this order. Any events that can be shown to their union is acyclic. We will call this partial order thessgm hap-

have a causal relationship within a processor give rise tara p
tial order on events that is consistent with physical time. Wil
refer to this partial order as the processor happens befaler o
(PHB). So, for an instruction/, we have M resolved <pus
M committed <pug M retired. In an attempt to treat loads and
stores more uniformly in the formalism, we will also referaoin-

pens before relatiorsHB = PHB U MHB.

Notice that Proposition 1 is symmetric iW and M’. But, it
cannot be the case that bofh committed <pns (Pv'R') and
R’ committed <pwe (P'v R). Otherwise we would have a cycle
in SHB: R committed <pugs (P\/R/> <uus R’ committed <pus
(P'VR) <we R committed. Neither can it be the case that



both (P < R’) <eug M resolved and (P’ + R) <pus
M’ resolved. Again, this would contradict the acyclicity sfHB
since(P — Rl> <pue M resolved <pus <R> <wmHe <P/ —
R) <pus M’ resolved <pue (R') <wi (P < R'). So
we incorporate this information to state a stronger versibthe
proposition.

Proposition 2. If M and M’ are conflicting memory accesses
contained respectively in regioR executing on processad? and
region R’ executing on processaP’ where P # P’, and if the
execution does not raise an MM exception, then either:

1. R committed <pws {Pv'R') and
(P' <~ R) <preg M’ resolved
or

2. (P «+ R') <pne M resolved and
R’ committed <pus (P'v R).

We now describe some orderings on memory operations. Our
cache coherence protocol guarantees us a total order oaswrit
to the same memory location. We will call this ordeo. This
can be extended to a partial ordeo on loads and stores to the
same memory location by ordering a load after the store that i
reads and before the store that follows that storedn In order
to define region serializability, we consider the lifting Bb to
regions, denoted bgo”. We defineR; <_,r R: to hold if there
exist conflicting memory operationd/; € R; and M2 € R
such thatM; <go M>. We can now state the definition of region
serializability in terms ofeo® and the program order of regions
within a thread, which we will caftro.

Definition 1. Let the region ordering relatiorRo be defined as
RO = EOF U TO. An execution igegion serializabléf RO is a
partial order.

In order to prove that an exception-free execution is region
serializable, we first establish the following two lemmas.

Lemma 1. If a memory acces3/ in region R executing on pro-
cessorP conflicts with a memory acceadd’ in region R’ executing
on P’ whereP # P, and if (P' < R) <pus M’ resolved and

the execution is MM-exception-free, thi&h <o M’.

Lemma 2. If M and M’ are conflicting memory accesses con-
tained respectively in regiof® executing on processdpP and re-
gion R’ executing on processaP’ where P # P’, and if the
execution does not raise an MM exception, antl/if<g, M’, then
R committed <pus <P\/R/> and <P' — R) <pus M’ resolved.

We use these lemmas to establish the following theorem.

Theorem 1. An execution on our optimized hardware that does not
raise an MM exception is region serializable.

We further demonstrate that if two conflicting memory acesss
are ordered by synchronization operation$ Ko S <eo S’ <10
M), then they cannot cause a memory model exception to be
raised. This is the result of the stringent ordering comsisdhat the
hardware places on the hard fences surrounding synchtamiza
operations.

Theorem 2. If a compiled program is free of data races, then
our optimized hardware will not raise an MM exception durits
execution.

Full proofs for these theorems and lemmas can be found in [40]

Theorems 1 and 2 can be combined with the results shown for a 1pstruction: : isSafeToSpeculativelyExecute

DRFz-compliant compiler in [31] in order to establish the end-to
endDRFz guarantees.

5. Results

This section discusses results analyzing the cost of stipgor
DRFz, Which includes the cost of optimizations lost due to coenil
constructed soft-fences and runtime conflict detection.

5.1 Simulation Methodology

We implemented three compiler versions using LLVM[28] tadst
the performance of TSO, DRFO amkF.. The TSO compiler is
the baseline LLVM compiler at03 optimization level. The DRFO
compiler inserts a hard fence using thevm.memory.barrier
intrinsic before and after every synchronization call andess to

a volatile variable. Also, we disabled speculative optatizns.*
For thedbrRF= compiler, we inserted soft fences before performing
any compiler optimization to bound region sizes to 512 megmor
accesses. The size is estimated using a conservative atzi-
sis over the control-flow-graph. In addition, our compilenser-
vatively adds a soft fence at every back-edge of a loop.

We modeled three hardware architectures, TSO, DRFO and
DRFz USing a cycle-accurate, execution driven, Simics based
x86_64 simulator called FeS2 [34]. Our processor configuration
is shown in Table 2. The model includes a MOESI coherence pro-
tocol and a store buffer to hold pending stores that have been
mitted from the ROB. For TSO, the store buffer is organizea as
FIFO queue to enforce in-order retirement of stores. For D&l
DRFz, the store buffer can retire stores between two hard fences
out-of-order. We also allow two stores to the same cachekhimc
be coalesced into one entry in the store buffer for the DRFD an
DRFz models.

We modeled a hierarchical switch network with a fan-out degr
of 4, 512-bit link width, 1-cycle link latency. We assume awal
channel (VC) for each message type: address, control, tastidg
signatures in DRFx, and unicast messages in DRFx (requeatifu
dress set, reply full address set, acknowledgments). Vdenadsi-
eled 2-cycle latency for issuing a message into the interecn
Limited message buffer capacity at each switch was not reddel

Our model includes speculative load execution support for
TSO [20]. It allows a load to be speculatively reordered efm-
other load. A misspeculation is detected when a processeives
an invalidation request for a cache block that was read $gibely
by a load before that load commits from the ROB. In the event of
a misspeculated load, the load and its subsequent instngctire
squashed and re-executed. This optimization is not negefsa
DRFO andbRFz as they can re-order loads and stores between two
hard fences.

For all the models, memory accesses are not allowed to execut
until preceding hard fence has committed. A hard fence iseitim
ted only after all the preceding memory accesses haveddtom
the store buffer.

For bRF: we modeled a region buffer of size 512 (compiler
bound) + 32 (to support region coalescing). This buffer \gddid
into 8 banks and each bank is a CAM. We assume 2 cycle latency
for associative accesses to this structure, which we etinesing
CACTI [12]. For signature based designs, we use a 1024 bitsig
ture and use the hash used in Bulk [14]. We used a signatuiier buf
of size 17, which allows a maximum of 17 regions to be in-flight
a processor core.

We evaluated the performance of various designs over PAR-
SEC [5] and SPLASH-2 [43] benchmarks. Table 3 lists the IRC fo
the baseline DRFO model. All of these benchmarks are rungo th
completion. For PARSEC benchmarks, we usedsthe-medium

4 Specifically, we modified11vn: : isSafeToLoadUnconditionally,
and
MachineInstr::isSafeToMove to return false if instruction is a

load



input set (except for streamcluster, for which we usedthe-small
input). For SPLASH-2 applications we use the default inputs

Processor 4-core CMP. Each core operating at 2Ghz.
Fetch/Exec/Commit widtH 4 instructipns (maximum 2 loads or 1 store)
per cycle in each core.
TSO: 64 entry FIFO buffer with 8 byte granularity|
Store Buffer DRFO, DRFm:yS entry unordered cc):;le%cing buf%ler
with 64 byte granularity.
L1 Cache 64 KB per-core (private), 4-way set associative, 64B
block size, 1-cycle hit latency, write-back.
L2 Cache 1MB private, 4-way set associative, 64B block size,
10-cycle hit latency.
Coherence MOESI snoop protocol
Interconnection Hierarchical switch, fan-out degree 4
512-bit link width, 1-cycle link latency.
Memory 80-cycle DRAM lookup latency.
RegionBuffer 544 entry, 8 banks, 2-cycle CAM access.
Bloom filter 1024 bits. 2 banks indexed by 9 bit field after afl-
dress permutation[14]. 2-cycle access latency.
Table 2. Processor Configuration
Application Avg. IPC (DRF0) | Application | Avg. IPC (DRFO)
blackscholes | 1.97 bodytrack 1.75
canneal 0.27 facesim 0.53
streamcluster| 1.61 barnes 1.59
fft 1.41 radix 0.99
raytrace 0.59

Table 3. Average IPC for DRFO

5.2 DRFx Memory Model Performance Comparison

Figure 4 compares the performance of TSO, DRFO@RHE:. The
results are normalized to the execution time of DRFO.0Ho#, we
show two results. The first result labeledD®F0 + soft-fence
represents the compiler cost oRFz and is the maximum per-
formance oumRF= hardware can hope to achieve. To obtain this
result, we executed a program compiled usirer= compiler on
DRFO hardware, treating every soft-fence as a no-op. Thensec
result forbRFz is for a processor configuration that employs all the
optimizations we discussed in this paper. It representsdhgpiler
and hardware conflict detection cost to supmottz.

We find that the average performance overhead to supmett
is about 6.49% when compared to DRE@rnes has the highest
overhead of 24%DRF. conflict detection adds only about 2.3%
higher overhead tDRFO + soft-fence. As demonstrated in the
next section, our optimizations are crucial for achievitase to the
best possible hardware performance.

The remaining cost iDRFz is due to restricting compiler opti-
mizations to soft-fence bounded regions. For exanmuke: model
for bodytrack is about 12.84% slower than DRFO, but almost all
of this overhead is due to tlErF= compiler. Our current compiler
bounding analysis is very conservative, especially réggridops,
and so we believe that this cost could be significantly imedov

We found that soft fences constitute 6% of total committed
instructions. Average dynamic size of compiler constrdicteft-
fenced regions is about 10 memory operations. However,wour r
time coalescing optimization increases this to 36 memorgrap
tions. We could improve this further by increasing the rediaffer
size. Small regions result in frequent conflict checks, k¢
pressing signatures avoids excessive communication eadrfor
these checks. We find that run-length encoding of signatoes
presses signatures by 4.34x on average, significantly ireglnet-
work bandwidth requirement. The amount of data communicate
processor cores increased by 84% due to conflict messagesin
when compared to DRFO. More aggressive coalescing couhpot
tially reduce this overhead further.

TSO represents the performance gotten by compiling a pnogra
using a stock compiler and executing it on stock hardware. We
found that TSO is nearly as fast as DRFO on our benchmarks.

5.3 Effectiveness of Out-of-Order Optimizations

Figure 5 compares the effectiveness of three of our optimoizs:
out-of-order region execution, out-of-order region comnaind
coalescing contiguous regions. All of the configurationsuase
signature-based conflict detection. The performanceteearg nor-
malized to the DRFO execution time.

If we had not distinguished between hard and soft fencess non
of the above three optimizations would have been feasilidés T
configuration is represented as-exec, io-commit. We find
that the performance overhead without the three optinumati
would be on average 121% slower than DRFO. Allowing regions
to execute out-of-order brings the overhead down to abo%.27
Allowing regions to commit out-of-order further reduces thwer-
head down to about 7.7% on average. Finally, coalescingmegit
runtime reduces the overhead to about 6.49%. This optifoizé
especially effective for programs for which our consemattom-
piler bounding analysis constructs very small regions.ifstance,
on streamcluster the overhead is reduced from 36% to about
15%.

Conflict detection in our design can negatively impact perfo
mance by stalling the execution of a processor core only unde
two circumstances. One, a region buffer entry is not avil&dy a
memory operation to issue. Two, even after all the memorgsses
in the regions preceding a hard fence have completed, tleegro
sor must stall to allow conflict detection to complete. We suead
the proportion of the processor cycles that are stalled duleetse
two reasons for a configuration with in-order commit and oke a
lowing out-of-order commit. The results are shown in FigirgVe
observe that out-of-order commit significantly reduceshidonds
of stalls for most benchmarks.

5.4 Effectiveness of Signature-Based Conflict Detection

Figure 7 compares the performance m®rFz with and without
signature based conflict check optimization. We observe tha
average, the signature based scheme improves performaiéé.b
The average false positive rate for bloom filter checks wag%.
and the maximum was 12% awdytrack.

5.5 Scalability

Figure 8 shows the performance bRF. when compared to the
baseline DRFO as the number of cores scale. We find the network
bandwidth is adequate to provide scalable performance dg+o
cores. Foblackscholes there is a noticeable performance differ-
ence as we go from 4 to 8 cores. This is due to an increased mumbe
of false conflicts when signatures are compared to a larger nu
ber of regions on more cores. On detecting a potential confiie
have to perform expensive, precise conflict check over thgpbete

set of addresses. FbLackscholes, precise conflict detection was
performed for about 13% of regions in the 8-core configuratis
opposed to only 5% in the 4-core configuration.

5.6 Exceptions

We detected conflicts due to a few benign data races in the ap-
plications we studied. One source of benign races was pregra
mer constructed barrier synchronizations and semaphohese
synchronization variables were not typedvadatile in the pro-
gram which caused the conflicts. Also, we detected two casflic
due to benign data racesgibc — one in__drand48_iterate ()

and another in_cfree andmalloc_consolidate functions. To
ensure correctness even under DRFO, a programmer needs to co
rectly flag the racy variables in these functionsrasatile.



Figure 8. Performance overhead bRF: for 4, 8 and 16 cores with
respect to the DRFO performance for the same number of cores.

Concurrently with our earlier work oDRFz, Lucia et al. de-
fined conflict exception$29], which also use a notion of regions
to detect language-level SC violations in hardware. Thgireach
can be viewed as a realization bRFz-compliant hardware, but it
differs in important ways from our design. First, in theipapach
a conflict exception is reportgatecisely just before the second of
the conflicting operations is to be executed. Precise couiititec-



tion is arguably complex in hardware as one has to track acces

SC can be guaranteed at the language level even on hardware

state for each cache word and continue to track it even when athat supports a weaker consistency model using static sisaly

cache block migrates to a different processor core. Fyritieen

a region commits, its access state needs to be cleared irtaemo
processors. Finally, while this approach delivers a peseiscep-
tion with respect to the binary, the exception is not guaradtto
be precise with respect to the original source program. 18kco
in their approach region boundaries are placed only aroynd s
chronization operations, thereby ensuring serializigbdif max-
imal synchronization-free regionsvhich is a stronger guarantee
than SC. While this property could be useful for programmers
it can result in unbounded-size regions and thereby corsitie
complicates the hardware detection scheme and systemeseftw

to insert fences [24, 39, 41]. However, computing a mininl s
of fences for a program is NP-complete [25]. One approach to
reduce the number of fences is to statically determine pialgn
racy memory accesses [24, 41] and insert fences only forethos
accesses. These techniques are based on pointer aliasignaly
sharing inference, and thread escape analysis. In spiteceht
advances [10, 11], a scalable and practically feasiblenigake for
implementing a sound static data race detector also rensains
unsolved problem, as all the techniques require complexjlevh
program analysis.

There has been much work on designing an efficient, sequen-

Adve et al. [3] proposed to detect data races at runtime using tially consistent processor. But this only guarantees SBedbard-

hardware support. Elmas et al. [17] augment the Java virhzal
chine to dynamically detect bytecode-level data races arse ia
DataRaceException. Boehm [8] provided an informal argument
for integrating an efficient always-on data-race deteaaextend
the DRFO model by throwing an exception on a data race. How-
ever, detecting data races either incurs 8x or more perfocena
overhead in software [18] or incurs significant hardware glex:

ity [33, 35]. A full data-race detector is inherently complas it
has to dynamically build theappens-beforgraph [26] to deter-
mine racy memory accesses. It is further complicated by dbe f
that racy accesses could be executed arbitrarily “far” afwamn
each other in time, which implies the need for performingfiboin
detection across events like cache evictions, contexthest etc.

In contrast,DRF= hardware is inherently simpler as it requires that
we track memory access state and perform conflict detectien o
only the uncommitted, bounded regions.

Gharachorloo and Gibbons [19] observed that it suffices to
detect SC violations directly rather than data races. Tgeal
was to detect potential violations of SC due to a data-rack an
report that to the programmer. However, their detection witls
respect to the compiled version of a programrr. incorporates
the notion of compiler-constructed regions and allows tiragiler
and hardware to optimize within regions while still allogins to
dynamically detect potential SC violations at the languagel.

6.2 Efficiently Supporting Sequential Consistency
If the hardware and the compiler can guarantee SC, it islglear

ware level for the compiled program [6, 15, 36, 42].

6.3 Transactional Memory

Hardware transactional memory (HTM) systems [23] also empl
conflict detection between concurrent regions. HowevedikeiiM
systems, regions ilDRF: are constructed by the compiler and
hence can be bounded. Also, on detecting a conflict, a regied n
not be rolled back. This avoids the complexity of a specaorati
mechanism. Thus, arFz system does not suffer from the two
issues that have been most problematic for practical amtojuif
TM.

Hammond et al. [22] proposed transactional coherency amd co
sistency (TCC) memory model based on a transactional pregra
ming model [23]. The programmer and the compiler ensure that
every instruction is part of some transaction. The runtimargn-
tees serializability of transactions, which in turn guaeas SC at
the language level. Unlike this approadrr= is useful for any
multi-threaded program written using common synchroionap-
erations like locks, and it does not require additional paogmer
effort to construct regions. TCC also requires unboundegibne
and speculation support. TCC suggests that hardware coeitdk b
large regions into smaller regions, but that could violafzes the
language level.

Our lazy conflict detection algorithm is similar to the one-pr
posed by Hammond et al. [22] but without the need for speiculat
and conflict detection over unbounded regions. Also, we eynpl
signatures to reduce the cost of conflict checks. Unlike DRIF=
cannot afford false conflicts, which our design takes camitoi-

preferable to weaker memory models. There have been severalnate. But lazy conflict detectors like TCC assume some fora of

attempts to reduce the cost of supporting SC.

Bulk compiler [4] together with the BulkSC hardware [15] pro
vide support for guaranteeing SC at the language level. The b
compiler constructs chunks similar to regions, but a chunkidc

commit arbiter to regulate concurrent commit requestsdgians
in different processors. As we discussed, we can allow gibres to
be conflict checked in parallel with the execution of curregiions,
which could be simpler. Also, soft-fenced regions can beetesl

span across synchronization accesses and could be unldounde and committed out-of-order.

The BulkSC hardware employs speculation and recovery to en-

sure serializable execution of chunks. Conflicts are deteasing

a signature-based scheme and they are resolved throughdioll
and re-execution of chunks. Forward progress may not belpess
in the presence of repeated rollbacks. The Bulk system aselse
this issue and the unbounded chunk problem using severgkheu
tics. When the heuristics fail, it resorts to serializingicks and
executing safer unoptimized code.

DRFz hardware could be simpler than Bulk hardware as it avoids
the need for speculation (especially across 1/0) and untbedin
region sizes which have been the two main issues in real&ing
practical transactional memory system. HoweverF. requires
precise conflict detection, whereas Bulk can afford falgeflzxts.
Our observations that certain regions can execute and cooortri
of-order, and that conflict checks and region execution fileidint
processors can all proceed in parallel is unique. It may inefpove
the efficiency and complexity of Bulk system as well.

7. Conclusion

The bRFz memory model provides strong and easy-to-understand
guarantees for both data-race-free and racy programs saduiddy
supporting most sequentially valid compiler and hardwapé- o
mizations. A significant challenge in bringimerF. to practice is

the cost of runtime conflict detection. Processor supparteduce
this cost, but it can be realized in practice only if it is befficient

and simple.

This paper addresses this challenge through careful design
choices and optimizations oftzrFz-compliant micro-architecture.
We employ a lazy conflict detection design in order to avoidimo
ifying the existing cache architecture and coherence nrésim
We leverage interaction with the compiler to partition agreom
into bounded-size regions, thereby avoiding the need tallban
overflow of hardware resources during conflict detectiorrther,



the cost of bounded-size regions is significantly reducesdvgral
novel optimizations that we have formalized and proveneszirr

We used apRFz-compliant compiler and a hardware simulator

to evaluate our design. We find that the average performarere o
head is about 6.5% when compared to DRFO memory model.
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