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Abstract
A longstanding challenge of shared-memory concurrency is to pro-
vide a memory model that allows for efficient implementation
while providing strong and simple guarantees to programmers. The
C++0x and Java memory models admit a wide variety of com-
piler and hardware optimizations and provide sequentiallyconsis-
tent (SC) semantics for data-race-free programs. However,they ei-
ther do not provide any semantics (C++0x) or provide a hard-to-
understand semantics (Java) for racy programs, compromising the
safety and debuggability of such programs.

In earlier work we proposed theDRFx memory model, which
addresses this problem by dynamically detecting potentialviola-
tions of SC due to the interaction of compiler or hardware opti-
mizations with data races and halting execution upon detection. In
this paper, we present a detailed micro-architecture design for sup-
porting theDRFx memory model, formalize the design and prove
its correctness, and evaluate the design using a hardware simula-
tor. We describe a set ofDRFx-compliant complexity-effective op-
timizations which allow us to attain performance close to that of
TSO (Total Store Model) and DRF0 while providing strong guar-
antees for all programs.

Categories and Subject Descriptors C.0 [Computer Systems Or-
ganization]: Hardware/software interfaces

General Terms Design, Performance

Keywords memory models, data-races, memory model exception,
soft fences

1. Introduction
A memory consistency model (or simply amemory model) forms
the foundation of shared-memory multi-threaded programming. It
defines the order in which memory operations performed by one
thread become visible to other threads. A programmer needs to
understand the memory model in order to determine the behavior
of a concurrent program. Every layer in the compute stack hasto
ensure that any transformations it performs retain the semantics of
the source program with respect to the memory model.

Sequential consistency (SC) [27] is the most intuitive memory
model for programmers. SC guarantees that all the memory oper-
ations executed across different threads appear in one total order
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that is consistent with the per-thread program order. Many com-
piler and hardware optimizations that are valid for sequential pro-
grams (such as register promotion, common subexpression elimi-
nation, out-of-order execution, store buffers, etc.) can break the SC
semantics of concurrent programs. The resulting performance lim-
itation has forced modern hardware architectures and mainstream
programming languages to support weaker memory models.

In particular, recently proposed memory models for C++0x [9]
and Java [30] are based on the data-race-free-0 (DRF0) memory
model [1]. These models require that a programmer explicitly clas-
sify shared-memory variables intosynchronizationanddata.1 The
intention is that programmers use synchronization variables forall
inter-thread communication and that there are no data raceson data
variables. In other words, two threads in the program are notal-
lowed to concurrently access the same data variable unless both
accesses are reads. For such data-race-free programs, DRF0guar-
antees SC. To provide this guarantee, DRF0 requires the language
runtime to execute synchronization accesses in SC order with few
optimizations. On the other hand, the runtime is allowed to perform
mostsequentially valid(i.e., correct on a single thread in isolation)
optimizations in synchronization-free regions of the program. In
this way DRF0 can be efficient and at the same time provide strong
guarantees for data-race-free programs.

However, DRF0-based memory models provide weak or no
guarantees for programs with data races. For instance, C++0x gives
no semantics to racy programs. As a result, compiler and hard-
ware optimizations can introduce arbitrary behavior for a racy pro-
gram, potentially compromising the program’s correctnessand se-
curity properties. As this situation is unacceptable for type-safe lan-
guages, the Java memory model (JMM) provides a weak seman-
tics for racy programs that precludes a class of adversarialbehav-
iors. This semantics is subtle and complex and therefore makes un-
derstanding and debugging multithreaded program executions ex-
tremely difficult. It also makes it difficult to develop compiler and
hardware optimizations that properly respect the JMM [13, 38].

Motivated by this difficulty, prior work [8, 16, 17, 19, 29, 32]
has proposed afail-stop semantics for racy programs. The basic
idea is to treat data races as program errors and dynamicallytermi-
nate racy executions with amemory-model (MM) exception. Doing
so ensures that programmers are not exposed to the obscure effects
of weak memory models by guaranteeing that executions not ter-
minated with an MM exception are SC.

We recently developed a memory model based on this approach
calledDRFx [32]. Our key observation is that full data-race detec-
tion is unnecessary for the purpose of providing strong memory-
model guarantees to programmers. For example, it is acceptable to
allow a racy program to execute without raising an MM exception,
as long as the execution is guaranteed to be SC. Accordingly,the

1 Synchronization variables are annotated with type qualifiers such as
volatile (in Java) oratomic (in C++). Unannotated variables are data
variables.



DRFx memory model provides two simple and strong properties
to programmers. First, a program execution that is not terminated
with an MM exception is SC. Second, a program execution that is
terminated with an MM exception has a data race. We presenteda
design for a compiler and runtime system that ensures these prop-
erties. The compiler partitions the program intoregionsand com-
municates region boundaries to the hardware via memory fences.
The compiler and hardware may perform most sequentially valid
optimizations within a region but may not optimize across region
boundaries. Therefore, theDRFx properties can be ensured by dy-
namically detecting conflicting memory accesses between concur-
rently executing regions [29, 32]. If no such conflicts arise, then
the execution isregion-serializablewhich implies SC; otherwise
the detected conflict indicates the presence of a data race inthe
program.

In this paper, we propose a detailed micro-architecture design
for supporting theDRFx memory model. Our approach builds on a
hardware design sketched in our prior work [32] but extends it with
several important optimizations. Further, we have carefully for-
malized the approach, including these optimizations, at the micro-
architectural level and have proven that it ensures theDRFx prop-
erties. Finally, we have built a simulator for our proposed hard-
ware which, in conjunction with aDRFx-compliant compiler [32],
allows us to perform an end-to-end performance comparison with
the DRF0 memory model.

We have made a set of design choices in order to keep the hard-
ware support forDRFx simple while still allowing optimizations for
efficiency, both of which are critically important for future accep-
tance by processor vendors. First, we propose alazyconflict detec-
tion scheme forDRFx that does not change the cache architecture
or the coherence mechanism of the baseline DRF0 hardware. Un-
like transactional memory (TM) support [23],DRFx cannot tolerate
false conflicts arising either from regions accessing different words
in the same cache line or from accesses occurring in mispredicted
branches. Rather than modifying the cache coherence mechanism
to track a region’s access information at word granularity [29], we
instead store the addresses accessed by a region in a dedicated re-
gion buffer. To commit a region, a processor sends the accessed
addresses to other cores for a conflict check. While lazy conflict
detection can delay an MM exception beyond the first instruction
that results in a non-SC state, our implementation ensures that this
state is not observable to the rest of the system by throwing the
exception before any subsequent system call.

Second, performing conflict detection over unbounded-sizere-
gions would tremendously increase the complexity of the hardware
support needed, due to the possibility of overflowing the region
buffer. Indeed, this issue has been one of the main impediments to
TM support in hardware. We observe that, unlike a TM system, the
DRFx compiler has the flexibility to choose region boundaries and
can therefore bound the number of memory accesses in each region
in order to allow the hardware to perform conflict detection with fi-
nite resources. We employ a simple and conservative static analysis
for this purpose.

While bounded regions simplify conflict detection, they canalso
lead to significant performance loss by limiting the instruction and
memory parallelism available to the processor. To solve this prob-
lem, theDRFx compiler generates two kinds of fences to demar-
cate regions.Hard fences behave like traditional memory fences
and are introduced at synchronization operations in order to pre-
serve the programmer-intended ordering semantics. In contrast,soft
fences indicate region boundaries introduced solely to bound the
number of memory accesses per region. We propose and validate
the following optimizations involving soft fences. First,a proces-
sor can execute, and even commit, soft-fenced regions out-of-order
while still properly detecting conflicts as required byDRFx. Sec-

ond, contiguous soft-fenced regions executed in a processor can be
coalesced at runtime to form larger regions if space is available in
the region buffer, which reduces the frequency of conflict checks.
Finally, the conflict checks for regions in different processors can
proceed in parallel, and a processor can continue to executeinstruc-
tions while concurrently servicing conflict check requestsfrom re-
mote processors.

We have built aDRFx-compliant hardware simulator using the
Simics-based FeS2 simulator [34]. In conjunction with aDRFx-
compliant C compiler [32] built on top of LLVM [28], we com-
pared the performance ofDRFx to that of DRF0 compiler and hard-
ware. For additional reference, we also evaluated the performance
of executing a program compiled by the baseline LLVM compiler
on an x86-like total-store-order (TSO) hardware. On a set ofap-
plications from the PARSEC benchmark suite [5], we find that the
overhead ofDRFx is 6.49% on average when compared to DRF0.

2. Background
This section provides the motivation for theDRFx memory model
and reviews its guarantees and requirements.

2.1 DRF0-based Memory Models

Mainstream programming languages have recently convergedon
DRF0-based [1] memory models [9, 30]. These models assume that
program variables are properly labeled assynchronizationvariables
(using annotations such asvolatiles or atomic) anddata vari-
ables. Adata raceoccurs when two threads simultaneously access
a data variable and at least one of them is a write. A program is
said to contain a data race if there exists a sequentially consistent
execution in which a data race occurs. A program isdata-race free
otherwise. Programs containing one or more data races are simply
referred to asracy programs.

DRF0-based memory models guarantee sequential consistency
for data-race-free programs while permitting the compilerand the
hardware to perform a large class of optimizations on data vari-
ables. A programmer still has the flexibility of writing lock-free
code and using shared memory for synchronization, providedthat
appropriate variables are labeled as synchronization in order to sat-
isfy the data-race-free requirement.

2.2 Need for a Fail-stop Semantics for Racy Programs

While DRF0-based memory models provide strong (SC) guaran-
tees for data-race-free programs, they only provide weak guaran-
tees for racy programs. For instance, the C++ memory model treats
data races as program errors and provides no semantics for a racy
program (akin to programs with buffer-overflow errors). Thecom-
piler and the hardware are therefore allowed to introduce arbitrary
effects into a racy program, which can compromise the program’s
correctness and safety. Indeed, it is possible for reasonable com-
piler optimizations to introduce security vulnerabilities in the pres-
ence of data races [9].

Further, while data races are usually considered program errors,
they are easy for programmers to inadvertently introduce and diffi-
cult to detect. Therefore, when debugging a large C++ system, the
programmer has to assume the possibility of a data-race in some
component of the system and therefore reason about the interplay
of optimizations with races to understand the program’s behavior.
Type-safe languages like Java mitigate these problems by provid-
ing strong-enough guarantees for racy programs to ensure impor-
tant memory-safety properties [30]. However, this weak semantics
is subtle and complex for programmers to reason about, and ithas
been challenging to ensure that compiler and hardware optimiza-
tions in fact respect this semantics [13, 38].

One possible solution to this problem is to design languagesand
static analyses that simply prevent programmers from introducing



data races, and this is an active area of research (e.g., [7, 10, 11]).
However, current approaches typically only account for lock-based
synchronization, are overly conservative due to impreciseinforma-
tion about pointer aliasing, and require programmer annotations. A
promising alternative is to instead provide a fail-stop semantics for
racy programs [8, 16, 17, 19, 29, 32]. In this style, the runtime sys-
tem dynamically detects data races and terminates execution of the
program before the non-SC behavior becomes observable to the rest
of the system. Therefore, all program executions are guaranteed to
behave in an SC manner, despite the possibility of data races.

2.3 Fail-Stop Semantics Requires a Compiler-Hardware
Co-design

We argue that efficiently providing fail-stop semantics forracy pro-
grams requires an end-to-end solution that involves a co-design
of both the compiler and the hardware. Note that such a fail-stop
mechanism has stringent requirements on correctness and perfor-
mance. First, it is unacceptable to halt a data-race-free program.
This means that any data-race detection mechanism cannot have
false error reports. Second, the overhead of any fail-stop mecha-
nism has to be smaller than the performance obtained from com-
piler and hardware optimizations. Otherwise, one is betteroff sim-
ply preventing all non-SC transformations in the compiler and the
hardware.

The performance requirement clearly rules out existing software-
based data-race detection algorithms that add a runtime overhead
of 8x or more [18]. More fundamentally, any software-based ap-
proach must take care not to introduce data races as part of the
detection mechanism itself, since that would expose the mecha-
nism to the weaker guarantees provided by the lower layers of
the runtime platform, making it difficult to ensure correctness. All
existing data-race detection algorithms maintain some metadata
per variable and update the metadata on an access to the variable.
When performed without synchronization, these updates canintro-
duce data races in an otherwise data-race-free program.2 However,
as these updates happen at every memory access, adding synchro-
nization for these updates would prevent most optimizations and
thereby add significant overhead.

On the other hand, a fail-stop mechanism cannot be imple-
mented in the hardware without any support from the compiler.
The weak semantics provided by the Java and C++ memory models
makes it impossible to precisely detect source-level data races in
the binary. For example, a compiler optimization could introduce
data races, causing the hardware to detect a false race. Further, a
compiler optimization couldremovea data race, causing the hard-
ware to fail to detect an actual race. Both the Java and C++ mem-
ory models allow the compiler to perform transformations that have
these effects [37].

2.4 DRFx Memory Model

Our fail-stop semantics for racy programs is made precise bythe
DRFx memory model [32], which introduces the notion of a dy-
namicmemory model (MM) exceptionthat halts a program’s exe-
cution. The model ensures the following properties for any program
P:

• DRF: If P is data-race free then every execution of P is sequen-
tially consistent and does not raise an MM exception.

• Soundness:If an execution is not terminated with an MM
exception, then that execution is SC.

2 Two threads in a data-race-free program can simultaneouslyread the same
variable. The corresponding metadata updates result in a data race.

• Safety: If an execution of P invokes a system call, then the
observable program state at that point is reachable throughan
SC execution of P.

These properties provide a simple and strong guarantee to pro-
grammers. Any program execution that does not raise an MM ex-
ception is guaranteed to be SC. Therefore, a program execution
can always be analyzed and debugged under an assumption of SC
behavior, without requiring the programmer to know whetherthe
program has a race. Further, if an execution of P raises an MM
exception, then the programmer knows that the program definitely
has a data race.

Despite the strong guarantees in the model, the properties are
designed to allow flexibility in an implementation. First, aracy
program execution need not be halted unless the execution violates
SC. This means that one does not require a full-blown data-race
detector. On the other hand, the implementation still has the choice
to halt a racy execution even if it does not violate SC. This means
that one does not require a precise SC-violation detector either.
Finally, the Soundness property only ensures that an SC violation
will eventuallybe caught, thereby allowing for a lazy detection
scheme in the hardware. However, the Safety property requires that
violations are at least caught before the next system call, thereby
prohibiting undefined program behavior from becoming externally
visible.

2.5 The Compiler-Hardware Contract

Our earlier work onDRFx describes a set of requirements for a
compiler and hardware implementation that provably ensurethe
DRFx properties defined above [32]. The key idea is for the com-
piler to partition a program into single-entry, multiple-exit portions
calledregions. All compiler optimizations are restricted to instruc-
tions within a region. In addition,DRFx imposes two restrictions
on the compiler. First, any transformation should besequentially
valid, meaning that executing the region in isolation from an ar-
bitrary program state should take the program to the same state
before and after the transformation. This restriction allows many
common optimizations disallowed by the SC memory model, such
as common subexpression elimination and register promotion. Sec-
ond, optimizations are not allowed to introduce reads and writes
that are not present in the original program, as they can introduce a
data race.3 However, an optimization is allowed to eliminate reads
and writes provided it satisfies the first condition above.

Each synchronization operation must be placed in its own re-
gion, thereby preventing reorderings across such accesses. To en-
sure theDRFx model’s Safety property, each system call must also
be placed in its own region. Otherwise, region boundaries are un-
constrained. The compiler inserts a fence instruction at the entry of
each region in order to communicate these boundaries to the hard-
ware.

The hardware must also respect region boundaries (as enforced
by memory fences), and it additionally detects conflicting accesses
to the same memory location (i.e., accesses where at least one is a
write) from concurrently executing regions. If such a region conflict
is detected, the hardware throws a memory-model exception and
the detected conflict is a witness to a data race in the source
program. On the other hand, if there are no region conflicts, then
the execution isregion-serializable— equivalent to an execution in
which each region is executed atomically in some global sequential
order consistent with the per-thread order of regions — and hence
SC.

The following example makes the compiler-hardware contract
concrete. Consider the C++ program in Figure 1(a), in which thread

3 DRF0 already precludes a compiler from introducing writes in the pro-
gram.



X* x = null;
bool init = false;

// Thread t // Thread u
A: x = new X(); C: if(init)
B: init = true; D: x->f++;

// Thread t // Thread u
B: init = true;

C: if(init)
D: x->f++;

A: x = new X();

// Thread t // Thread u
B: init = true;
A: x = new X();

C: if(init)
D: x->f++;

(a) (b) (c)

Figure 1. (a) Program with a data race. (b) Interleaving that exposes the effect of a compiler or hardware reordering. (c) Interleaving that
does not. [32]

t uses a boolean flaginit to communicate to threadu that variable
x has been properly initialized. In the absence of an annotation
to declareinit a synchronization variable (e.g.,volatile in
Java [30] oratomic in C++0x [9]), this program is racy. Suppose
the compiler puts A and B in a single region, and similarly forC and
D. Because A and B are in the same region, they can be potentially
reordered, as shown in Figure 1(b). The execution depicted in that
figure has a concurrent region conflict and so will be halted with an
MM exception. Indeed, if not halted this execution will result in a
null pointer dereference, which cannot happen on any SC execution
of the original program. On the other hand, the execution shown in
Figure 1(c) has no concurrent region conflict and so will not be
halted. This execution exhibits SC behavior despite the instruction
reordering.

2.6 Realizing the DRFx Compiler and Hardware Design

In this paper we present a complete realization and evaluation of
a DRFx-compliant platform, including both a conforming compiler
adapted from our earlierDRFx work and a hardware simulator. Our
approach is based on two high-level ideas [32]. First, conflict detec-
tion for a region is performedlazily, once the region has completed
execution. This design supports conflict detection withoutrequir-
ing modifications to the processor’s cache architecture or coherence
mechanism, which would otherwise be necessary to avoid detect-
ing false conflicts. Second, the compiler bounds the size of each
region to ensure that conflict detection can be performed using fi-
nite hardware resources. While smaller regions limit the scope of
optimizations, a notion ofsoft fencesallows the hardware to safely
optimize across most region boundaries.

Compared to a traditional memory model based on DRF0 [2],
DRFx has two main sources of inefficiency that must be assessed.
First, there is a loss of performance due to the restriction to only
optimize within a region. Second, there is additional overhead due
to the region conflict detection mechanism. We previously built
a DRFx-compliant compiler and used it to evaluate the first cost
above [32], but the hardware design was not realized. In thispaper,
we propose a concreteDRFx compliant hardware design, formalize
the design along with several important optimizations and prove
the design’s correctness, implement the design in a hardware simu-
lator, and conduct an end-to-end performance evaluation versus the
traditional DRF0 model as well as TSO hardware.

3. DRFx Processor Design
In this section, we discuss our proposedDRFx processor architec-
ture. We describe lazy conflict detection using bloom filter signa-
tures, and several optimizations that allow efficient execution in
spite of the small, bounded regions created by theDRFx compiler.
This section discusses the intuition behind the correctness of these
optimizations while a more formal presentation will be given in
Section 4.

3.1 Overview

To satisfy DRFx properties, the runtime has to detect a conflict
when region-serializability may be violated due to a data-race and
raise a memory model exception (Section 2.5). Figure 3 presents an
overview of ourDRFx hardware design which supports this conflict
detection. Additions to the baseline DRF0 hardware are shaded in
gray. The state of several hardware structures at some instant of
time during an execution of a sample program is also shown.

Unlike many hardware transactional memory designs, data-race
detection requires the hardware to perform conflict detection at byte
granularity. Performing precise byte-level eager conflictdetection
complicates the coherence protocol and cache architecture[29]. For
instance, such a scheme would require us to maintain byte-level
access state for every cache block, maintain the access state even
after a cache block migrates from one processor to another, and
clear the access state in remote processors when a region commits.

Instead, we employ lazy conflict detection [21]. Each processor
core has aregion bufferwhich stores the physical addresses of
memory accesses executed in a region. An entry is created in the
region buffer when a region executes a memory access. A memory
access in a regioncompletesits execution when it iscommitted
from the reorder buffer and, in the case of stores,retired from
the store buffer. When all the memory accesses in a region have
completed their execution, the processor broadcasts the address set
for the region to other processors for conflict checks. Once the
requesting processor has received acknowledgments from all other
processors indicating lack of conflicts, it commits the region and
reclaims the region buffer entries. We reduce the communication
and conflict check overhead by using bloom filter signatures to
represent sets of addresses [14]. Asignature bufferis used to
store the read and write signatures for all the in-flight regions in
a processor core.

The region buffer has to be at least as large as the maximum
number of instructions allowed to be executed in a soft-fenced re-
gion created by ourDRFx compiler. The static analysis used by
our DRFx compiler to guarantee this bound is necessarily conserva-
tive and may create regions that are much smaller than the desired
bound. Frequent soft-fences leads to frequent conflict checks. We
reduce this cost by coalescing the soft-fenced regions at runtime.
We can support this optimization by using a region buffer slightly
larger than the maximum possible region-size guaranteed bythe
compiler.

To execute a hard fence, a processor has to stall the execution
of all future memory accesses until the operations before the hard
fence have completed. Forcing the frequent soft-fences introduced
by a conservative compiler analysis to adhere to such strictmemory
ordering requirements results in prohibitive performanceoverhead
due to the hardware being unable to exploit instruction and memory
level parallelism across small, soft-fenced regions.

We show that treating a soft fence as a hard fence is unnec-
essary and indeed leads to significant performance loss. We make
several observations that enable the hardware to optimize across
soft fences. We show that we can allow memory accesses from a



region to execute even if earlier regions that are separatedby soft
fences have not committed. In addition, we demonstrate thatre-
gions separated by a soft fence can be committed out of order.The
formal proofs outlined in Section 4 take these optimizations into
account and establish that theDRFx runtime requirements are still
satisfied.

3.2 Signature-based Lazy Conflict Detection

Let us assume that a processor treats soft fences similar to hard
fences, an assumption that we will relax later in the discussion.
DRFx hardware employs lazy conflict detection to detect when
region-serializability could have been violated due to a data-race.

Each processor core has aregion buffer. A region buffer entry
stores the physical address of a memory access in a region. The
DRFx compiler bounds the size of a soft-fenced region to defined
bound B, which determines the minimum size that a processor
needs to provision for a region buffer.

Similar to DRF0 hardware, the memory accesses within a region
can execute out-of-order, and in the case of stores, retire from a
store buffer out-of-order. An entry in the region buffer is created
for a memory access when it is in the decode stage of the pipeline.
Its effective address is eventually written to the region buffer once
it is resolved, but before issuing the memory access.

Once all the memory accesses of a region have committed from
the re-order buffer (ROB), and stores are retired from the store
buffer, the corresponding processor broadcasts the address set to
the other processors to perform conflict checks. On receiving a
conflict check request, a processor detects a conflict if the addresses
in its region buffer intersect with the address set received. If the
intersection is empty, an acknowledgment is sent to the requester.
On receiving acknowledgments from all the other processors, a
processor commits a region by deleting its address entries from the
region buffer.

Broadcasting addresses accessed by every region and checking
their membership in every processor’s region buffer is clearly ex-
pensive. To reduce this cost, we propose using bloom filter signa-
tures [14]. Memory addresses accessed by a region are represented
using a read and a write signature. Signatures for the in-flight re-
gions are stored in thesignature buffer(more than one region could
be in-flight due to our out-of-order execution optimizations dis-
cussed later in Section 3.5). To perform conflict checks for aregion,
a processor first broadcasts only its signatures. Each processor per-
forms AND operations over the incoming signatures with the con-
tents in its signature buffer. On detecting a potential conflict, aNACK
is sent to the requester. On receiving aNACK, a processor sends the
full address set for the region so that precise conflict detection can
be performed.

The size of signatures needs to be large enough so that false con-
flicts are rare, avoiding frequent transmission of full address sets.
On the other hand, large signatures could incur significant commu-
nication overhead. We observed that the average dynamic region
size is relatively small (36 in our experiments). But, sincewe al-
low many regions to be in-flight in a processor at once, the signa-
ture may be compared with many remote regions, increasing the
probability of getting a false conflict. To address this problem, we
use large signatures (1024 bits) to avoid false conflicts, but com-
press the signatures before transmission to reduce communication
overhead. Because many regions have small access sets, their sig-
natures are effectively compressed using a simple, efficient run-
length encoding scheme (RLE). Using this strategy, we observed
very high compression ratios which significantly reduced commu-
nication overhead.

Note that our conflict detection architecture does not require
additional state to be maintained in the cache, nor does it require

changes to the coherence protocol as theDRFx conflict check mes-
sages are independent of coherence messages.

3.3 Concurrent Region Conflict Check and Region Execution

We observe that when a processorP receives a conflict check
request forR′, it need not stall the execution of its current region
R while it performs the conflict check. A conflict check can be
performed in parallel with the execution of a local region. The
intuition here is that any memory address that gets resolvedfor R
during the conflict check can be shown to have executed after the
memory accesses inR′. Thus, we can orderR′ beforeR in the region
serialization of the execution.

However, care must be taken to not raise a false conflict over a
speculative memory access. The region buffer entry and signature
buffer is updated once the address for a memory access is resolved.
It is possible that a branch before the memory access is mispre-
dicted, and therefore there is a risk that the memory access could
get aborted in future. To avoid raising false exceptions, once a pro-
cessor detects a conflict, it delays the exception until the conflicting
memory access is committed from the ROB. If the memory access
gets aborted due to misprediction, then an acknowledgment is sent
if there were no other conflicts for the check. In our experiments,
we observed that only very rarely we detect a conflict with a mem-
ory access in the wrong path. Therefore, the cost of delayinga re-
sponse to a conflict check due to such conflicts is negligible.

The signature for a region is updated when one of its memory
access’ address is resolved. When a memory access is aborted
due to a branch misprediction we do not update the signatures
corresponding to its region. This could result in additional false
positives, but we expect the performance impact to be negligible.

3.4 Coalescing Soft-Fence-Bounded Regions

The DRFx compiler uses a conservative static analysis to estimate
the maximum number of instructions executed in a region. This
could result in frequent soft fences. We observe that dynamically a
processor can ignore a soft fence if the preceding soft-fenced region
executed fewer memory accesses than a pre-determined threshold
T. Combining two contiguous soft-fenced regions at runtime does
not violateDRFx guarantees, because any conflict detected over the
newly constructed larger region is possible only if there isa race,
and ensuring serializability of the larger, coalesced soft-fenced
regions is sufficient to guarantee SC for the original unoptimized
program.

However, the processor needs to ensure that the newly con-
structed region does not exceed the size of its region buffer. Our
design guarantees this by using a region buffer that is of size T +
B, whereB is the compiler specified bound for a soft-fenced region,
andT is the threshold used by a processor to determine when to ig-
nore a soft fence. Too high a value for the thresholdT would result
in large regions at runtime, which might negatively impact perfor-
mance, because the probability of aliases in signatures increase.
Also, it could undermine out-of-order commit optimization.

3.5 Out-of-Order Execution and Commit of Regions

In the discussion so far, we have assumed that a soft fence behaves
like a hard fence. However, we observe that two important restric-
tions that need to be obeyed for hard fences can be relaxed forsoft
fences, which allows us to attain performance close to DRF0.

First, we allow out-of-order execution of soft-fenced regions. In
the case of a hard fence, before a processor can execute memory
accesses from a region, it has to wait for all the memory accesses
in the preceding regions to complete. We refer to this restriction
as in-order execution of regions. This is clearly a requirement for
hard fences, since we may detect false conflicts if memory accesses
are allowed to be reordered across hard fences that demarcate



synchronization operations. However, we observe that thismemory
ordering can be relaxed for soft fences. For the example in Figure 2,
I7 can be allowed to execute even if regionsR0 andR1 have pending
memory accesses in the ROB or the store buffer. If there is a
pending store (I1) in previous regions, its value can be forwarded
to a load in a later region (I7).

The correctness of the above optimization can be intuitively
understood by observing that executing memory accesses out-of-
order only results in more in-flight accesses that needs to beconflict
checked. Therefore, it does not mask any conflicts that would
have been detected before. Also, aggressive reordering of soft-
fenced regions does not reorder accesses across synchronization
operations, so any conflicts detected guarantees presence of data
races.

Second, we observe that once a region’s memory accesses are
completed, a processor can initiate conflict checks and commit the
region from the region buffer if the check succeeds. Since the ROB
commits instructions in-order, it is guaranteed that when aregion is
ready to commit, all the memory accesses from preceding regions
would have also committed from the ROB. There could, however,
be stores in the store buffer pending for the earlier regions. As
a result, those earlier regions would not yet be ready to commit.
Under this scenario, we claim that it is correct to conflict check and
commit a later region as long as all its accesses have committed
from the ROB and retired from the store buffer.

I1: x = 1

I2: t1= x

I3: soft-fence

I4: y = 1

I5: soft-fence

I6: z = 1

I7: t4 = x

J1: t2 = y

J2: soft-fence

J3: x = 2

J4: soft-fence

J5: t3 = x

P1 P2

R0

R1

R2

S0

S1

S2

Figure 2. An Example Binary Compiled UsingDRFx Compiler.

For example, in Figure 2, say regionR0 is waiting for its store
I1 to be retired from the store buffer. In the meantime,I4 has
completed and has retired from the store buffer. NowR1 is ready to
commit. We claim that a processor can perform conflict checking
for R1 and commit by deleting its corresponding entries from the
region and signature buffers. This optimization can be intuitively
understood by observing that even ifR1 commits, as long asR0
does not raise a conflict, there would be a global serial orderfor all
the soft-fenced regions.

These relaxations on concurrent conflict detection and region
execution obviate the need for the arbiter used in other lazyconflict
detection schemes [14, 21]. The formalism presented in Section 4
accounts for out-of-order region execution and commit.

3.6 Handling Context Switches

A thread can incur a context switch at runtime for a variety of
reasons. When possible, we require that the context switch be de-
layed until the subsequent soft fence instruction. As our regions are
bounded in the number of memory instructions, most well-behaved
programs will eventually execute a soft fence after a finite amount
of time. To account for adversarial programs that can perform un-
bounded computation (while still performing a bounded number of
memory accesses), we require that theDRFx compiler insert ad-
ditional soft fences in regions that could potentially execute un-
bounded number of instructions. By doing so, we make it possible
for scheduler-induced thread context switches be delayed without
affecting the fairness of the operating system scheduler. For such

delayed context switches, the hardware waits until all prior regions
are committed and performs the context switch when the region
buffer is empty.

Certain context switches, such as those induced by page faults
and device interrupts, are critical and cannot be delayed. We ob-
serve thatDRFx-style conflict detection should be disabled for low-
level system operations such as the page-fault handler. It is unclear
if halting such critical functionality with a memory-modelexcep-
tion is a good design choice. Instead, we propose that such low-
level code be (either manually or statically) verified to be data-race
free. This observation leads to a simple solution that does not re-
quire virtualizing the region buffer.

When critical context switches occur, the processor retains the
region buffer entries for the switched out thread. When the proces-
sor is executing the page-fault or the interrupt handler, itcontinues
to perform conflict detection on behalf of the switched-out thread.
Since conflict detection is disabled for the handler, no new entries
are added to the region buffer. When the handler has finished,we
require that the operating system schedule the switched-out thread
on the same processor core. At this point, the thread continues us-
ing the region buffer, which contains the same entries it hadat the
time it was switched out.

While a page fault is being serviced for a thread, a processorcan
execute other threads instead of waiting for the data to be fetched
from the disk. We can allowN context switches while handling a
page-fault by provisioning a region buffer with a size that isN times
that of the maximum bound specified by the compiler. For example,
if the compiler bounds the region size to 64 locations and region
buffer size is 512, we can allow 8 context switches.

3.7 Debugging Support

When a program is terminated with an MM exception, the pro-
cessor provides the addresses of the starting and ending fence in-
structions of each conflicting region to assist in debugging. Exact
addresses of the conflicting instructions could be providedwith ad-
ditional storage overhead by extending each region buffer entry to
track the program counter (PC) of each memory instruction.

A processor may encounter non-MM exceptions such as a null-
pointer dereference, division by zero, etc., while the current region
is yet to complete. In this scenario, the processor stalls the execu-
tion of the current region and performs conflict detection for the
partially executed region. If the conflict check succeeds, indicating
no data race, it raises the non-MM exception. But if a conflictis
detected, the processor throws an MM exception instead.

An MM exception in our design is imprecise in the sense that
the state of the program when an exception is raised may not beSC.
Because, the compiler or hardware could have already performed
SC-violating optimizations in regions that contain racingaccesses.
Even an eager conflict detection scheme can only guarantee that
the program state at the time of an exception is SC with respect to
the compiled, binary program [29]. The state could still be non-SC
with respect to the source program due to compiler optimizations.

3.8 System Calls and Safety

TheDRFx compiler places each system call in its own region, sepa-
rated from other regions by hard fences. Furthermore, the compiler
generates code to ensure that system calls only access thread-local
storage. Any user data potentially read by a system call is copied to
thread-local storage before executing the preceding hard fence, and
any user data written by the system call is copied out of thread-local
storage after the succeeding hard fence.

An adversarial program may not obey theDRFx compiler re-
quirement that every region’s size be bounded to a predefinedlimit.
When a program executes a region that exceeds the bound, the
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Figure 3. Architecture Support forDRFx (shown in gray).

DRFx hardware can trivially detect that condition and raise an MM
exception to ensure safety.

3.9 DRFx Hardware Design Details

Region and signature buffers for each processor core are themain
extensions to the baseline hardware structures. We assume asnoop-
based architecture which we extend with additional messages to
support conflict checking. Conflict check messages are indepen-
dent of coherence messages. Figure 3 shows ourDRFx hardware
extensions to a baseline out-of-order processor with storebuffer.
We now describe these extensions in detail.

When a hard fence is decoded, a new region is created by first
finding a free entry in the signature buffer (one with itsvalid bit
unset), initializing the entry’s fields, and storing its index in the cur-
rent Signature Buffer Index (SBI) register. TheSBI register keeps
track of the signature buffer entry corresponding to the region that
is currently being fetched and decoded. When a soft fence is de-
coded, we create a new region only if the current region size (stored
in thetotalOpCount field of the region’s signature buffer entry)
exceeds a pre-determined thresholdT (32 in our experiments). If
a soft fence does not start a new region, it is turned into anop in
the decode stage. If a hard or soft fence starts a new region, its
instruction address is stored in theRegion-beginPC field of the
new region’s signature buffer entry. This information is used while
reporting an MM exception.

When a memory instruction is decoded, a region buffer entry
is allocated for it. The registerrFree keeps track of the total
number of free entries in the region buffer. If no free regionentry
is available, the memory access is stalled in the decode stage of
the pipeline. Since regions can commit out-of-order, we maintain
a linked-list to track the free region buffer entries. Thehead and
tail registers point to the first and last entries in the free list
respectively. Free entries, and also those allocated to a region are
linked through theptr fields. Theptr for the first memory access
of a region is set to null. Theptr for any later memory access
of a region points to its immediately preceding memory access’s
region buffer entry. The head and tail of a region is stored inthe
RBI-begin andRBI-end fields in the signature buffer entry of that
region (RBI stands for Region Buffer Index).

Instead of allocating one region buffer entry for each memory
access in a region, we could potentially coalesce accesses to the
same memory location into one entry. We opted not to do this in
order to simplify the design, such as the logic required for deleting
region buffer entries when memory accesses get aborted due to a
branch misprediction.

The number of memory accesses decoded as part of the current
region is maintained by incrementing thetotalOpCount field in
the current region’s signature buffer entry (specified by theSBI reg-
ister). Completion of memory accesses of a region is maintained by
incrementing thecompletedOpCount field when a load commits
from the ROB or a store retires from the store buffer. These counts
are used to determine when a region is ready to commit.

When a memory operation’s address is resolved, completed or
aborted, corresponding entries in the signature and regionbuffer
need to be updated. To determine these entries, each ROB entry
contains two pointers: the Region Buffer Index (RBI) that points to
the memory access’ region buffer entry, and the SBI of the region
that the memory access corresponds to.

When a memory access is aborted due to a branch mispre-
diction, its region buffer entry is deallocated and its region’s
totalOpCount is decremented. Note that a store in the store buffer
does not need the RBI pointer as it is non-speculative. It does how-
ever need the SBI pointer to update thecompletedOpCount in the
signature buffer when it retires.

When a hard or a soft fence commits from the ROB, its re-
gion’s regionDone bit is set in the signature buffer. Also, its
region’s Region-endPC is updated with its instruction address.
A region is ready to commit, if itsregionDone bit is set and
completedOpCount is equal tototalOpCount. Before commit-
ting a region, its addresses need to be conflict checked with all the
in-flight regions in remote processor cores. During this process, the
region’s SBI is used as its identifier in the conflict check messages.

If the conflict check succeeds, the region is committed by deal-
locating its entries in the signature and region buffers. The signa-
ture buffer entry is identified using the region’s SBI used during its
conflict check. The start and end of a region’s entries in the region
buffer are determined using theRBI-begin and RBI-end fields



stored in that region’s signature buffer entry. Committed region’s
region buffer entries are added to the free list.

3.9.1 Region Buffer and Signature Buffer Sizes

The number of entries in the region buffer needs to be at least
as large as the bound assumed by theDRFx compiler for a soft-
fenced region (512 entries for our study). But a larger buffer allows
us to coalesce regions. Also, a larger region buffer could expose
additional opportunities for out-of-order execution across regions.
We assume a 544-entry region buffer in our evaluation (512 isthe
compiler bound, additional 32 entries support coalescing).

DRFx requires byte-level, precise conflict detection, but storing
an entry for each byte accessed would be inefficient. To minimize
region buffer space, we optimize for the common case, which is
word-level access. Thus, a region buffer entry includes theword ad-
dress, byte offset, and the number of bytes accessed. This requires
81 bits per region buffer entry: 8 bytes for double word aligned ad-
dress, 3 bits for byte offset, 3 bits for access size, a read/write bit,
and 10 bits forptr. Thus, the size of a region buffer in each core is
5.38KB.

The region buffer is designed as a banked content addressable
memory (CAM). This allows us to perform fast membership tests
using word addresses when performing precise conflict checking
for a remote region. Only when a potential word-level conflict is
detected do we perform a precise byte-level address comparison.
We expect that the CAM would be accessed relatively infrequently,
only when a signature-based conflict check finds a potential con-
flict.

Each core has a signature buffer with 17 entries, as there can
only be a maximum of 17 in-flight regions in our design with
544-entry region buffer and a coalescing threshold (T) of 32. Each
entry has a read and a write signature of size 1024 bits to cap-
ture the addresses accessed in a region. In addition, each entry
contains a valid bit, aregionDone bit, RBI-begin, RBI-end,
completedOpCount, totalOpCount (10 bits each since there are
544 region buffer entries which is also the maximum number of
memory operations in a coalesced region), and starting and ending
program counter values of a region (64 bits each). Thus, a signature
buffer with 17 entries is of size 4.60KB.

4. Correctness of Design
In this section we describe the formal arguments we use to show
that our optimized hardware design satisfies the two key require-
ments for aDRFx-compliant execution environment: exception-free
executions are region serializable and only compiled programs that
contain a data race can raise an MM exception. Full proofs of the
lemmas and theorems are omitted, but can be found in the accom-
panying technical report [40].

In showing the correctness of the design, we must model cer-
tain orderings that hold between various events in the system. Keep
in mind that none of the orderings we describe are violated by
the optimizations described in Section 3. In particular we make
no assumptions about the order in which memory accesses from
adjacent soft-fenced regions complete or the order in whichthose
regions commit. We consider three events in a (memory access)
instruction’s execution: address resolution, commit fromthe re-
order buffer, and (for store instructions) retirement fromthe store
buffer. For any particular instruction, a processor performs each
of these events in this order. Any events that can be shown to
have a causal relationship within a processor give rise to a par-
tial order on events that is consistent with physical time. We will
refer to this partial order as the processor happens before order
(PHB). So, for an instructionM , we haveM resolved <PHB

M committed <PHB M retired. In an attempt to treat loads and
stores more uniformly in the formalism, we will also refer toan in-

struction beingcompleted. We consider a store completed when it
has retired from the store buffer (M a store and M retired ⇒
M completed). Loads and all other instructions will be considered
completed as soon as they have been committed from the reorder
buffer (M not a store and M committed ⇒M completed).

〈R〉 Send the conflict detection msg for regionR
〈P ← R〉 Receive a conflict detection msg for regionR at processorP
〈PXR〉 Send an ack msg forR from P back to originating processor
R committed Commit regionR, clearing all its entries in region buffer

Table 1. Events in Conflict Detection

We also include inPHB the causal order between instruction
execution events and the events performed as part of conflictde-
tection, which are shown in Table 1. A processor waits for allin-
structions in a region to be completed (all instructions committed
and all stores flushed from store buffers) before sending a con-
flict detection message. So, for all instructionsM in region R

we haveM completed <PHB 〈R〉. Furthermore, although regions
may be committed out of order, because instructions are commit-
ted from the reorder buffer in-order, we know that for all instruc-
tions M in regions program-ordered before regionR, we have
M committed <PHB 〈R〉. We also know that a processor must
receive a request for conflict detection before it performs detection
and eventually sends an acknowledgment. We also usePHB to cap-
ture this:〈P ← R〉 <PHB 〈PXR〉.

The fact that the conflict detection mechanism does not find a
conflict can also indicate events that are ordered byPHB. It is clear
that if a processorP is performing conflict detection in response to
a request from processorP ′ for a regionR′ and there is an address-
resolved, conflicting entry in the region buffer for the entirety of
the conflict detection process, then an exception will be raised.
Furthermore, conflict detection forR′ occurs strictly between the
time that the request is received and the acknowledgment is sent.
This reasoning makes no assumptions about the order of execution
of instructions in different regions, the number of regionsin flight,
the order of region commit, or whether or not conflict detection for
multiple requests (or a coalesced request) is proceeding inparallel.

So, the following proposition captures what orderings we can
infer if a conflict isnot detected in our fully optimized design.

Proposition 1. If M and M
′ are conflicting memory accesses

contained respectively in regionR executing on processorP and
region R

′ executing on processorP ′ whereP 6= P
′, and if the

execution does not raise an MM exception, then either:

1. R committed <PHB 〈PXR
′〉

or
2. 〈P ← R

′〉 <PHB M resolved.

We model the fact that a message must be sent by one processor
before it is received by another processor by a partial ordercalled
message happens before (MHB). So we have〈R〉 <MHB 〈P ← R〉,
and also〈PXR〉 <MHB R committed since the originating proces-
sor must receive acknowledgments from all other processorsbefore
it commits the region. (We’ve left the reception of the acknowledg-
ment as an implicit event since it won’t be needed in the proofs).
Since bothPHB andMHB are partial orders that arise from causal
relationships and are consistent with physical time, we know that
their union is acyclic. We will call this partial order the system hap-
pens before relation:SHB = PHB∪ MHB.

Notice that Proposition 1 is symmetric inM andM ′. But, it
cannot be the case that bothR committed <PHB 〈PXR

′〉 and
R

′ committed <PHB 〈P
′
XR〉. Otherwise we would have a cycle

in SHB : R committed <PHB 〈PXR
′〉 <MHB R

′ committed <PHB

〈P ′
XR〉 <MHB R committed. Neither can it be the case that



both 〈P ← R
′〉 <PHB M resolved and 〈P ′ ← R〉 <PHB

M
′ resolved. Again, this would contradict the acyclicity ofSHB

since〈P ← R
′〉 <PHB M resolved <PHB 〈R〉 <MHB 〈P

′ ←
R〉 <PHB M

′ resolved <PHB 〈R
′〉 <MHB 〈P ← R

′〉. So
we incorporate this information to state a stronger versionof the
proposition.

Proposition 2. If M and M
′ are conflicting memory accesses

contained respectively in regionR executing on processorP and
region R

′ executing on processorP ′ whereP 6= P
′, and if the

execution does not raise an MM exception, then either:

1. R committed <PHB 〈PXR
′〉 and

〈P ′ ← R〉 <PHB M
′
resolved

or
2. 〈P ← R

′〉 <PHB M resolved and
R

′
committed <PHB 〈P

′
XR〉.

We now describe some orderings on memory operations. Our
cache coherence protocol guarantees us a total order on writes
to the same memory location. We will call this orderCO. This
can be extended to a partial orderEO on loads and stores to the
same memory location by ordering a load after the store that it
reads and before the store that follows that store inCO. In order
to define region serializability, we consider the lifting ofEO to
regions, denoted byEOR. We defineR1 <

EOR
R2 to hold if there

exist conflicting memory operationsM1 ∈ R1 and M2 ∈ R2

such thatM1 <EO M2. We can now state the definition of region
serializability in terms ofEOR and the program order of regions
within a thread, which we will callTO.

Definition 1. Let the region ordering relationRO be defined as
RO = EOR ∪ TO. An execution isregion serializableif RO is a
partial order.

In order to prove that an exception-free execution is region
serializable, we first establish the following two lemmas.

Lemma 1. If a memory accessM in regionR executing on pro-
cessorP conflicts with a memory accessM ′ in regionR′ executing
onP

′ whereP 6= P
′, and if 〈P ′ ← R〉 <PHB M

′
resolved and

the execution is MM-exception-free, thenM <EO M
′.

Lemma 2. If M and M
′ are conflicting memory accesses con-

tained respectively in regionR executing on processorP and re-
gion R

′ executing on processorP ′ whereP 6= P
′, and if the

execution does not raise an MM exception, and ifM <EO M
′, then

R committed <PHB 〈PXR
′〉 and 〈P ′ ← R〉 <PHB M

′
resolved.

We use these lemmas to establish the following theorem.

Theorem 1. An execution on our optimized hardware that does not
raise an MM exception is region serializable.

We further demonstrate that if two conflicting memory accesses
are ordered by synchronization operations (M <TO S <EO S

′
<TO

M
′), then they cannot cause a memory model exception to be

raised. This is the result of the stringent ordering constraints that the
hardware places on the hard fences surrounding synchronization
operations.

Theorem 2. If a compiled program is free of data races, then
our optimized hardware will not raise an MM exception duringits
execution.

Full proofs for these theorems and lemmas can be found in [40].
Theorems 1 and 2 can be combined with the results shown for a
DRFx-compliant compiler in [31] in order to establish the end-to-
endDRFx guarantees.

5. Results
This section discusses results analyzing the cost of supporting
DRFx, which includes the cost of optimizations lost due to compiler
constructed soft-fences and runtime conflict detection.

5.1 Simulation Methodology

We implemented three compiler versions using LLVM[28] to study
the performance of TSO, DRF0 andDRFx. The TSO compiler is
the baseline LLVM compiler at-O3 optimization level. The DRF0
compiler inserts a hard fence using thellvm.memory.barrier
intrinsic before and after every synchronization call and access to
a volatile variable. Also, we disabled speculative optimizations.4

For theDRFx compiler, we inserted soft fences before performing
any compiler optimization to bound region sizes to 512 memory
accesses. The size is estimated using a conservative staticanaly-
sis over the control-flow-graph. In addition, our compiler conser-
vatively adds a soft fence at every back-edge of a loop.

We modeled three hardware architectures, TSO, DRF0 and
DRFx using a cycle-accurate, execution driven, Simics based
x86 64 simulator called FeS2 [34]. Our processor configuration
is shown in Table 2. The model includes a MOESI coherence pro-
tocol and a store buffer to hold pending stores that have beencom-
mitted from the ROB. For TSO, the store buffer is organized asa
FIFO queue to enforce in-order retirement of stores. For DRF0 and
DRFx, the store buffer can retire stores between two hard fences
out-of-order. We also allow two stores to the same cache block to
be coalesced into one entry in the store buffer for the DRF0 and
DRFx models.

We modeled a hierarchical switch network with a fan-out degree
of 4, 512-bit link width, 1-cycle link latency. We assume a virtual
channel (VC) for each message type: address, control, broadcasting
signatures in DRFx, and unicast messages in DRFx (request full ad-
dress set, reply full address set, acknowledgments). We also mod-
eled 2-cycle latency for issuing a message into the interconnect.
Limited message buffer capacity at each switch was not modeled.

Our model includes speculative load execution support for
TSO [20]. It allows a load to be speculatively reordered before an-
other load. A misspeculation is detected when a processor receives
an invalidation request for a cache block that was read speculatively
by a load before that load commits from the ROB. In the event of
a misspeculated load, the load and its subsequent instructions are
squashed and re-executed. This optimization is not necessary for
DRF0 andDRFx as they can re-order loads and stores between two
hard fences.

For all the models, memory accesses are not allowed to execute
until preceding hard fence has committed. A hard fence is commit-
ted only after all the preceding memory accesses have retired from
the store buffer.

For DRFx we modeled a region buffer of size 512 (compiler
bound) + 32 (to support region coalescing). This buffer is divided
into 8 banks and each bank is a CAM. We assume 2 cycle latency
for associative accesses to this structure, which we estimated using
CACTI [12]. For signature based designs, we use a 1024 bit signa-
ture and use the hash used in Bulk [14]. We used a signature buffer
of size 17, which allows a maximum of 17 regions to be in-flightin
a processor core.

We evaluated the performance of various designs over PAR-
SEC [5] and SPLASH-2 [43] benchmarks. Table 3 lists the IPC for
the baseline DRF0 model. All of these benchmarks are run to the
completion. For PARSEC benchmarks, we used thesim-medium

4 Specifically, we modifiedllvm::isSafeToLoadUnconditionally,
Instruction::isSafeToSpeculativelyExecute and
MachineInstr::isSafeToMove to return false if instruction is a
load



input set (except for streamcluster, for which we used thesim-small
input). For SPLASH-2 applications we use the default inputs.

Processor 4-core CMP. Each core operating at 2Ghz.

Fetch/Exec/Commit width
4 instructions (maximum 2 loads or 1 store)
per cycle in each core.

Store Buffer
TSO: 64 entry FIFO buffer with 8 byte granularity.
DRF0, DRFx: 8 entry unordered coalescing buffer
with 64 byte granularity.

L1 Cache 64 KB per-core (private), 4-way set associative, 64B
block size, 1-cycle hit latency, write-back.

L2 Cache 1MB private, 4-way set associative, 64B block size,
10-cycle hit latency.

Coherence MOESI snoop protocol
Interconnection Hierarchical switch, fan-out degree 4

512-bit link width, 1-cycle link latency.
Memory 80-cycle DRAM lookup latency.

RegionBuffer 544 entry, 8 banks, 2-cycle CAM access.
Bloom filter 1024 bits. 2 banks indexed by 9 bit field after ad-

dress permutation[14]. 2-cycle access latency.

Table 2. Processor Configuration

Application Avg. IPC (DRF0) Application Avg. IPC (DRF0)
blackscholes 1.97 bodytrack 1.75
canneal 0.27 facesim 0.53
streamcluster 1.61 barnes 1.59
fft 1.41 radix 0.99
raytrace 0.59

Table 3. Average IPC for DRF0

5.2 DRFx Memory Model Performance Comparison

Figure 4 compares the performance of TSO, DRF0 andDRFx. The
results are normalized to the execution time of DRF0. ForDRFx, we
show two results. The first result labeled asDRF0 + soft-fence
represents the compiler cost ofDRFx and is the maximum per-
formance ourDRFx hardware can hope to achieve. To obtain this
result, we executed a program compiled usingDRFx compiler on
DRF0 hardware, treating every soft-fence as a no-op. The second
result forDRFx is for a processor configuration that employs all the
optimizations we discussed in this paper. It represents thecompiler
and hardware conflict detection cost to supportDRFx.

We find that the average performance overhead to supportDRFx
is about 6.49% when compared to DRF0.barnes has the highest
overhead of 24%.DRFx conflict detection adds only about 2.3%
higher overhead toDRF0 + soft-fence. As demonstrated in the
next section, our optimizations are crucial for achieving close to the
best possible hardware performance.

The remaining cost inDRFx is due to restricting compiler opti-
mizations to soft-fence bounded regions. For example,DRFx model
for bodytrack is about 12.84% slower than DRF0, but almost all
of this overhead is due to theDRFx compiler. Our current compiler
bounding analysis is very conservative, especially regarding loops,
and so we believe that this cost could be significantly improved.

We found that soft fences constitute 6% of total committed
instructions. Average dynamic size of compiler constructed soft-
fenced regions is about 10 memory operations. However, our run-
time coalescing optimization increases this to 36 memory opera-
tions. We could improve this further by increasing the region buffer
size. Small regions result in frequent conflict checks, but com-
pressing signatures avoids excessive communication overhead for
these checks. We find that run-length encoding of signaturescom-
presses signatures by 4.34x on average, significantly reducing net-
work bandwidth requirement. The amount of data communicated
processor cores increased by 84% due to conflict messages inDRFx
when compared to DRF0. More aggressive coalescing could poten-
tially reduce this overhead further.

TSO represents the performance gotten by compiling a program
using a stock compiler and executing it on stock hardware. We
found that TSO is nearly as fast as DRF0 on our benchmarks.

5.3 Effectiveness of Out-of-Order Optimizations

Figure 5 compares the effectiveness of three of our optimizations:
out-of-order region execution, out-of-order region commit, and
coalescing contiguous regions. All of the configurations assume
signature-based conflict detection. The performance results are nor-
malized to the DRF0 execution time.

If we had not distinguished between hard and soft fences, none
of the above three optimizations would have been feasible. This
configuration is represented asio-exec, io-commit. We find
that the performance overhead without the three optimizations
would be on average 121% slower than DRF0. Allowing regions
to execute out-of-order brings the overhead down to about 27%.
Allowing regions to commit out-of-order further reduces the over-
head down to about 7.7% on average. Finally, coalescing regions at
runtime reduces the overhead to about 6.49%. This optimization is
especially effective for programs for which our conservative com-
piler bounding analysis constructs very small regions. Forinstance,
on streamcluster the overhead is reduced from 36% to about
15%.

Conflict detection in our design can negatively impact perfor-
mance by stalling the execution of a processor core only under
two circumstances. One, a region buffer entry is not available for a
memory operation to issue. Two, even after all the memory accesses
in the regions preceding a hard fence have completed, the proces-
sor must stall to allow conflict detection to complete. We measured
the proportion of the processor cycles that are stalled due to these
two reasons for a configuration with in-order commit and one al-
lowing out-of-order commit. The results are shown in Figure6. We
observe that out-of-order commit significantly reduces both kinds
of stalls for most benchmarks.

5.4 Effectiveness of Signature-Based Conflict Detection

Figure 7 compares the performance ofDRFx with and without
signature based conflict check optimization. We observe that, on
average, the signature based scheme improves performance by 7%.
The average false positive rate for bloom filter checks was 1.39%
and the maximum was 12% onbodytrack.

5.5 Scalability

Figure 8 shows the performance ofDRFx when compared to the
baseline DRF0 as the number of cores scale. We find the network
bandwidth is adequate to provide scalable performance up to16-
cores. Forblackscholes there is a noticeable performance differ-
ence as we go from 4 to 8 cores. This is due to an increased number
of false conflicts when signatures are compared to a larger num-
ber of regions on more cores. On detecting a potential conflict, we
have to perform expensive, precise conflict check over the complete
set of addresses. Forblackscholes, precise conflict detection was
performed for about 13% of regions in the 8-core configuration as
opposed to only 5% in the 4-core configuration.

5.6 Exceptions

We detected conflicts due to a few benign data races in the ap-
plications we studied. One source of benign races was program-
mer constructed barrier synchronizations and semaphores.These
synchronization variables were not typed asvolatile in the pro-
gram which caused the conflicts. Also, we detected two conflicts
due to benign data races inglibc – one in drand48 iterate()
and another in cfree andmalloc consolidate functions. To
ensure correctness even under DRF0, a programmer needs to cor-
rectly flag the racy variables in these functions asvolatile.
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Figure 4. Performance of the three memory models we evaluated.DRF0 + soft-fence represents only the compiler cost ofDRFx
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Figure 5. Effectiveness of Region Coalescing, and Out-Of-Order Region Execution and Commit Optimizations.
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Figure 6. Processor Stall Cycles Due to Conflict Detection
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Figure 7. Effectiveness of Signature Based Conflict Detection

6. Related Work
This section discusses the most closely related work.

6.1 Memory Models With Exceptions

The C++ memory model [9] and the Java memory model [30] are
based on DRF0 [1] and share its limitations for racy programs
which we discussed in Section 1.
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Figure 8. Performance overhead ofDRFx for 4, 8 and 16 cores with
respect to the DRF0 performance for the same number of cores.

Concurrently with our earlier work onDRFx, Lucia et al. de-
fined conflict exceptions[29], which also use a notion of regions
to detect language-level SC violations in hardware. Their approach
can be viewed as a realization ofDRFx-compliant hardware, but it
differs in important ways from our design. First, in their approach
a conflict exception is reportedprecisely, just before the second of
the conflicting operations is to be executed. Precise conflict detec-



tion is arguably complex in hardware as one has to track access
state for each cache word and continue to track it even when a
cache block migrates to a different processor core. Further, when
a region commits, its access state needs to be cleared in remote
processors. Finally, while this approach delivers a precise excep-
tion with respect to the binary, the exception is not guaranteed to
be precise with respect to the original source program. Second,
in their approach region boundaries are placed only around syn-
chronization operations, thereby ensuring serializability of max-
imal synchronization-free regions, which is a stronger guarantee
than SC. While this property could be useful for programmers,
it can result in unbounded-size regions and thereby considerably
complicates the hardware detection scheme and system software.

Adve et al. [3] proposed to detect data races at runtime using
hardware support. Elmas et al. [17] augment the Java virtualma-
chine to dynamically detect bytecode-level data races and raise a
DataRaceException. Boehm [8] provided an informal argument
for integrating an efficient always-on data-race detector to extend
the DRF0 model by throwing an exception on a data race. How-
ever, detecting data races either incurs 8x or more performance
overhead in software [18] or incurs significant hardware complex-
ity [33, 35]. A full data-race detector is inherently complex as it
has to dynamically build thehappens-beforegraph [26] to deter-
mine racy memory accesses. It is further complicated by the fact
that racy accesses could be executed arbitrarily “far” awayfrom
each other in time, which implies the need for performing conflict
detection across events like cache evictions, context switches, etc.
In contrast,DRFx hardware is inherently simpler as it requires that
we track memory access state and perform conflict detection over
only the uncommitted, bounded regions.

Gharachorloo and Gibbons [19] observed that it suffices to
detect SC violations directly rather than data races. Theirgoal
was to detect potential violations of SC due to a data-race and
report that to the programmer. However, their detection waswith
respect to the compiled version of a program.DRFx incorporates
the notion of compiler-constructed regions and allows the compiler
and hardware to optimize within regions while still allowing us to
dynamically detect potential SC violations at the languagelevel.

6.2 Efficiently Supporting Sequential Consistency

If the hardware and the compiler can guarantee SC, it is clearly
preferable to weaker memory models. There have been several
attempts to reduce the cost of supporting SC.

Bulk compiler [4] together with the BulkSC hardware [15] pro-
vide support for guaranteeing SC at the language level. The bulk
compiler constructs chunks similar to regions, but a chunk could
span across synchronization accesses and could be unbounded.
The BulkSC hardware employs speculation and recovery to en-
sure serializable execution of chunks. Conflicts are detected using
a signature-based scheme and they are resolved through rollback
and re-execution of chunks. Forward progress may not be possible
in the presence of repeated rollbacks. The Bulk system addresses
this issue and the unbounded chunk problem using several heuris-
tics. When the heuristics fail, it resorts to serializing chunks and
executing safer unoptimized code.

DRFx hardware could be simpler than Bulk hardware as it avoids
the need for speculation (especially across I/O) and unbounded
region sizes which have been the two main issues in realizinga
practical transactional memory system. However,DRFx requires
precise conflict detection, whereas Bulk can afford false conflicts.
Our observations that certain regions can execute and commit out-
of-order, and that conflict checks and region execution in different
processors can all proceed in parallel is unique. It may helpimprove
the efficiency and complexity of Bulk system as well.

SC can be guaranteed at the language level even on hardware
that supports a weaker consistency model using static analysis
to insert fences [24, 39, 41]. However, computing a minimal set
of fences for a program is NP-complete [25]. One approach to
reduce the number of fences is to statically determine potentially
racy memory accesses [24, 41] and insert fences only for those
accesses. These techniques are based on pointer alias analysis,
sharing inference, and thread escape analysis. In spite of recent
advances [10, 11], a scalable and practically feasible technique for
implementing a sound static data race detector also remainsan
unsolved problem, as all the techniques require complex, whole-
program analysis.

There has been much work on designing an efficient, sequen-
tially consistent processor. But this only guarantees SC atthe hard-
ware level for the compiled program [6, 15, 36, 42].

6.3 Transactional Memory

Hardware transactional memory (HTM) systems [23] also employ
conflict detection between concurrent regions. However, unlike TM
systems, regions inDRFx are constructed by the compiler and
hence can be bounded. Also, on detecting a conflict, a region need
not be rolled back. This avoids the complexity of a speculation
mechanism. Thus, aDRFx system does not suffer from the two
issues that have been most problematic for practical adoption of
TM.

Hammond et al. [22] proposed transactional coherency and con-
sistency (TCC) memory model based on a transactional program-
ming model [23]. The programmer and the compiler ensure that
every instruction is part of some transaction. The runtime guaran-
tees serializability of transactions, which in turn guarantees SC at
the language level. Unlike this approach,DRFx is useful for any
multi-threaded program written using common synchronization op-
erations like locks, and it does not require additional programmer
effort to construct regions. TCC also requires unbounded region
and speculation support. TCC suggests that hardware could break
large regions into smaller regions, but that could violate SC at the
language level.

Our lazy conflict detection algorithm is similar to the one pro-
posed by Hammond et al. [22] but without the need for speculation
and conflict detection over unbounded regions. Also, we employ
signatures to reduce the cost of conflict checks. Unlike TM,DRFx
cannot afford false conflicts, which our design takes care toelimi-
nate. But lazy conflict detectors like TCC assume some form ofa
commit arbiter to regulate concurrent commit requests for regions
in different processors. As we discussed, we can allow all regions to
be conflict checked in parallel with the execution of currentregions,
which could be simpler. Also, soft-fenced regions can be executed
and committed out-of-order.

7. Conclusion
The DRFx memory model provides strong and easy-to-understand
guarantees for both data-race-free and racy programs whilesafely
supporting most sequentially valid compiler and hardware opti-
mizations. A significant challenge in bringingDRFx to practice is
the cost of runtime conflict detection. Processor support can reduce
this cost, but it can be realized in practice only if it is bothefficient
and simple.

This paper addresses this challenge through careful design
choices and optimizations of aDRFx-compliant micro-architecture.
We employ a lazy conflict detection design in order to avoid mod-
ifying the existing cache architecture and coherence mechanism.
We leverage interaction with the compiler to partition a program
into bounded-size regions, thereby avoiding the need to handle
overflow of hardware resources during conflict detection. Further,



the cost of bounded-size regions is significantly reduced byseveral
novel optimizations that we have formalized and proven correct.

We used aDRFx-compliant compiler and a hardware simulator
to evaluate our design. We find that the average performance over-
head is about 6.5% when compared to DRF0 memory model.
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