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Abstract—As data centers are increasingly focused on energy
efficiency, it becomes important to develop low power imple-
mentations of the various applications that run on them. Data
compression plays a critical role in data centers to mitigate
storage and communication costs. This work focuses on building
a low power, high performance implementation for canonical
Huffman encoding. We develop a number of different hardware
and software implementations targeting Xilinx Zynq FPGA, ARM
Cortex-A9, and Intel Core i7. Despite its sequential nature, we
show that our hardware accelerated implementation is substan-
tially more energy efficient than both the ARM and Intel Core
i7 implementations. When compared to highly optimized soft-
ware running on the ARM processor, our hardware accelerated
implementation has approximately 15 times more throughput
with 10% higher power usage, resulting in an 8X benefit in
energy efficiency (measured in encodings/Watt). Additionally, our
hardware accelerated implementation is up to 80% faster and
over 230 times more energy efficient than a highly optimized
Core i7 implementation.

I. INTRODUCTION

Lossless data compression is a key ingredient for efficient
data storage, and Huffman coding is amongst the most popular
algorithm for variable length coding [1]. Given a set of data
symbols and their frequencies of occurrence, Huffman coding
generates codewords in a way that assigns shorter codes to
more frequent symbols to minimize the average code length.
Since it guarantees optimality, Huffman coding has been
widely adopted for various applications [2]. In modern multi-
stage compression designs, it often functions as a back-end of
the system to boost compression performance after a domain-
specific front-end as in GZIP [3], JPEG [4], and MP3 [5].
Although arithmetic encoding [6] (a generalized version of
Huffman encoding which translates an entire message into
a single number) can achieve better compression for most
scenarios, Huffman coding is typically the algorithm of choice
for production systems since developers do not have to deal
with the patent issues surrounding arithmetic encoding [7].

Canonical Huffman coding has two main benefits over tra-
ditional Huffman coding. In basic Huffman coding, the encoder
passes the complete Huffman tree structure to the decoder.
Therefore, the decoder must traverse the tree to decode every
encoded symbol. On the other hand, canonical Huffman coding
only transfers the number of bits for each symbol to the
decoder, and the decoder reconstructs the codeword for each
symbol. This makes the decoder more efficient both in memory
usage and computation requirements.

Data centers are one of the biggest users of data encoding
for efficient storage and networking, which is typically run
on high-end multi-core processors. This trend is changing re-
cently with increased focus on energy efficient and specialized

computation in data centers [8]. For example, IBM made a
GZIP comparable compression accelerator [9] for their server
system. We target the scenario where the previous stage of
compressor (e.g., LZ77) produces multi-giga byte throughput
with parallelized logic, which requires a high throughput, and
ideally energy efficient, data compression engine. For example,
to match a 4GB/s throughput, the Huffman encoder must be
able to build up 40,000 dynamic Huffman trees per second
assuming a generation of a new Huffman tree for every 100KB
input data.

The primary goal of this work is to understand the tradeoff
between performance and power consumption in developing a
Canonical Huffman Encoder. In particular, we show the ben-
efits and drawbacks of different computation platforms, e.g.,
FPGA, low-power processor, and high-end processor. To meet
these goals, we design a number of different hardware and soft-
ware implementations for Canonical Huffman Encoding. We
developed a high performance, low power Canonical Huffman
encoder based on high-level synthesis (HLS) tool for rapid
prototyping. This is, to the best of our knowledge, the first
hardware accelerated implementation of the complete pipeline
stages of Canonical Huffman Encoding (CHE). Additionally,
we create highly optimized software implementations targeting
an embedded ARM processor and a high-end Intel Core i7
processor. The specific contributions of this paper are:

1) The development of highly optimized software im-
plementations of canonical Huffman encoding.

2) A detailed design space exploration for the hardware
accelerated implementations using high-level synthe-
sis tools.

3) A comparison of the performance and power/energy
consumption of these hardware and software imple-
mentations on a variety of platforms.

The remainder of this paper is organized as follows:
Section 2 presents related work. Section 3 provides algorithmic
description of canonical Huffman encoding. In Section 4
and Section 5, we present detailed hardware and software
implementations and optimizations, respectively. In Section 6,
we present experimental results. We conclude in Section 7.

II. RELATED WORK

Many previous works [10], [5], [11] focus on a hardware
implementation for Huffman decoding because it is frequently
used in mobile devices with tight energy budget, and the
decoding algorithm has high levels of parallelism. On the
other hand, Huffman encoding is naturally sequential, and it
is difficult to parallelize in hardware. However, as we show
in this paper, this does not mean that it is not beneficial
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Fig. 1. The Canonical Huffman Encoding process. The symbols are filtered and sorted, and used to build a Huffman tree. Instead of passing the entire tree to
the decoder (as is done in “basic” Huffman coding), the encoding is done such that only the length of the symbols in the tree is required by the decoder.

to pursue hardware acceleration for this application; when
carefully designed, a hardware accelerator can be implemented
in a high throughput and energy efficient manner.

There have been several hardware accelerated encoder
implementations both in the ASIC and FPGA domain to
achieve higher throughput for real-time applications [12], [13],
[14], [15], [16]. Some designs [12], [13], [14], [16] focus
on efficient memory architectures for accessing the Huffman
tree in the context of JPEG image encoding and decoding.
In some applications, the Huffman table is provided. In such
cases the designs focused on the stream replacement process
of encoding.

Some previous work develops a complete Huffman coding
and decoding engine. For example, the work by Rigler et
al [15] implements Huffman code generation for the GZIP
algorithm on an FPGA. They employed a parent and the
depth RAM to track the parent and depth of each node
in tree creation. Recent work by IBM [9] designed GZIP
compression/decompression streaming engine where they only
implemented static Huffman encoder. This significantly lowers
the quality of recompression.

This paper focuses on canonical Huffman encoding since
our data center scenario must adapt the frequency distribution
of new input patterns under the context of general data
compression combining with Lempel-Ziv 77 [17]. This is
well suited to canonical Huffman en coding. We provide
comparison of a number of optimized hardware and software
implementations on a variety of platforms and target energy
efficiency.

III. CANONICAL HUFFMAN ENCODING (CHE)

In basic Huffman coding, the decoder decompresses the
data by traversing the Huffman tree from the root until it
hits the leaf node. This has two major drawbacks: it requires
storing the entire Huffman tree which increases memory usage.
Furthermore, traversing the tree for each symbol is computa-
tionally expensive. CHE addresses these two issues by creating
codes using a standardized format.

Figure 1 shows the CHE process. The Filter module only
passes symbols with non-zero frequencies. Then the encoder
creates a Huffman tree in the same way as the basic Huffman
encoding. The Sort module rearranges the symbols in ascend-
ing order based upon their frequencies. Next, the Create Tree
module builds the Huffman tree using three steps: 1) it uses
the two minimum frequent nodes as an initial sub-tree and

generates a new parent node by adding their frequencies; 2)
it adds the new intermediate node to the list and sorts them
again; and 3) it selects the two minimum elements from the
list and repeat these steps until one element remains. As a
result, we get a Huffman tree, and by labelling each left and
right edge to 0 and 1, we create codewords for symbols. For
example, the codeword for A is 00 and codeword for B is 0101.
This completes the basic Huffman encoding process. The CHE
only sends the length of each Huffman codeword, but requires
additional computation as explained in the following.

The Compute Bit Len module calculates the bit lengths of
each codeword. It saves this information to a list where the
key is length and value is the number of codewords with that
length. In the example case, we have 3 symbols (A,D,E) with
the code length of 2. Therefore, the output list contains L=2
and N=3. The Truncate Tree module rebalances the Huffman
tree when it is very tall and/or unbalanced. This improves
decoder speed at the cost of a slight increase in encoding time.
We set the maximum height of the tree to 27.

Using output from the Truncate Tree module, the Canonize
module creates two sorted lists. The first list contains symbols
and frequencies sorted by symbol. The second list contains
symbols and frequencies sorted by frequency. These lists are
used for faster creation of the canonical Huffman codewords.

The Create Codeword module creates uniquely decodable
codewords based on the following rules: 1) Shorter length
codes have a higher numeric value than the same length prefix
of longer codes. 2) Codes with the same length increase by
one as the symbol value increases. According to the second
rule, codes with same length increase by one. This means if
we know the starting symbol for each code length, we can
construct the canonical Huffman code in one pass. One way
to calculate the starting canonical code for each code length is
as follows: for l = K to 1;Start[l] := [Start[l+1]+N [l+1]]
where Start[l] is the starting canonical codeword for a length
l, K is the number of different code lengths, and N [l] is the
number of symbols with length l. In CHE, the first codeword
for the symbol with the longest bit length starts all zeros.
Therefore, the symbol B is the first symbol with longest
codeword so it is assigned 0000. The next symbol with length
4 is F and is assigned 0001 by the second rule. The starting
symbol for the next code length (next code length is 3) is
calculated based on the first rule and increases by one for the
rest.

In this paper, after calculating codewords, we do a bit re-



verse of the codeword. This is a requirement of the application
on hand, and we skip the details due to space constraints.

The CHE pipeline includes many complex and inherently
sequential computations. For example, the Create Tree module
needs to track the correct order of the created sub trees,
requiring careful memory management. Additionally, there is
very limited parallelism that can be exploited. We designed the
hardware using a high-level synthesis tool, and created highly
optimized software for ARM and Intel Core i7 processors. In
the following sections, we will report results, and highlight
the benefits and pitfalls of each approach. We first discuss
the hardware architecture and the implementation of the CHE
design using HLS. Then we present the optimized software
design of the CHE.

IV. HARDWARE IMPLEMENTATIONS

We created HLS architectures with different goals. Latency
Optimized is designed to improve latency by parallelizing
the computation in each module, and Throughput Optimized
targets a high throughput design by exploiting task level
parallelism. Since their block diagrams are very similar, we
only present the block diagram of the Throughput Optimized
architecture as shown in Figure 2. For the sake of simplicity, it
only shows the interfaces with block rams (BRAMs). To create
these designs (Latency Optimized, and Throughput Optimized),
we start from a software C code which we name a Baseline
design. Then we restructure parts of the code (Restructured
design) as discussed below targeting efficient hardware archi-
tectures.

The input to the system is a list of symbols and frequencies
stored in Symbol-Frequency (SF) BRAM. The size of SF is
48×n bits where 16 bits are used for symbol, 32 bits are used
for frequency, and n is the number of elements in the list. The
Filter module reads from the SF BRAM and writes the output
to the next SF BRAM. Also it passes the number of non-zero
elements to the Sort module. The Sort module writes the list
sorted by frequency into two different SF BRAMs. Using the
sorted list, the Create Tree module creates a Huffman tree and
stores it into three BRAMs (Parent Address, Left, and Right).
Using the Huffman tree information, the Compute Bit Len
module calculates the bit length of each symbol and stores this
information to a Bit Len BRAM. We set the maximum number
of entries to 64, covering up to maximum 64-bit frequency
number, which is sufficient for most applications given that
our Huffman tree creation rebalances its height. The Truncate
Tree module rebalances the tree height and copies the bit length
information of each codeword into two different BRAMs with
the size of 27, which is the maximum depth of the tree. The
Canonize module walks through each symbol from the Sort
module and assigns the appropriate bit length using the BitLen
of each symbol. The output of the Canonize module is a list
of pairs where list contains symbols and its bit lengths.

We implemented the algorithm on an FPGA using the
Vivado High-level Synthesis (HLS) tool. The Baseline design
has no optimizations. We developed a Restructured design
on top of the Baseline design. After creating the restructured
design, we optimize the restructured design for latency and
throughput. To implement above hardware designs, we first
profiled the algorithm on an ARM with different optimizations.

Figure 6 shows initial (naive) running time of each modules of
the design on an ARM processor. Among these, Radix Sort,
Create Tree, Compute Bit Length are most computationally
intensive. We focused our design space exploration on these
sub modules and optimized them in HLS to generate an
efficient design.

A. Radix Sort

The radix sorting algorithm arranges the input data for each
radix from left to right (least significant digit) or right to left
(most significant digit) in a stable manner. In a decimal system,
the radix takes values from 0 to 9. In our system, we are
sorting the frequencies, which are represented using a 32-bit
number. We treat a 32-bit number as 4-digit number with radix
r = 232/4 = 28 = 256. In serial radix sort, the input data is
sorted by each radix k times where k is radix (k = 4 in our
case). Algorithm 1 describes the radix sorting algorithm which
used counting sort to perform the individual radix sorts.

Algorithm 1 Counting sort

1: HISTOGRAM-KEY:
2: for i← 0 to 2r − 1 do
3: Bucket[i]← 0
4: end for
5: for j ← 0 to N − 1 do
6: Bucket[A[j]]← Bucket[A[j]] + 1
7: temp[j]← A[j]
8: end for
9: PREFIX-SUM:

10: First[0]← 0
11: for i← 1 to 2r − 1 do
12: First[i]← Bucket[i− 1] + First[i− 1]
13: end for
14: COPY-OUTPUT:
15: First[0]← 0
16: for j ← 0 to N − 1 do
17: Out[First[i]]← temp[j]
18: First[i]← First[i] + 1
19: end for
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Fig. 3. A naively optimized code has RAW dependencies which requires an
II = 3.

In order to implement parallel radix sort, we made two
architectural modifications to the serial algorithm. First, we
pipelined the counting sort portions (there are four counting
sorts in the algorithm). This exploits coarse grained parallelism
among these four stages of the radix sort architecture using
the dataflow pipelining pragma in the Vivado HLS tool. Next
we optimized the individual counting sort portions of the
algorithm. In the current counting sort implementation there
is a histogram calculation (Algorithm 1 line number 6). When
synthesized with an HLS tool, this translates to an architecture
which is similar to Figure 3. With this code, we achieve an
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Fig. 2. The block diagram for our hardware implementation of canonical Huffman encoding. The gray blocks represent BRAMs with its size in bits. The white
blocks correspond to the computational cores.

initiation interval (II) equal to 3 due to RAW dependencies.
Ideally we want an II = 1. Since the histogram calculation
is in a loop, achieving an II = 1 boasts performance by
orders of magnitude. Achieving II = 1 requires an additional
accumulator, which is shown in the pseudo HLS code in
Listing 1. If the current and previous values of the histogram
are the same, we increment the accumulator; otherwise we save
the accumulator value to previous value’s location and start a
new accumulator for the current value. In addition to that,
using dependency pragma, we instruct HLS to ignore RAW
dependency.

1 #pragma DEPENDENCE var=Bucket RAW false
2 val = radix; //A[j]
3 if(old_val==val){
4 accu = accu + 1 ;
5 }
6 else {
7 Bucket[old_val] = accu;
8 accu = Bucket[val]+1;
9 }

10 old_val =val;

Listing 1. An efficient histogram calculation with II of 1.
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Fig. 4. The architecture for efficient Huffman tree creation. This architecture
creates a Huffman tree in one pass by avoiding resorting of the elements.

B. Huffman Tree Creation

In order to create the Huffman tree, the basic algorithm
creates a sub tree of the two elements with minimum frequency
and adds intermediate node whose frequency is the sum of f1
and f2 to the list in sorted order (f1 and f2 are frequencies of
those selected elements). This requires re-sorting the list each
time when we add a new element to the list. At each step we
remove the two elements with minimum frequencies and insert
a new node with the aggregated frequency of those selected
nodes. This means that the generated nodes are produced in
non-decreasing sequence order. Thus, instead of adding the
intermediate node to the sorted list, we used another BRAM
to store the intermediate nodes in a FIFO.

With this modification, we eliminate the process of re-
sorting. The architecture is shown in Figure 4. The S queue
stores the input symbol/frequency list. The I Queue stores the
intermediate nodes. The size of S is n, and size of I is n− 1.
Create Tree stores tree information on Left, Right, and Parent
Address BRAMs. The changed algorithm works as follows.
Initially, the algorithm selects the two minimum elements from
the S queue in a similar manner to basic Huffman encoding.
Then the algorithm adds the intermediate node n1 to the I
queue. It selects a new element e1 from S queue. If the
frequency of e1 is smaller than frequency of n1, we make
e1 the left child. Otherwise, we make n1 the right child. If
the I queue is empty (after selecting the left child), we select
another element e2 from S and make it the right child. Then
we add their frequency values, make a new intermediate node
n2, and add it to I . This process continues until there is no
element left in the S queue. If there are elements in the I
queue, we create sub trees by making the first element the left
child and second element the right child.

This eliminates need for resorting by using additional
BRAM. While we are constructing the Huffman tree with
this method, we store the tree information on three different
BRAMs. The Left and Right BRAMs store the left and right
children of each sub tree. The first left/right child is stored on
address 0 of Left/Right. The Parent Address BRAM has the
same address as its children but stores an address of the parent
of that location. It points to the parent address of its children.

C. Parallel Bit Lengths Calculation

After storing tree information on Left, Right, and Parent
Address BRAMs, calculating the bit length for each code is
straightforward. The Compute Bit Len function starts from
address 0 of Left and Right BRAMs and tracks their parents
location from the Parent Address BRAM. For example, B and
F have the same parent since they are both in address 0 in
respective BRAMs. The address of the parent of B and F is
located at 1 which is stored in the Parent Address BRAM at
address 0. From address 1, we can locate the grandparent of
F and B at address 2. From address 2, we can locate next
ancestor of B and F at address 4. When we check address
4 and we find out it is zero, that means we have reached the
root node. Therefore, bit length of F and B is equal to 4.

The data structures (Left, Right, and Parent Address) allow
efficient and parallel bit length calculation. In these data
structures, the symbols are stored from left to right, and we can
track any symbol’s parents to root starting from that symbol’s
position. In our design, we exploit this property and initiated
parallel processes working from different symbols (Huffman



tree leaf nodes) towards the root node to calculate bit lengths
of symbols in parallel. Figure 5 shows an example where two
processes are working to calculate the bit lengths in parallel.
Each process operates on data in its region, e.g., Process 2
only needs data for symbol D and E symbols.
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Fig. 5. A Parallel Bit Lengths Calculation. Each process has its own set of
data which allows for fully parallel bit length calculation.

D. Canonization

In Canonize, the algorithm has to create two lists; one
sorted by symbols and another sorted by frequencies. In our
design, we changed the Canonize module by eliminating the
list which is sorted by frequencies. The second list is needed
by CreateCodeword to track the number of codewords with
the same length. We can track the number of symbols having
the same code length by using 27 counters since any codeword
need at most 27 bits. This optimization efficiently reduces the
running time of the Canonize by half. Therefore, output of the
Canonize is only one list in our design. However, it slightly
increases the running time of CreateCodeword.

E. Codeword Creation

In addition to that, using dependency pragma, we instruct
HLS to ignore RAW dependency. In the Create Codeword
module, the algorithm does the bit reverse of each code length.
Code lengths can be up to 27 bits. The software bit reverse
does not synthesize to efficient hardware. Therefore, we coded
an efficient bit reverse in HLS that results in logic as good as
a custom bit reverse using the coding technique given in [18].
Listing 2 shows an example bit reverse for 27 bit number. Bit
lengths can be up to 27-bits requiring to write twenty seven
of these functions in our design. Since these functions are
synthesized efficiently in HLS, we inline them in our design
which increases performance with a slight increase of area.

1 #pragma pipeline
2 for(int k = 0; k < 27; k++) {
3 j = (j << 1) | ((i >> k) & 0x1);
4 }

Listing 2. Efficient bit reverse for 27-bit number

Restructured Design: This design includes manual re-
structured and the optimized designs for Radix Sort, Create
Tree, Compute Bit Length, Canonize, and Create Codeword
modules, which were described earlier in this section.

Latency Optimized Design: On top of the Restructured
design, we pipeline computations in individual modules us-
ing the pipeline pragma in the high-level synthesis tool.

The pipeline pragma pipelines the computations in a region
exploiting fine grained parallelism. Once restructured, rest
of the computations in individual modules of the CHE are
sequential. e.g., computations in iterations execute dependent
read, compute, write operations in each iteration of loop. This
allows pipelining of only these primitive operations in each
iteration of the loop. This is done by pipelining the most inner
loop of each module.

Throughput Optimized Design: This design further opti-
mizes the Latency Optimized design to achieve coarse grained
parallelism. The goal of this design is to improve throughput by
exploiting coarse grained parallelism among the tasks (through
task level pipelining). We achieve task level pipeline in the
high-level synthesis by using a dataflow directive. However,
the current dataflow directive only works if the input/output of
functions are read/written by only one process. We solved this
issue by duplicating the input/outputs which are read/written
by more than one process. Listing 3 shows the pseudocode.
For example, the output of Sort is read by two processes
(Create Tree and Canonoize). Therefore, we duplicated the
output of Sort into two different arrays (BRAMs: SF SORT1,
SF SORT2) inside the Sort module. This is shown in Listing 3
Line 9. For simplicity, we omitted BRAM duplication parts for
the rest of the code in Listing 3. This incurs additional logic
to duplicate this data as shown in Listing 4. This has some
adverse effect on the final latency, but it improves the overall
throughput.

1 CanonicalHuffman(SF[SIZE], Code[SIZE]){
2 #pragma dataflow
3 SF_TEMP1[SIZE];
4
5 SF_SORT1[SIZE];
6 SF_SORT2[SIZE];
7
8 Filter(SF, SF_TEMP1);
9 Sort(SF_TEMP1, SF_SORT1, SF_SORT2);

10 CreateTree(SF_SORT1, PA, L, R);
11
12 //Separate data in PA,L, R
13 //into PA1, L1, R1, PA2, L2, R2
14
15 //Parallel bit lenght calculation
16 ComputeBitLen1(PA1, L1, R1, Bitlen1);
17 ComputeBitLen1(PA2, L2, R2, Bitlen1);
18
19 //Merge BitLen1 and BitLen2 to BitLenFinal
20
21 TruncateTree(BitlenFinal, Bitlen3, Bitlen4);
22 Canonize(Bitlen4, SF_SORT2, CodeTemp);
23 CreateCodeword(Bitlen4, CodeTemp, Code);
24 }

Listing 3. Pseudocode for the throughput optimized design.

1 Sort(SF_TEMP1, SF_SORT1, SF_SORT2){
2 //Sort logic
3 SF_SORTED = ... ;
4 //Additional logic
5 for(int i=0;i<n;i++){
6 SF_SORT1[i] = SF_SORTED[i];
7 SF_SORT2[i] = SF_SORTED[i];
8 }}

Listing 4. Additional logic to support task level parallelism.



V. SOFTWARE IMPLEMENTATIONS

The initial Naive software implementation is a functionally
correct design which is not optimized for efficient memory
management. In Baseline design, we used efficient memory
management through optimized data structures to optimize
the naive implementation. An example optimization is using
pointers efficiently instead of arrays whenever possible. The
code has the same functionality as the code in HLS. In addition
to the memory optimization using pointers, we did following
optimizations.

1) Software Optimization (SO): We do the same optimiza-
tion for the Canonize and Create Codeword functions as we
did in HLS implementation. This cuts the running time of
Canonize by almost half.

2) Compiler Settings (CS): We do compiler optimizations
on top of software optimization using -O3 compiler flag. These
compiler optimization levels do common compiler optimiza-
tions such as common sub expression elimination and constant
propagation. On top of that, we did manual loop vectorization
and loop unrolling whenever it gives better performance.

VI. EXPERIMENTAL RESULTS

In this section, we present the performance, area, power
and energy consumption results of our canonical Huffman en-
coding implementations for Xilinx Zynq FPGA, ARM Cortex-
A9, and Intel Core i7 processors. All systems are tested with
256 and 704 symbol frequencies (as dictated by the of former
LZ77 stage) as well as 536 as a median value in order to show
scalability trends. The latency is reported in microseconds µs
and throughput is reported in number of canonical Huffman
encodings performed per second. In this work, Vivado HLS
2013.4 is used for the hardware implementations. The final
optimized designs are implemented on a Xilinx Zynq FPGA
(xc7z020clg484-1) and the functionality is tested using real-
world inputs.

A. Software Implementations

ARM Cortex-A9: We used ARM Cortex-A9 667MHz dual-
core processor with 32/32 KB Instruction/Data Cache and 512
Kbyte L2 cache. In order to get highest performance, we run
our design on the processor without using an operating system.
The latency results are calculated using the number of clock
cycles times the clock period (1.49925 ns = 667 MHz). The
number of clock cycles are collected using CP15 performance
monitoring unit registers of ARM processor.

Figure 6 presents performance of software implementations
running on the ARM processor. The initial Naive design is
implemented without any optimizations. The Baseline design is
optimized on top of the Naive design using efficient data struc-
tures and memory management on the ARM processor. On top
of Baseline design then we apply Software Optimization (SO)
and Compiler Setting (CS) in that order. In SO design, the run
time of the Canonize module is reduced by 2.2X (114 us to 53
us). This added little overhead on the CreateCodeword module
by increasing its run time from 75 us to 103 us. Overall, the
running time of SO design is decreased from 622 us to 589 us.
In the final design (SO+CS), the -O3 optimization decreases
the running time of all modules, resulting in total running time
of the design being decreased from 589 us to 220 us.

Intel Core i7: We also implemented the same software
optimizations on a multi-core CPU implementation - an Intel
Core i7-3820 CPU running at 3.6 GHz. Figure 7 presents
performance of the various software implementations (Naive,
Baseline, SO and CS). Due to fast running time of the
algorithm on a powerful processor, the software optimization
(SO) has very little impact on the final running time giving
only 2 us of saving of total running time. The final optimized
with SO+CS has the fastest running time.
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Fig. 6. The latency results of the various software implementations running
on an ARM Cortex-A9 processor.
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Fig. 7. The latency results of the various software implementations running
on an Intel Core i7 processor.

B. Hardware Implementations

We synthesized the various hardware implementation de-
scribed in Section IV (Baseline, Restructured, Latency Op-
timized, and Throughput Optimized). Table I gives the area
utilizations and performance results for these different designs
when using 704 input size (536 non zero elements), and
Figure 8 shows their latency and throughput results.

TABLE I. HARDWARE AREA AND PERFORMANCE RESULTS.

Area Performance

Slices BRAM Clock Cycles II Frequency

Baseline 2067 15 130977 130978 45
Restructured 761 14 90336 90337 173
Latency Optimized 1159 14 33769 33770 133
Throughput Optimized 1836 62 41321 3186 170

The number of slices in the Baseline design is reduced in
Restructured design due to writing better HLS friendly code.
(e.g., optimized bit reverse module). The Latency Optimized
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Fig. 8. The latency and throughput of hardware implementations.
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Fig. 9. The throughput of hardware implementation for different input sizes.

design has higher slices and higher performance due to fine
grained parallelism. The Throughput Optimized designs use
more BRAMs due to duplication of the input/output data for
the purpose of overcoming limitations of dataflow directive in
the HLS tool (each module can only have one read and write
operation per port). The Throughput Optimized also has higher
throughput due to the additional resources required to take
advantage of both coarse grained and fine grained parallelism.

The latency (clock cycles × clock period) measures the
time to perform one canonical Huffman encoding operation.
The throughput (Initiation Interval(II) × clock period)
is the number of canonical Huffman encoding operations per
second. In the case of pipelining, the latency and throughput
operations may not be equivalent. The latency reduces from
Baseline design to Latency Optimized due to restructuring
and pipelining. The latency of Throughput Optimized design
increases from 212 µs to 242 µs (largely due to 33769 and
41321 clock cycles, respectively, though the clock period is
also larger).

However, this Throughput Optimized design has better
throughput than previous designs. The Throughput Optimized
accepts new data every 3186 clock cycles while Latency Op-
timized design accepts new data in every 33770 clock cycles.
Therefore, Throughput Optimized has higher throughput than
the Latency Optimized design. Figure 9 shows the throughput
for three designs for non-zero input sizes 256, 536 and 704.
The y-axis shows the throughput (the number of canonical
Huffman encodings per second) and x-axis shows input sizes.
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C. Hardware and Software Comparison

In this section, we discuss efficiency of our various hard-
ware and software implementations in terms of four aspects:
performance, power/energy consumption, productivity, and the
benefits and drawbacks of designing using HLS tools as
compared to directly coding RTL.

Performance: Figure 10 compares the throughputs of the
best Xilinx Zynq FPGA design, ARM Cortex-A9 design, and
Intel Core i7 design for three different input sizes. Overall,
the hardware implementation has 13-16X better throughput
than the ARM design due to exploiting task level parallelism.
The hardware design achieves 1.5-1.8X speed-up over highly
optimized design on a Intel Core i7 processor.

Power and Energy Consumption: The primary focus of
this paper is to understand the energy efficiency of canonical
Huffman encoding on different hardware and software plat-
forms. We measured the ARM and FPGA portions of Zynq
device power consumptions using power domains VCCPINT
and VCCINT as described [19] in real time. The power
consumption of ARM design is measured by running the
design as a standalone application (i.e., without an operating
system). The ARM implementation consumes around 344
mWatt in real time. The power consumption of FPGA part
is measured in two ways; the first measurement is obtained by
using Xpower tool which estimates around 380 mWatts. Then
we calculated the power consumption of our design from real
time voltage and current by running our design on a Zynq chip.
Our design consumes maximum 170 mWatts among 250 runs.
The Intel Core i7 power when running the canonical Huffman
encoding is measured using Intel Power Gadget tool-kit in a
real time[20]. The Core i7 consumes between 27-30 Watts
when running the software.

Figure 11 (170 mWatt is used as FPGA power) shows
the energy consumption of the different platforms. This is
measured in the number of canonical Huffman encodings per-
formed per Watt for the FPGA, ARM, and Core i7 designs. The
FPGA is the most energy efficient. For three different sizes,
hardware implementation has around 230X more encodings
per Watt than the Core i7, and the ARM implementation has
around 9X more CHEs than Core i7 design.

Productivity: We spent about one month designing the
algorithm on an FPGA using the Xilinx Vivado HLS tool.
Approximately 25% of the time was spent on learning the
algorithm and initial planning which also includes writing a C
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Fig. 11. Power efficiency for various input sizes: HW vs. ARM vs. Core i7

code for Core i7 and ARM processors. The rest of the time
(approximately 75% of the total time) was spent on designing
optimized FPGA solution using HLS. This includes time spent
to create the Baseline, Restructured Latency Optimized, and
Throughput Optimized implementations. Our final hardware
design is parametrizable for different inputs which allows easy
design space exploration in a short time while achieving higher
throughput with significantly less energy consumption than the
Intel and ARM processors.

HLS vs RTL: An obvious next step would be to implement
the best hardware implementation using RTL to obtain even
better results. This would likely increase the clock frequency,
and provide better throughput and energy consumption. How-
ever, this is an expensive proposition in terms of designer
time. For example, the tree creation/bit length calculation
modules require careful coding if one decides to design them in
RTL. HLS provides good results because limited parallelism
in individual modules can be easily exploited by pipelining
most inner loops in C, and that would be the primarily
optimization target that one would exploit when writing RTL.
Certainly, HLS provides a huge benefit in terms of design space
exploration, and we advise first using the HLS tools to find
a suitable micro architecture, and then develop the RTL from
that micro architecture in order to optimize it further.

VII. CONCLUSION

One may assume this application is not suitable for hard-
ware implementation because the algorithm is complex and
sequential. On the contrary, the hardware implementation pro-
duces a superior result both in terms of throughput and energy
efficiency. To demonstrate these, we developed a number of
performance and low power design and implementation of
canonical Huffman encoding in both hardware and software
running on the Virtex Zynq FPGA, ARM Cortex-A9, and
Intel Core i7 platforms. We demonstrated several optimization
techniques for complex and inherently sequential applications
(hard to code by hand due to complexity and sequentiality)
such as Huffman tree creation can be easily done in HLS in a
short amount of time with high performance and low power.
Our final design has around 13-16X times higher throughput
than highly optimized design on ARM and it is more energy
efficient than design on high end multi-core CPU. We designed
the systems on an FPGA and verified the functionality on a
Zynq device. As future work, we plan to extend current work
for different domains of applications such as JPEG encoding.

We also plan to study more inherently sequential application
designs using high-level synthesize tools.
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