
Affine Pairings on ARM

Tolga Acar1, Kristin Lauter1, Michael Naehrig1,2?, and Daniel Shumow1

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{tolga, klauter, danshu}@microsoft.com

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

michael@cryptojedi.org

Abstract. We report on relative performance numbers for affine and
projective pairings on a dual-core Cortex A9 ARM processor. Using a
fast inversion in the base field and doing inversion in extension fields by
using the norm map to reduce to inversions in smaller fields, we find
a very low ratio of inversion-to-multiplication costs. In our implemen-
tation, this favors using affine coordinates, even for the current 128-bit
minimum security level specified by NIST. We use Barreto-Naehrig (BN)
curves and report on the performance of an optimal ate pairing for curves
covering security levels between 128 and 192 bits. We compare with other
reported performance numbers for pairing computation on ARM CPUs.
Keywords: Optimal ate pairing, BN curves, ARM architecture.

1 Introduction

For Elliptic Curve Cryptography (ECC) applications on NIST P-curves where
prime fields are chosen with Generalized Mersenne primes for fast modular reduc-
tion and multiplication, the base field inversion-to-multiplication ratio is often
reported to be 80 : 1 or higher. However, for pairing applications which require
fixed embedding degrees to control efficiency and security, special primes like
Mersenne primes cannot be used because there is no known way to generate
pairing-friendly curves over those particular fields. Instead, more general prime
fields arise, and much of the arithmetic in pairing computation is done in exten-
sion fields with degree 12 when using Barreto-Naehrig (BN) curves [3,14]. Com-
puting in general prime fields using fast inversion techniques, a typical inversion-
to-multiplication ratio can be much lower than 80 : 1.

In [9], inversion-to-multiplication ratios in extension fields were given to yield
faster inversion in extension fields by taking the norm down to smaller fields
and doing inversion there. For example, in an extension field of degree 12, an
inversion-to-multiplication ratio of 1.7 : 1 was reported for a 256-bit prime base
field. Even for implementations with much faster field multiplies, using that
technique, the ratio decreases dramatically as the field extension degree increases,
? Acknowledges funding from the Netherlands Organisation for Scientific Research

(NWO) under project PACE - Pairing Acceleration for Cryptography using Elliptic
Curves.



which leads to the argument made in [9] that for any implementation, as the
security requirements and thus the field extension degrees grow, there exists a
cross-over point after which it becomes more efficient to use affine coordinates in
the pairing algorithm rather than projective coordinates. For the implementation
of field arithmetic in 256-bit prime fields discussed in [9] on the x86 and x86-
64 platforms, this cross-over point already occured when considering extension
degree 2.

This led us to wonder what the cross-over point might be on other plat-
forms, and how it would vary with different intrinsics or instruction sets. In
this paper, we give performance numbers for affine and projective pairings on a
dual-core Cortex A9 ARM processor. Our implementation targets a minimum
128-bit security level. It thus works with BN curves with embedding degree 12,
and involves curve arithmetic in a degree-2 extension field by taking advantage
of sextic twists as usual. The high-level pairing implementation is very close to
that reported in [9]. We use intrinsics and assembly for the Montgomery multipli-
cation implementation. Improving the underlying field multiplication algorithm
would certainly increase the degree at which one would switch from projective
to affine pairings.

In our implementation, affine coordinates are the better choice for pairing
computation also on the ARM processor. Other implementations presented in
the literature recently have faster field multiplies that are optimized for specific
processor architectures to obtain pairing speed records [12,4,2], whereas our code
is not optimized for any particular architecture. Our implementation of affine
pairings compares favorably with all other reported ARM pairing timings we
have found in the literature (see Section 4).

2 Platform-specific improvements on ARM

The multiplication routines in our implementation utilize multiply, multiply-
accumulate, and Montgomery multiplication [11], and the compiler is Microsoft
Visual C++ on ARM (Thumb-2).

We used a Tegra 2 development platform from NVidia to obtain the bench-
mark figures in Table 1. This system features a dual-core Cortex A9 ARM CPU
running at 1GHz with 32KB/32KB (I/D) L1 cache per core, 1MB L2 cache,
and 1GB DDR2-667 main memory. The entire benchmark program fits in the
1MB L2 cache, and the core routines executed in tight loops fit in the 32KB
instruction cache.

The Montgomery multiplication function implements the CIOS method in [8],
and its performance is given in Table 1 for various moduli lengths. The C im-
plementation relies on the compiler support for double-length unsigned inte-
gers (unsigned __int64). The intrinsics method uses a few compiler-supported
ARM assembly instructions: umull, umaal, umlal while other operations are
implemented in C. The umull is an unsigned 32-bit integer multiplication instruc-
tion that generates an unsigned 64-bit product. The umlal is a 32-bit multiply
and 64-bit accumulate, and the umaal is a 32-bit multiply and double 32-bit



accumulate instruction. The assembly row reports the benchmark figures where
the CIOS method is implemented in ARM Thumb-2 assembly language.

The difference between the assembly and the C-with-intrinsics implemen-
tation is in the Montgomery multiplication routine. Both implementations use
the above instrinsics in other primitive functions (e.g., multiply and multiply-
accumulate), such as inversion.

Modulus length in bits
Implementation 160 224 288 480 640 3168

Intrinsics 2.07 2.55 3.17 5.66 9.26 147

Assembly 1.97 2.41 2.93 5.15 9.04 128

Table 1. Montgomery multiplication implementation choices and benchmark figures
in micro seconds.

While the use of intrinsics provides an improvement over the C version, the as-
sembly implementation provides an incremental improvement over intrinsics. We
experimented with several implementation approaches such as loop unrolling, dif-
ferent instruction ordering, conditional instructions, and multi-word load/stores.
None of these approaches provided a measurable performance improvement on
our reference platform. Thus, we did not use any of these techniques to generate
the numbers on the table. Instead, we carefully crafted a straightforward as-
sembly implementation of the Montgomery multiplication CIOS algorithm in [8]
to form base reference benchmark numbers. The assembly implementation and
intrinsics only leverage the core ARM instruction set, but do not utilize SIMD
and NEON instructions.

3 Implementation and performance

Here we present the timing results of our pairing implementation on BN curves
for the ARM instruction sets, for security levels of 128 bits or higher. Our pairing
code can be used to compute pairings on all 16 curves recently introduced in [14].
In particular, the code is not tailored for one specific curve. These curves are
easy to generate, have a very compact representation and were chosen to provide
very efficient implementation. The loop order 6u+ 2 for all curves is very sparse
when represented in non-adjacent form. Additionally, the current software speed
record reported in [2] also used the 254 bit curve.

Due to space constraints, we present performance results for only three of
the curves in [14], namely the curves bn254, bn446, and bn638 over prime fields
of respective bit sizes 254, 446, and 638 bits. The curve bn254 roughly provides
128 bits of security and bn638 yields about 192 bits.

Our implementation uses the optimal ate pairing on BN curves. For the
projective version we used the explicit formulas in [6], but we obtained better
results for the affine version. It uses the tower of field extensions Fp12/Fp6/Fp2/Fp



via the method described in [9] to realize field arithmetic in Fp12 . Fast methods
for doing inversion in the base field were described in [5, Appendix D]. The final
exponentiation is done using the Frobenius action and the addition chain from
[15] as well as the special squaring functions from [7].

Our implementation results are shown in Table 2. We give timings for the
finite field additions (add), subtractions (sub), multiplications (M), squarings
(S) and inversions (I) as well as the inversion-to-multiplication ratio (R = I/M)
for all fields in the tower of extensions.

We give timings for several pairing functions that use different optimizations
for different computing scenarios. The line entitled “20 at once (per pairing)”
gives the average timing for one pairing out of 20 that have been computed
at the same time. This function uses Montgomery’s inversion-sharing trick as
described in [9, Section 4.3]. The function corresponding to the line “product
of 20” computes the product of 20 pairings. The lines with the attribute “1st
arg. fixed” mean functions that compute multiple pairings, where the first input
point is fixed for all pairings, and only the second point varies. In this case,
the operations depending only on the first argument are done only once. We
list separately the final exponentiation timings. They are included in the pairing
timings of the other lines.

We do not give cycle counts for the ARM implementation in the tables since
high-frequency counters are currently not supported in our development envi-
ronment on the ARM. However, estimates for cycle counts can be easily read
off from the values given in µs and ms by multiplying them by 103 and 106,
respectively (note the clock frequency of 1GHz for the ARM processor).

3.1 Summary of our implementation performance results

Here we summarize some of the results given in Table 2 on the performance of
our implementation across platforms and security levels. As high-level points of
comparison, we note that:

1. Affine coordinates are better than projective coordinates for optimal ate
pairing computation at all security levels. The trend is toward bigger differ-
ences at higher security levels. The affine pairing is roughly 20% better at
the 192-bit security level instead of 10% better at the 128-bit security level.
For example, for the 254-bit curve, an affine pairing takes 51 milliseconds
while the projective pairing takes 55 milliseconds, whereas for the 638-bit
curve, an affine pairing takes 650 milliseconds while the projective pairing
takes 768 milliseconds.

2. The inversion-to-multiplication ratio is lower in larger base fields. This largely
explains observation 1 above.

3. In the degree-12 extension fields, the inversion-to-multiplication ratio is close
to 1.7 : 1 at all security levels. There is very little variation in that, despite
big differences in ratios in the base fields.

4. The percentage of the computation time spent on the final exponentiation
goes up at the higher security levels, and this is true across platforms:



ARM, dual-core Cortex A9 @ 1GHz, Windows

254-bit add sub M S I R = I/M
prime field µs µs µs µs µs

Fp 0.67 0.61 1.72 1.68 18.35 10.67
Fp2 1.42 1.24 8.18 5.20 26.61 3.25
Fp6 4.43 3.96 69.83 48.24 136.68 1.96
Fp12 9.00 8.32 228.27 161.43 379.09 1.66

bn254 ms

projective 55.19

single pairing 51.01
20 at once (per pairing) 50.71

affine 20 at once, 1st argument fixed (per pairing) 46.06
product of 20 (per pairing) 17.44

single final exponentiation 24.69

446-bit add sub M S I R = I/M
prime field µs µs µs µs µs

Fp 1.17 1.03 4.01 3.92 35.85 8.94
Fp2 2.37 2.07 17.24 10.84 54.23 3.15
Fp6 7.77 7.15 152.79 109.74 302.34 1.98
Fp12 15.65 14.88 498.58 364.34 846.21 1.70

bn446 ms

projective 195.56

single pairing 184.28
20 at once (per pairing) 183.54

affine 20 at once, 1st argument fixed (per pairing) 167.83
product of 20 (per pairing) 62.33

single final exponentiation 86.75

638-bit add sub M S I R = I/M
prime field µs µs µs µs µs

Fp 1.71 1.53 8.22 8.18 56.09 6.82
Fp2 3.48 3.17 31.81 20.55 91.92 2.89
Fp6 10.63 10.09 261.87 186.21 535.42 2.04
Fp12 21.04 20.28 840.07 607.36 1454.38 1.73

bn638 ms

projective 768.06

single pairing 649.85
20 at once (per pairing) 650.08

affine 20 at once, 1st argument fixed (per pairing) 609.45
product of 20 (per pairing) 164.82

single final exponentiation 413.37

Table 2. Field arithmetic timings in 254-, 446-, and 638-bit prime fields and opti-
mal ate pairing timings on corresponding BN curves. Field timings average over 1000
operations, pairing timings average over 20 pairings.



For example, for the 254-bit curve, an affine pairing spends 48% of the time
on the final exponentiation, whereas for the 638-bit curve, an affine pairing
spends 63% of the time on the final exponentiation.

4 Related work

For applications of pairings to privacy of electronic medical records using Attribute-
Based Encryption for key management, some recent performance numbers for
pairings on ARM processors were reported in [1]. The comments in [1, Section
6.1] give rough performance numbers for pairings on ARM: the Pairing-Based
Crypto (PBC) [10] library computes pairings in 135 milliseconds on an ARM
processor running on Apple A4 chip-based iPhone 4, running iOS 4 with 512MB
of RAM and computing on a 224-bit MNT elliptic curve.

It is hard to compare across different hardware and operating systems, but as
a point of reference, our implementation of affine optimal ate pairings computes
pairings on curves of comparable security level, 222-bit BN curves, in 53 mil-
liseconds, on the hardware Tegra 2 NVidia, Dual-core ARM Cortex A9, 1GHz,
1MB L2 cache, 32KB/32KB (I/D) L1 per core, DDR2-667. Note that MNT
curves have embedding degree 6 instead of 12 as for BN curves, which means
less security and faster extension field operations and final exponentiation.

Working on elliptic curves over binary fields GF(2271) and using embedding
degree 4 on processors somewhat comparable to the ones considered here, the
Imote2 platform (13MHz PXA271, a 32-bit ARMv5TE with 32 KB data cache
and 32 KB instruction cache), [13, Table 3] shows a pairing computation in 140
milliseconds. Again these computations are not really comparable because of
the 70-bit security level, different hardware and operating system, binary fields,
different curve and embedding degree.

In [16] the authors report a performance of some optimal pairings on super-
singular elliptic curves in characteristic 3, using the BREW emulator on 150 MHz
and 225 MHz ARM9 processors. Their implementation achieves a pairing com-
putation in 401 and 262 milliseconds respectively over the base field GF(3193)
on curves claimed to be at the 80-bit security level.

Acknowledgements. We thank Patrick Longa and Diego F. Aranha for valu-
able comments on an earlier version of this work and interesting discussions. We
also thank the anonymous referees for their helpful comments.

References

1. J. A. Akinyele, C. U. Lehmanny, M. D. Green, M. W. Pagano, Z. N. J. Peterson,
and A. D. Rubin. Self-protecting electronic medical records using attribute-based
encryption. Cryptology ePrint Archive, Report 2010/565, 2010. http://eprint.

iacr.org/2010/565/.



2. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit
formulas for computing pairings over ordinary curves. In Advances in Cryptology –
EUROCRYPT 2011, Lecture Notes in Computer Science, Tallinn, Estonia, 2011.
Springer. To appear.

3. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In Selected Areas in Cryptography – SAC 2005, volume 3897 of Lecture Notes in
Computer Science, pages 319–331. Springer, 2006.

4. J.-L. Beuchat, J. E. González Dı́az, S. Mitsunari, E. Okamoto, F. Rodŕıguez-
Henŕıquez, and T. Teruya. High-speed software implementation of the optimal
ate pairing over Barreto-Naehrig curves. In Pairing-Based Cryptography – Pairing
2010, volume 6487 of Lecture Notes in Computer Science, pages 21–39. Springer,
2010.

5. M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery. Trading inversions for multi-
plications in elliptic curve cryptography. Des. Codes Cryptography, 39(2):189–206,
2006.

6. C. Costello, T. Lange, and M. Naehrig. Faster pairing computations on curves
with high-degree twists. In Public-Key Cryptography – PKC 2010, volume 6056 of
Lecture Notes in Computer Science, pages 224–242. Springer, 2010.

7. R. Granger and M. Scott. Faster squaring in the cyclotomic group of sixth degree
extensions. In Public-Key Cryptography – PKC 2010, volume 6056 of Lecture Notes
in Computer Science, pages 209–223. Springer, 2010.

8. Ç. K. Koç and T. Acar. Analyzing and comparing Montgomery multiplication
algorithms. IEEE Micro, 16:26–33, 1996.

9. K. Lauter, P. L. Montgomery, and M. Naehrig. An analysis of affine coordinates
for pairing computation. In Pairing-Based Cryptography – Pairing 2010, volume
6487 of Lecture Notes in Computer Science, pages 1–20. Springer, 2010.

10. B. Lynn. The Pairing-Based Cryptography Library (PBC). available at
http://crypto.stanford.edu/pbc/.

11. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, 1985.

12. M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records for
cryptographic pairings. In Progress in Cryptology – Latincrypt 2010, volume 6212
of Lecture Notes in Computer Science, pages 109–123. Springer, 2010. Corrected
version: http://www.cryptojedi.org/papers/dclxvi-20100714.pdf.

13. L. B. Oliveira, D. F. Aranha, C. P. L. Gouvêa, M. Scott, D. F. Câmara,
J. López, and R. Dahab. TinyPBC: Pairings for Authenticated Identity-Based
Non-Interactive Key Distribution in Sensor Networks. Computer Communications,
34(3):485–493, 2011.

14. G. C. C. F. Pereira, M. A. Simpĺıcio Jr, M. Naehrig, and P. S. L. M. Barreto.
A family of implementation-friendly BN elliptic curves. Journal of Systems and
Software, 2011. To appear, doi:10.1016/j.jss.2011.03.083.

15. M. Scott, N. Benger, M. Charlemagne, Ls J. Dominguez Perez, and E. J. Kachisa.
On the final exponentiation for calculating pairings on ordinary elliptic curves.
In Pairing-Based Cryptography – Pairing 2009, volume 5671 of Lecture Notes in
Computer Science, pages 78–88. Springer, 2009.

16. M. Yoshitomi, T. Takagi, S. Kiyomoto, and T. Tanaka. Efficient implementation
of the pairing on mobilephones using brew. In Information Security Applications
– WISA 2007, volume 4867 of Lecture Notes in Computer Science, pages 203–214.
Springer, 2007.


