Argus - A Distributed Network Intrusion
Detection System

Srikanth Kandula, Sankalp Singh
Dept. of Computer Science
Univ. of lllinois at Urbana-Champaign
Urbana, IL, USA
{kandula, ssingh7}@cs.uiuc.edu

I. INTRODUCTION

ODERN Computer Networks are complex

entities that provide a wide-variety of ser-
vices. The popularity of the Internet, electronic
commerce, corporate networks and distributed
computing has caused a proliferation of the in-
formation transmitted through these networks,
the consequence of which, is a higher premium
on network security. The availability of valu-
able information on modern computer networks
has lead to a proportionate increase in the com-
plexity and variety of network intrusions. Clas-
sical security mechanisms like firewalls, end-to-
end encryption and authentication have their
own susceptibilities. Firewalls are unable to look
at the data content of packets passing through
them without suffering significant drop in data
throughput. They are also extremely vulnera-
ble to denial of service attacks as well as at-
tacks that come from inside the firewall. End-
to-end encryption or authentication algorithms
are severely hindered by the lack of a public
key infrastructure over the Internet. Network-
traffic surveillance and intrusion-detection sys-
tems (IDS) have a crucial role to play in detect-
ing such network intrusions in real-time. Besides
providing sufficient information trace informa-
tion to track the source of such “attacks”, an IDS
can possibly ameliorate the effects by executing
timely prevention measures such as filtering data
from “suspicious” sources.

Intrusion Detection is the process or the art
of detecting inappropriate, incorrect or anoma-
lous activity on a computer system or network
of computer systems. This project concentrates
primarily on network-based intrusion detection,
which is the art of detecting attacks that are ex-
ecuted across a network. The complementary

This work was done when the authors were at Indian
Institute of Technology Kanpur

Dheeraj Sanghi
Dept. of Computer Science and Engg.
Indian Institute of Technology Kanpur
Kanpur, India
dheeraj@cse.iitk.ac.in

problem of detecting host-based intrusions is an
equally interesting problem. Several approaches
to detect host based intrusions exist [14], [2].
One such approach, expert-BSM[14] uses a se-
curity “monitor”’ that sifts through system call
traces and other operating system audit capabil-
ities attempting to find a match with any of the
known intrusion “signatures” that are encoded
in its database. Network Vulnerability analysis
(SAINT[22], SATAN]23]) is another complemen-
tary problem that involves estimation of the ef-
ficiency of network security measures by actively
probing for known vulnerabilities.

Commercial tools to detect network-based in-
trusions (NFR[15], NIDES [16], Emerald[7]) as
well as several research prototypes (Bro[19])
function by collecting network traffic into records
and analyzing these records. Collection of
records could be done by installing at ev-
ery networked host, modules that collect data
sent/received from the NIC of the host or by es-
tablishing stand-alone systems in each broadcast
segment of the network, that collect the data
that passes on this segment. Analysis of net-
work data, so-collected, could be done either in
real-time or in batch mode. Further there are
two major approaches that could be used in the
analysis of this data: Misuse based (also referred
to as Signature or Knowledge based) or Anomaly
based (also referred to as Behavior based or Sta-
tistical).

Misuse-based systems are expert systems that
contain a vast database of signatures of known
attacks. Candidate data is pattern-matched
with these signatures and a match is flagged
as an intrusion of the corresponding type.
Such systems usually include specification lan-
guages to encode attack signatures and in-
terpreters/compilers that apply the generated
attack-signature-filters on the candidate data.

Several such systems exist vaying in the ease-
of-use, expressiveness, simplicity of the specifi-
cation languages and the efficiency of their ex-
ecution environments. The great power of such
systems lies in their ability to accurately identify
all known attacks by encoding signatures of these
attacks. However these systems are insensitive
to new attacks and variants of older attacks that
are not encoded in the signature database. As a
significant amount of programmer effort needs to
be spent in encoding the many variants of some
more complex attacks, automatic generation of
signatures through data mining and other ma-
chine learning algorithms has come into vogue.

Alternatively, Anomaly-based systems use
large amounts of training data to build profiles
for normal activity. A mis-match of the candi-
date data with its corresponding profile is sig-
nalled as an intrusion. Such an approach has the
advantage of requiring less human effort and has
a higer sensitivity to to new attacks or those at-
tacks whose signatures have not been encoded.
On the flip side, the training data has to be
sufficiently exhaustive in order to construct an
accurate profile, and there is the possibility of
false positives. Further data-mining algorithms
that generate profiles from data-sets have time
complexity O(n?) or higher !. The Argus archi-
tecture has a set of distributed loosely coupled
analyzing agents, each of which, could be either
knowledge-based or anomaly-based. Such a de-
sign choice allows us to achieve a “good” balance
exploiting the strengths of both these kinds of
systems.

The data collected can be analyzed in a dis-
tributed fashion at the point-of-capture or could
be dispatched to a centralized authority that is
responsible for analysis. Distributed analysis re-
quires significant computational power at each
capturing node and may not be able to effec-
tively track correlated attacks unless all the com-
ponents of the attack occur under the aegis of a
single system. Analysis by a centralized author-
ity allows perception of correlated attacks but
levies a significant communication overhead, as
the collected traffic or corresponding compacted
records need to be transported to the central-
ized authority. Argus has “Managers” that act as
stripped-down variants of the centralized author-
ity. While retaining the advantage of distributed
analysis, Argus exploits the IDXP[9] framework
to enable attack correlation at the managers with
limited communication overhead.

In = size of dataset

Batch mode analysis of network traffic implies
that the collected traffic records are compacted
and stored for analysis at a later time. Such
an approach has the advantage that computa-
tional resources, that could be better used, are
not “wasted” during the actual time of an at-
tack and is appropriate for passive flavors of IDS
whose primary function is surveillance. On the
other hand, the design objectives of most IDS’es?
include attack response or real-time reporting of
attacks and thus real-time analysis is more popu-
lar apart from being interesting and useful. Con-
sequently, Argus performs real-time analysis.

The rest of this paper is organized as follows.
In Section II, we describe the multi-agent archi-
tecture of Argus and the rationale behind the
choice of the individual components involved in
this architecture. In Section III, we describe the
design and construction of each of the individ-
ual components of Argus. Section IV documents
the results of the various experiments performed
with Argus. Section V briefly describes other
efforts at building intrusion detection systems.
Section VI finally concludes with an enumeration
of avenues for future research in this domain.

II. ARCHITECTURE

Argus uses a hybrid architecture consisting of
both misuse-based agents and anomaly-detection
agents that use data mining. We have used Net-
work Flight Recorder (NFR) as the knowledge-
based component in Argus. Before we describe
the architecture of Argus in detail, we would like
to summarize the features of NFR, evaluate its
strengths and argue why knowledge-based sys-
tems like NFR, and most commercial IDS’es, are
not sufficient for effective intrusion detection.

A. Background: NFR Description and Evalua-
tion

NFR is primarily a knowledge-based system
with three basic components: the IDA, the ad-
ministrative console and the central station. It
uses a specification language called N-Code, sim-
ilar to PERL in basic structure, to encode at-
tack signatures. The IDA (Intrusion Detection
Appliance) is the heart of NFR that contains at-
tack signatures encoded in N-Code, the N-Code
parser that transforms the attack signatures into
suitable filters and the NFR engine which sniffs
packets, cleanses and condenses these packets
into a form that could be passed through the

2Read as Intrusion Detection Systems

Mew Rules —»

CIDF Comphance

._Intera ction with other

Learning Engine Managers
{implements RIPPER) —
+—— Data for mining
Anomaly Alers —a D% P
> Manager

Meswy rules for
Mamnal profile bl bbbttt
| ¥ i
3 | '
IDXFP DX P | '
| NFR Driver !
¥ : ——————— . il 1 i E
i H MN-Cade from rules) i E
Anumgly ! Anuma_ﬂy ! and Configuration ! l HTTE E:;ES H
Detection ! Dietection ' Settings : '
Engine ! Engine ' ! '
R _ | L Anomaly i !
onnection ! ' Datector ! HFER. !
Records ! i ! H
Data Cleanser E Data Cleanser i E E
! H Misuse Detector: Raw network 1
Faw network ! : R d_ ata !

data ! i

Fig. 1.

defined hierarchy of filters. The IDA updates its
database with alerts based on attacks detected
by the filters as well as statistical information
about the network and also runs a GUI server
that allows administrative consoles, once authen-
ticated, to query the IDA’s alerts/statistical in-
formation database and change the IDA’s config-
uration. Administrative Consoles are lightweight
managers that administer the IDA, allowing
users to remotely change its configuration, as
well as view alerts and statistical information
about the network. They could possibly be lo-
cated anywhere on the Internet (with proper
HTTP-Proxy configuration). Central stations
are an offshoot of the need for distributed deploy-
ment, that came as an after-thought to NFR, and
the need for backward compatibility that caused
the administrative console to be able to talk to
only a single IDA at a time. They also serve the
purpose of giving a unified view of the data col-
lected from multiple IDAs and present a single
interface to specify directives to multiple IDAs.

While NFR could be deployed in several con-
figurations (switched, bridged, stand-alone, mul-

Argus Architecture

tiple to name a few), we deployed it in a stand-
alone configuration (single IDA) with multiple
administrative consoles.

The strength of NFR is in its pre-bundled N-
code modules that are very extensive and con-
tain signatures for almost all known popular at-
tacks. It uses a clever architecture that makes
it efficient and responsive. These were the main
reasons for our choice of NFR as the knowledge-
based component of Argus. However NFR alone
is not a panacea. We have identified several inad-
equacies, which we have tried to address through
Argus. Most of these inadequacies also apply to
knowledge-based IDS’es in general.

1. There is no built-in mechanism that auto-
matically generates rules, either for new attacks
or for more complicated attacks. NFR is thus,
fairly static and lacks adaptability. The only
mechanism for modifying existing rules or adding
new rules is to manually generate N-code signa-
tures and manually deploy this code at the IDA
through the administrative console. This manual
coding of the signatures of new attacks would in-
evitably be a tiresome effort, but the inability to

detect hitherto unknown attacks is a still more
crucial issue and can only be solved by continu-
ous painful vigilance on part of the system ad-
ministrator/NFR’s human operator towards new
attacks that sprout up.

2. Knowledge-based intrusion detection systems
function using thresholds for acceptable limits of
various system and network parameters. Since
these values are also set manually, changing the
sensitivity of the IDS according to the currently
perceived threat-level automatically is not possi-
ble. A continuously learning rule generator that
drives the analyzers and a managing component
that correlates alert information from distributed
detection agents, and in turn changes their sen-
sitivity would do away with the above two inad-
equacies.

3. The only response to attack detection in NFR
is to trigger real-time alerts on the administrative
console or e-mail the alert information to spec-
ified authority. Most attacks either need alter-
nate real-time proof to be gathered or an active
response to be taken, both of which NFR fails to
provide. These responses gain in importance as
they would do away with the need for real-time
human intervention in attack detection.

4. Signature matching at the various IDAs is
done in isolation. Hence an NFR architecture
would be vulnerable to distributed attacks, i.e.
an attack with several phases may be executed
such that no single IDA views all of the indi-
vidual phases. An instance of this case is when
multiple entry-points exist into a network. A
Denial-of-Service attack might be carried out on
a target inside the network that would escape
the isolated IDAs installed on each of the entry
points.

Even if a rule that matches an attack exists, a
distributed execution of individual stages of the
attack might pass undetected. For example, if
a rule matches an attack that consists of two
phases (a) corrupting the .rhosts file of a re-
mote machine (b) using the change to exploit
weaknesses on that machine, then the observa-
tion of the first phase should cause a height-
ened suspicion of activity that would occur later.
Later activity if performed through the aegis of a
different IDA than the one through which phase
(a) had been done, would pass un-noticed. The
only alerts that NFR would generate would be
one of its IDAs seeing a change in a .rhosts
file. Further utilization of this exploit cannot
be detected by NFR. A distributed architecture
that allows for analyzers to exchange information

about suspicious events would solve the prob-
lem to a large extent. Argus uses a mecha-
nism that involves storing of such information
at the manager. Receipt of subsequent warnings
are matched onto earlier relevant warnings that
might together constitute a possible attack.

B. Design of Argus

Figure 1 shows the overall architecture of Ar-
gus. As we have described above, NFR is purely
knowledge-based and suffers from some weak-
nesses. We have designed a multi-tier architec-
ture that has several components, one of which
is NFR, though it could be any knowledge-based
IDS. This architecture attempts to overcome the
weaknesses of NFR and provides an intrusion de-
tection system that is much more comprehen-
sive, distributed, scalable, efficient and adaptive.
Here we describe the broad design of Argus. De-
tails of various components and specific choices
made in the prototype implementation are de-
scribed in Section III.

Argus employs an agent-based architecture
with the low-level agents having sufficient com-
plexity and strength so that the architecture
is truly distributed, and not pseudo-distributive
where all the computations are effectively done
by the central servers. Hence there is a fairly
uniform load sharing. A distributed hierarchy of
agents is used, with integration of data-mining
agents for increasing the adaptability of the sys-
tem. The data-mining components not only gen-
erate rules representing a normal profile but also
generate feedback for knowledge-based compo-
nents, in the form of rules that encode signatures
of new attacks. These rules can then be used to
update the rule database of the knowledge-based
component like NFR. The output of the anomaly
detection agents also serves as a feedback to the
data-mining (learning) agents for continuously
updating and improving the normal profile.

The lowest level agents in the architecture are
data-cleansers, which interface with the phys-
ical medium (network) and collect the infor-
mation to be utilized by the analyzers. The
information from the network could be ex-
tracted through calls to tcpdump, or through
a custom implementation of sniffers using the
Berkeley Packet Filter (BPF) library and
libpcap. This output is condensed into
connection records that contain values of the
necessary connection features. Feature selection
is a crucial aspect and our methodology is ex-
plained in Section III.

The connection records are then supplied to
the higher-level analyzing agents. Connection
records may be of different types depending on
the choice of connection features that each ana-
lyzer agent would need. For instance, the records
for the knowledge-based components, may be a
little less comprehensive, while those used by
learning agents and anomaly detectors need to
contain a lot more temporal and statistical in-
formation.

The Analyzing agents can be one of the fol-
lowing three types.

1. Misuse detectors
2. Anomaly detectors
3. Learning engines

The misuse detectors could be the analyzer
components in a knowledge-based intrusion de-
tection system, like NFR i.e. NFR could be a
unit that comprises of both a misuse-detector
and the corresponding data-cleanser. Such off-
the-shelf components need to be encapsulated
with lightweight drivers that interface these sys-
tems with Argus. Details about the driver con-
struction for NFR are described in Section III.
The interaction between the agents and the man-
ager occurs through IDXP (Intrusion Detection
Exchange Protocol). These misuse detection
agents, or in our case, drivers for third-party
misuse detection systems, need to have trans-
lators that translate the rules that are output
from learning engines into filters in the signature
specification language (N-Code for NFR).

The learning agents and the anomaly detec-
tion agents are closely inter-related in that the
latter is an execution environment for rules gen-
erated by the former. It is assumed that the
learning agents would use a classification algo-
rithm (like RIPPER [4]). Learning agents are
data-mining components that are trained on the
network data. These classification algorithms
take as input normal network traffic data and
generate the set of rules characterizing the nor-
mal activity. These rules are then passed to
the anomaly agents which apply them on con-
nection records. Learning agents have the abil-
ity to generate rules for both anomaly detec-
tion agents (rules characterizing normal activ-
ity) and knowledge-based agents (rules charac-
terizing some abnormal activity, generated using
sufficient amount of tagged abnormal data, and
lots of normal data.)

The rules for normal data are dynamically for-
warded by the learning agents to the managers,
which then distribute them to all the anomaly

detection agents. The alerts are forwarded by
the anomaly detectors to the managers. If the
manager ratifies an alert as an intrusion, the data
(connection records) of the alert is automatically
sent to the learning agent that uses it to generate
new rules for the knowledge-based component,
characterizing this new found attack. The new
rules are then distributed to the misuse-detection
agents through the manager using the commu-
nication framework of IDXP. This provides for
adaptability in the system.

The learning agents also regularly get normal
network traffic data from the anomaly analyz-
ers, so that the normal profile is kept up-to-
date. Depending on the nature of the classifying
algorithm in use, it may or may-not-be possi-
ble to incrementally update rules that are once
generated. In the case wherein incremental up-
dates are not possible, the learning agents can be
taught to commence new rule generation after a
sufficient amount of new normal data has been
obtained. Further some form of aging mecha-
nism could be applied to use various sets of rules
in concordance with each other, with more im-
portance to more recent rule set.

Argus also supports dynamic deployment of
agents and load balancing proportional to the
threat perception, as envisaged in [11].

The next higher level in this hierarchy of dis-
tributed agents, could be managers or aggregat-
ing analyzers. These agents are responsible for
co-ordinating data-flow between the execution
agents (both anomaly and misuse) and the learn-
ing agents, and also for detecting distributed at-
tacks. The warnings from the individual systems
are stored with these agents and new warnings
are used to identify similar previous warnings.
Further this level could be split up into a multi-
level heirarchy of aggregators as exists in the sys-
tem described in [11]. Interaction between the
managers, higher-level analyzers and the rest of
the system is through IDXP.

ITII. ArRGUS INNARDS

We now describe the details of the various
components of Argus, along with the specifics
used in the prototype system that we have im-
plemented.

A. Intrusion Detection Exchange Protocol (IDXP)

IDXP (earlier Intrusion Alert Protocol, or
TAP) is a protocol designed by the Intrusion De-
tection Working group of the Internet Engineer-
ing Task Force (IETF). It is described in the in-

ternet draft [9]. As the name suggests, it is the
result of an effort to provide a standard means of
communication among heterogeneous agents and
managers that form an IDS, and among multiple
IDS’es over typical Internet deployment scenar-
ios, wherein either the manager or the analyzer
could be inside protected networks that prohibit
in-coming connections. At least one of them has
to be on a network that allows in-coming connec-
tions directed to its host (alternatively a gate-
way might accept connections on behalf of an
enclosed node). Our decision to use IDXP stems
mainly from our effort to keep our implementa-
tion as conformant to the standards as possible,
so that third party components can be plugged
in easily for extension.

What IDXP provides: IDXP is a pseudo-
HTTP application layer protocol that uses
Transport Layer Security (TLS) [6] as the trans-
port layer protocol in order to ensure security
of the message transfers. IDWG also defines a
standard XML format for the actual transfer of
data, called Intrusion Detection Exchange For-
mat[5]. This data could be alert information sent
by analyzers to the managers, and occasionally
updates sent by the managers to the analyzers.

What IDXP does not provide: IDXP is only a
protocol that simply describes the message struc-
tures for exchange of information between ana-
lyzers and managers in a distributed intrusion
detection system. What it does not describe are
the semantics and implementation details of this
communication. A lot of these issues are left
for the implementer to tackle. For example, in
a typical scenario, we would require a two-way
connection between the analyzer and the man-
ager: one way for sending the alert information
and other for sending the updates (new rule sets
etc.). But a given IDXP connection allows for
only one-way communication. Also, in the pres-
ence of a firewall, it is quite possible that only
the analyzers might be able to open connections
with the hosts outside the firewall (which include
the hosts running managers). These issues add
further complexity to the implementation. Our
prototype handles these and other issues as de-
scribed next. We also describe the inferences we
have made that might be benefitial to anyone in-
terested in an implementation of IDXP, including
the creation of an entity called the IDXP daemon
that is geared to conserve network bandwidth.

A common observation is that in web-servers,
regardless of the request-load, network band-
width usually proves to be the bottleneck re-

source. Whichever side of the alert hierarchy,
Argus Managers or Argus Analyzers, acts as
the server for an IDXP Connection (sender of
alert /update data, not the entity receiving con-
nection request) would experience load similar
to a web-server. Further, we assume that in
general more than one manager/analyzer agent
could be running on the same host. This would
be the case when there is a particular high-end
system that performs most of the analysis, or if
several managers are located on the same third-
party managing-service-provider. Thus we rel-
egate both managers and analyzers to a subor-
dinate role and instead run IDXP daemons on
each host that runs an Argus entity. This is also
needed for location discovery of various Argus
entities. Other possibilities include an applica-
tion listening on a standard port that reponds
to queries about location of local agents, and
pre-configured information about ports of indi-
vidual agents stored with all counterparts that
would need to communicate with them. These
other possibilities were rather inflexible, and our
choice had the advantage that data that is to
be sent to multiple agents on the same host will
now need to be sent to the daemon once (with
proper options set in the message). The proto-
col is symmetric, hence the daemons on manager
and sensor/analyzer ends are identical. All the
entities in our prototype were multithreaded for
efficiency.

Further, the connection between the agent
and the manager might go through one or more
proxies, i.e. the connection initiator may be
behind a firewall that prohibits direct connec-
tions to external hosts. Thus our prototype uses
an application-level proxy called IDXP Proxy.
Each agent is presented upon initialization with
a proxy-url (proxy ip and port) and a string of
no-proxy suffixes/prefixes/exact-matches, which
lists the hosts to which direct connection can
be established. This part of the functionality of
the agent (proxy-interaction) is similar to a typ-
ical Web browser. The details of the individual
packet headers and the sequence of packets are
in [9].

IDXP uses Transport Layer Security [6] to es-
tablish secure connections for data transfer, and
also requires each communicating entity to have
an X.509 certificate and a public key-private key
pair. We use the OpenSSL[17] library for these
tasks.

Each Argus entity has an IDXP Agent compo-
nent (implemented as a thread in our prototype)

that interfaces the agent with the local IDXP
daemon. In all the communication, an agent is
identified using the host IP and a 16-bit local-
agent identifier unique on a given host. Data can
be sent to remote agents in two ways: actively if a
connection to the remote agent can be initiated,
or passively if that is not possible. In the lat-
ter case the messages are sent to the local IDXP
daemon for safe-keeping until the remote agent
asks the daemon for any outstanding messages
for it. Receiving data is also done similarly in
two ways: making connections to remote IDXP
daemons for outstanding messages, or getting
messages from the local IDXP Daemon. With-
out going into the details, which would be too
many to mention here, we would like to mention
that the IDXP daemon based IDXP framework
helped solve many implementation issues in our
prototype. Some details are provided in [24].

B. Learning Agents

The Learining Agents use a state-of-the-art
rule based learning algorithm called RIPPER [4].
We also considered C4.5rules [20] as an alterna-
tive, but found our implementation of RIPPER
to be faster. The rule generation system works
in two modes. In the first mode, it takes as in-
put the connection records of the normal net-
work traffic, and generates rules characterizing
the normal traffic profile. These rules are used
by the Anomaly Detection Agents for detecting
deviations from the normal. In the second mode,
the rule generation system takes as input the
connection records of the normal network traffic
along with tagged anomalous connection records,
and generates rules that constitute the signature
for the anomaly. These rules are used to generate
new N-Code filters for NFR.

B.1 Rule Generation Using RIPPER

RIPPER is an efficient rule learning algorithm,
which produces very low error rates even on noisy
data. It is a generalized algorithm and has to be
suitably modified when applied on a particular
domain. In our case, this domain comprises of
connection records of network traffic.

Each connection record is transformed into a
set of attributes. The attributes are either dis-
crete or continuous. The objective of the rule
learning algorithm is to generate rules to clas-
sify connection records (specified as sets of at-
tributes) into a set of classes.

The system is provided with the example data
set on which to learn in the form of a collection

of records, each record containing the values for
the various attributes and the class this record
belongs to. We used the FOILv6 [21] tool for
the rule growing stage in the algorithm. For a
more detailed description of our specialization of
RIPPER, refer to [24].

B.2 Rules for Normal Profile

As described earlier, each connection record
is suitably transformed into a set of attributes
for the learning and classification algorithms to
work on them. For the mode when the rule
learning system has to generate rules character-
izing the normal profile, appropriate class and
attribute structure is required with the example
data set comprising entirely of normal TCP traf-
fic. The set of attributes are the various fields
of the connection records except from the ser-
vice (destination port). The destination ports
form the classes, with all the user-defined, non-
standard ports being clubbed together into one
class. Thus we have classes of the form ftp, tel-
net, non-standard etc. The rules generated take
the fields of a connection record (with the desti-
nation port field removed) and predict class (des-
tination port). A confidence factor based on the
number of test cases handled correctly by a rule
is associated with each rule. These rules are then
used by the Anomaly Detection Engines. This
confidence factor is used to arbitrate when more
than one rules match a given connection record.

B.3 Rules for Attack Signatures

In this case the example data set contains
a combination of connection records of normal
TCP traffic and some connection records of some
anomalous activity. The examples of normal
traffic labeled as belonging to one class, say nor-
mal, and example(s) of anomalous traffic labeled
as belonging to the other class, say anomalous.
The rule set generated act as a signature for the
anomalous activity and is used to generate new
N-code filters for NFR.

C. The Data Cleansers

Data cleansers, shown in Figure 2(a), are the
low level agents that are responsible for the con-
struction of TCP connection records. Argus’
Anomaly agents currently handle attacks that
use TCP at the transport layer. We believe that
very similar extensions could be incorporated to
handle attacks at the level of network proto-
cols and other transport layer protocols and that
most modern attacks use TCP at the transport

Reads natwork
tepdurmp | data |

¥ Compads padaet headear,

- updates ralewant
Inputinterface connection recands in

active connection queaus

¥

Bctive connection Cantzins connection
Queue records for ongoing

connections

Connection
- closed Connection records far

recently closed
M-trost recently connections, if queus
closed connections full, eariest closed
connection rnovad to

stable storage

Reacord= from this ars
read bythe anomaly
detection engineg

Record
Starage

(a) Working of the Data Cleanser

Genarsted by leaming
agent. Destination Ports

serve &= Classes

Stores connedion
records

Fecord

Storage

Rules for nommal
profile

Connection
Fecord (5]

Mztch record
against mles. Find
class predided by
rnztching rale with
rmaz. corfidence

Anomaly Engine

¥

Clutput
interface

predicted walue mztches
actual=nomal, sendto
rngr with 0% probabiliy

else, anomalous, sendto
rgr with confidence value

(b) Working of the Anomaly Detector

Fig. 2.

layer. We first describe the features we selected
to adequately represent TCP connection infor-
mation and then describe a tcpdump based im-
plementation that constructs connection records,
consisting of the desired features, from tcpdump
output.

C.1 Feature Selection

The importance, difficulty and our implemen-
tation of feature selection will be discussed here.
Features are the predicates on which rules will be
framed, i.e. for example let the number of half-
open connection requests received in the last sec-
ond be a feature F. Then rules will be generated
using the value for F as a predicate, such as

|if (F > 5) then SYN_FLOOD|

It is usually a pretty difficult task to identify the
correct set of features, especially features that
incorporate temporal and statistical information
such as data traffic, in bytes, on the user-ports in
the last n seconds, number of un-wanted syn-acks
received by httpd in the last n seconds etc. The
following is a description of the set of features
that we found to be effective after experimenta-
tion.

1. State of connection establishment: This is a
parameter that could be one of the following val-
ues, (a)connection rejected: a SYN packet was
replied with a RST, (b)connection attempted
but not established: a SYN packet was sent
but never got a SYN_ACK response, we use the
standard value of TCP Connection timeout on
linux machines to weed out connection records
that are stale for greater than TCP Connec-
tion timeout duration, i.e. the last update on
this connection record occurred later than TCP
Connection timeout duration in the past and
(c)un-wanted syn acknowledgement received: a
SYN_ACK packet was found on the network that
responded to a non-existent SYN

2. State of connection closure: This too is a
parameter that could take one of several val-
ues, (a)normal close: FIN pkts sent out by
both sides and all data packets have been ac-
knowledged, (b)disconnection: either by stale
timeout, or by a reconnection attempt on the
same src — port,dest — port, src — ip,dest — ip
pair, i.e. one of the sides suffered a disconnection
but the other side still assumes that the connec-
tion is established, (c)abort: one of the host’s
causes the connection to abort by sending a RST

flag across and all data packets are acknowledged
and (d)half-closed: only one side of the connec-
tion has sent a FIN and the other side has either
gone quite for greater than TCP TIME_WAIT
timeout duration.

3. resent rate: The number of bytes that have
been resent, control packets count as one byte.
4. wrong resent rate: The number of bytes that
have been wrongly resent, i.e. they were sent
even after being acked.

5. duplicate ACK rate: This counts the number
of duplicate acks received.

6. hole rate: Duplicate ACKs are seen as
an indicator that holes have formed at the
receiver’s end. This estimates the sum
of the sizes of the holes, hole-size is ap-
proximated as the (seq-number_sent_forward)
+(data_bytes_sent_forward)—
(duplicate_ack_seq_number). This is an approxi-
mation as it only estimates the maximum size of
the hole that may be formed as packets received
out of sequence are not acknowledged in TCP.
7. data bytes sent in either direction: Lots of
connections with very little data being sent
might be probes (if not telnet packets).

8. percentage of data packets: The percentage of
data packets in a TCP connection is usually very
specific to the type of application that runs on
the specific standard port.

9. percentage of control packets: It can safely be
assumed that for “normal” connections of a spe-
cific type (determined based on the server port
they associate with), these percentages should be
fairly constant. Hence a deviation might be an
anomaly.

10. number of connection establishment errors in
the last n seconds: Indicative of the type of traffic
on the segment, will lead to false alarms in case
of a network partition.

11. all other errors in the last n seconds: Again
indicative of the healthiness of the network traf-
fic. These temporal information give a context
for each connection record within which it could
be analyzed. Contextual information would be
necessary as stray errors might be neglected but
many errors within a short span of time are sug-
gestive of something fishy going on in the net-
work.

12. connections to designated system services in
the last n seconds: Again contribute contextual
information.

13. connections to user applications in the last
n seconds: Context, reflective of the type of ac-
tivity on the network. For corporate networks, a

sudden increase in traffic on user ports can safely
be flagged an intrusion (unless a new application
has been installed that uses this port).

14. averages of connection duration and data
bytes over all connections in the last n seconds:
This can readily be linked up with building tem-
poral profiles for the network, i.e. a large amount
of network traffic at an unusual time can easily
be flagged as an intrusion.

15. averages of connection duration and data
bytes over all connections to the same destina-
tion in the last n seconds: Can possibly iden-
tify hot-machines and not-so-hot machines be-
sides building up temporal profiles for traffic to
each of these machines. Any attempt at intru-
sion unless it is on very busy ports (or the at-
tacker is very patient) is assured to cause large
fluctuations in this parameter

16. averages of comnection duration and data
bytes over all connections to the same service:
This could be reflective of probes trying to pick
out vulnerabilities in known services.

It should be noted that the choice of the above
is motivated by experiments. Refinement of
these features would require greater insights into
individual attacks, but the idea behind statis-
tical anomaly detection is to do away with un-
necessary or exorbitant human effort. So an in-
termediate course must be struck. While, it is
our firm belief that the above set of features is
not the complete set of “sound” features, exper-
iments show that they perform “fairly well”.

C.2 Generation of Connection Records

The present impelementation compacts tcp
packet header information generated by tcp-
dump executing in the mode wherein relative se-
quence numbers are suppressed.

Each line of the tcpdump is parsed for the re-
quired values. A map of connections that are
active at any point of time are maintained by si-
multaneously updating the state of both ends of
the TCP connection whenever a packet belong-
ing to this connection is seen by tcpdump. The
required values are stored for each active connec-
tion.

When a connection is closed, either success-
fully or erroneously(timeout, RST), the connec-
tion record is timestamped and transferred from
the active queue to one which stores connections
completed in the last 'n’ seconds.

Whenever a new entry is made into the vec-
tor containing the connections de-activated in
the last n seconds, this vector is made current

i.e. connections that have been de-activated at
a time that is earlier than n seconds from the
present time are moved onto stable storage. Af-
ter updation of this set of connection records,
the existing set of records is used as the basis
for calculating values that make up the temporal
and statistical i.e. contextual information of the
currently de-activated record. Records that have
passed into the stable storage are passed onto the
anomaly detecting engines as shown in Figure 1.

One major issue of concern is the over-flowing
of buffers that could occur if the output of tcp-
dump is created at a much quicker rate than the
rate at which connections could be cleaned and
compacted. This might occur either due to sig-
nificant increases in the network traffic or due to
many long-duration connections. It has been ob-
served that random dropping of packets, i.e. tcp-
dump input lines will adversely affect the qual-
ity of the records being generated. Thus a sim-
plistic solution was devised that discards packets
belonging to connections for whom state is not
already being maintained whenever the buffer
usage approaches the maximum available. The
connection key of such an “ignored” connection,
i.e. the four tuple of connections whose packets
have been discarded, is stored and all later pack-
ets of these connections are discarded. As this
is a “droptail” approach, the percentage of new
connections that are discarded is directly propor-
tional to

network load
available buffer size"

D. Driver for NFR

We use an off-the-shelf knowledge based sys-

tem NFR [15] that contains its own connection
record creator, an attack signature database and
a rule application engine (misuse agent). To in-
tegrate NFR into Argus, we needed to build a
driver that interfaces Argus with NFR. The func-
tionality that the driver had to handle was
1. Transfer NFR alert information from NFR’s
IDA to the manager of Argus.
2. Forward the manager’s directives to NFR’s
IDA. These directives could be the N-code for
new attack signatures or threshold-changing in-
structions.

While NFR’s source code was available to the
research community until a few years back, it is
no longer available. Hence we faced the following
problems:

1. Communication between the IDA and the Ad-
ministrative Console(Manager in NFR) is en-

crypted. This encryption mechanism was not
known.

2. Message Exchange Protocol for communicat-
ing with the IDA was not available.

We instead used Perl libraries that were dis-
tributed with NFR and consisted of functions
(in binary) that perform the required encryp-
tion/decryption and message exchange. The
IDA communication code in Perl was embedded
into the C/C++ system of Argus using the Perl
add-on module ExtUtils::Embed. This mod-
ule allows function calls to native Perl methods
from within a C/C++ program as a Perl in-
terpreter is initialized prior to the start of the
program. Our final implementation of the NFR
diver uses only the relevant PERL functions that
encrypt/decrypt and has most of its functional-
ity implemented in C++.

The above-mentioned scripts only allowed for
NFR’s alerts to be relayed to external agents.
NFR also provides for a GUI-based, remote de-
ployment of new attack signatures to the IDA
but this could not be automated as the requi-
site libraries were not available. Thus new at-
tack signatures encoded in N-Code are currently
stored on the NFR driver and need to be manu-
ally inserted into NFR through the GUI console.
We validate the correctness/efficiency of the rule
generator by manually installing the generated
signatures during experimentation.

E. Anomaly Detection Agents

The Anomaly detection agents, an example of
which is shown in Figure 2(b), are the application
of the rules produced by the RIPPER based rule
generation system implemented as a part of the
learning agents. The rules produced by the learn-
ing agent for the purpose of anomaly detection
characterize the normal profile. The destination
ports serve as the classes and the remaining fields
of the connection records serve as the attributes.

The anomaly agents receive an encoded (and
compressed) rule set from the manager and store
this in the form of a file. A configuration file de-
scribing the class and attribute structure that is
shared between the anomaly agent and the learn-
ing agent is used to decode and encode the rule
set respectivley. The classification process goes
through the following steps.

1. Connection records are obtained by a call to
the data cleansing module.

2. Each connection record is then matched
against each rule of the rule set. Each rule in
the rule set has an associated fraction called its

confidence value. In case of multiple matches,
matching rule with the highest confidence value
is selected.

3. The rule is then applied to the connection
record and the class, which in this case is the
destination port, predicted by the rule is ob-
tained. If the predicted value matches with the
actual value, the connection record is termed
normal. It is sent to the manager tagged as nor-
mal data with a probability of 10%. If the pre-
dicted and the actual values mismatch, the con-
nection record is marked anomalous and is sent
to the manager alongwith the confidence value
of the rule used for classification.

4. The above steps are repeated for new connec-
tion records.

F. Managers

This component of Argus (Figure 3) embodies
most of our novel ideas. The various execution
agents be they anomaly-based or misuse-based
send alert information to the manager. The man-
ager is also initialized like an ordinary IDXP
agent but with slight differences and is multi-
threaded. Additionally, the manager stores a
database mapping an intrusion type to the set of
attack response handlers to be executed when-
ever an instance of this intrusion is observed.

The uniqueness of Argus’ manager lies in the
type of data that is reported to the manager and
in the handling of this data.

The following cases are handled:

1. Receive registration request from remote
agents: The internal data structures are updated
and fresh rule sets are passed out in case of
anomaly agents.

2. Alert information received from NFR: An
alert informing the detection of this attack is dis-
patched. This could take the form of a graph-
ical pop-up display, or an e-mail alert. The
corresponding attack response handler is identi-
fied based on the type of the intrusion detected.
The alert information is stored in a system-wide
anomaly queue, appropriately tagged with the
source of detection in order to aid in correlation
with later attacks.

3. Alert information from the anomaly based
agents is received: The alert information is
stored in the anomaly queue along with the as-
sociated confidence value.

4. Rules received from the learning agent: If
these rules are for the anomaly based agents,
they are passed onto the anomaly agent in verba-
tim, along with a directive requesting the agent

to update its rule set. The anomaly agent up-
dates its effective rule set upon receipt of such
a directive from the manager. If the rules are
for NFR, the manager translates between RIP-
PER’s clause based rule structure to equivalent
N-Code filters and passes on the N-code filter
to the NFR driver. Generation of N-code from
the rules of the learning agent assumes that a
one-to-one map exists between the features in
the connection records and features that could
be identified by NFR. If this were not the case,
then the base filter set of NFR needs to be aug-
mented appropriately.

The following is the functionality of the tagger
component of the manager that reads input into
the anomaly queue. If

1. The source of the alert is NFR: Alert data
is matches with pre-existing information to de-
tect the possibility of a distributed attack or a
continuation of an earlier exploit. If such is the
case, the relevant alert is triggered and the cor-
responding response handler is called.

2. The source of the alert is anomaly-based
agent: The system administrator is asked to val-
idate the alert information and is presented with
a detailed trace and the confidence level of the
mis-match. If the administrator tags it as an
alert, this tagged connection record is passed to
the learning agent which would generate rules for
the signature of this attack for the knowledge-
based agent. Notice that this is an instance of
a previously unknown attack (or variant) be-
ing detected. The corresponding signature is
automatically generated and deployed into the
database of known signatures. The only super-
vision required is to validate and tag the alert
information. Tagged attacks are also matched
with pre-existing alert information to detect dis-
tributed/correlating attacks, and the informa-
tion is stored for matching with later attacks.
If the alert is tagged as an error, the counter
of false alarms is updated. The rate of false
alarms currently observed in the system is used
as a parameter to decide the amount of “nor-
mal” data that needs to be passed onto the learn-
ing agent, the frequency with which the learning
agent needs to re-generate rules for normal data
and the frequency with which the anomaly based
systems need to age their rules. For instance, all
of the above mentioned factors are directly pro-
portional to the false alarm rate, with appropri-
ate damping factors. Thus the anomaly agents
update their rule sets and age the older rule sets
with a greater frequency when they perceive a

report: forrecent anomalies

It work, [t work, It worls,
Fules from
S ——— - v - MR ert) & Leaming dgent
requests, infializes the Registration - GLI DisplayMail alert)
agent 3nd updtes hlodule Fesponze . » Dispatches new mileset
Agert Databaze Module = Actpate attadk response to anomaly agents
handler Dispatcher| - Updates database of
= Ilodity senskivky andfor Module nule-set
Stares cument - deploy ne agents = Generstes M-code fiter
deplaymnent map & Agent el ; if rule is for an atadk.
individual agent Database Anormaly Stores_ alist of =:a!nnrnaly;
corfigurations Queye reparting agert, tirme of

VN

Anemaly Diata kl-codefikerto Fule-zet to Anornahy
FR: Dirfwer Dietector
= Reaceives and queues
anomaly information Arormaly
= Also recefves nomal Responze « Comelate stadks,
IS, (FEESES D hadule update state, athvate
leaming agent Tagger response
Y . .
Marmial datato alert fraen Companent | . Display and walidate
Leaming Agent Anomaly Detectar anamaly detedor alerts
¥ Tagged anomaly data * Modify senstiviywdeploy
to Leaming Agent new agents
¥ « Send tagged anormaky
d=zta to Leaming Agent
Fig. 3. Working of the Manager

higher false alarm rate.

The attack response handlers that are called
by the tagger component are defined specific to
the type of the intrusion and involve actions in
specific response to the attack. For instance, a
response handler might necessitate the blocking
of an external IP address at the firewall when a
SYN_FLOOD attack is detected with the source
at that IP address. Further these handlers could
also re-assign values of relevant thresholds in the
analyzers. For instance, Detection of several
intrusions in NFR is threshold-based, relevant
threshold values may be changed by sending ap-
propriate directives to the NFR driver. For the
anomaly-based systems, one relevant threshold
is the confidence associated with a rule, which
could be suitably changed based on the success
of the result obtained by an application of the
rule.

IV. EXPERIMENTAL RESULTS

We successfully built and tested a prototype
system with the implementation choices men-
tioned in Section III. We now describe our exper-
imental setup, experiences with Argus and some
results obtained.

A. Guarding against SAINT

SAINTI[22] is a network vulnerability analy-
sis tool for the UNIX platform. When config-
ured with a distance in hop count and an in-
teger probe level, it checks all possible hosts

within distance hops away from the host run-
ning SAINT for all vulnerabilities that are asso-
ciated with a probe level equal to or less than
the probe level. The higher the probe level,
the greater is the potential damage that the vul-
nerability could lead to. Alternatively, explicit
lists of hosts that are to be checked for vulner-
abilities (or not) are also accepted as input by
SAINT. The objective of this experiment was to
verify the effectiveness of our anomaly detection
engines.

The testbed for this sub-class of experiments
consisted of the internal network of the Depart-
ment of Computer Science at Indian Institute of
Technology Kanpur, that consisted of a set of
subnets linked through switches. To avoid over-
loading the network, we had SAINT attempt to
perform a vulnerability analysis on a small set
of workstations, running one of Linux-2.2, So-
laris 8 or Microsoft Windows 2000. NFR’s IDA
needs to be installed on a dedicated machine and
was installed on one of these switched segments,
the one that contained the various server ma-
chines. One anomaly agent was initialized in
each switched segment. A learning agent and a
manager were initialized on high-end Linux ma-
chines. Finally, a set of dormant anomaly agents
were spread at random throughout the network,
each consisting of a daemon waiting for the “de-
ployment directive” from the manager. We be-
lieve that this is a typical installation of Argus
on the internal network of a reasonably large or-

Confidence Threshold | 0.4 | 0.6 0.7 0.8 0.9
Attacks Detected% 98 98 97 95 78
False Alarm% 2.1 | 1.26 | 0.73 | 0.50 | 0.01

Fig. 4. Anomaly Detection Agents: Results

ganization.

Since anomaly detection agents in our proto-
type implementation were only TCP aware, we
compared the number of distinct attacks identi-
fied by the anomaly detection engines with the
number of TCP based attacks that SAINT em-
ploys. Some of these attacks are TCP Syn based
port scanners and TCP SYN Flood attacks. For
a complete list of such attacks, refer to [22]. As
mentioned in Section III, anomaly detection en-
gines apply rules to connection records and iden-
tify mis-matches. Corresponding to each mis-
match the confidence estimator of the rule that
generated it, is attached. An anomaly detection
engine alerts the manager of a mis-match only
if the confidence value associated with the mis-
match is greater than the threshold. By modify-
ing the value of this threshold, we could exercise
a fine degree of control on the percentage of at-
tacks observed versus the number of false alarms.
When a reported mis-match is tagged to be “nor-
mal” at the manager, the associated confidence
value associated with this rule is decremented by
a small value. Further, the more the number of
false alarms the faster is the rate of updation
and installation of new profiles, and aging of ex-
isting profiles. The normal profiles were trained
by having the anomaly detection engines run for
a few minutes before starting SAINT. Figure 4
shows the variation of percentage of TCP based
attacks detected by the anomaly detectors and
the percentage of alerts that were false-alarms
with the sensitivity of the anomaly detection en-
gines.

At low thresholds, the false alarm rate is con-
siderably high and the percentage of attacks de-
tected is also very high. Increase in the threshold
decreases both these rates. However the system
becomes unstable at very high confidence thresh-
olds because most of the rules generated by RIP-
PER have confidence values in the 40-90% range.
Thus as seen in the table, we empirically observe
that the optimal performance occurs at a confi-
dence level of 0.8. At this level, the anomaly de-
tection engines detect nearly 95% of the attacks
with as low as 0.5% false alarms. One should
note these values are rather domain-specific. For
this reason, we did not try to optimize the values,

and just try to present a trend.

B. The Case of The Missing Signatures!

The objective of this experiment was to
demonstrate the ability of Argus to automati-
cally generate signatures for hitherto unseen at-
tacks. The alerts generated by various agents
(anomaly detectors as well as misuse detectors)
are stored and temporally correlated by the man-
ager(s). Anomalies generated in the temporal
vicinity of an alert from a misuse detector are
assumed to be referring to the same event. This
is a first-cut approximation because we need a
greater amount of shared knowledge between the
misuse agent and the anomaly agent in order to
filter out anomalies that are already captured by
attack signatures.

For the purpose of this experiment, we wrote
an application that performs distributed TCP
SYN flood attack on a host. This host was on
the switched segment on which both NFR and
an anomaly agent were present. We removed the
N-code filter corresponding to this attack from
NFR. Thus no misuse agent alerts were gener-
ated while anomaly alerts were generated due to
the presence of a rule (for the normal profile)
that bounds the number of half-SYNs present
in the network. These alerts were hence clas-
sified as corresponding to a hitherto unseen at-
tack and were forwarded to the learning agent for
signature generation. Upon receipt of the rule-
set characterizing the attack from the learning
agent, the N-code translator in the manager gen-
erated an N-code signature. This signature was
sent to the NFR driver where it was saved for de-
ployment. It was manually deployed into NFR
at a later time. Continuing the SYN Flood at-
tack after deployment elicited alerts from NFR,
though the name of the attack was not SYN
Flood, since the tagger did not tag it with that
name.

Hence we were able to dynamically and auto-
matically generate a signature for a “new” at-
tack. Manually detecting this attack and coding
an N-code filter for it would have been a very
cumbersome task which was greatly automated
and simplified by Argus.

Firewall

MFR.

Attacking
hosts

Firewall

MFR.

Fig. 5. Testbed for Attack Correlation

C. Attack Correlation

The objective of this experiment was to
demonstrate the ability of Argus to correlate the
alert information reported by different analyzing
agents, and consequently detect distributed at-
tacks.

The testbed for this subclass of experiments is
shown in Figure 5. It consisted of a network with
multiple entry points and NFR IDAs installed
on the DMZ at each point of entry. Both the
target of the attack and the Argus manager were
present on hosts inside the network.

NFR’s thresholds for various attacks are re-
motely configurable. These can be adjusted to
change NFR’s sensitivity. We did a distributed
SYN Flood attack on the target host from a set
of source hosts on the outside. The rates of the
half-SYNs flowing through each entry point was
lower than NFR’s threshold. Hence no inidi-
vidual NFR IDA generated an alert, but sim-
ply “warnings”. These warnings were correlated
by the manager, as they were clustered together
(they were warnings of the same kind and they
targeted the same host on the internal network).
This caused the manager to generate a correlated
alert that characterizes the distributed attack.

D. Real-time Attack Response

The testbed for this experiment was the same
as the one for the Attack Correlation experiment
described above. In addition, we had a firewall
at each gateway, and an attack response handler
was initialized at the manager for response to
the SYN Flood attack. This handler updates
the filtering rules at each of the firewalls so as to
block all traffic from the attack sources, whose
IP address figured in the warnings.

When the manager detected a distributed SYN

Flood attack, it executed the attack response
handler for this attack. The handler caused each
firewall to block traffic from the suspicious hosts,
stopping the SYN Flood attack.

E. Robustness of The Architecture and Sample
Rules

In our prototype implementation, each host
running one or more Argus components has an
Argus daemon that receives and sends informa-
tion on behalf of the component. Each Argus
component has a unique component-id (CID)
and public, private key pairs which are used to
communicate securely with other components.
All communication is addressed to and from
CIDs and a global system-wide map of CID to
IP address is maintained within reach of each
daemon. This shared-daemon implementation
is light-weight and having communication ad-
dressed to the components allows the compo-
nents to move seamlessly throughout the net-
work. Each agent could either establish active
connections to the remote daemon (to send or
receive data), or passively wait for the remote
agents to contact this agent by leaving messages
at the local daemon. This allows us to have
dormant daemons spread throughout the net-
work, allowing us to quickly grab more samples
from the network if necessary, especially to start
agents that are previously unknown to an at-
tacker or a malicious insider. The robustness of
the architecture was tested by simulating faults
in the counterpart agents when agent commu-
nication was underway. Of special importance,
was the need to keep the manager tolerant to
malicious packets directed at it.

Some of the sample rules generated by the
learning agent for normal traffic are shown in
Figure 6.

‘ R1: if cls=13 and bytesF<233 and dataP>29 then class=23 ‘

‘ R2: if cls=13 and bytesF>233 and dataP<14 then class=3128 ‘

Fig. 6. Sample rules for normal profile

Here cls denotes the how the connection was
closed and the value 13 denotes that the TCP
connection was closed correctly. bytesF' are the
number of bytes that were sent in the forward
direction i.e., from the sender of the first SYN of
the connection to the receiver. In case of sym-
metrical initiation of TCP connections, the tie is
broken arbitrarily in the order in which tcpdump
observes these events. dataP is the number of
data packets that are sent in one normal connec-
tion. SimilarlycontrP is the number of control
packets in a connection. Finally the class of a
connection is the destination port (service type)
of the first SYN packet of the connection. Thus,
the above three rules can be paraphrased as fol-
lows:

R1: A connection that had very few data bytes
transmitted in the forward direction, a large
number of data packets (each containing little
data) and was closed normally, most likely is a
telnet connection.

R2: A connection that had few data packets, but
involved a large amount of data transfer within
these data packets is most likely a HT'TP connec-
tion (Squid proxy server running on Port:3128).
Why? A normalized HTTP transfer is about 5kB
as a new HTTP connection is initiated for each
request.

Note that a confidence measure is also asso-
ciated with each rule but was ignored above for
the sake of clarity.

V. RELATED WORK

Network intrusion detection has been a re-
search problem for some time now and several ex-
perimental and commercial solutions have been
proposed.

Helmer et. al. [11] proposes an artificially in-
telligent (AI) agent architecture for detecting in-
trusions. This work is similar to Argus in the
common design goal of light-weight distributed
agents. However, Argus differs in both the num-
ber and variety of agents and leverages IDXP in
its communication framework. While Argus has
two sets of data collecting and analyzing agents,
[11] proposes a plethora of agents dedicated to
analyzing specific sources of information. Argus
uses unique agents called Managers to provide
attack response, distributed attack correlation

and updation of both signatures and profiles.

Cannady [3] proposes a neural network based
approach to detect spurious activity. Our
approach is complementary to this in that
we use machine learning algorithms in our
Anomaly/Learning agents. Further the exten-
sibility of Argus, allows us to interface with such
neural networks based agents through IDXP.

Lee et. al. [13], [12] devise automatic meth-
ods for constructing intrusion detection models.
This work is contemporary to Argus and is clos-
est to it in that the same machine learning algo-
rithm, RIPPER is deployed. However the main
focus of Argus is in the design and implemen-
tation of an efficient distributed agent architec-
ture and communication framework, while [12]
focuses primarily on improved data-mining based
methods to automatically generate new attack
signatures. Unlike [12], Argus also emphasizes
correlation of attacks and timely attack response.

Vigna et. al. [25] proposes a state transition
network based approach to detect network in-
trusions. The idea is to have a “State transition
database” that specifies a set of actions corre-
sponding to each intrusion scenario. The “ac-
tions” specify the data to be collected or ana-
lyzed is at the current state before conditionally
proceeding to a successor state in the state tran-
sition diagram. At any point of time whether
an intrusion has been detected is an attribute
of the current “state” in which the system lies.
This method allows greater expressiveness in en-
coding attack signatures and is easy to use, how-
ever, it is primarily a knowledge-based approach
that relies on a known set of attack signatures
and hence lacks adaptability.

NFR|[15], Emerald[7] and Bro[19] are other
expert systems that, primarily, perform knowl-
edge based intrusion detection. Argus shares
the same design goals of real-time attack re-
sponse and extensibility as these systems but
also exploits the complementary advantages of
anomaly based agents and data-mining algo-
rithms, namely greater sensitivity to newer at-
tacks and automatic construction of complicated
signatures.

Pal et. al. [18] is representative of a differ-
ent class of solutions that argue the case of in-
trusion tolerance, namely the need for building

systems that can tolerate and survive malicious
attacks. Specifically, this paper proposes a policy
based approach that allows applications to exe-
cute correctly even in corrupt environments and
proposes several obstacles in the path of an at-
tacker that significantly decrease the amount of
damage that can be performed immediately after
a successful intrusion. This proposal is comple-
mentary to Argus.

Foster et. al. [10] presents a security architec-
ture for grid computing that some contend would
be the way of the future. Grid computing envis-
ages highly distributed deployment of resources
which could be accessed and used from anywhere
else in the grid. A greater onus on network secu-
rity exists in a grid-like environment as more sen-
sitive information wades through the network.
We contend that Argus is uniquely suited for
this purpose when deployed as follows: the Grid
would be divided into multiple administrative di-
visions which would be policed by one or more
managers. Inter-manager communication would
be acheived through the standard Intrusion De-
tection Message Exchange Format[5]. Alerts or
Intrusion Detection Messages that are created by
analyzing agents would be limited to the admin-
strative domain of occurrence, thereby ensuring
scalability. The architecture of Argus also pro-
vides for customization, in that the “profiles” of
normal activity would vary with the adminstra-
tive domain. Profile- Customization decreases
the number of false positives considerably and
thereby decreases the network traffic.

VI. CONCLUSION AND FUTURE WORK

The construction of Argus demonstrates that a
mix of anomaly detection agents and knowledge
based agents performs better than an architec-
ture consisting of only one variety of agents. To
the best of our knowledge Argus is the first in-
trusion detection system that conforms to the
emerging IDXP standard and uses a mixture of
agents. We believe that intrusion detection sys-
tems of the future would comprise a secure, peer-
to-peer infrastructure of heterogenous indepen-
dently administered systems that communicate
through IDXP and exchange alert information
conforming to the Intrusion Detection Message
Exchange Format Data Model [5]. While sophis-
ticated languages such as N-Code, p-BEST that
encode attack signatures exist, there exists lit-
tle support for encoding attack responses. We
believe that the intrusion detection systems of
the future would also be equipped with real-

time response capabilities and there is much to
do before response-specification languages of an
equivalent sophistication become available. Ar-
gus uses shell/perl/TcL scripts for this purpose.
Of great importance is the integration of existing
network control methods such as SNMP, within
the attack response specification primitives. In-
trusion Detection systems should also make bet-
ter use of the available ICMP information.

ACKNOWLEDGMENTS

We are very grateful to Sumit Ganguly at In-
dian Institute of Technology Kanpur for his help-
ful advice and positive criticism.

REFERENCES

[1] M. Almgren and U. Lindqvist, Application-Integrated
Data Collection for Security Monitoring, From Re-
cent Advances in Intrusion Detection (RAID 2001).
Springer, Davis, California. October, 2001. Pages 22-
36.

[2] M. Bernaschi, E. Gabrielli and L. V. Mancini, Op-
erating System Enhancements to Prevent the Misuse
of System Calls, ACM 7th CCS, 2000.

[3] J. Cannady, Artificial Neural Networks for Misuse
Detection, 21st NISSC, 1998.

[4] W. W. Cohen, Fast effective rule induction, In Ma-
chine Learning: The 12th International Conference,
Lake Tahoe, CA, 1995.

[5] D. Curry and H. Debar, Intrusion Detection Message
FEzchange Format Data Model and Eztensible Markup
Language (XML) Document Type Definition, IETF,
Intrusion Detection Working Group, Internet-Draft
2001.

[6] T. Dierks and C. Allen, The TLS Protocol, Version
1.0, Network Working Group, RFC-2246, Jan 1999.

[7] Event Monitoring Enabling Responses to
Anomalous Live Disturbances (EMER-
ALD), Security Research International.

http://www.sdl.sri.com/projects/emerald/

[8] S.T. Eckmann, G. Vigna, and R.A. Kemmerer,
STATL: An Attack Language for State-based Intru-
sion Detection Journal of Computer Security, 2001.

[9] B. Feinstein, G. Matthews and J. White The In-
trusion Detection Ezchange Protocol (IDXP), IETF,
Intrusion Detection Working Group, Internet-Draft
2002.

[10] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke,
A Security Architecture for Computational Grids. In
Proceedings of 5th ACM Conference on Computer
and Communications Security Conference, pp. 83-92,
1998.

[11] G. Helmer, J. S. K. Wong, V. Honavar and L. Miller,
Intelligent Agents for Intrusion Detection, In Pro-
ceedings of IEEE Information Technology Confer-
ence, Syracuse, NY, September, 1998, pp. 121-124.

[12] W. Lee and S. J. Stolfo, A data mining framework
for building intrusion detection models, In 1999 IEEE
Symposium on Security and Privacy, Oakland, CA,
May 1999.

[13] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan,
M. Miller, S. Hershkop and J. Zhang, Real Time Data
Mining-based Intrusion Detection, In Proceedings of
DISCEX II. June 2001.

[14] U.Lindqvist and P. A. Porras, eXpert-BSM: A Host-
based Intrusion Detection Solution for Sun Solaris,
From Proceedings of the 17th Annual Computer Secu-
rity Applications Conference (ACSAC 2001). IEEE

Computer Society, New Orleans, Louisiana. Decem-
ber 10-14, 2001. Pages 240-251.

[15] Network Flight Recorder 5.0, NFR Security Inc
2001. http://www.nfr.net

[16] Next-Generation Intrusion Detection Expert Sys-
tem(NIDES), Security Research International.
http://www.sdl.sri.com/projects/nides/

[17] The OpenSSL Project hittp://www.openssl.org

(18] P. Pal , F. Webber, R. E. Schantz, J. P. Loyall, R.
Watro, W. Sanders, M. Cukier and J. Gossett, Sur-
vival by Defense-Enabling, In Proceedings of the New
Security Paradigms Workshop (NSPW 2001), Cloud-
croft, NM, September 2001.

[19] V. Paxson, Bro: A System for Detecting Network
Intruders in Real-Time, In Proceedings of the Tth
USENIX Security Symposium, San Antonio, TX,
January 1998.

[20] J. R. Quinlan C4.5: programs for machine learning,
Morgan Kaufmann, 1994.

[21] J. R. Quinlan and R M. Cameron-Jones, FOIL: A
midterm report, In Machine Learning: ECML-93, Vi-
enna, Austria, 1993. Springler-Verlag. Lecture notes
in Computer Science # 667.

[22] SAINT Vulnerability Analysis Tool,
http://www.wwdsi.com/saint/

(23] Security Administrator Tool for Analyzing Net-
works, http://www.fish.com/satan/

[24] S. Singh and S. Kandula, Argus - A distributed
network intruston-detection system, B. Tech Thesis,
Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, India. May
2001.

[25] G. Vigna and R. Kemmerer, NetSTAT: A Network-
based Intrusion Detection Approach, in Proceedings
of the 14th Annual Computer Security Application
Conference, Scottsdale, Arizona, December 1998.

