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.inI. Introdu
tionMODERN Computer Networks are 
omplexentities that provide a wide-variety of ser-vi
es. The popularity of the Internet, ele
troni

ommer
e, 
orporate networks and distributed
omputing has 
aused a proliferation of the in-formation transmitted through these networks,the 
onsequen
e of whi
h, is a higher premiumon network se
urity. The availability of valu-able information on modern 
omputer networkshas lead to a proportionate in
rease in the 
om-plexity and variety of network intrusions. Clas-si
al se
urity me
hanisms like �rewalls, end-to-end en
ryption and authenti
ation have theirown sus
eptibilities. Firewalls are unable to lookat the data 
ontent of pa
kets passing throughthem without su�ering signi�
ant drop in datathroughput. They are also extremely vulnera-ble to denial of servi
e atta
ks as well as at-ta
ks that 
ome from inside the �rewall. End-to-end en
ryption or authenti
ation algorithmsare severely hindered by the la
k of a publi
key infrastru
ture over the Internet. Network-traÆ
 surveillan
e and intrusion-dete
tion sys-tems (IDS) have a 
ru
ial role to play in dete
t-ing su
h network intrusions in real-time. Besidesproviding suÆ
ient information tra
e informa-tion to tra
k the sour
e of su
h \atta
ks", an IDS
an possibly ameliorate the e�e
ts by exe
utingtimely prevention measures su
h as �ltering datafrom \suspi
ious" sour
es.Intrusion Dete
tion is the pro
ess or the artof dete
ting inappropriate, in
orre
t or anoma-lous a
tivity on a 
omputer system or networkof 
omputer systems. This proje
t 
on
entratesprimarily on network-based intrusion dete
tion,whi
h is the art of dete
ting atta
ks that are ex-e
uted a
ross a network. The 
omplementaryThis work was done when the authors were at IndianInstitute of Te
hnology Kanpur

problem of dete
ting host-based intrusions is anequally interesting problem. Several approa
hesto dete
t host based intrusions exist [14℄, [2℄.One su
h approa
h, expert-BSM[14℄ uses a se-
urity \monitor"' that sifts through system 
alltra
es and other operating system audit 
apabil-ities attempting to �nd a mat
h with any of theknown intrusion \signatures" that are en
odedin its database. Network Vulnerability analysis(SAINT[22℄, SATAN[23℄) is another 
omplemen-tary problem that involves estimation of the ef-�
ien
y of network se
urity measures by a
tivelyprobing for known vulnerabilities.Commer
ial tools to dete
t network-based in-trusions (NFR[15℄, NIDES [16℄, Emerald[7℄) aswell as several resear
h prototypes (Bro[19℄)fun
tion by 
olle
ting network traÆ
 into re
ordsand analyzing these re
ords. Colle
tion ofre
ords 
ould be done by installing at ev-ery networked host, modules that 
olle
t datasent/re
eived from the NIC of the host or by es-tablishing stand-alone systems in ea
h broad
astsegment of the network, that 
olle
t the datathat passes on this segment. Analysis of net-work data, so-
olle
ted, 
ould be done either inreal-time or in bat
h mode. Further there aretwo major approa
hes that 
ould be used in theanalysis of this data: Misuse based (also referredto as Signature or Knowledge based) or Anomalybased (also referred to as Behavior based or Sta-tisti
al).Misuse-based systems are expert systems that
ontain a vast database of signatures of knownatta
ks. Candidate data is pattern-mat
hedwith these signatures and a mat
h is 
aggedas an intrusion of the 
orresponding type.Su
h systems usually in
lude spe
i�
ation lan-guages to en
ode atta
k signatures and in-terpreters/
ompilers that apply the generatedatta
k-signature-�lters on the 
andidate data.



Several su
h systems exist vaying in the ease-of-use, expressiveness, simpli
ity of the spe
i�-
ation languages and the eÆ
ien
y of their ex-e
ution environments. The great power of su
hsystems lies in their ability to a

urately identifyall known atta
ks by en
oding signatures of theseatta
ks. However these systems are insensitiveto new atta
ks and variants of older atta
ks thatare not en
oded in the signature database. As asigni�
ant amount of programmer e�ort needs tobe spent in en
oding the many variants of somemore 
omplex atta
ks, automati
 generation ofsignatures through data mining and other ma-
hine learning algorithms has 
ome into vogue.Alternatively, Anomaly-based systems uselarge amounts of training data to build pro�lesfor normal a
tivity. A mis-mat
h of the 
andi-date data with its 
orresponding pro�le is sig-nalled as an intrusion. Su
h an approa
h has theadvantage of requiring less human e�ort and hasa higer sensitivity to to new atta
ks or those at-ta
ks whose signatures have not been en
oded.On the 
ip side, the training data has to besuÆ
iently exhaustive in order to 
onstru
t ana

urate pro�le, and there is the possibility offalse positives. Further data-mining algorithmsthat generate pro�les from data-sets have time
omplexity O(n3) or higher 1. The Argus ar
hi-te
ture has a set of distributed loosely 
oupledanalyzing agents, ea
h of whi
h, 
ould be eitherknowledge-based or anomaly-based. Su
h a de-sign 
hoi
e allows us to a
hieve a \good" balan
eexploiting the strengths of both these kinds ofsystems.The data 
olle
ted 
an be analyzed in a dis-tributed fashion at the point-of-
apture or 
ouldbe dispat
hed to a 
entralized authority that isresponsible for analysis. Distributed analysis re-quires signi�
ant 
omputational power at ea
h
apturing node and may not be able to e�e
-tively tra
k 
orrelated atta
ks unless all the 
om-ponents of the atta
k o

ur under the aegis of asingle system. Analysis by a 
entralized author-ity allows per
eption of 
orrelated atta
ks butlevies a signi�
ant 
ommuni
ation overhead, asthe 
olle
ted traÆ
 or 
orresponding 
ompa
tedre
ords need to be transported to the 
entral-ized authority. Argus has \Managers" that a
t asstripped-down variants of the 
entralized author-ity. While retaining the advantage of distributedanalysis, Argus exploits the IDXP[9℄ frameworkto enable atta
k 
orrelation at the managers withlimited 
ommuni
ation overhead.1n = size of dataset

Bat
h mode analysis of network traÆ
 impliesthat the 
olle
ted traÆ
 re
ords are 
ompa
tedand stored for analysis at a later time. Su
han approa
h has the advantage that 
omputa-tional resour
es, that 
ould be better used, arenot \wasted" during the a
tual time of an at-ta
k and is appropriate for passive 
avors of IDSwhose primary fun
tion is surveillan
e. On theother hand, the design obje
tives of most IDS'es2in
lude atta
k response or real-time reporting ofatta
ks and thus real-time analysis is more popu-lar apart from being interesting and useful. Con-sequently, Argus performs real-time analysis.The rest of this paper is organized as follows.In Se
tion II, we des
ribe the multi-agent ar
hi-te
ture of Argus and the rationale behind the
hoi
e of the individual 
omponents involved inthis ar
hite
ture. In Se
tion III, we des
ribe thedesign and 
onstru
tion of ea
h of the individ-ual 
omponents of Argus. Se
tion IV do
umentsthe results of the various experiments performedwith Argus. Se
tion V brie
y des
ribes othere�orts at building intrusion dete
tion systems.Se
tion VI �nally 
on
ludes with an enumerationof avenues for future resear
h in this domain.II. Ar
hite
tureArgus uses a hybrid ar
hite
ture 
onsisting ofboth misuse-based agents and anomaly-dete
tionagents that use data mining. We have used Net-work Flight Re
order (NFR) as the knowledge-based 
omponent in Argus. Before we des
ribethe ar
hite
ture of Argus in detail, we would liketo summarize the features of NFR, evaluate itsstrengths and argue why knowledge-based sys-tems like NFR, and most 
ommer
ial IDS'es, arenot suÆ
ient for e�e
tive intrusion dete
tion.A. Ba
kground: NFR Des
ription and Evalua-tionNFR is primarily a knowledge-based systemwith three basi
 
omponents: the IDA, the ad-ministrative 
onsole and the 
entral station. Ituses a spe
i�
ation language 
alled N-Code, sim-ilar to PERL in basi
 stru
ture, to en
ode at-ta
k signatures. The IDA (Intrusion Dete
tionApplian
e) is the heart of NFR that 
ontains at-ta
k signatures en
oded in N-Code, the N-Codeparser that transforms the atta
k signatures intosuitable �lters and the NFR engine whi
h sni�spa
kets, 
leanses and 
ondenses these pa
ketsinto a form that 
ould be passed through the2Read as Intrusion Dete
tion Systems



Fig. 1. Argus Ar
hite
turede�ned hierar
hy of �lters. The IDA updates itsdatabase with alerts based on atta
ks dete
tedby the �lters as well as statisti
al informationabout the network and also runs a GUI serverthat allows administrative 
onsoles, on
e authen-ti
ated, to query the IDA's alerts/statisti
al in-formation database and 
hange the IDA's 
on�g-uration. Administrative Consoles are lightweightmanagers that administer the IDA, allowingusers to remotely 
hange its 
on�guration, aswell as view alerts and statisti
al informationabout the network. They 
ould possibly be lo-
ated anywhere on the Internet (with properHTTP-Proxy 
on�guration). Central stationsare an o�shoot of the need for distributed deploy-ment, that 
ame as an after-thought to NFR, andthe need for ba
kward 
ompatibility that 
ausedthe administrative 
onsole to be able to talk toonly a single IDA at a time. They also serve thepurpose of giving a uni�ed view of the data 
ol-le
ted from multiple IDAs and present a singleinterfa
e to spe
ify dire
tives to multiple IDAs.While NFR 
ould be deployed in several 
on-�gurations (swit
hed, bridged, stand-alone, mul-

tiple to name a few), we deployed it in a stand-alone 
on�guration (single IDA) with multipleadministrative 
onsoles.The strength of NFR is in its pre-bundled N-
ode modules that are very extensive and 
on-tain signatures for almost all known popular at-ta
ks. It uses a 
lever ar
hite
ture that makesit eÆ
ient and responsive. These were the mainreasons for our 
hoi
e of NFR as the knowledge-based 
omponent of Argus. However NFR aloneis not a pana
ea. We have identi�ed several inad-equa
ies, whi
h we have tried to address throughArgus. Most of these inadequa
ies also apply toknowledge-based IDS'es in general.1. There is no built-in me
hanism that auto-mati
ally generates rules, either for new atta
ksor for more 
ompli
ated atta
ks. NFR is thus,fairly stati
 and la
ks adaptability. The onlyme
hanism for modifying existing rules or addingnew rules is to manually generate N-
ode signa-tures and manually deploy this 
ode at the IDAthrough the administrative 
onsole. This manual
oding of the signatures of new atta
ks would in-evitably be a tiresome e�ort, but the inability to



dete
t hitherto unknown atta
ks is a still more
ru
ial issue and 
an only be solved by 
ontinu-ous painful vigilan
e on part of the system ad-ministrator/NFR's human operator towards newatta
ks that sprout up.2. Knowledge-based intrusion dete
tion systemsfun
tion using thresholds for a

eptable limits ofvarious system and network parameters. Sin
ethese values are also set manually, 
hanging thesensitivity of the IDS a

ording to the 
urrentlyper
eived threat-level automati
ally is not possi-ble. A 
ontinuously learning rule generator thatdrives the analyzers and a managing 
omponentthat 
orrelates alert information from distributeddete
tion agents, and in turn 
hanges their sen-sitivity would do away with the above two inad-equa
ies.3. The only response to atta
k dete
tion in NFRis to trigger real-time alerts on the administrative
onsole or e-mail the alert information to spe
-i�ed authority. Most atta
ks either need alter-nate real-time proof to be gathered or an a
tiveresponse to be taken, both of whi
h NFR fails toprovide. These responses gain in importan
e asthey would do away with the need for real-timehuman intervention in atta
k dete
tion.4. Signature mat
hing at the various IDAs isdone in isolation. Hen
e an NFR ar
hite
turewould be vulnerable to distributed atta
ks, i.e.an atta
k with several phases may be exe
utedsu
h that no single IDA views all of the indi-vidual phases. An instan
e of this 
ase is whenmultiple entry-points exist into a network. ADenial-of-Servi
e atta
k might be 
arried out ona target inside the network that would es
apethe isolated IDAs installed on ea
h of the entrypoints.Even if a rule that mat
hes an atta
k exists, adistributed exe
ution of individual stages of theatta
k might pass undete
ted. For example, ifa rule mat
hes an atta
k that 
onsists of twophases (a) 
orrupting the .rhosts �le of a re-mote ma
hine (b) using the 
hange to exploitweaknesses on that ma
hine, then the observa-tion of the �rst phase should 
ause a height-ened suspi
ion of a
tivity that would o

ur later.Later a
tivity if performed through the aegis of adi�erent IDA than the one through whi
h phase(a) had been done, would pass un-noti
ed. Theonly alerts that NFR would generate would beone of its IDAs seeing a 
hange in a .rhosts�le. Further utilization of this exploit 
annotbe dete
ted by NFR. A distributed ar
hite
turethat allows for analyzers to ex
hange information

about suspi
ious events would solve the prob-lem to a large extent. Argus uses a me
ha-nism that involves storing of su
h informationat the manager. Re
eipt of subsequent warningsare mat
hed onto earlier relevant warnings thatmight together 
onstitute a possible atta
k.B. Design of ArgusFigure 1 shows the overall ar
hite
ture of Ar-gus. As we have des
ribed above, NFR is purelyknowledge-based and su�ers from some weak-nesses. We have designed a multi-tier ar
hite
-ture that has several 
omponents, one of whi
his NFR, though it 
ould be any knowledge-basedIDS. This ar
hite
ture attempts to over
ome theweaknesses of NFR and provides an intrusion de-te
tion system that is mu
h more 
omprehen-sive, distributed, s
alable, eÆ
ient and adaptive.Here we des
ribe the broad design of Argus. De-tails of various 
omponents and spe
i�
 
hoi
esmade in the prototype implementation are de-s
ribed in Se
tion III.Argus employs an agent-based ar
hite
turewith the low-level agents having suÆ
ient 
om-plexity and strength so that the ar
hite
tureis truly distributed, and not pseudo-distributivewhere all the 
omputations are e�e
tively doneby the 
entral servers. Hen
e there is a fairlyuniform load sharing. A distributed hierar
hy ofagents is used, with integration of data-miningagents for in
reasing the adaptability of the sys-tem. The data-mining 
omponents not only gen-erate rules representing a normal pro�le but alsogenerate feedba
k for knowledge-based 
ompo-nents, in the form of rules that en
ode signaturesof new atta
ks. These rules 
an then be used toupdate the rule database of the knowledge-based
omponent like NFR. The output of the anomalydete
tion agents also serves as a feedba
k to thedata-mining (learning) agents for 
ontinuouslyupdating and improving the normal pro�le.The lowest level agents in the ar
hite
ture aredata-
leansers, whi
h interfa
e with the phys-i
al medium (network) and 
olle
t the infor-mation to be utilized by the analyzers. Theinformation from the network 
ould be ex-tra
ted through 
alls to t
pdump, or througha 
ustom implementation of sni�ers using theBerkeley Pa
ket Filter (BPF) library andlibp
ap. This output is 
ondensed into
onne
tion re
ords that 
ontain values of thene
essary 
onne
tion features. Feature sele
tionis a 
ru
ial aspe
t and our methodology is ex-plained in Se
tion III.



The 
onne
tion re
ords are then supplied tothe higher-level analyzing agents. Conne
tionre
ords may be of di�erent types depending onthe 
hoi
e of 
onne
tion features that ea
h ana-lyzer agent would need. For instan
e, the re
ordsfor the knowledge-based 
omponents, may be alittle less 
omprehensive, while those used bylearning agents and anomaly dete
tors need to
ontain a lot more temporal and statisti
al in-formation.The Analyzing agents 
an be one of the fol-lowing three types.1. Misuse dete
tors2. Anomaly dete
tors3. Learning enginesThe misuse dete
tors 
ould be the analyzer
omponents in a knowledge-based intrusion de-te
tion system, like NFR i.e. NFR 
ould be aunit that 
omprises of both a misuse-dete
torand the 
orresponding data-
leanser. Su
h o�-the-shelf 
omponents need to be en
apsulatedwith lightweight drivers that interfa
e these sys-tems with Argus. Details about the driver 
on-stru
tion for NFR are des
ribed in Se
tion III.The intera
tion between the agents and the man-ager o

urs through IDXP (Intrusion Dete
tionEx
hange Proto
ol). These misuse dete
tionagents, or in our 
ase, drivers for third-partymisuse dete
tion systems, need to have trans-lators that translate the rules that are outputfrom learning engines into �lters in the signaturespe
i�
ation language (N-Code for NFR).The learning agents and the anomaly dete
-tion agents are 
losely inter-related in that thelatter is an exe
ution environment for rules gen-erated by the former. It is assumed that thelearning agents would use a 
lassi�
ation algo-rithm (like RIPPER [4℄). Learning agents aredata-mining 
omponents that are trained on thenetwork data. These 
lassi�
ation algorithmstake as input normal network traÆ
 data andgenerate the set of rules 
hara
terizing the nor-mal a
tivity. These rules are then passed tothe anomaly agents whi
h apply them on 
on-ne
tion re
ords. Learning agents have the abil-ity to generate rules for both anomaly dete
-tion agents (rules 
hara
terizing normal a
tiv-ity) and knowledge-based agents (rules 
hara
-terizing some abnormal a
tivity, generated usingsuÆ
ient amount of tagged abnormal data, andlots of normal data.)The rules for normal data are dynami
ally for-warded by the learning agents to the managers,whi
h then distribute them to all the anomaly

dete
tion agents. The alerts are forwarded bythe anomaly dete
tors to the managers. If themanager rati�es an alert as an intrusion, the data(
onne
tion re
ords) of the alert is automati
allysent to the learning agent that uses it to generatenew rules for the knowledge-based 
omponent,
hara
terizing this new found atta
k. The newrules are then distributed to the misuse-dete
tionagents through the manager using the 
ommu-ni
ation framework of IDXP. This provides foradaptability in the system.The learning agents also regularly get normalnetwork traÆ
 data from the anomaly analyz-ers, so that the normal pro�le is kept up-to-date. Depending on the nature of the 
lassifyingalgorithm in use, it may or may-not-be possi-ble to in
rementally update rules that are on
egenerated. In the 
ase wherein in
remental up-dates are not possible, the learning agents 
an betaught to 
ommen
e new rule generation after asuÆ
ient amount of new normal data has beenobtained. Further some form of aging me
ha-nism 
ould be applied to use various sets of rulesin 
on
ordan
e with ea
h other, with more im-portan
e to more re
ent rule set.Argus also supports dynami
 deployment ofagents and load balan
ing proportional to thethreat per
eption, as envisaged in [11℄.The next higher level in this hierar
hy of dis-tributed agents, 
ould be managers or aggregat-ing analyzers. These agents are responsible for
o-ordinating data-
ow between the exe
utionagents (both anomaly and misuse) and the learn-ing agents, and also for dete
ting distributed at-ta
ks. The warnings from the individual systemsare stored with these agents and new warningsare used to identify similar previous warnings.Further this level 
ould be split up into a multi-level heirar
hy of aggregators as exists in the sys-tem des
ribed in [11℄. Intera
tion between themanagers, higher-level analyzers and the rest ofthe system is through IDXP.III. Argus InnardsWe now des
ribe the details of the various
omponents of Argus, along with the spe
i�
sused in the prototype system that we have im-plemented.A. Intrusion Dete
tion Ex
hange Proto
ol (IDXP)IDXP (earlier Intrusion Alert Proto
ol, orIAP) is a proto
ol designed by the Intrusion De-te
tion Working group of the Internet Engineer-ing Task For
e (IETF). It is des
ribed in the in-



ternet draft [9℄. As the name suggests, it is theresult of an e�ort to provide a standard means of
ommuni
ation among heterogeneous agents andmanagers that form an IDS, and among multipleIDS'es over typi
al Internet deployment s
enar-ios, wherein either the manager or the analyzer
ould be inside prote
ted networks that prohibitin-
oming 
onne
tions. At least one of them hasto be on a network that allows in-
oming 
onne
-tions dire
ted to its host (alternatively a gate-way might a

ept 
onne
tions on behalf of anen
losed node). Our de
ision to use IDXP stemsmainly from our e�ort to keep our implementa-tion as 
onformant to the standards as possible,so that third party 
omponents 
an be pluggedin easily for extension.What IDXP provides: IDXP is a pseudo-HTTP appli
ation layer proto
ol that usesTransport Layer Se
urity (TLS) [6℄ as the trans-port layer proto
ol in order to ensure se
urityof the message transfers. IDWG also de�nes astandard XML format for the a
tual transfer ofdata, 
alled Intrusion Dete
tion Ex
hange For-mat[5℄. This data 
ould be alert information sentby analyzers to the managers, and o

asionallyupdates sent by the managers to the analyzers.What IDXP does not provide: IDXP is only aproto
ol that simply des
ribes the message stru
-tures for ex
hange of information between ana-lyzers and managers in a distributed intrusiondete
tion system. What it does not des
ribe arethe semanti
s and implementation details of this
ommuni
ation. A lot of these issues are leftfor the implementer to ta
kle. For example, ina typi
al s
enario, we would require a two-way
onne
tion between the analyzer and the man-ager: one way for sending the alert informationand other for sending the updates (new rule setset
.). But a given IDXP 
onne
tion allows foronly one-way 
ommuni
ation. Also, in the pres-en
e of a �rewall, it is quite possible that onlythe analyzers might be able to open 
onne
tionswith the hosts outside the �rewall (whi
h in
ludethe hosts running managers). These issues addfurther 
omplexity to the implementation. Ourprototype handles these and other issues as de-s
ribed next. We also des
ribe the inferen
es wehave made that might be bene�tial to anyone in-terested in an implementation of IDXP, in
ludingthe 
reation of an entity 
alled the IDXP daemonthat is geared to 
onserve network bandwidth.A 
ommon observation is that in web-servers,regardless of the request-load, network band-width usually proves to be the bottlene
k re-

sour
e. Whi
hever side of the alert hierar
hy,Argus Managers or Argus Analyzers, a
ts asthe server for an IDXP Conne
tion (sender ofalert/update data, not the entity re
eiving 
on-ne
tion request) would experien
e load similarto a web-server. Further, we assume that ingeneral more than one manager/analyzer agent
ould be running on the same host. This wouldbe the 
ase when there is a parti
ular high-endsystem that performs most of the analysis, or ifseveral managers are lo
ated on the same third-party managing-servi
e-provider. Thus we rel-egate both managers and analyzers to a subor-dinate role and instead run IDXP daemons onea
h host that runs an Argus entity. This is alsoneeded for lo
ation dis
overy of various Argusentities. Other possibilities in
lude an appli
a-tion listening on a standard port that repondsto queries about lo
ation of lo
al agents, andpre-
on�gured information about ports of indi-vidual agents stored with all 
ounterparts thatwould need to 
ommuni
ate with them. Theseother possibilities were rather in
exible, and our
hoi
e had the advantage that data that is tobe sent to multiple agents on the same host willnow need to be sent to the daemon on
e (withproper options set in the message). The proto-
ol is symmetri
, hen
e the daemons on managerand sensor/analyzer ends are identi
al. All theentities in our prototype were multithreaded foreÆ
ien
y.Further, the 
onne
tion between the agentand the manager might go through one or moreproxies, i.e. the 
onne
tion initiator may bebehind a �rewall that prohibits dire
t 
onne
-tions to external hosts. Thus our prototype usesan appli
ation-level proxy 
alled IDXP Proxy.Ea
h agent is presented upon initialization witha proxy-url (proxy ip and port) and a string ofno-proxy suÆxes/pre�xes/exa
t-mat
hes, whi
hlists the hosts to whi
h dire
t 
onne
tion 
anbe established. This part of the fun
tionality ofthe agent (proxy-intera
tion) is similar to a typ-i
al Web browser. The details of the individualpa
ket headers and the sequen
e of pa
kets arein [9℄.IDXP uses Transport Layer Se
urity [6℄ to es-tablish se
ure 
onne
tions for data transfer, andalso requires ea
h 
ommuni
ating entity to havean X.509 
erti�
ate and a publi
 key-private keypair. We use the OpenSSL[17℄ library for thesetasks.Ea
h Argus entity has an IDXP Agent 
ompo-nent (implemented as a thread in our prototype)



that interfa
es the agent with the lo
al IDXPdaemon. In all the 
ommuni
ation, an agent isidenti�ed using the host IP and a 16-bit lo
al-agent identi�er unique on a given host. Data 
anbe sent to remote agents in two ways: a
tively if a
onne
tion to the remote agent 
an be initiated,or passively if that is not possible. In the lat-ter 
ase the messages are sent to the lo
al IDXPdaemon for safe-keeping until the remote agentasks the daemon for any outstanding messagesfor it. Re
eiving data is also done similarly intwo ways: making 
onne
tions to remote IDXPdaemons for outstanding messages, or gettingmessages from the lo
al IDXP Daemon. With-out going into the details, whi
h would be toomany to mention here, we would like to mentionthat the IDXP daemon based IDXP frameworkhelped solve many implementation issues in ourprototype. Some details are provided in [24℄.B. Learning AgentsThe Learining Agents use a state-of-the-artrule based learning algorithm 
alled RIPPER [4℄.We also 
onsidered C4.5rules [20℄ as an alterna-tive, but found our implementation of RIPPERto be faster. The rule generation system worksin two modes. In the �rst mode, it takes as in-put the 
onne
tion re
ords of the normal net-work traÆ
, and generates rules 
hara
terizingthe normal traÆ
 pro�le. These rules are usedby the Anomaly Dete
tion Agents for dete
tingdeviations from the normal. In the se
ond mode,the rule generation system takes as input the
onne
tion re
ords of the normal network traÆ
along with tagged anomalous 
onne
tion re
ords,and generates rules that 
onstitute the signaturefor the anomaly. These rules are used to generatenew N-Code �lters for NFR.B.1 Rule Generation Using RIPPERRIPPER is an eÆ
ient rule learning algorithm,whi
h produ
es very low error rates even on noisydata. It is a generalized algorithm and has to besuitably modi�ed when applied on a parti
ulardomain. In our 
ase, this domain 
omprises of
onne
tion re
ords of network traÆ
.Ea
h 
onne
tion re
ord is transformed into aset of attributes. The attributes are either dis-
rete or 
ontinuous. The obje
tive of the rulelearning algorithm is to generate rules to 
las-sify 
onne
tion re
ords (spe
i�ed as sets of at-tributes) into a set of 
lasses.The system is provided with the example dataset on whi
h to learn in the form of a 
olle
tion

of re
ords, ea
h re
ord 
ontaining the values forthe various attributes and the 
lass this re
ordbelongs to. We used the FOILv6 [21℄ tool forthe rule growing stage in the algorithm. For amore detailed des
ription of our spe
ialization ofRIPPER, refer to [24℄.B.2 Rules for Normal Pro�leAs des
ribed earlier, ea
h 
onne
tion re
ordis suitably transformed into a set of attributesfor the learning and 
lassi�
ation algorithms towork on them. For the mode when the rulelearning system has to generate rules 
hara
ter-izing the normal pro�le, appropriate 
lass andattribute stru
ture is required with the exampledata set 
omprising entirely of normal TCP traf-�
. The set of attributes are the various �eldsof the 
onne
tion re
ords ex
ept from the ser-vi
e (destination port). The destination portsform the 
lasses, with all the user-de�ned, non-standard ports being 
lubbed together into one
lass. Thus we have 
lasses of the form ftp, tel-net, non-standard et
. The rules generated takethe �elds of a 
onne
tion re
ord (with the desti-nation port �eld removed) and predi
t 
lass (des-tination port). A 
on�den
e fa
tor based on thenumber of test 
ases handled 
orre
tly by a ruleis asso
iated with ea
h rule. These rules are thenused by the Anomaly Dete
tion Engines. This
on�den
e fa
tor is used to arbitrate when morethan one rules mat
h a given 
onne
tion re
ord.B.3 Rules for Atta
k SignaturesIn this 
ase the example data set 
ontainsa 
ombination of 
onne
tion re
ords of normalTCP traÆ
 and some 
onne
tion re
ords of someanomalous a
tivity. The examples of normaltraÆ
 labeled as belonging to one 
lass, say nor-mal, and example(s) of anomalous traÆ
 labeledas belonging to the other 
lass, say anomalous.The rule set generated a
t as a signature for theanomalous a
tivity and is used to generate newN-
ode �lters for NFR.C. The Data CleansersData 
leansers, shown in Figure 2(a), are thelow level agents that are responsible for the 
on-stru
tion of TCP 
onne
tion re
ords. Argus'Anomaly agents 
urrently handle atta
ks thatuse TCP at the transport layer. We believe thatvery similar extensions 
ould be in
orporated tohandle atta
ks at the level of network proto-
ols and other transport layer proto
ols and thatmost modern atta
ks use TCP at the transport



(a) Working of the Data Cleanser (b) Working of the Anomaly Dete
torFig. 2.layer. We �rst des
ribe the features we sele
tedto adequately represent TCP 
onne
tion infor-mation and then des
ribe a t
pdump based im-plementation that 
onstru
ts 
onne
tion re
ords,
onsisting of the desired features, from t
pdumpoutput.C.1 Feature Sele
tionThe importan
e, diÆ
ulty and our implemen-tation of feature sele
tion will be dis
ussed here.Features are the predi
ates on whi
h rules will beframed, i.e. for example let the number of half-open 
onne
tion requests re
eived in the last se
-ond be a feature F. Then rules will be generatedusing the value for F as a predi
ate, su
h asif (F � 5) then SYN FLOOD .It is usually a pretty diÆ
ult task to identify the
orre
t set of features, espe
ially features thatin
orporate temporal and statisti
al informationsu
h as data traÆ
, in bytes, on the user-ports inthe last n se
onds, number of un-wanted syn-a
ksre
eived by httpd in the last n se
onds et
. Thefollowing is a des
ription of the set of featuresthat we found to be e�e
tive after experimenta-tion.

1. State of 
onne
tion establishment: This is aparameter that 
ould be one of the following val-ues, (a)
onne
tion reje
ted: a SYN pa
ket wasreplied with a RST, (b)
onne
tion attemptedbut not established: a SYN pa
ket was sentbut never got a SYN ACK response, we use thestandard value of TCP Conne
tion timeout onlinux ma
hines to weed out 
onne
tion re
ordsthat are stale for greater than TCP Conne
-tion timeout duration, i.e. the last update onthis 
onne
tion re
ord o

urred later than TCPConne
tion timeout duration in the past and(
)un-wanted syn a
knowledgement re
eived: aSYN ACK pa
ket was found on the network thatresponded to a non-existent SYN2. State of 
onne
tion 
losure: This too is aparameter that 
ould take one of several val-ues, (a)normal 
lose: FIN pkts sent out byboth sides and all data pa
kets have been a
-knowledged, (b)dis
onne
tion: either by staletimeout, or by a re
onne
tion attempt on thesame sr
� port; dest� port; sr
 � ip; dest� ippair, i.e. one of the sides su�ered a dis
onne
tionbut the other side still assumes that the 
onne
-tion is established, (
)abort: one of the host's
auses the 
onne
tion to abort by sending a RST




ag a
ross and all data pa
kets are a
knowledgedand (d)half-
losed: only one side of the 
onne
-tion has sent a FIN and the other side has eithergone quite for greater than TCP TIME WAITtimeout duration.3. resent rate: The number of bytes that havebeen resent, 
ontrol pa
kets 
ount as one byte.4. wrong resent rate: The number of bytes thathave been wrongly resent, i.e. they were senteven after being a
ked.5. dupli
ate ACK rate: This 
ounts the numberof dupli
ate a
ks re
eived.6. hole rate: Dupli
ate ACKs are seen asan indi
ator that holes have formed at there
eiver's end. This estimates the sumof the sizes of the holes, hole-size is ap-proximated as the (seq number sent forward)+(data bytes sent forward)�(dupli
ate a
k seq number). This is an approxi-mation as it only estimates the maximum size ofthe hole that may be formed as pa
kets re
eivedout of sequen
e are not a
knowledged in TCP.7. data bytes sent in either dire
tion: Lots of
onne
tions with very little data being sentmight be probes (if not telnet pa
kets).8. per
entage of data pa
kets: The per
entage ofdata pa
kets in a TCP 
onne
tion is usually veryspe
i�
 to the type of appli
ation that runs onthe spe
i�
 standard port.9. per
entage of 
ontrol pa
kets: It 
an safely beassumed that for \normal" 
onne
tions of a spe-
i�
 type (determined based on the server portthey asso
iate with), these per
entages should befairly 
onstant. Hen
e a deviation might be ananomaly.10. number of 
onne
tion establishment errors inthe last n se
onds: Indi
ative of the type of traÆ
on the segment, will lead to false alarms in 
aseof a network partition.11. all other errors in the last n se
onds: Againindi
ative of the healthiness of the network traf-�
. These temporal information give a 
ontextfor ea
h 
onne
tion re
ord within whi
h it 
ouldbe analyzed. Contextual information would bene
essary as stray errors might be negle
ted butmany errors within a short span of time are sug-gestive of something �shy going on in the net-work.12. 
onne
tions to designated system servi
es inthe last n se
onds: Again 
ontribute 
ontextualinformation.13. 
onne
tions to user appli
ations in the lastn se
onds: Context, re
e
tive of the type of a
-tivity on the network. For 
orporate networks, a

sudden in
rease in traÆ
 on user ports 
an safelybe 
agged an intrusion (unless a new appli
ationhas been installed that uses this port).14. averages of 
onne
tion duration and databytes over all 
onne
tions in the last n se
onds:This 
an readily be linked up with building tem-poral pro�les for the network, i.e. a large amountof network traÆ
 at an unusual time 
an easilybe 
agged as an intrusion.15. averages of 
onne
tion duration and databytes over all 
onne
tions to the same destina-tion in the last n se
onds: Can possibly iden-tify hot-ma
hines and not-so-hot ma
hines be-sides building up temporal pro�les for traÆ
 toea
h of these ma
hines. Any attempt at intru-sion unless it is on very busy ports (or the at-ta
ker is very patient) is assured to 
ause large
u
tuations in this parameter16. averages of 
onne
tion duration and databytes over all 
onne
tions to the same servi
e:This 
ould be re
e
tive of probes trying to pi
kout vulnerabilities in known servi
es.It should be noted that the 
hoi
e of the aboveis motivated by experiments. Re�nement ofthese features would require greater insights intoindividual atta
ks, but the idea behind statis-ti
al anomaly dete
tion is to do away with un-ne
essary or exorbitant human e�ort. So an in-termediate 
ourse must be stru
k. While, it isour �rm belief that the above set of features isnot the 
omplete set of \sound" features, exper-iments show that they perform \fairly well".C.2 Generation of Conne
tion Re
ordsThe present impelementation 
ompa
ts t
ppa
ket header information generated by t
p-dump exe
uting in the mode wherein relative se-quen
e numbers are suppressed.Ea
h line of the t
pdump is parsed for the re-quired values. A map of 
onne
tions that area
tive at any point of time are maintained by si-multaneously updating the state of both ends ofthe TCP 
onne
tion whenever a pa
ket belong-ing to this 
onne
tion is seen by t
pdump. Therequired values are stored for ea
h a
tive 
onne
-tion.When a 
onne
tion is 
losed, either su

ess-fully or erroneously(timeout, RST), the 
onne
-tion re
ord is timestamped and transferred fromthe a
tive queue to one whi
h stores 
onne
tions
ompleted in the last 'n' se
onds.Whenever a new entry is made into the ve
-tor 
ontaining the 
onne
tions de-a
tivated inthe last n se
onds, this ve
tor is made 
urrent



i.e. 
onne
tions that have been de-a
tivated ata time that is earlier than n se
onds from thepresent time are moved onto stable storage. Af-ter updation of this set of 
onne
tion re
ords,the existing set of re
ords is used as the basisfor 
al
ulating values that make up the temporaland statisti
al i.e. 
ontextual information of the
urrently de-a
tivated re
ord. Re
ords that havepassed into the stable storage are passed onto theanomaly dete
ting engines as shown in Figure 1.One major issue of 
on
ern is the over-
owingof bu�ers that 
ould o

ur if the output of t
p-dump is 
reated at a mu
h qui
ker rate than therate at whi
h 
onne
tions 
ould be 
leaned and
ompa
ted. This might o

ur either due to sig-ni�
ant in
reases in the network traÆ
 or due tomany long-duration 
onne
tions. It has been ob-served that random dropping of pa
kets, i.e. t
p-dump input lines will adversely a�e
t the qual-ity of the re
ords being generated. Thus a sim-plisti
 solution was devised that dis
ards pa
ketsbelonging to 
onne
tions for whom state is notalready being maintained whenever the bu�erusage approa
hes the maximum available. The
onne
tion key of su
h an \ignored" 
onne
tion,i.e. the four tuple of 
onne
tions whose pa
ketshave been dis
arded, is stored and all later pa
k-ets of these 
onne
tions are dis
arded. As thisis a \droptail" approa
h, the per
entage of new
onne
tions that are dis
arded is dire
tly propor-tional to network loadavailable bu�er size :D. Driver for NFRWe use an o�-the-shelf knowledge based sys-tem NFR [15℄ that 
ontains its own 
onne
tionre
ord 
reator, an atta
k signature database anda rule appli
ation engine (misuse agent). To in-tegrate NFR into Argus, we needed to build adriver that interfa
es Argus with NFR. The fun
-tionality that the driver had to handle was1. Transfer NFR alert information from NFR'sIDA to the manager of Argus.2. Forward the manager's dire
tives to NFR'sIDA. These dire
tives 
ould be the N-
ode fornew atta
k signatures or threshold-
hanging in-stru
tions.While NFR's sour
e 
ode was available to theresear
h 
ommunity until a few years ba
k, it isno longer available. Hen
e we fa
ed the followingproblems:1. Communi
ation between the IDA and the Ad-ministrative Console(Manager in NFR) is en-


rypted. This en
ryption me
hanism was notknown.2. Message Ex
hange Proto
ol for 
ommuni
at-ing with the IDA was not available.We instead used Perl libraries that were dis-tributed with NFR and 
onsisted of fun
tions(in binary) that perform the required en
ryp-tion/de
ryption and message ex
hange. TheIDA 
ommuni
ation 
ode in Perl was embeddedinto the C/C++ system of Argus using the Perladd-on module ExtUtils::Embed. This mod-ule allows fun
tion 
alls to native Perl methodsfrom within a C/C++ program as a Perl in-terpreter is initialized prior to the start of theprogram. Our �nal implementation of the NFRdiver uses only the relevant PERL fun
tions thaten
rypt/de
rypt and has most of its fun
tional-ity implemented in C++.The above-mentioned s
ripts only allowed forNFR's alerts to be relayed to external agents.NFR also provides for a GUI-based, remote de-ployment of new atta
k signatures to the IDAbut this 
ould not be automated as the requi-site libraries were not available. Thus new at-ta
k signatures en
oded in N-Code are 
urrentlystored on the NFR driver and need to be manu-ally inserted into NFR through the GUI 
onsole.We validate the 
orre
tness/eÆ
ien
y of the rulegenerator by manually installing the generatedsignatures during experimentation.E. Anomaly Dete
tion AgentsThe Anomaly dete
tion agents, an example ofwhi
h is shown in Figure 2(b), are the appli
ationof the rules produ
ed by the RIPPER based rulegeneration system implemented as a part of thelearning agents. The rules produ
ed by the learn-ing agent for the purpose of anomaly dete
tion
hara
terize the normal pro�le. The destinationports serve as the 
lasses and the remaining �eldsof the 
onne
tion re
ords serve as the attributes.The anomaly agents re
eive an en
oded (and
ompressed) rule set from the manager and storethis in the form of a �le. A 
on�guration �le de-s
ribing the 
lass and attribute stru
ture that isshared between the anomaly agent and the learn-ing agent is used to de
ode and en
ode the ruleset respe
tivley. The 
lassi�
ation pro
ess goesthrough the following steps.1. Conne
tion re
ords are obtained by a 
all tothe data 
leansing module.2. Ea
h 
onne
tion re
ord is then mat
hedagainst ea
h rule of the rule set. Ea
h rule inthe rule set has an asso
iated fra
tion 
alled its




on�den
e value. In 
ase of multiple mat
hes,mat
hing rule with the highest 
on�den
e valueis sele
ted.3. The rule is then applied to the 
onne
tionre
ord and the 
lass, whi
h in this 
ase is thedestination port, predi
ted by the rule is ob-tained. If the predi
ted value mat
hes with thea
tual value, the 
onne
tion re
ord is termednormal. It is sent to the manager tagged as nor-mal data with a probability of 10%. If the pre-di
ted and the a
tual values mismat
h, the 
on-ne
tion re
ord is marked anomalous and is sentto the manager alongwith the 
on�den
e valueof the rule used for 
lassi�
ation.4. The above steps are repeated for new 
onne
-tion re
ords.F. ManagersThis 
omponent of Argus (Figure 3) embodiesmost of our novel ideas. The various exe
utionagents be they anomaly-based or misuse-basedsend alert information to the manager. The man-ager is also initialized like an ordinary IDXPagent but with slight di�eren
es and is multi-threaded. Additionally, the manager stores adatabase mapping an intrusion type to the set ofatta
k response handlers to be exe
uted when-ever an instan
e of this intrusion is observed.The uniqueness of Argus' manager lies in thetype of data that is reported to the manager andin the handling of this data.The following 
ases are handled:1. Re
eive registration request from remoteagents: The internal data stru
tures are updatedand fresh rule sets are passed out in 
ase ofanomaly agents.2. Alert information re
eived from NFR: Analert informing the dete
tion of this atta
k is dis-pat
hed. This 
ould take the form of a graph-i
al pop-up display, or an e-mail alert. The
orresponding atta
k response handler is identi-�ed based on the type of the intrusion dete
ted.The alert information is stored in a system-wideanomaly queue, appropriately tagged with thesour
e of dete
tion in order to aid in 
orrelationwith later atta
ks.3. Alert information from the anomaly basedagents is re
eived: The alert information isstored in the anomaly queue along with the as-so
iated 
on�den
e value.4. Rules re
eived from the learning agent: Ifthese rules are for the anomaly based agents,they are passed onto the anomaly agent in verba-tim, along with a dire
tive requesting the agent

to update its rule set. The anomaly agent up-dates its e�e
tive rule set upon re
eipt of su
ha dire
tive from the manager. If the rules arefor NFR, the manager translates between RIP-PER's 
lause based rule stru
ture to equivalentN-Code �lters and passes on the N-
ode �lterto the NFR driver. Generation of N-
ode fromthe rules of the learning agent assumes that aone-to-one map exists between the features inthe 
onne
tion re
ords and features that 
ouldbe identi�ed by NFR. If this were not the 
ase,then the base �lter set of NFR needs to be aug-mented appropriately.The following is the fun
tionality of the tagger
omponent of the manager that reads input intothe anomaly queue. If1. The sour
e of the alert is NFR: Alert datais mat
hes with pre-existing information to de-te
t the possibility of a distributed atta
k or a
ontinuation of an earlier exploit. If su
h is the
ase, the relevant alert is triggered and the 
or-responding response handler is 
alled.2. The sour
e of the alert is anomaly-basedagent: The system administrator is asked to val-idate the alert information and is presented witha detailed tra
e and the 
on�den
e level of themis-mat
h. If the administrator tags it as analert, this tagged 
onne
tion re
ord is passed tothe learning agent whi
h would generate rules forthe signature of this atta
k for the knowledge-based agent. Noti
e that this is an instan
e ofa previously unknown atta
k (or variant) be-ing dete
ted. The 
orresponding signature isautomati
ally generated and deployed into thedatabase of known signatures. The only super-vision required is to validate and tag the alertinformation. Tagged atta
ks are also mat
hedwith pre-existing alert information to dete
t dis-tributed/
orrelating atta
ks, and the informa-tion is stored for mat
hing with later atta
ks.If the alert is tagged as an error, the 
ounterof false alarms is updated. The rate of falsealarms 
urrently observed in the system is usedas a parameter to de
ide the amount of \nor-mal" data that needs to be passed onto the learn-ing agent, the frequen
y with whi
h the learningagent needs to re-generate rules for normal dataand the frequen
y with whi
h the anomaly basedsystems need to age their rules. For instan
e, allof the above mentioned fa
tors are dire
tly pro-portional to the false alarm rate, with appropri-ate damping fa
tors. Thus the anomaly agentsupdate their rule sets and age the older rule setswith a greater frequen
y when they per
eive a



Fig. 3. Working of the Managerhigher false alarm rate.The atta
k response handlers that are 
alledby the tagger 
omponent are de�ned spe
i�
 tothe type of the intrusion and involve a
tions inspe
i�
 response to the atta
k. For instan
e, aresponse handler might ne
essitate the blo
kingof an external IP address at the �rewall when aSYN FLOOD atta
k is dete
ted with the sour
eat that IP address. Further these handlers 
ouldalso re-assign values of relevant thresholds in theanalyzers. For instan
e, Dete
tion of severalintrusions in NFR is threshold-based, relevantthreshold values may be 
hanged by sending ap-propriate dire
tives to the NFR driver. For theanomaly-based systems, one relevant thresholdis the 
on�den
e asso
iated with a rule, whi
h
ould be suitably 
hanged based on the su

essof the result obtained by an appli
ation of therule. IV. Experimental ResultsWe su

essfully built and tested a prototypesystem with the implementation 
hoi
es men-tioned in Se
tion III. We now des
ribe our exper-imental setup, experien
es with Argus and someresults obtained.A. Guarding against SAINTSAINT[22℄ is a network vulnerability analy-sis tool for the UNIX platform. When 
on�g-ured with a distan
e in hop 
ount and an in-teger probe level, it 
he
ks all possible hosts

within distan
e hops away from the host run-ning SAINT for all vulnerabilities that are asso-
iated with a probe level equal to or less thanthe probe level. The higher the probe level,the greater is the potential damage that the vul-nerability 
ould lead to. Alternatively, expli
itlists of hosts that are to be 
he
ked for vulner-abilities (or not) are also a

epted as input bySAINT. The obje
tive of this experiment was toverify the e�e
tiveness of our anomaly dete
tionengines.The testbed for this sub-
lass of experiments
onsisted of the internal network of the Depart-ment of Computer S
ien
e at Indian Institute ofTe
hnology Kanpur, that 
onsisted of a set ofsubnets linked through swit
hes. To avoid over-loading the network, we had SAINT attempt toperform a vulnerability analysis on a small setof workstations, running one of Linux-2.2, So-laris 8 or Mi
rosoft Windows 2000. NFR's IDAneeds to be installed on a dedi
ated ma
hine andwas installed on one of these swit
hed segments,the one that 
ontained the various server ma-
hines. One anomaly agent was initialized inea
h swit
hed segment. A learning agent and amanager were initialized on high-end Linux ma-
hines. Finally, a set of dormant anomaly agentswere spread at random throughout the network,ea
h 
onsisting of a daemon waiting for the \de-ployment dire
tive" from the manager. We be-lieve that this is a typi
al installation of Arguson the internal network of a reasonably large or-



Con�den
e Threshold 0.4 0.6 0.7 0.8 0.9Atta
ks Dete
ted% 98 98 97 95 78False Alarm% 2.1 1.26 0.73 0.50 0.01Fig. 4. Anomaly Dete
tion Agents: Resultsganization.Sin
e anomaly dete
tion agents in our proto-type implementation were only TCP aware, we
ompared the number of distin
t atta
ks identi-�ed by the anomaly dete
tion engines with thenumber of TCP based atta
ks that SAINT em-ploys. Some of these atta
ks are TCP Syn basedport s
anners and TCP SYN Flood atta
ks. Fora 
omplete list of su
h atta
ks, refer to [22℄. Asmentioned in Se
tion III, anomaly dete
tion en-gines apply rules to 
onne
tion re
ords and iden-tify mis-mat
hes. Corresponding to ea
h mis-mat
h the 
on�den
e estimator of the rule thatgenerated it, is atta
hed. An anomaly dete
tionengine alerts the manager of a mis-mat
h onlyif the 
on�den
e value asso
iated with the mis-mat
h is greater than the threshold. By modify-ing the value of this threshold, we 
ould exer
isea �ne degree of 
ontrol on the per
entage of at-ta
ks observed versus the number of false alarms.When a reported mis-mat
h is tagged to be \nor-mal" at the manager, the asso
iated 
on�den
evalue asso
iated with this rule is de
remented bya small value. Further, the more the number offalse alarms the faster is the rate of updationand installation of new pro�les, and aging of ex-isting pro�les. The normal pro�les were trainedby having the anomaly dete
tion engines run fora few minutes before starting SAINT. Figure 4shows the variation of per
entage of TCP basedatta
ks dete
ted by the anomaly dete
tors andthe per
entage of alerts that were false-alarmswith the sensitivity of the anomaly dete
tion en-gines.At low thresholds, the false alarm rate is 
on-siderably high and the per
entage of atta
ks de-te
ted is also very high. In
rease in the thresholdde
reases both these rates. However the systembe
omes unstable at very high 
on�den
e thresh-olds be
ause most of the rules generated by RIP-PER have 
on�den
e values in the 40-90% range.Thus as seen in the table, we empiri
ally observethat the optimal performan
e o

urs at a 
on�-den
e level of 0.8. At this level, the anomaly de-te
tion engines dete
t nearly 95% of the atta
kswith as low as 0.5% false alarms. One shouldnote these values are rather domain-spe
i�
. Forthis reason, we did not try to optimize the values,

and just try to present a trend.B. The Case of The Missing Signatures!The obje
tive of this experiment was todemonstrate the ability of Argus to automati-
ally generate signatures for hitherto unseen at-ta
ks. The alerts generated by various agents(anomaly dete
tors as well as misuse dete
tors)are stored and temporally 
orrelated by the man-ager(s). Anomalies generated in the temporalvi
inity of an alert from a misuse dete
tor areassumed to be referring to the same event. Thisis a �rst-
ut approximation be
ause we need agreater amount of shared knowledge between themisuse agent and the anomaly agent in order to�lter out anomalies that are already 
aptured byatta
k signatures.For the purpose of this experiment, we wrotean appli
ation that performs distributed TCPSYN 
ood atta
k on a host. This host was onthe swit
hed segment on whi
h both NFR andan anomaly agent were present. We removed theN-
ode �lter 
orresponding to this atta
k fromNFR. Thus no misuse agent alerts were gener-ated while anomaly alerts were generated due tothe presen
e of a rule (for the normal pro�le)that bounds the number of half-SYNs presentin the network. These alerts were hen
e 
las-si�ed as 
orresponding to a hitherto unseen at-ta
k and were forwarded to the learning agent forsignature generation. Upon re
eipt of the rule-set 
hara
terizing the atta
k from the learningagent, the N-
ode translator in the manager gen-erated an N-
ode signature. This signature wassent to the NFR driver where it was saved for de-ployment. It was manually deployed into NFRat a later time. Continuing the SYN Flood at-ta
k after deployment eli
ited alerts from NFR,though the name of the atta
k was not SYNFlood, sin
e the tagger did not tag it with thatname.Hen
e we were able to dynami
ally and auto-mati
ally generate a signature for a \new" at-ta
k. Manually dete
ting this atta
k and 
odingan N-
ode �lter for it would have been a very
umbersome task whi
h was greatly automatedand simpli�ed by Argus.



Fig. 5. Testbed for Atta
k CorrelationC. Atta
k CorrelationThe obje
tive of this experiment was todemonstrate the ability of Argus to 
orrelate thealert information reported by di�erent analyzingagents, and 
onsequently dete
t distributed at-ta
ks.The testbed for this sub
lass of experiments isshown in Figure 5. It 
onsisted of a network withmultiple entry points and NFR IDAs installedon the DMZ at ea
h point of entry. Both thetarget of the atta
k and the Argus manager werepresent on hosts inside the network.NFR's thresholds for various atta
ks are re-motely 
on�gurable. These 
an be adjusted to
hange NFR's sensitivity. We did a distributedSYN Flood atta
k on the target host from a setof sour
e hosts on the outside. The rates of thehalf-SYNs 
owing through ea
h entry point waslower than NFR's threshold. Hen
e no inidi-vidual NFR IDA generated an alert, but sim-ply \warnings". These warnings were 
orrelatedby the manager, as they were 
lustered together(they were warnings of the same kind and theytargeted the same host on the internal network).This 
aused the manager to generate a 
orrelatedalert that 
hara
terizes the distributed atta
k.D. Real-time Atta
k ResponseThe testbed for this experiment was the sameas the one for the Atta
k Correlation experimentdes
ribed above. In addition, we had a �rewallat ea
h gateway, and an atta
k response handlerwas initialized at the manager for response tothe SYN Flood atta
k. This handler updatesthe �ltering rules at ea
h of the �rewalls so as toblo
k all traÆ
 from the atta
k sour
es, whoseIP address �gured in the warnings.When the manager dete
ted a distributed SYN

Flood atta
k, it exe
uted the atta
k responsehandler for this atta
k. The handler 
aused ea
h�rewall to blo
k traÆ
 from the suspi
ious hosts,stopping the SYN Flood atta
k.E. Robustness of The Ar
hite
ture and SampleRulesIn our prototype implementation, ea
h hostrunning one or more Argus 
omponents has anArgus daemon that re
eives and sends informa-tion on behalf of the 
omponent. Ea
h Argus
omponent has a unique 
omponent-id (CID)and publi
, private key pairs whi
h are used to
ommuni
ate se
urely with other 
omponents.All 
ommuni
ation is addressed to and fromCIDs and a global system-wide map of CID toIP address is maintained within rea
h of ea
hdaemon. This shared-daemon implementationis light-weight and having 
ommuni
ation ad-dressed to the 
omponents allows the 
ompo-nents to move seamlessly throughout the net-work. Ea
h agent 
ould either establish a
tive
onne
tions to the remote daemon (to send orre
eive data), or passively wait for the remoteagents to 
onta
t this agent by leaving messagesat the lo
al daemon. This allows us to havedormant daemons spread throughout the net-work, allowing us to qui
kly grab more samplesfrom the network if ne
essary, espe
ially to startagents that are previously unknown to an at-ta
ker or a mali
ious insider. The robustness ofthe ar
hite
ture was tested by simulating faultsin the 
ounterpart agents when agent 
ommu-ni
ation was underway. Of spe
ial importan
e,was the need to keep the manager tolerant tomali
ious pa
kets dire
ted at it.Some of the sample rules generated by thelearning agent for normal traÆ
 are shown inFigure 6.



R1: if 
ls=13 and bytesF�233 and dataP>29 then 
lass=23R2: if 
ls=13 and bytesF>233 and dataP�14 then 
lass=3128Fig. 6. Sample rules for normal pro�leHere 
ls denotes the how the 
onne
tion was
losed and the value 13 denotes that the TCP
onne
tion was 
losed 
orre
tly. bytesF are thenumber of bytes that were sent in the forwarddire
tion i.e., from the sender of the �rst SYN ofthe 
onne
tion to the re
eiver. In 
ase of sym-metri
al initiation of TCP 
onne
tions, the tie isbroken arbitrarily in the order in whi
h t
pdumpobserves these events. dataP is the number ofdata pa
kets that are sent in one normal 
onne
-tion. Similarly
ontrP is the number of 
ontrolpa
kets in a 
onne
tion. Finally the 
lass of a
onne
tion is the destination port (servi
e type)of the �rst SYN pa
ket of the 
onne
tion. Thus,the above three rules 
an be paraphrased as fol-lows:R1: A 
onne
tion that had very few data bytestransmitted in the forward dire
tion, a largenumber of data pa
kets (ea
h 
ontaining littledata) and was 
losed normally, most likely is atelnet 
onne
tion.R2: A 
onne
tion that had few data pa
kets, butinvolved a large amount of data transfer withinthese data pa
kets is most likely a HTTP 
onne
-tion (Squid proxy server running on Port:3128).Why? A normalized HTTP transfer is about 5kBas a new HTTP 
onne
tion is initiated for ea
hrequest.Note that a 
on�den
e measure is also asso-
iated with ea
h rule but was ignored above forthe sake of 
larity.V. Related WorkNetwork intrusion dete
tion has been a re-sear
h problem for some time now and several ex-perimental and 
ommer
ial solutions have beenproposed.Helmer et. al. [11℄ proposes an arti�
ially in-telligent (AI) agent ar
hite
ture for dete
ting in-trusions. This work is similar to Argus in the
ommon design goal of light-weight distributedagents. However, Argus di�ers in both the num-ber and variety of agents and leverages IDXP inits 
ommuni
ation framework. While Argus hastwo sets of data 
olle
ting and analyzing agents,[11℄ proposes a plethora of agents dedi
ated toanalyzing spe
i�
 sour
es of information. Argususes unique agents 
alled Managers to provideatta
k response, distributed atta
k 
orrelation

and updation of both signatures and pro�les.Cannady [3℄ proposes a neural network basedapproa
h to dete
t spurious a
tivity. Ourapproa
h is 
omplementary to this in thatwe use ma
hine learning algorithms in ourAnomaly/Learning agents. Further the exten-sibility of Argus, allows us to interfa
e with su
hneural networks based agents through IDXP.Lee et. al. [13℄, [12℄ devise automati
 meth-ods for 
onstru
ting intrusion dete
tion models.This work is 
ontemporary to Argus and is 
los-est to it in that the same ma
hine learning algo-rithm, RIPPER is deployed. However the mainfo
us of Argus is in the design and implemen-tation of an eÆ
ient distributed agent ar
hite
-ture and 
ommuni
ation framework, while [12℄fo
uses primarily on improved data-mining basedmethods to automati
ally generate new atta
ksignatures. Unlike [12℄, Argus also emphasizes
orrelation of atta
ks and timely atta
k response.Vigna et. al. [25℄ proposes a state transitionnetwork based approa
h to dete
t network in-trusions. The idea is to have a \State transitiondatabase" that spe
i�es a set of a
tions 
orre-sponding to ea
h intrusion s
enario. The \a
-tions" spe
ify the data to be 
olle
ted or ana-lyzed is at the 
urrent state before 
onditionallypro
eeding to a su

essor state in the state tran-sition diagram. At any point of time whetheran intrusion has been dete
ted is an attributeof the 
urrent \state" in whi
h the system lies.This method allows greater expressiveness in en-
oding atta
k signatures and is easy to use, how-ever, it is primarily a knowledge-based approa
hthat relies on a known set of atta
k signaturesand hen
e la
ks adaptability.NFR[15℄, Emerald[7℄ and Bro[19℄ are otherexpert systems that, primarily, perform knowl-edge based intrusion dete
tion. Argus sharesthe same design goals of real-time atta
k re-sponse and extensibility as these systems butalso exploits the 
omplementary advantages ofanomaly based agents and data-mining algo-rithms, namely greater sensitivity to newer at-ta
ks and automati
 
onstru
tion of 
ompli
atedsignatures.Pal et. al. [18℄ is representative of a di�er-ent 
lass of solutions that argue the 
ase of in-trusion toleran
e, namely the need for building



systems that 
an tolerate and survive mali
iousatta
ks. Spe
i�
ally, this paper proposes a poli
ybased approa
h that allows appli
ations to exe-
ute 
orre
tly even in 
orrupt environments andproposes several obsta
les in the path of an at-ta
ker that signi�
antly de
rease the amount ofdamage that 
an be performed immediately aftera su

essful intrusion. This proposal is 
omple-mentary to Argus.Foster et. al. [10℄ presents a se
urity ar
hite
-ture for grid 
omputing that some 
ontend wouldbe the way of the future. Grid 
omputing envis-ages highly distributed deployment of resour
eswhi
h 
ould be a

essed and used from anywhereelse in the grid. A greater onus on network se
u-rity exists in a grid-like environment as more sen-sitive information wades through the network.We 
ontend that Argus is uniquely suited forthis purpose when deployed as follows: the Gridwould be divided into multiple administrative di-visions whi
h would be poli
ed by one or moremanagers. Inter-manager 
ommuni
ation wouldbe a
heived through the standard Intrusion De-te
tion Message Ex
hange Format[5℄. Alerts orIntrusion Dete
tion Messages that are 
reated byanalyzing agents would be limited to the admin-strative domain of o

urren
e, thereby ensurings
alability. The ar
hite
ture of Argus also pro-vides for 
ustomization, in that the \pro�les" ofnormal a
tivity would vary with the adminstra-tive domain. Pro�le- Customization de
reasesthe number of false positives 
onsiderably andthereby de
reases the network traÆ
.VI. Con
lusion and future workThe 
onstru
tion of Argus demonstrates that amix of anomaly dete
tion agents and knowledgebased agents performs better than an ar
hite
-ture 
onsisting of only one variety of agents. Tothe best of our knowledge Argus is the �rst in-trusion dete
tion system that 
onforms to theemerging IDXP standard and uses a mixture ofagents. We believe that intrusion dete
tion sys-tems of the future would 
omprise a se
ure, peer-to-peer infrastru
ture of heterogenous indepen-dently administered systems that 
ommuni
atethrough IDXP and ex
hange alert information
onforming to the Intrusion Dete
tion MessageEx
hange Format Data Model [5℄. While sophis-ti
ated languages su
h as N-Code, p-BEST thaten
ode atta
k signatures exist, there exists lit-tle support for en
oding atta
k responses. Webelieve that the intrusion dete
tion systems ofthe future would also be equipped with real-

time response 
apabilities and there is mu
h todo before response-spe
i�
ation languages of anequivalent sophisti
ation be
ome available. Ar-gus uses shell/perl/T
L s
ripts for this purpose.Of great importan
e is the integration of existingnetwork 
ontrol methods su
h as SNMP, withinthe atta
k response spe
i�
ation primitives. In-trusion Dete
tion systems should also make bet-ter use of the available ICMP information.A
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