
Faster Computation of the Tate Pairing

Christophe Arènea, Tanja Lange∗,b, Michael Naehrigb,c, Christophe Ritzenthalera

a Institut de Mathématiques de Luminy
163, avenue de Luminy, Case 907

13288 Marseille CEDEX 09
France

b Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven

Netherlands
c Microsoft Research
One Microsoft Way
Redmond, 98052 WA

USA

Abstract

This paper proposes new explicit formulas for the doubling and addition steps in Miller’s algorithm to
compute the Tate pairing on elliptic curves in Weierstrass and in Edwards form. For Edwards curves the
formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the
group law on Edwards curves by presenting the functions which arise in addition and doubling. The Tate
pairing on Edwards curves can be computed by using these functions in Miller’s algorithm.

Computing the sum of two points or the double of a point and the coefficients of the corresponding
functions is faster with our formulas than with all previously proposed formulas for pairings on Edwards
curves. They are even competitive with all published formulas for pairing computation on Weierstrass curves.
We also improve the formulas for Tate pairing computation on Weierstrass curves in Jacobian coordinates.
Finally, we present several examples of pairing-friendly Edwards curves.

Key words: Pairings, Miller functions, explicit formulas, Edwards curves.

1. Introduction

Since their introduction to cryptography by Bernstein and Lange [7], Edwards curves have received a lot
of attention due to the fact that their group law can be computed very efficiently. The group law in affine form
was introduced by Edwards in [15] along with a description of the curve and several proofs of correctness.
Remarkably none of the proofs provided a geometric interpretation while addition on Weierstrass curves is
usually explained via the chord-and-tangent method.

Cryptographic applications in discrete-logarithm-based systems such as Diffie-Hellman key exchange or
digital signatures require efficient computation of scalar multiples and thus have benefited from the speedup
in addition and doubling. The situation is significantly different in pairing-based cryptography where Miller’s
algorithm needs a function with divisor (P ) + (Q) − (P + Q) − (O) for two input points P and Q, their

This work has been supported in part by the European Commission through the ICT Programme under Contract ICT–
2007–216646 ECRYPT II, and in part by grant MTM2006-11391 from the Spanish MEC. The first author is beneficiary of a
Ph.D. grant from the AXA Research Fund.

∗Corresponding author
Email addresses: arene@iml.univ-mrs.fr (Christophe Arène), tanja@hyperelliptic.org (Tanja Lange),

michael@cryptojedi.org (Michael Naehrig), ritzenth@iml.univ-mrs.fr (Christophe Ritzenthaler)
URL: hyperelliptic.org/tanja (Tanja Lange), cryptojedi.org/michael (Michael Naehrig)

Preprint submitted to Elsevier May 20, 2010



sum P + Q, and neutral element O. For curves in Weierstrass form these functions are readily given by the
line functions in the usual addition and doubling. Edwards curves have degree 4 and thus any line passes
through 4 curve points instead of 3. This led many to conclude that Edwards curves provide no benefit to
pairings and are doomed to be slower than the Weierstrass counterparts.

So far two papers have attempted to compute pairings efficiently on Edwards curves: Das and Sarkar [13]
use the birational equivalence to Weierstrass curves to map the points on the Edwards curve to a Weierstrass
curve on which the usual line functions are then evaluated. This approach comes at a huge performance
penalty as these implicit pairing formulas need many field operations to evaluate them. Das and Sarkar then
focus on supersingular curves with embedding degree k = 2 and develop explicit formulas for that case.

Ionica and Joux [23] use a different map to a curve of degree 3 and compute the 4-th power of the Tate
pairing. The latter poses no problem for usage in protocols as long as all participating parties perform the
same type of pairing computation. Their results are significantly faster than Das and Sarkar’s but they are
still much slower than pairings on Weierstrass curves.

In this paper we close several important gaps:

• We provide a geometric interpretation of the addition law for twisted Edwards curves.

• We study additions, doublings, and all the special cases that appear as part of the geometric addition
law for twisted Edwards curves.

• We use the geometric interpretation of the group law to show how to compute the Tate pairing on
twisted Edwards curves.

• We give examples of ordinary pairing-friendly Edwards curves at several security levels. The curves
have embedding degrees between 6 and 22.

Beyond that, we develop explicit formulas for computing the Tate pairing on Edwards curves that

• solidly beat the results by Das and Sarkar [13] and Ionica and Joux [23];

• are as fast as the fastest previously published formulas for the doubling step on Weierstrass curves,
namely curves with a4 = 0 (e.g. Barreto-Naehrig curves) in Jacobian coordinates, and faster than
other Weierstrass curves;

• need the same number of field operations as the best published formulas for mixed addition in Jacobian
coordinates; and

• have minimal performance penalty for non-affine base points.

In particular, for even embedding degree k the doubling step on an Edwards curve takes 1M+1S+(k+
6)m + 5s, where m and s denote the costs of multiplication and squaring in the base field while M and S

denote the costs of multiplication and squaring in the extension field of degree k. A mixed addition step
takes 1M + (k + 12)m and an addition step takes 1M + (k + 14)m. Our method for pairing computation
on Edwards curves can be used for all curves that can be represented in Edwards form over the base field.

We also improve the addition and doubling steps on Weierstrass curves given by an equation y2 =
x3 + a4x + a6. We present the first explicit formulas for full addition steps on Weierstrass curves. The new
formulas need 1M + 1S + (k + 6)m + 5s for a doubling step on curves with coefficient a4 = −3. On such
curves a mixed addition step costs 1M+ (k + 6)m+ 6s and an addition step costs 1M+ (k + 9)m+ 6s. On
curves with a4 = 0, the formulas take 1M + 1S + (k + 3)m + 8s for a doubling step, 1M + (k + 6)m + 6s
for a mixed addition, and 1M + (k + 9)m + 6s for an addition step.

Our new formulas for Weierstrass curves are the fastest when using affine base points (except in the case
a4 = 0, a6 = b2). For projective base points – a common case in pairing-based protocols – it is better to use
Edwards curves.

2



2. Background on Pairings

Let q be a prime power not divisible by 2 and let E/Fq be an elliptic curve over Fq with neutral element
denoted by O. Let n | #E(Fq) be a prime divisor of the group order and let E have embedding degree
k > 1 with respect to n, i. e. k is the smallest integer such that n | qk − 1.

Let P ∈ E(Fq)[n] and let fP ∈ Fq(E) be such that div(fP ) = n(P ) − n(O). Let µn ⊂ F∗

qk denote the
group of n-th roots of unity. The reduced Tate pairing is given by

Tn : E(Fq)[n]× E(Fqk )/nE(Fqk)→ µn; (P, Q) 7→ fP (Q)(q
k
−1)/n.

Miller [26] suggested to compute pairings in an iterative manner. Let n = (nl−1, . . . , n1, n0)2 be the binary
representation of n, where nl−1 = 1. Let gR,S ∈ Fq(E) be the function arising in the addition of two points
R and S on E, i.e. gR,S is a function with div(gR,S) = (R) + (S) − (R + S) − (O), where O denotes the
neutral element in the group of points, R + S denotes the sum of R and S on E, and additions of the form
(R) + (S) denote formal additions in the divisor group. Miller’s algorithm starts with R = P, f = 1 and
computes

1. for i = l− 2 to 0 do

(a) f ← f2 · gR,R(Q), R← [2]R, //doubling step

(b) if ni = 1 then f ← f · gR,P (Q), R← R + P . //addition step

2. f ← f (qk
−1)/n.

Note that pairings can be combined with windowing methods by replacing the computation in step (b)
by

f ← f · fc,P (Q) · gR,[c]P (Q), R← R + [c]P,

where the current window in the binary representation of n corresponds to the value c. The Miller function
fc,P is defined via div(fc,P ) = c(P )− ([c]P )− (c− 1)(O). But windowing methods are rarely used because
of the extra costs of 1M for updating the variable f .

3. Formulas for Pairings on Weierstrass curves

An elliptic curve over Fq in short Weierstrass form is given by an equation of the form y2 = x3 +a4x+a6

with a4, a6 ∈ Fq. In this section we present new formulas for the addition and doubling step in Miller’s
algorithm that are faster than previous ones. Furthermore, we also cover the case of a non-affine base point.

The fastest formulas for doublings on Weierstrass curves are given in Jacobian coordinates (cf. the
EFD [6]). A point is represented as (X1 : Y1 : Z1) which for Z1 6= 0 corresponds to the affine point (x1, y1)
with x1 = X1/Z

2
1 and y1 = Y1/Z

3
1 . To obtain the full speed of pairings on Weierstrass curves it is useful

to represent a point by (X1 : Y1 : Z1 : T1) with T1 = Z2
1 . This allows one s −m tradeoff in the addition

step compared with the usual representation (X1 : Y1 : Z1). If the intermediate storage is an issue or if s

is not much smaller than m, T1 should not be cached. We present the formulas including T1 below; the
modifications to omit T1 are trivial.

For S ∈ {R, P}, the function gR,S for Weierstrass curves is given as the fraction of the usual line functions
by

gR,S(X : Y : Z) =
(Y Z3

0 − Y0Z
3)− λ(XZ2

0 −X0Z
2)ZZ0

(X − cZ2)Z
,

where λ is the slope of the line through R and S (with multiplicities), (X0 : Y0 : Z0) is a point on the line,
and c is the x-coordinate of R + S. When one computes the Tate pairing, the point (X0 : Y0 : Z0) and the
constants λ and c are defined over the base field Fq. The function is evaluated at a point Q = (XQ : YQ : ZQ)
defined over Fqk .

3



We assume that k is even. This allows us to use several improvements and speedups that are presented
in [2] and [3]. As usual, let the field extension Fqk be constructed via a quadratic subfield as Fqk = Fqk/2(α),
with α2 = δ for a non-square δ ∈ Fqk/2 ; and let Q be chosen to be of the form Q = (xQ : yQα : 1) with
xQ, yQ ∈ Fqk/2 . The latter is enforced by choosing a point Q′ on a quadratic twist of E over Fqk/2 and
defining Q as the image of Q′ under the twist isomorphism. The denominator of gR,S(Q) is given by xQ− c
which is defined over the subfield Fqk/2 . Thus only the numerator needs to be considered as all multiplicative
contributions from proper subfields of Fqk are mapped to 1 by the final exponentiation and can be discarded.
Furthermore, for addition and doubling in Jacobian coordinates we can write λ = L1/Z3, where Z3 is the
z-coordinate of R + S and L1 depends on R and S. Since Z3 is defined over Fq, we can instead compute
Z3(yQZ3

0α− Y0)− L1(xQZ2
0 −X0)Z0 giving gR,S up to factors from subfields of Fqk .

3.1. Addition steps

In Miller’s algorithm, all additions involve the base point as one input point so, when computing the
line function, (X0 : Y0 : Z0) can be chosen as the base point P and all values depending solely on P and Q
can be precomputed at the beginning of the computation. For additions, P is always stated as the second
summand, i. e. P = (X2 : Y2 : Z2).

To enable an m − s tradeoff we compute 2gR,P (Q); this does not change the result of the computation
since 2 ∈ Fq. Multiplications with xQ and yQ cost (k/2)m each; for k > 2 it is thus useful to rewrite the
line function as

l = Z3 · 2yQZ3
2α− 2Z3 · Y2 − L1 · (2(xQZ2

2 −X2)Z2),

needing (k + 1)m for precomputed y′

Q = 2yQZ3
2α and x′

Q = 2(xQZ2
2 −X2)Z2. Additionally 1M is needed

to update the variable f in Miller’s algorithm.

Full addition. We use Bernstein and Lange’s formulas (“add-2007-bl”) from the EFD [6]. We can cache
all values depending solely on P . In particular we precompute (or cache after the first addition or doubling)
R2 = Y 2

2 and S2 = T2 · Z2. The numerator of λ is L1 = D − C.

A = X1 · T2; B = X2 · T1; C = 2Y1 · S2; D = ((Y2 + Z1)
2 −R2 − T1) · T1;

H = B −A; I = (2H)2; J = H · I; L1 = D − C; V = A · I;

X3 = L2
1 − J − 2V ; Y3 = L1 · (V −X3)− 2C · J ; Z3 = ((Z1 + Z2)

2 − T1 − T2) ·H ;

T3 = Z2
3 ; l = Z3 · y

′

Q − (Y2 + Z3)
2 + R2 + T3 − L1 · x

′

Q.

The formulas need 1M+(k+9)m+6s to compute the addition step. To our knowledge this is the first set of
formulas for full (non-mixed) addition. If m is not significantly more expensive than s, some computations
should be performed differently. In particular, R2 needs not be stored, D is computed as D = 2Y2 · Z1 · T1,
l contains the term −2Y2 · Z3 instead of −(Y2 + Z3)

2 + R2 + T3, and the computation of Z3 can save some
field additions.

If the values T1, R2, S2, T2, x
′

Q, and y′

Q cannot be stored, different optimizations are needed; in particular
the line function is computed as

l = ((Z3 · Z2) · Z
2
2 ) · yQα− Y2 · Z3 − (L1 · Z2) · Z

2
2 · xQ + X2 · (L1 · Z2)

and the computation costs end up as 1M + (k + 17)m + 6s.

Mixed addition. Mixed addition means that the second input point is in affine representation. Mixed
additions occur in scalar multiplication if the base point P is given as (x2 : y2 : 1).

We now state the mixed addition formulas based on Bernstein and Lange’s formulas (“add-2007-bl”)
from the EFD [6]. Mixed additions are the usual case studied for pairings and the evaluation of the line
function in (k+1)m is standard. However, most implementations miss the s−m tradeoff in the main mixed
addition formulas and do not compute the T -coordinate.

B = x2 · T1; D = ((y2 + Z1)
2 −R2 − T1) · T1; H = B −X1; I = H2; E = 4I; J = H · E;

L1 = (D − 2Y1); V = X1 · E; X3 = L2
1 − J − 2V ; Y3 = r · (V −X3)− 2Y1 · J ;

Z3 = (Z1 + H)2 − T1 − I; T3 = Z2
3 ; l = 2Z3 · yQα− (y2 + Z3)

2 + R2 + T3 − 2L1 · (xQ − x2).
4



The formulas need 1M + (k + 6)m + 6s to compute the mixed addition step.

3.2. Doubling steps

The main differences between the addition and the doubling formulas are that the doubling formulas
depend on the curve coefficients and that the point (X0 : Y0 : Z0) appearing in the definition of gR,S is
(X1 : Y1 : Z1), which is changing at every step. So in particular Z0 6= 1 and no precomputations (like x′

Q or
y′

Q in the addition step) can be done.

For arbitrary a4 the equation of the slope is λ = (3X2
1 + a4Z

4
1 )/(2Y1Z1) = (3X2

1 + a4Z
4
1 )/Z3. Thus Z3 is

divisible by Z1 and we can replace l by l′ = l/Z1 which will give the same result for the pairing computation.
The value of

l′ = (Z3 · Z
2
1 ) · yQα− 2Y 2

1 − L1 · Z
2
1 · xQ + X1 · L1

can be computed in at most (k + 3)m + 1s for arbitrary a4 and with slightly less operations otherwise.
The formulas by Ionica and Joux [23] take into account the doubling formulas from the EFD for general

Weierstrass curves in Jacobian coordinates. We thus present new formulas for the more special curves with
a4 = −3 and a4 = 0.

Doubling on curves with a4 = −3. The fastest doubling formulas are due to Bernstein (see [6] “dbl-
2001-b”) and need 3m + 5s for the doubling.

A = Y 2
1 ; B = X1 ·A; C = 3(X1 − T1) · (X1 + T1);

X3 = C2 − 8B; Z3 = (Y1 + Z1)
2 −A− T1; Y3 = C · (4B −X3)− 8A2;

l = (Z3 · T1) · yQα− 2A− C · T1 · xQ + X1 · C; T3 = Z2
3 .

The complete doubling step thus takes 1M + 1S + (k + 6)m + 5s. Note that L1 = C.

Doubling on curves with a4 = 0. The following formulas compute a doubling in 1m + 7s. Note that
without T1 and computing Z3 = 2Y1 ·Z1 a doubling can be computed in 2m+5s which is always faster (see
[6]) but the line functions make use of Z2

1 . Note further that here L1 = E = 3X2
1 is particularly simple.

A = X2
1 ; B = Y 2

1 ; C = B2; D = 2((X1 + B)2 −A− C); E = 3A; G = E2;

X3 = G− 2D; Y3 = E · (D −X3)− 8C; Z3 = (Y1 + Z1)
2 −B − T1;

l = 2(Z3 · T1) · yQα− 4B − 2E · T1 · xQ + (X1 + E)2 −A−G; T3 = Z2
3 .

The complete doubling step thus takes 1M + 1S + (k + 3)m + 8s.

4. Geometric interpretation of the group law on twisted Edwards curves

In this section K denotes a field of characteristic different from 2. A twisted Edwards curve over K is a
curve given by an affine equation of the form Ea,d : ax2 + y2 = 1 + dx2y2 for a, d ∈ K∗ and a 6= d. Twisted
Edwards curves were introduced by Bernstein et al. in [5] as a generalization of Edwards curves [7] which
are included as E1,d. An addition law on points of the curve Ea,d is given by

(x1, y1) + (x2, y2) =

(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1− dx1x2y1y2

)

.

The neutral element is O = (0, 1), and the negative of (x1, y1) is (−x1, y1). The point O′ = (0,−1) has
order 2. The points at infinity Ω1 = (1 : 0 : 0) and Ω2 = (0 : 1 : 0) are singular and blow up to two points
each.

Edwards curves received a lot of attention because the above addition can be computed very efficiently,
resulting in highly efficient algorithms to carry out scalar multiplication, a basic tool for many cryptographic
protocols.

5



The name twisted Edwards curves comes from the fact that the set of twisted Edwards curves is invariant
under quadratic twists while a quadratic twist of an Edwards curve is not necessarily an Edwards curve. In
particular, let δ ∈ K \K2 and let α2 = δ for some α in a quadratic extension K2 of K. The map ǫ : (x, y) 7→
(αx, y) defines a K2-isomorphism between the twisted Edwards curves Eaδ,dδ and Ea,d. Hence, the map ǫ is
the prototype of a quadratic twist. Note that twists change the x-coordinate unlike on Weierstrass curves
where they affect the y-coordinate.

We now study the intersection of Ea,d with certain plane curves and explain the Edwards addition law
in terms of the divisor class arithmetic. We remind the reader that the divisor class group is defined as the
group of degree-0 divisors modulo the group of principal divisors in the function field of the curve, i.e. two
divisors are equivalent if they differ by a principal divisor. For background reading on curves and Jacobians,
we refer to [17] and [33].
Let P

2(K) be the two-dimensional projective space over K, and let P = (X0 : Y0 : Z0) ∈ P
2(K) with Z0 6= 0.

Let L1,P be the line through P and Ω1, i. e. L1,P is defined by Z0Y − Y0Z = 0; and let L2,P be the line
through P and Ω2, i. e. L2,P is defined by Z0X −X0Z = 0.

Let φ(X, Y, Z) = cX2X2 +cY 2Y 2 +cZ2Z2 +cXY XY +cXZXZ +cY ZY Z ∈ K[X, Y, Z] be a homogeneous
polynomial of degree 2 and C : φ(X, Y, Z) = 0, the associated plane (possibly degenerate) conic. Since the
points Ω1, Ω2,O

′ are not on a line, a conic C passing through these points cannot be a double line and φ
represents C uniquely up to multiplication by a scalar. Evaluating φ at Ω1, Ω2, and O′, we see that a conic
C through these points has the form

C : cZ2(Z2 + Y Z) + cXY XY + cXZXZ = 0, (1)

where (cZ2 : cXY : cXZ) ∈ P
2(K).

Theorem 1. Let Ea,d be a twisted Edwards curve over K, and let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 :
Z2) be two affine, not necessarily distinct, points on Ea,d(K). Let C be the conic passing through Ω1, Ω2, O

′,
P1, and P2, i. e. C is given by an equation of the form (1). If some of the above points are equal, we consider
C and Ea,d to intersect with at least that multiplicity at the corresponding point. Then the coefficients in
(1) of the equation φ of the conic C are uniquely (up to scalars) determined as follows:

(a) If P1 6= P2, P1 6= O
′ and P2 6= O

′, then

cZ2 = X1X2(Y1Z2 − Y2Z1),

cXY = Z1Z2(X1Z2 −X2Z1 + X1Y2 −X2Y1),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2).

(b) If P1 6= P2 = O′, then cZ2 = −X1, cXY = Z1, cXZ = Z1.

(c) If P1 = P2, then cZ2 = X1Z1(Z1 − Y1),

cXY = dX2
1Y1 − Z3

1 ,

cXZ = Z1(Z1Y1 − aX2
1 ).

Proof. If the points are distinct, the coefficients are obtained by evaluating the previous equation at the
points P1 and P2. We obtain two linear equations in cZ2 , cXY , and cXZ

cZ2(Z2
1 + Y1Z1) + cXY X1Y1 + cXZX1Z1 = 0,

cZ2(Z2
2 + Y2Z2) + cXY X2Y2 + cXZX2Z2 = 0.

The formulas in (a) follow from the (projective) solutions

cZ2 =

∣

∣

∣

∣

X1Y1 X1Z1

X2Y2 X2Z2

∣

∣

∣

∣

, cXY =

∣

∣

∣

∣

X1Z1 Z2
1 + Y1Z1

X2Z2 Z2
2 + Y2Z2

∣

∣

∣

∣

, cXZ =

∣

∣

∣

∣

Z2
1 + Y1Z1 X1Y1

Z2
2 + Y2Z2 X2Y2

∣

∣

∣

∣

.

6



If P1 = P2 6= O
′, we start by letting Z1 = 1, Z = 1 in the equations. The tangent vectors at the non

singular point P1 = (X1 : Y1 : 1) of Ea,d and of C are

(

dX2
1Y1 − Y1

aX1 − dX1Y
2
1

)

,

(

−cZ2 − cXY X1

cXY Y1 + cXZ

)

.

They are collinear if the determinant of their coordinates is zero which gives us a linear condition in the
coefficients of φ. We get a second condition by φ(X1, Y1, 1) = 0. Solving the linear system, we get the
projective solution

cZ2 = X3
1 (−dY 2

1 + a) = X1(1− Y 2
1 ) = X1(Y1 + 1)(1− Y1),

cXY = 2dX2
1Y 2

1 − Y1 − Y 2
1 + dX2

1Y1 − aX2
1

= −1− Y1 + dX2
1Y 2

1 + dX2
1Y1 = (Y1 + 1)(dX2

1Y1 − 1),

cXZ = −dX2
1Y 3

1 − aX2
1 + Y 2

1 + Y 3
1 = (Y1 + 1)(Y1 − aX2

1 )

using the curve equation aX2
1 + Y 2

1 = 1 + dX2
1Y 2

1 to simplify. Finally, since P1 6= O
′, we can divide

by 1 + Y1 and homogenize to get the result which provides the formulas as stated. The same formulas
hold if P1 = O′ since intersection multiplicity greater than or equal to 3 at O′ is achieved by setting
φ = X(Y + Z) = XY + XZ.

Assume now that P1 6= P2 = O′. Note that the conic C is tangent to Ea,d at O′ if and only if
(∂φ/∂x)(0,−1, 1) = (cXY y + cXZz)(0,−1, 1) = 0, i.e. cXY = cXZ . Then φ = (Y +Z)(cZ2Z + cXY X). Since
P1 6= O

′, it is not on the line Y + Z = 0. Then we get cZ2Z1 + cXY X1 = 0 and the coefficients as in (b). �

Let P1 and P2 be two affine K-rational points on a twisted Edwards curve Ea,d, and let P3 = (X3 : Y3 :
Z3) = P1 + P2 be their sum. Let

l1 = Z3Y − Y3Z, l2 = X

be the polynomials of the horizontal line L1,P3
through P3 and the vertical line L2,O through O respectively,

and let
φ = cZ2(Z2 + Y Z) + cXY XY + cXZXZ

be the unique polynomial (up to multiplication by a scalar) defined by Theorem 1. The following theorem
shows that the group law on a twisted Edwards curve indeed has a geometric interpretation involving the
above equations. It gives us an important ingredient to compute Miller functions.

Theorem 2. Let a, d ∈ K∗ with a 6= d and let Ea,d be a twisted Edwards curve over K. Let P1, P2 ∈
Ea,d(K). Define P3 = P1 + P2. Let φ, l1, l2 be defined as above. Then we have

div

(

φ

l1l2

)

∼ (P1) + (P2)− (P3)− (O). (2)

Proof. Let us consider the intersection divisor (C · Ea,d) of the conic C : φ = 0 and the singular quartic
Ea,d. Bezout’s Theorem [18, p. 112] tells us that the intersection of C and Ea,d should have 2 · 4 = 8 points
counting multiplicities over K. We note that the two points at infinity Ω1 and Ω2 are singular points of
multiplicity 2. Moreover, by definition of the conic C, (P1) + (P2) + (O′) + 2(Ω1) + 2(Ω2) ≤ (C · Ea,d).
Hence there is an eighth point Q in the intersection. Let L1,Q : lQ = 0 be the horizontal line going through
Q. Since the inverse for addition on twisted Edwards curves is given by (x, y) 7→ (−x, y), we see that
(L1,Q · Ea,d) = (Q) + (−Q) − 2(Ω2). On the other hand (L2,O · Ea,d) = (O) + (O′) − 2(Ω1). Hence by

combining the above divisors we get div
(

φ
lQl2

)

∼ (P1) + (P2) − (−Q) − (O). By unicity of the group law

with neutral elementO on the elliptic curve Ea,d [33, Prop.3.4], the last equality means that P3 = −Q. Hence

(L1,P3
·Ea,d) = (P3)+(−P3)−2(Ω2) = (−Q)+(Q)−2(Ω2) and l1 = lQ. So div

(

φ
l1l2

)

∼ (P1)+(P2)−(P3)−(O).

�

7



Remark 3. From the proof, we see that P1 + P2 is obtained as the mirror image with respect to the y-axis
of the eighth intersection point of Ea,d and the conic C passing through Ω1, Ω2,O

′, P1 and P2.

Example 4. As an example we consider the Edwards curve E1,−30 : x2 + y2 = 1 − 30x2y2 over the set of
real numbers R. We choose the point P1 with x-coordinate x1 = −0.6 and P2 with x-coordinate x2 = 0.1.
Figure 1(a) shows addition of different points P1 and P2, and Figure 1(b) shows doubling of the point P1.

b

b

b

b

b b

P1

P2

P3 −P3L1,P3

C

E1,−30

O

O′

(a) P1 6= P2, P1, P2 6= O′, P3 = P1 + P2

b

b

b

b b

P1

P3 −P3L1,P3

C

E1,−30

O

O′

(b) P1 = P2 6= O′, P3 = 2P1

Figure 1: Geometric interpretation of the group law on x2 + y2 = 1 − 30x2y2 over R.

5. Formulas for Pairings on Edwards Curves

In this section we show how to use the geometric interpretation of the group law to compute pairings.
We assume that k is even and that the second input point Q is chosen by using the tricks in [2] and [3]: Let
Fqk have basis {1, α} over Fqk/2 with α2 = δ ∈ Fqk/2 and let Q′ = (X0 : Y0 : Z0) ∈ Eaδ,dδ(Fqk/2). Twisting
Q′ with α ensures that the second argument of the pairing is on Ea,d(Fqk ) (and no smaller field) and is of
the form Q = (X0α : Y0 : Z0), where X0, Y0, Z0 ∈ Fqk/2 .

By Theorem 2 we have gR,S = φ
l1l2

. In each step of the Miller loop first gR,S is computed, it is then

evaluated at Q = (X0α : Y0 : Z0) and finally f is updated as f ← f ·gR,P (Q) (addition) or as f ← f2 ·gR,R(Q)
(doubling). Given the shape of φ and the point Q = (X0α : Y0 : Z0), we see that we need to compute

φ

l1l2
(X0α : Y0 : Z0) =

cZ2(Z2
0 + Y0Z0) + cXY X0αY0 + cXZX0Z0α

(Z3Y0 − Y3Z0)X0α

=
cZ2

Z0+Y0

X0δ α + cXY y0 + cXZ

Z3y0 − Y3
,

∈ (cZ2ηα + cXY y0 + cXZ)F∗

pk/2 ,

where (X3 : Y3 : Z3) are coordinates of the point R + P or R + R, y0 = Y0/Z0, and η = Z0+Y0

X0δ . Note
that η, y0 ∈ Fqk/2 and that they are fixed for the whole computation, so they can be precomputed. The
coefficients cZ2 , cXY , and cXZ are defined over Fq, thus the evaluation at Q given the coefficients of the
conic can be computed in km (multiplications by η and y0 need k

2m each).

5.1. Addition steps
Hisil et al. presented new addition formulas for twisted Edwards curves in extended Edwards form at

Asiacrypt 2008 [22]. Let P3 = P1 + P2 for two different points P1 = (X1 : Y1 : Z1 : T1) and P2 = (X2 : Y2 :
Z2 : T2) with Z1, Z2 6= 0 and Ti = XiYi/Zi. Theorem 1 (a) states the coefficients of the conic section for
addition. We use T1, T2 to shorten the formulas.

cZ2 = X1X2(Y1Z2 − Y2Z1) = Z1Z2(T1X2 −X1T2),

cXY = Z1Z2(X1Z2 − Z1X2 + X1Y2 − Y1X2),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2)

= Z1Z2(Z1T2 − T1Z2 + Y1T2 − T1Y2).
8



Note that all coefficients are divisible by Z1Z2 6= 0 and so we scale the coefficients. The explicit formulas
for computing P3 = P1 + P2 and (cZ2 , cXY , cXZ) are given as follows:

A = X1 ·X2; B = Y1 · Y2; C = Z1 · T2; D = T1 · Z2; E = D + C;

F = (X1 − Y1) · (X2 + Y2) + B −A; G = B + aA; H = D − C; I = T1 · T2;

cZ2 = (T1 −X1) · (T2 + X2)− I + A; cXY = X1 · Z2 −X2 · Z1 + F ;

cXZ = (Y1 − T1) · (Y2 + T2)−B + I −H ;

X3 = E · F ; Y3 = G ·H ; T3 = E ·H ; Z3 = F ·G.

With these formulas P3 and (cZ2 , cXY , cXZ) can be computed in 1M+(k+14)m+1ma, where ma denotes the
costs of a multiplication by a. If the base point P2 has Z2 = 1, the above costs reduce to 1M+(k+12)m+1ma.
We used Sage [34] to verify the explicit formulas.

5.2. Doubling steps

Theorem 1 (c) states the coefficients of the conic section in the case of a doubling step. To speed up the
computation we multiply each coefficient by −2Y1/Z1; remember that φ is unique up to scaling. Note also
that Y1, Z1 6= 0 because we assume that all points have odd order. The multiplication by Y1/Z1 reduces
the overall degree of the equations since we can use the curve equation to simplify the formula for cXY ; the
factor 2 is useful in obtaining an s−m tradeoff in the explicit formulas below. We obtain:

cZ2 = X1(2Y 2
1 − 2Y1Z1),

cXY = 2(Y1Z
3
1 − dX2

1Y 2
1 )/Z1 = 2(Y1Z

3
1 − Z2

1 (aX2
1 + Y 2

1 ) + Z4
1 )/Z1

= Z1(2(Z2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX2
1 − 2Y1Z1).

Of course we also need to compute P3 = 2P1. We use the explicit formulas from [5] for the doubling and
reuse subexpressions in computing the coefficients of the conic. The formulas were checked for correctness
with Sage [34]. Since the input is given in extended form as P1 = (X1 : Y1 : Z1 : T1) we can use T1 in the
computation of the conic as

cZ2 = X1(2Y 2
1 − 2Y1Z1) = 2Z1Y1(T1 −X1),

cXY = Z1(2(Z2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX2
1 − 2Y1Z1) = 2Z1(aX1T1 − Y 2

1 ),

and then scale the coefficients by 1/Z1. The computation of P3 = (X3 : Y3 : Z3 : T3) and (cZ2 , cXY , cXZ) is
then done in 1M + 1S + (k + 6)m + 5s + 2ma as

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = (X1 + Y1)

2; E = (Y1 + Z1)
2;

F = D − (A + B); G = E − (B + C); H = aA; I = H + B; J = C − I;

K = J + C; cZ2 = 2Y1 · (T1 −X1); cXY = 2J + G; cXZ = 2(aX1 · T1 −B);

X3 = F ·K; Y3 = I · (B −H); Z3 = I ·K; T3 = F · (B −H).

Note that like in [22] we can save 1ma per doubling by changing to the extended representation only
before an addition.

6. Operation counts

We give an overview of the best formulas in the literature for computing the Tate pairing on Edwards
curves and on the different forms of Weierstrass curves in Jacobian coordinates. We compare the results
with our new pairing formulas for Weierstrass and Edwards curves.

Throughout this section we assume that k is even, that the second input point Q is given in affine
coordinates, and that quadratic twists are used so that multiplications with η and yQ take (k/2)m each.

9



6.1. Overview

Chatterjee, Sarkar, and Barua [8] study pairings on Weierstrass curves in Jacobian coordinates. Their
paper does not distinguish between multiplications in Fq and in Fqk but their results are easily translated.
For mixed addition steps their formulas need 1M + (k + 9)m + 3s, and for doubling steps they need
1M+ (k + 7)m+ 1S + 4s if a4 = −3. For doubling steps on general Weierstrass curves (no condition on a4)
the formulas by Ionica and Joux [23] are fastest with 1M + (k + 1)m + 1S + 11s.

Actually, any mixed addition step (mADD) or addition step (ADD) in Miller’s algorithm needs 1M+km
for the evaluation at Q and the update of f ; each doubling step (DBL) needs 1M+km+1S for the evaluation
at Q and the update of f . In the following we do not comment on these costs since they do not depend on
the chosen representation and are a fixed offset. We also do not report these expenses in the overview table.

Hankerson, Menezes, and Scott [21] study pairing computation on Barreto-Naehrig [4] curves. All BN
curves have the form y2 = x3 + a6 and are thus more special than curves with a4 = −3 or Edwards curves.
They need 6m + 5s for a doubling step and 9m + 3s for a mixed addition step. Very recently, Costello et
al. [11] presented explicit formulas for pairings on curves of the form y2 = x3 + b2, i.e. a4 = 0 and a6 is a
square. Their representation is in projective rather than Jacobian coordinates.

To the best of our knowledge our paper is the first to publish full (non-mixed) addition formulas for
Weierstrass curves. Note that [11] started after our results became public.

Das and Sarkar [13] were the first to publish pairing formulas for Edwards curves. We do not include
them in our overview since their study is specific to supersingular curves with k = 2. Ionica and Joux [23]
proposed the thus far fastest pairing formulas for Edwards curves. Note that they actually compute the
4th power Tn(P, Q)4 of the Tate pairing. This has almost no negative effect for usage in protocols. So we
include their result as pairings on Edwards curves.

We denote Edwards coordinates by E , projective coordinates by P , and Jacobian coordinates by J .
Morain [27] showed that 2-isogenies reach a = 1 from any twisted Edwards curve; we therefore omit ma in
the table.

DBL mADD ADD

J , [23], [8] 1m + 11s + 1ma4
9m + 3s —

J , [23], this paper 1m + 11s + 1ma4
6m + 6s 9m + 6s

J , a4 = −3, [8] 7m + 4s 9m + 3s —
J , a4 = −3, this paper 6m + 5s 6m + 6s 9m + 6s
J , a4 = 0, [9], [8] 6m + 5s 9m + 3s —
J , a4 = 0, this paper 3m + 8s 6m + 6s 9m + 6s
P , a4 = 0, a6 = b2 [11] 3m + 5s 10m + 2s + 1mb 13m + 2s + 1mb

E , [23] 8m + 4s + 1md 14m + 4s + 1md —
E , this paper 6m + 5s 12m 14m

6.2. Comparison

The overview shows that our new formulas for Edwards curves solidly beat all previous formulas published
for Tate pairing computation on Edwards curves.

Our new formulas for pairings on arbitrary Edwards curves are faster than all formulas previously known
for Weierstrass curves except for the very special curves with a4 = 0. Specifically mixed additions on Edwards
curves are slower by some s−m tradeoffs but doublings are much more frequent and gain at least an s−m

tradeoff each.
The curves considered in [11] are extremely special: For p ≡ 2 mod 3 these curves are supersingular and

thus have k = 2. For p ≡ 1 mod 3 a total of 3 isomorphism classes is covered by this curve shape. They
have faster doublings but slower additions and mixed additions than Edwards curves.

Our own improvements to the doubling and addition formulas for Weierstrass curves beat our new
formulas for Edwards curves with affine base point by several s−m tradeoffs. However, in many protocols
the pairing input P is the output of some scalar multiplication and is thus naturally provided in non-affine

10



form. Whenever converting P to affine form is more expensive than proceeding in non-affine form, all
additions are full additions. A full addition on an Edwards curve needs one field operation less than on
Weierstrass curves. Depending on the frequency of addition and the s/m ratio the special curves with a4 = 0
might or might not be faster. For all other curves, Edwards form is the best representation. Furthermore,
scalar multiplications on Edwards curves are significantly faster than on Weierstrass curves.

Our new formulas for mixed addition steps (mADD) and doubling steps (DBL) on Weierstrass curves
are faster than all previous ones by several s−m tradeoffs. Our formulas for full addition (ADD) are the
only ones in the literature for most Weierstrass curves; for those with a4 = 0 and a6 = b2 they are faster
than those in [11] for any s/m ratio.

We note here that for curves in Weierstrass form the ate pairing is more efficient than the Tate pairing,
in particular when the R-ate pairing or optimal pairings with a very short loop in Miller’s algorithm are
computed, and when twists of degree 4 and 6 are used to represent torsion points. Our comparison only
refers to Tate pairing computation.

Further research needs to focus on how to compute variants of the ate pairing on Edwards curves. To
obtain the same or better efficiency as the fastest pairings on Weierstrass curves, it needs to be clarified
whether optimal ate pairings can be computed and whether the above mentioned high-degree twists can be
used as well for suitable pairing-friendly curves in Edwards form. Some initial results are presented in [12].

7. Construction of Pairing-Friendly Edwards Curves

The previous chapter showed that pairing computation can benefit from Edwards curves. Most construc-
tions of pairing-friendly elliptic curves in the literature aim at a prime group order and thus in particular
do not lead to curves with cofactor 4 that can be transformed to Edwards curves. Galbraith, McKee, and
Valença [19] showed how to use the MNT construction to produce curves with small cofactor. Some other
constructions that allow to find curves with cofactor divisible by 4 are described by Freeman, Scott, and
Teske [16].

To ensure security of the pairing based system two criteria must be satisfied: The group E(Fp) must
have a large enough prime order subgroup so that generic attacks are excluded and pk must be large enough
so that index calculus attacks in F∗

pk are excluded. For efficient implementation, we try to minimize p and k
to minimize the cost of arithmetic in Fp and Fpk and minimize n to minimize the length of the Miller loop.
This has the effect of balancing the difficulty of the DLPs on the curve and in the multiplicative group of
the finite field Fpk .

Following the ECRYPT recommendations [14], the “optimal” bitsizes of the primes p and n for curves
E/Fp with n | #E(Fp) and n prime are shown in Table 1 for the most common security levels. For these
parameters, the DLP in the subgroup of E(Fp) of order n is considered equally hard as the DLP in F∗

pk . In

order to transform the curve to an Edwards curve, we need to have #E(Fp) = 4hn for some cofactor h. It
follows that the rho-value ρ = log(p)/ log(n) of E is always larger than 1. The recommendations imply a
desired value for ρ · k as displayed in Table 1, which should be achieved with an even embedding degree to
favor efficient implementation. This means that p cannot be kept minimal but we managed to minimize n
to keep the Miller loop short.

In the following section we present six examples of pairing-friendly Edwards curves with embedding
degrees k ∈ {6, 8, 10, 22}, which cover the security levels given in Table 1.

security 80 96 112 128 160 256

log2(n) 160 192 224 256 320 512

log2(p
k) 1248 1776 2432 3248 4800 15424

ρ · k 7.80 9.25 10.86 12.67 15 30.13

Table 1: “Optimal” bitsizes for the primes n and p and the corresponding values for ρ · k for most common security levels.

11



8. Examples of Pairing-Friendly Edwards Curves

This section presents pairing-friendly Edwards curves. Note that they were constructed for applications
using the Tate pairing so that the curve over the ground field has a point of order 4. They are all defined
over a prime field Fp, and the ρ values are stated with the curves. Notation is as before, where the number
of Fp-rational points on the curve is 4hn.

The curve examples in this section cover the security levels in Table 1. We used the method and formula
in [14] to determine the effective security in bits on the curve and in the finite field.

8.0.1. Security level 80 bits (generic: 82 bits, index calculus: 79 bits):

k = 6, ρ = 1.22 following [19]:

D = 7230, ⌈log(n)⌉ = 165, ⌈log(h)⌉ = 34, ⌈log(p)⌉ = 201, k⌈log(p)⌉ = 1206

p = 2051613663768129606093583432875887398415301962227490187508801,

n = 44812545413308579913957438201331385434743442366277,

h = 7 · 733 · 2230663,

d = 1100661309421493056836745159318889208210931380459417578976626.

8.0.2. Security level 96 bits (generic: 95 bits, index calculus: 93 bits):

k = 6, ρ = 1.48 following [19]:

D = 4630, ⌈log(n)⌉ = 191, ⌈log(h)⌉ = 90, ⌈log(p)⌉ = 283, k⌈log(p)⌉ = 1698

p = 12076422473257620999622772924220230535655104285600826357856070179619031510615886361601,

n = 2498886235887409414948289020220476887707263210939845485839,

h = 11161 · 19068349 · 5676957216676051,

d = 2763915426899189358845059350727381504946815286189972438681082636399984067165911590884.

8.0.3. Security level 112 bits (generic: 112 bits, index calculus: 117 bits):

k = 8, ρ = 1.50 following Example 6.10 in [16]:

D = 1, ⌈log(n)⌉ = 224, ⌈log(h)⌉ = 111, ⌈log(p)⌉ = 337, k⌈log(p)⌉ = 2696

p = 2337736653699105669260383900156918881424547469292956866896259132890909437035723

48756028778874481604289

n = 22985796260053765810955211899935144604417092746113717429138553265289

h = 315669989 · 558193107149 · 14429732414341

d = 2137384144163601288355195724634322855348958454823252387999763620028079615999998

48556640836158104712032

12



8.0.4. Security level 128 bits (generic: 133 bits, index calculus: 127 bits):

k = 8, ρ = 1.50 following Example 6.10 in [16]:

D = 1, ⌈log(n)⌉ = 267, ⌈log(h)⌉ = 133, ⌈log(p)⌉ = 401, k⌈log(p)⌉ = 3208

p = 5106500003052745062671102775396566649855857676935384847563820321458497449535443

6071209268470508469629312810691036880709,

n = 8337030425086788445100704671763896482549397437850042633596560118040562641504433,

h = 5 · 17 · 1229 · 3181 · 4608053164778689785613892277341,

d = 2553250001526372531335551387698283324927928838467692423781910160729248724767721

8035604634235254234814656405345518440355,

8.0.5. Security level 160 bits (generic: 164 bits, index calculus: 154 bits):

k = 10, ρ = 1.49 following Construction 6.5 in [16]:

D = 1, ⌈log(n)⌉ = 328, ⌈log(h)⌉ = 160, ⌈log(p)⌉ = 490, k⌈log(p)⌉ = 4900

p = 319667071934078971315677746964738362812713703914060344412320604868708613896665173327525

2543330209754427990875101879841425427646115157594515629491249,

n = 546812704438652190176048473638362779688423061794499756311925945545462152449512232744941

959488864241,

h = 2
4

· 70199
4

· 7831391
4
,

d = 366838958032886838857360394166535857747556934852621175164120734346101628194129743602008

259319768868802620569094456792293200142806009932471922115210.

8.0.6. Security level 256 bits (generic: 259 bits, index calculus: 259 bits):

k = 22, ρ = 1.39 following Construction 6.6 in [16]:

D = 3, ⌈log(n)⌉ = 519, ⌈log(h)⌉ = 204, ⌈log(p)⌉ = 724, k⌈log(p)⌉ = 15928

p = 793243907836538225101919663581953770913765580662849594203574636874518836858270555160144

920983827280386815433912190214824741372960533715598691121880716182459140439367767771926

66177113943586415044911851669785290654695123,

n = 962131187808560377898569195262572710988984869464755002509459666178069262628367282191252

973105101373704953818660670550658659790389637917606342501732923486369,

h = 3
5

· 7 · 13
2

· 19
2

· 37
2

· 6421
2

· 7219 · 3498559
2

· 22526869
2

· 78478074679,

d = 264414627547939780810839826727395383259987444981352560753582877086320074680650633780571

920373615518032509200852332864216413041328949865016666759728218019456097204687710831048

17656092016879614901160245443945786256399518.

13



References

[1] Roberto M. Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja Lange, Kim Nguyen, and Frederik Vercauteren.
The Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC, 2005.

[2] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-based cryptosystems.
In CRYPTO 2002 [36], pages 354–368, 2002.

[3] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient implementation of pairing-based cryptosystems. J.
Cryptology, 17:321–334, 2004.

[4] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In SAC 2005 [31], pages
319–331, 2006.

[5] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted Edwards curves. In
Africacrypt [35], pages 389–405, 2008. http://cr.yp.to/papers.html#twisted.

[6] Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http://www.hyperelliptic.org/EFD.
[7] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. In ASIACRYPT 2007 [25], pages

29–50, 2007. http://cr.yp.to/newelliptic/.
[8] Sanjit Chatterjee, Palash Sarkar, and Rana Barua. Efficient computation of Tate pairing in projective coordinate over

general characteristic fields. In ICISC 2004 [29], pages 168–181, 2005.
[9] Zhaohui Cheng and Manos Nistazakis. Implementing pairing-based cryptosystems. In 3rd International Workshop on

Wireless Security Technologies IWWST-2005, 2005.
[10] Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors. Progress in Cryptology - INDOCRYPT 2008, 9th

International Conference on Cryptology in India, Kharagpur, India, December 14-17, 2008, proceedings, volume 5365 of
Lecture Notes in Computer Science, Berlin, 2008. Springer.

[11] Craig Costello, Huseyin Hisil, Colin Boyd, Juan Manuel Gonzalez Nieto, and Kenneth Koon-Ho Wong. Faster pairings on
special Weierstrass curves. In Pairing 2009 [32], pages 89–101, 2009.

[12] Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing computations on curves with high-degree twists. In
PKC 2010 [28], pages 224–242, 2010.

[13] M. Prem Laxman Das and Palash Sarkar. Pairing computation on twisted Edwards form elliptic curves. In Pairing
2008 [20], pages 192–210, 2008.

[14] Nigel Smart (editor). ECRYPT2 yearly report on algorithms and keysizes (2008-2009). Technical report, ECRYPT II
– European Network of Excellence in Cryptology, EU FP7, ICT-2007-216676, 2009. published as deliverable D.SPA.7
http://www.ecrypt.eu.org/documents/D.SPA.7.pdf.

[15] Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society, 44:393–422, 2007.
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html.

[16] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves. Cryptology ePrint
Archive, Report 2006/372, 2006. update 2008, http://eprint.iacr.org/2006/372, to appear in Journal of Cryptology.

[17] Gerhard Frey and Tanja Lange. Background on Curves and Jacobians, chapter 4 in [1], pages 45–85. 2005.
[18] William Fulton. Algebraic Curves. W. A. Benjamin, Inc., 1969.
[19] Steven D. Galbraith, James F. McKee, and Paula C. Valença. Ordinary abelian varieties having small embedding degree.

Finite Fields and their Applications, 13:800–814, 2007.
[20] Steven D. Galbraith and Kenneth G. Paterson, editors. Pairing-Based Cryptography - Pairing 2008, Second International

Conference, Egham, UK, September 1-3, 2008, Proceedings, volume 5209 of Lecture Notes in Computer Science, Berlin,
2008. Springer.

[21] Darrel Hankerson, Alfred J. Menezes, and Michael Scott. Software implementation of pairings. In Identity-Based Cryp-
tography [24], pages 188–206, 2009.

[22] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards curves revisited. In ASIACRYPT
2008 [30], pages 326–343, 2008.

[23] Sorina Ionica and Antoine Joux. Another approach to pairing computation in Edwards coordinates. In INDOCRYPT
2008 [10], pages 400–413, 2008. http://eprint.iacr.org/2008/292.

[24] Marc Joye and Gregory Neven, editors. Identity-Based Cryptography, volume 2 of Cryptology and Information Security
Series. IOS Press, 2009.

[25] Kaoru Kurosawa, editor. Advances in Cryptology—ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer
Science, Berlin Heidelberg, 2007. Springer.

[26] Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, 17(4):235–261, 2004.
[27] Francois Morain. Edwards curves and CM curves. Technical report, arXiv, 2009.
[28] Phong Nguyen and David Pointcheval, editors. 13th International Conference on Practice and Theory in Public-Key

Cryptography, Paris, France, May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes in Computer Science, Berlin,
2009. Springer.

[29] Choonsik Park and Seongtaek Chee, editors. Information Security and Cryptology - ICISC 2004, 7th International
Conference, Seoul, Korea, December 2-3, 2004, Revised Selected Papers, volume 3506 of Lecture Notes in Computer
Science. Springer, 2005.

[30] Josef Pieprzyk, editor. Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on the Theory and
Application of Cryptology and Information Security, Melbourne, Australia, December 7-11, 2008. Proceedings, volume
5350 of Lecture Notes in Computer Science, Berlin, 2008. Springer.

[31] Bart Preneel and Stafford E. Tavares, editors. Selected Areas in Cryptography, 12th International Workshop, SAC 2005,

14



Kingston, ON, Canada, August 11-12, 2005, Revised Selected Papers, volume 3897 of Lecture Notes in Computer Science.
Springer, 2006.

[32] Hovav Schacham and Brent Waters, editors. Pairing-Based Cryptography - Pairing 2009, Third International Conference,
Palo Alto, CA, USA, August 12-14, 2009, Proceedings, volume 5671 of Lecture Notes in Computer Science, Berlin, 2009.
Springer.

[33] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate texts in mathematics. Springer-Verlag,
1986.

[34] William Stein. Sage mathematics software (version 2.8.12), 2008. The Sage Group, http://www.sagemath.org.
[35] Serge Vaudenay, editor. Progress in Cryptology - AFRICACRYPT 2008, First International Conference on Cryptology in

Africa, Casablanca, Morocco, June 11-14, 2008, proceedings., Lecture Notes in Computer Science, Berlin, 2008. Springer.
[36] Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa

Barbara, California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science. Springer,
2002.

15


