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ABSTRACT

Employers increasingly allow employees to use their per-
sonal smartphones for work, but also impose strict security
policies (e.g., wiping the device after a series of failed lo-
gins), which on one hand protects the corporation’s data but
on the other hand can affect a user’s privacy and control of
her own data. To address these issues, recent proposals se-
curely partition work and personal data by means of virtu-
alization techniques. Yet, virtualization comes with limita-
tions. First, unless heavily optimized, it has a significant
overhead on resource-constrained phones. Second, it con-
strains all apps to be in the same partition at a time, while
users like having a mix of work and personal apps running
on the device simultaneously.

To enable this functionality, we introduce a new point in
the design space. We propose AppFork, an Android-based
platform which allows users to switch a single app from
one active profile (e.g., work) to another without switching
the active profile of all other apps. AppFork still achieves
the security of virtualization-based approaches, but with a
smaller overhead. We built a tool for automatically identify-
ing cross-profile channels in Android apps and applied it to
14,000 apps. Supported by this analysis, we craft the prob-
lem of cross-profile isolation for Android and implement our
solution to it. AppFork can be used with existing unmodified
apps. We evaluate it in depth with 24 Android apps. App-
Fork was able to successfully run all apps and provide two
isolated user profiles within each app.

1. INTRODUCTION

“Bring your own device” or BYOD is the situation in
which employers allow their employees to use their own
personal devices, particularly smartphones and tablets, for
work purposes [13,34]. BYOD brings significant bene-
fits to both the company and employees, including reduced
equipment costs, improved employee engagement, and the
convenience of carrying one dual-use device rather than a
dedicated phone for each activity. Hence, the BYOD phe-
nomenon appears to be here to stay.

Unfortunately, by using the same device for both work and
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personal activities, the user and the employer expose them-
selves to potential security and privacy risks [7, 17,22, 24,
31]. A company’s data is now stored and transmitted us-
ing devices and networks that the employer may not control.
Applications (apps) on the phone may not all be controlled
by the company and, in fact, could be untrustworthy or even
malicious. Users may resist company-imposed policies, like
data wipes after multiple unsuccessful attempts at unlocking
the phone. Users may also worry about employers being able
to mine personal data stored on their device, track their ac-
tivities, and delete personal data unnecessarily [10]. In short,
from a purely security and privacy perspective, there are im-
portant advantages—to both employers and employees—in
having employees use separate phones for work and per-
sonal activities.

We seek to retain the benefits of BYOD (a single phone)
while mitigating these types of security and privacy con-
cerns. Toward addressing these concerns, recent work [3,
4,18, 19] suggests virtualization to partition a device into a
business and personal workspace, such that work and per-
sonal data are isolated and can be governed by distinct secu-
rity and privacy policies. We argue that these approaches are
insufficient to meet users’ needs. First, classical virtualiza-
tion approaches come with a significant overhead for mobile
platforms because they require duplicating the phone operat-
ing system. Second, even lightweight virtualization, such as
Cells [3], which replicates only the middleware, does not al-
low users to have both partitions running at the same time—
as described in §2, we verified the importance of this require-
ment by surveying employees of a large IT company and the
vast majority of respondents reported concurrently running
both work and non-work apps at least a few times a day.

This paper presents the design, implementation and eval-
uation of AppFork, an Android-based platform designed to
provide the security and privacy properties of two (or more)
dedicated phones, but with a single phone. (We choose An-
droid due to its popularity, but note that other phone plat-
forms likely exhibit similar challenges.) From a security
point of view, AppFork allows users to have on the same
phone both a work and a personal profile, isolated and gov-



erned by profile-specific policies. From a functionality point
of view, AppFork is designed to be compatible with existing
unmodified apps and to enable the novel concept of a user
profile that is per-app. Unlike user accounts, per-app pro-
files let users switch a single app from one active profile to
another (e.g., from “work™ to “personal”’) without switching
all other apps’ active profiles.

Although previous systems have considered our security
goal of profile isolation (e.g., Cells [3], MOSES [26], Trust-
Droid [6]), to the best of our knowledge, AppFork is the first
system to meet both the security and functionality goals de-
scribed above. Enabling per-app profiles is especially chal-
lenging due to the difficulties involved in isolating profiles
within an app and between apps. First, in addition to us-
ing the same phone for work and personal purposes, users
often use the same app for both purposes—hence the need
for isolation within the app. We accomplish this by creating
partitions at the file system level and minimizing the number
of files duplicated across profiles, thus keeping the storage
overhead small. Second, although phone platforms provide
app isolation (e.g., on Android, apps have private storage
folders), there are many other channels that allow data to be
shared across apps and therefore across profiles (e.g., apps
running under different profiles can store data in a shared
public directory).

To quantify these challenges, we first build Chan-
nelCheck, a tool that performs both static and dynamic
analysis to automatically identify cross-profile channels in
an Android app. We present results from running Chan-
nelCheck on more than 14,000 Android apps. Driven by
this analysis, we implement a two-part solution to either au-
tomatically block those channels via AppFork, or to notify
the user, the app, or the employer of an additional poten-
tial cross-profile violation via ChannelCheck. Our AppFork
implementation ran successfully on all 24+ apps we tested in
depth and was able to isolate channels that could lead to data
leaks. Based on our implementation experiences, we outline
additional recommendations to Android (and other mobile
phone platforms) that, if adopted, could lead to even more
robust AppFork-like systems.

Overall, this paper makes the following contributions:

e We provide a concrete definition of the BYOD problem
for modern smartphones and particularly the Android
platform. We introduce the concept of per-app profiles
and motivate their need via a user study.

e We create ChannelCheck, a tool for automatically
identifying which channels an Android app uses to
share data (and possibly leak sensitive data across pro-
files), and we quantify how common these channels are
via an analysis of 14,000 Android apps.

e We design AppFork, which automatically blocks the
most prominent cross-profile leakage channels found
in our measurements. AppFork supports per-app pro-
files without requiring modifications to existing apps.
We implement and evaluate AppFork as a modified
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Figure 1: Examples of profiles with desired security poli-
cies.

version of Android, with a small storage overhead.

e We make recommendations to Android that, if
adopted, would allow for the further integration of
AppFork-like capabilities in Android.

2. MOTIVATION

AppFork is designed to enable owners of personal mobile
devices, such as smartphones and tablets, to use the same
physical device in different activities, such as work and per-
sonal (as in BYOD), with security and privacy properties
comparable with having distinct devices for each activity.

Scenario. We start by describing a BYOD scenario. Con-
sider a software developer working for an IT company.
Some of the apps installed on his smartphone are shown
in Figure 1. We highlight apps that contain sensitive infor-
mation and distinguish those used for work (in red) and/or
for personal (in green) activities. His employer allows him
to use his personal phone at work to access corporate data
via a restricted set of approved apps. In addition, for secu-
rity reasons, his phone must have a PIN enabled and must
implement a corporate policy wiping the phone after five
consecutive incorrect PIN attempts. At work, he uses his
phone mostly for emails (K9 Mail), calendar reminders, web
browsing (Chrome), taking notes (OI Notepad), and access-
ing data in the cloud (Box). Occasionally, he uses the phone
to take photos of whiteboard discussions or to chat with col-
leagues. However, while at work, he also uses apps without
a direct work-related purpose. He uses K9 Mail not only to
check work emails, but also for personal purposes. He uses
Facebook and CNN for personal purposes, while other work
apps are running at the same time. Though some of his apps
can be uniquely associated with either work or personal ac-
tivities, a significant number of apps, either for convenience
or for efficiency, are multi-purpose (e.g., Calendar, Camera,
K9 Mail, Acrobat Reader).
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P10. Employer: Monitor apps run-
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Table 1: Desirable BYOD properties supported by App-
Fork compared with state-of-the-art approaches.

Employer and user requirements. In the context of this
scenario, we describe the users’ and employers’ require-
ments for a BYOD device, also summarized in Table 1. The
advantages of being able to run work and personal apps on
the same device (P1 in Table 1) and at the same time (P4-P6)
are clear to our user, but he has two additional requirements.

First, he would like that his personal data, present in both
single- and multi-purpose apps (P5), to be protected from
access or deletion by his employer (P3, P7). Similarly, the
employer wishes that the user’s work-related data is not ac-
cidentally leaked via his use of personal apps (P8, P9). Data
separation of this form is not a feature of modern phones.
Unless apps explicitly build support for multiple isolated ac-
counts, users cannot ensure their personal and work data are
never co-mingled. This is difficult for multi-purpose apps,
as well as apps that communicate via the phone platform’s
sharing channels (detailed in §4).

Second, as a father of two kids who often “borrow” his
phone to play games, the user would like to protect his data
in different ways, depending on whether the phone is at
home, at work or elsewhere. For example, at home he would
prefer that his personal data not be erased if his kids enter
several wrong PINs (P3). Unfortunately, in current phone
platforms, one policy rules all: a corporate security policy
to wipe data applies to all apps and data with no distinction
(P2). Instead, it should be possible to have distinct policies
for work and personal data, to protect them according to dif-
ferent threat models.

From the employer’s point of view, it is essential to pre-
vent access to corporate data from malicious parties (P9) as
well as ensure that personal apps cannot compromise cor-
porate resources (e.g., a corporate wireless network). These

security needs lead employers to enforce strict policies on
their employees’ devices (e.g., data wiping (P2)) and even
monitoring apps’ network activities (P10).

User survey: The need for per-app profiles. In the re-
lated work section (§8), we discuss various solutions to ad-
dress the requirements above, among them virtualization ap-
proaches for separate work and personal accounts or “pro-
files”, as we call them. In addition to requiring significant
overhead (e.g., to duplicate the phone operating system or
middleware), virtualization approaches (and traditional user
accounts) do not allow users to simultaneously run multiple
apps each associated with a different profile.

Instead, we argue that users demand ways to control their
profiles at a finer granularity, on a per-app basis. As our sce-
nario already illustrates, personal and work apps often need
to be run simultaneously, but still be isolated from a security
and privacy point of view. We verified this hypothesis with a
small anonymous survey conducted in a large IT company.'.
We surveyed 56 people (43 M and 13 F, age distribution 20—
30 (8), 31-40 (26), 41-50 (18) and >50 (4)). We asked a
total of 14 questions about their work and personal phone
use. The survey did not explicitly mention BYOD until the
very end, when we asked whether they had ever heard about
BYOD (42 said “yes”). We summarize three key findings of
this survey.

Dual-purpose phones regularly, not occasionally. All par-
ticipants said they use their personal phone for work pur-
poses, and 50 of 56 said that at work, they run apps needed
both for work and personal purposes. At work, personal apps
are used from a few times a week (28% of participants) to a
few times a day (39%), to always (27%). Even more fre-
quently, work apps are used at home, from a few times a day
(38%) to always (48%). Finally, all but one participant re-
ported having multi-purpose apps on their phone, most com-
monly email (90%), web browsing (87%), calendar (80%),
contacts (76%), camera (67%), PDF viewer (64%) and maps
(62%).

Work and personal apps running simultaneously. We then
asked “How often do you happen to have work apps and
non-work (personal) apps running on your phone at the same
time?” Only 9% of participants answered “never” while
most (44%) said “all the time”. Other answers were “once
or twice a day” (34%) and “5-10 times a day” (13%). These
responses may represent a lower bound, as users are not al-
ways aware of background tasking. What is clear is that
many users have a need to run such apps simultaneously.

Preference for per-app profiles. We asked 55 of our par-
ticipants®> “Consider the apps on your phone that you use
for both work and personal purposes. Would you like if it
were possible to separate the work and personal data for any
of these apps, so that the work and personal data are never

'Our survey was reviewed by our institution’s group responsible
for reviewing human subject studies.

255 instead of 56 because we excluded one participant who had no
multi-purpose apps on his phone.



commingled?” 29 said “yes,” 15 were unsure, and 11 said
“no.” The main reason given for responding “no” (5/11) was
convenience. We asked participants who answered “yes” or
“unsure” to select among four options for achieving such
separation: “accounts” (our baseline, as users are already fa-
miliar with this option), “per-app switch,”® “both,” “none.”
Only 4 out of 44 chose “accounts”; 22 selected “per-app
switch” and 10 “both.”

Making strong claims about how representative these re-
sults are would require a large-scale user study, beyond the
scope of this paper. Still, our study provides a starting point
grounded in reality. It highlights the value of offering an
alternative to traditional per-user accounts—an alternative
that operates at the granularity of single apps. Moreover, it
demonstrates the importance of multi-profile apps for users.

3. GOALS AND THREAT MODEL

Security goals. AppFork aims to achieve a primary security
goal:

o Multi-phone security and privacy comparability. App-
Fork is designed to provide the security and privacy
properties of two (or more) phones, but with a single
phone.

A user who today might use separate work and personal
phones should, with AppFork, be able to use a single phone
with two profiles: a work profile and a personal profile.

To define our security goals for profiles more explicitly:

e Profile isolation. The apps and data associated with
one profile should not interact, within the phone itself,
with the apps and data associated with other profiles.

o Per-profile policies. Each profile may have its own se-

curity and privacy policies.

As an example of per-profile polices, AppFork may de-
stroy all app data associated with the work profile after five
incorrect PIN attempts (a policy some companies have to-
day); all the app data associated with the personal profile
may remain untouched.

Regarding our profile isolation goal, we note that it is im-
possible to guarantee isolation between apps installed on dif-
ferent phones if those apps have network access: those apps
may use the network (and remote servers) to communicate
(P8 in Table 1). Thus, we limit our own goal to providing
isolation within the phone itself.

We additionally observe the challenge of side-channels:
we cannot rule out the future discovery of novel new side-
channels which may allow an app in one profile to infer in-
formation about apps in another profile. For example, re-
searchers recently observed that background apps can use
accelerometer data to infer private information about touch
events in foreground apps [23]. Once discovered, it is possi-

SDescribed as “a switch attached to each app, so that you could
selectively switch each app into work or personal mode. Using this
solution, some apps could be running under your work profile while
other apps could be running under your personal profile.”

ble to employ targeted mechanisms to mitigate known side-
channels, as the authors of the above-cited paper discuss.
However, since it is impossible to predict what future side-
channels may arise, since the mitigation techniques may be
ad hoc rather than principled and generalizable, and since
side-channels are a potential concern for any single-phone
solution to the BYOD problem, we view side-channel pre-
vention as out of scope of this paper. Moreover, we ob-
serve that side-channels can also arise in two-phone scenar-
ios, e.g., hypothesizing extensions to [14] that use the mi-
crophone on one phone to extract information from the other
phone.

In addition to the above security goals, users should be
able to know which profile an app is running under, and
be able to control the switching of an app between profiles.
While it is our goal to ensure that the user (and not the app)
is allowed to switch apps from one profile to another, an ex-
plicit non-goal for our prototype implementation is the ele-
gance and effectiveness of the user interface.

Functionality goals. We strive for a system that meets not
only the above security goals, but also the following func-
tionality goals:

o Compatibility with existing apps. The system should
work with existing apps whenever possible, without re-
quiring changes to their code bases.

e Per-app profile switching. It should be possible for the
user to switch an individual app’s active profile with-
out switching the active profile for all the apps on the
phone.

e Low storage overhead. The storage overhead for using
the system should be minimal.

e Low switching overhead. The overhead for switching
an app’s profile should be minimal.

Achieving the per-app profile switching goal means that it is
possible for a user to quickly switch (for example) his email
app from his personal to his work profile, without switching
Facebook out of his personal profile. An additional primary
goal is to be compatible with the existing Android architec-
ture. Nevertheless, a secondary goal is to extract insights
into ways in which to modify Android (and phone platforms
in general) and facilitate even stronger security properties.

Threat model. Our threat model is closely associated with
our security goals above. An AppFork-equipped system has
the following actors: the phone (including the OS and App-
Fork), the user, the profile owners, and the apps. We use
profile owners to refer to the entities responsible for estab-
lishing the policies for different profiles. For example, the
owner of the work profile might be the user’s employer, and
the owner of the personal one the user himself. Apps can
be installed under one or more profiles. All parties, i.e., all
profile owners and the phone’s user, trust the AppFork sys-
tem. This requirement is similar to the requirement today
that these parties trust the phone hardware and underlying
operating system.
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Our threat model is largely guided by our goal to achieve
the security of two phones. Thus, we consider out of scope
any threats that are also not addressed by using two phones.
For example, we assume that profile owners trust device
users not to be malicious. A malicious user, even with sep-
arate phones for each profile, can always maliciously leak
information stored on one phone to another phone (e.g., by
taking a picture of the first phone).

Similarly, if a profile owner (e.g., a business) approves
the installation of an app under a profile (e.g., the work pro-
file), then the profile owner trusts that app. To justify this
trust, consider the following: if an app installed on the work
profile is untrustworthy, it may be able to extract and leak in-
formation about the data of other apps installed on the work
profile. But such an app could leak that information even if
it was installed on a dedicated, work-issued phone (e.g., via
the network). Hence, an AppFork profile owner must trust
the apps he installs (or approves for installation) under that
profile, just as he must trust the apps he would install on a
dedicated phone.

A profile owner may not, however, trust apps installed un-
der other profiles (P7 and P9 in Table 1). Consider the sce-
nario depicted in Figure 2, in which Appl and App2 are in-
stalled in the work profile, and App2 and App3 are installed
in the personal profile. The owner of the work profile may
not trust App3. Indeed, if all three apps were installed on
the same conventional (non-AppFork) phone, App3 might
seek to extract and exfiltrate work-related data from App2.
Hence, our profile isolation security goal above is critical:
the work profile data must be isolated from App3.

In the dedicated-phone case, a profile owner who approves
the installation of Appl and App2 on a phone must trust
Appl and App2. However, we observe that in the dedicated-
phone case, the profile owner would not evaluate the risks as-
sociated with App2 also being used in other profiles. Hence,
we do not require the profile owner to trust that App2 will
correctly handle data spanning multiple profiles; our profile
isolation security goal is designed to address also this issue.

Goals in context. Other works have addressed goals similar
to ours, but to our knowledge we are the first to consider all
these goals simultaneously. Traditional virtualization (that
duplicates the phone OS) or systems like MOSES [26] sat-
isfy the security goals of AppFork, but not its functional
goals. Lightweight virtualization, such as Cells [3], and se-
curity frameworks for domain isolation (e.g., TrustDroid [6])
also satisfy the security goals of AppFork with a smaller

storage overhead, but they still do not address the function-
ality goals of per-app profiles and low-switching overhead.

Finally, we point out that it is not a goal of AppFork to
make Android apps more secure. We assume profile owners
trust the apps that they approve for their profile. We assume
such an approval implies verifying that apps are not mali-
cious (or accepting the risks) and ensuring the Android plat-
form is used as per guidelines. We stress that this assump-
tion is the same assumption used with today’s solutions to
the BYOD problem as well; if a large IT company approves
the use of applications for employees’ mobile phones, and
if one of those applications proves to be untrustworthy, then
that application can cause harm or leak data.

4. CROSS-PROFILE ISOLATION

AppFork seeks to enable per-app profiles in unmodified
existing apps. Because we wish to allow a single app
to support and switch between multiple profiles, we face
two design challenges: (1) isolating profiles within an app,
and (2) isolating profiles between apps. For example, K9
Mail when running under the work profile should not—even
accidentally—leak work data to the K9 Mail personal pro-
file, or to any other application running in personal mode.

We designed AppFork for Android due to its popularity.
Here, we thus analyze in more detail why and how the above
challenges arise in Android. However, other phone plat-
forms likely exhibit similar challenges. In the following,
we survey available cross-profile communication channels
on Android. We then describe ChannelCheck, a tool we built
for automatically detecting the use of these channels in An-
droid apps, and the results obtained by applying it to 14,234
contemporary Android applications. We conclude with an
overview of AppFork’s approach to cross-profile isolation.

4.1 Android Background

Android isolates apps from each other by running them
with separate Linux user identifiers (UIDs), and restricts their
access to system resources and other apps by requiring that
they request specific permissions at installation time. Fur-
ther, an app’s files are stored in a private folder accessible
only to that app (unless the app’s UID is shared with other
apps). Thus, stock Android already provides some level of
isolation. However, there are still many ways in which cross-
profile communication can occur.

Explicit communication channels. Figure 3 summarizes
key channels in which Android apps might share data. As
discussed in §3, we do not consider network communication
since the network is also available to apps running on two
separate phones. Channels of type 1 usually apply to individ-
ual apps that span multiple profiles (within-app channels). In
reality, they can also allow communication between different
apps that share the same UID, but, as shown later, this is rel-
atively rare. Channels of type 2—6 apply both to single apps
running in multiple profiles (within-app channels) and mul-
tiple apps running in different profiles (between-apps chan-
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Figure 3: Cross-profile data sharing channels in Android
(network and side-channels are not shown).

nels). We elaborate on these channels below.

Inter-Component Communication. Android apps consist
of components, including Activities, Services, Content
Providers and BroadcastReceivers. Components can com-
municate in many ways:

e Direct intents: One Activity or Service can launch an-
other using a direct Android Intent. Intents can be
used for task delegation, e.g., K9 Mail uses an In-
tent to launch Acrobat Reader to open an attachment.
They can also be used to set up communication ses-
sions between components, i.e., by binding to a Ser-
vice, which can expose an AIDL (Android Interface
Definition Language) interface.

® Broadcast intents: Apps may also send and receive
Broadcast Intents. Broadcasts may originate from the
system (e.g., notifying the device’s screen is off) or
from apps, and they are delivered to each registered
receiver.

e Content providers: Content providers handle shared
sets of data like SMSs or contacts. Apps can use
built-in content providers or expose their own custom
content providers. Two apps (or two profiles of the
same app) can communicate by one writing to a con-
tent provider and the other reading from it.

External storage. Apps can share data by writing to world-
readable locations on external storage (the SD card). Prior
to Android 4.4, all files on external storage were accessi-
ble to any app with the READ_EXTERNAL_STORAGE permis-
sion. Starting with Android 4.4, external storage is struc-
tured like internal storage, using app-specific directories ac-
cessible only to that app. However, apps in Android 4.4 can
still share data via the SD card through public shared direc-
tories, such as Music/.

£\ Personal profile

Linux IPC. Apps can also communicate via standard Linux
inter-process communication methods.  Android offers
Java APIs for Linux IPC (android.os.MemoryFile and an-
droid.net.LocalSocket) in addition to native Linux IPC. As
shown later, these methods are rarely used in Android apps,
which can instead achieve the same goals using more effi-
cient ICC methods.

Side-channel capability. As discussed in §3, we focus on
explicit data sharing channels and not side-channels. Never-
theless, we consider such possible attacks. Prior work has
demonstrated that System Services, such as SensorService,
WiFiManager or AudioManager, can be used as covert chan-
nels [30]. In addition, as we noted in §3 for accelerometer
data, sensors can be used by an application to acquire infor-
mation about another [23].

4.2 ChannelCheck: Detecting Channel Use

Above, we analyzed the possible cross-profile communi-
cation channels available to Android applications. To better
understand how frequently these channels are used in real
apps, and thus to ultimately inform our design and imple-
mentation of AppFork, we built a tool to detect their use
in existing apps. This tool, ChannelCheck, performs static
and dynamic analysis on an app’s binary in order to identify
whether and how the app uses all channels described above.
ChannelCheck detects the use of both explicit communica-
tion channels and side-channels, but excludes the network
channel for reasons given above.

ChannelCheck’s static analysis involves processing every
method call site and looking for the presence of Java APIs
related to system services, Java bindings to Linux IPC, built-
in content providers, custom content providers, access to SD
card, and sensor services.* Moreover, ChannelCheck reports
whether an app shares the same UID with any app of a given
set of apps, implying the app’s data is shared with those apps.

For dynamic analysis, ChannelCheck executes a given
app and traces, using a kernel mode tracer, calls to APIs
for exchange and broadcast of intents, filesystem accesses
to data stored on external storage, and Linux IPC attempts
(including sockets, pipes and Android custom shared mem-
orys). The kernel mode tracer is context-sensitive, i.e. the
tracer detects when the app is executing its own native code,
and switches on tracing automatically. This reduces Linux
IPC false positives arising from support libraries.

To automate the dynamic analysis (and be able to run it for
many thousand apps), ChannelCheck relies on an existing

“For content providers, ChannelCheck detects use of methods for
adding or retrieving data from built-in content providers (as speci-
fied in the android.provider package) and use of APIs that must be
implemented by custom content providers. For sensors, it detects
use of the getSystemService() method classified based on the SEN-
SOR_SERVICE specified in the argument, for all 13 sensor types
available in Android.

SMore precisely, we trace system calls for socket (unixdomain),
connect (unixdomain), bind (unixdomain), pipe, pipe2, msgget,
semget, shmget, ioctl (ashmem), mknod (fifo) and mknodat (fifo).



Explicit communication channel | Num of apps | AppFork
Direct intents 21.1% (2994) Ve
Broadcast intents 14.8% (2100) v
Built-in content providers 14.3% (2005) v
Custom content providers 8.7% (1222) X
SDcard access 49.3% (6937)

SDcard - only app-specific paths 8.4% (1183) v
SDcard - public shared directory 31.3% (4399) X
Linux IPC 0.5% (69) X
Shared UIDs 0.9% (120) X
None 44.1% (6200) v

Table 2: Use of explicit cross-profile communication
channels in existing Android apps, based on static and
dynamic analysis of 14,067 apps. The rightmost column
indicates whether AppFork can automatically prevent
cross-profile leakage via that channel, as described in §5.

automation framework called PUMA [15] that automatically
runs an app and navigates to various pages of the app by em-
ulating user interaction (e.g., by clicking a button, swiping
a page, etc.). PUMA can be configured to explore all struc-
turally distinct pages in an app, with a certain timeout (or a
bound on the number of app interactions to perform).

4.3 Measurement Study

To assess the relative risk posed by the channels described
above we used ChannelCheck with 14,234 Android apps.
Apps were crawled from the Google Play Store during the
third week of December 2013, and were listed as the 500
most popular free apps in each category provided by the
store. We configured PUMA to explore all pages in an app
with a timeout of 3 minutes. The tool successfully ran with
14,067 apps. Static analysis failed for 146 apps (1.0% fail-
ure rate) due to APK decode and unzip errors, and dynamic
analysis failed for 19 apps (0.1% failure rate) due to Android
or PUMA crashes.

Table 2 shows the fraction of apps communicating with
other apps through one of the explicit cross-profile channels.
A large fraction (49%) of the apps use external storage. 8%
of the apps access external storage only at app-specific paths,
but we expect with the changes introduced in Android 4.4
(see §4.1) more apps will use app-specific paths in the fu-
ture. On the other hand, we found 31% of the apps using
public shared directories on the SD card. Intents are also
largely used with 21% of the apps using direct intents and
15% broadcast intents. Access to content providers is also
relatively common: 14% of the apps use built-in content
providers, with roughly half of them accessing at least one
of the three most popular content providers: Settings, Contacts
and Calendar. 9% of the apps use custom content providers.
Linux IPC was found only in 0.5% of the apps (in fact de-
velopers are encouraged to use instead more efficient ICC
methods provided by the framework), and shared UIDs were
present in less than 1% of the apps. Finally, 44% of the apps
do not use any of these communication channels.

Table 3 reports on the frequency with which applications

Side-channel capability | Num of apps
System services 56.2% (7899)
Sensors - accelerometer 2.6% (363)
Sensors - gyro 0.1% (13)
Sensors - light 0.1% (17)
Sensors - magnetic field 02% (22)
Sensors - orientation 0.4% (60)
Sensors - proximity 0.4% (63)
None 43.8% (6167)

Table 3: Presence of side-channel capabilities in existing
Android apps, based on static and dynamic analysis of
14,067 Android apps. Note that an app’s use of a poten-
tial side channel does not necessarily mean that it is using
that channel to actually leak information; in other words,
the numbers in this table present an upper bound on the
risk of side-channels. For sensors, we report results only
for those that were used in at least 0.1% of apps.

use functionality that may be used as side-channels. These
numbers represent an upper bound on the side-channel risk
through these capabilities: the use of such a feature (e.g.,
system services or sensors) does not necessarily mean that
the app is using this channel to leak cross-profile informa-
tion. In fact, in the majority of cases, we expect that this
is not the case; nevertheless, we report these numbers for
completeness. We find that 44% of the apps do not use any
functionality associated with a known side-channel.

We found that the numbers in Tables 2-3 are roughly the
same if we consider only the apps in Business and Com-
munication categories, which are the two most relevant cat-
egories for BYOD. The only major difference is the larger
adoption of content providers and system services: 37.6%
of these apps use built-in content providers, 14.5% use cus-
tom content providers, and 66.5% use system services.

These measurements help inform and validate our design
of AppFork, discussed below. However, we also believe that
these results are of independent interest to researchers study-
ing the BYOD problem or other Android topics.

4.4 AppFork Overview & Deployment Model

The results above show that about half of the tested apps
make use of several cross-profile channels. Without taking
these channels into account, cross-profile data leakages can
easily occur. To prevent such leakages, we propose a de-
ployment model that combines the use of AppFork, which
blocks many of these channels, and ChannelCheck, which
can be used to verify the absence of any channels not explic-
itly handled by AppFork.

AppFork prevents cross-profile leaks via many of the
channels described above, as we detail in the next section
(§5) and summarized in Table 2. In particular, AppFork fo-
cuses on the most prominent channels detected in our mea-
surements: it automatically blocks cross-profile communi-
cation using direct and broadcast intents, built-in content
providers, and app-specific folders on external storage.



Recall from our threat model that corporations (and pro-
file owners in general) must trust apps that they install for
a given profile. AppFork helps prevent leakages through
the most prominent communication channels, but additional,
less frequently used communication channels remain. To
verify that an app can be trusted for a given profile, the pro-
file owner can run ChannelCheck to check for the presence
of any cross-profile channel not handled explicitly by App-
Fork. In particular, an employer should reject apps that could
leak data through public shared directories, custom content
providers, or improperly configured permissions on Linux
sockets or pipes. Employers can also choose to reject apps
that use potential side-channels, or simply create per-profile
policies to blacklist sensitive services and sensors, which are
enforced by AppFork (see §5.5 for an example).

Thus, in addition to serving as a measurement tool, Chan-
nelCheck provides employers with an easy and automatic
way to decide whether a third-party application should be
approved for use by its employees for work purposes. In
the next section, we describe how AppFork achieves profile
isolation for the channels considered.

S. DESIGN AND IMPLEMENTATION

We describe our AppFork design. As subtle yet impor-
tant issues can arise when applying generic designs to real,
complex systems, we also detail specific challenges with our
implementation.

5.1 AppFork Overview

We designed AppFork with the goal of supporting existing
apps with no modifications. We built AppFork on Android
by modifying the Android Application Framework and pro-
vided an app for end users to manage their profiles.

Figure 4 shows the AppFork architecture. AppFork is im-
plemented as an Android system service. This service, which
starts when the phone boots, has three main components:
the Profile Manager for managing user profiles and enforc-
ing storage isolation, the Cross Profile Filter for preventing
apps from leaking data across profiles, and the Policy En-
forcer for implementing the specifications of all profile poli-
cies, by monitoring policy conditions through Monitors and
executing policy actions through Actuators.

Peeking into details of our implementation, we restrict ac-
cess to the AppFork service to processes with uid set to an-
droid.uid.system. This means that third-party apps cannot ac-
cess this service and, for instance, arbitrarily change an app’s
profile. Instead, only first-party apps, if granted system priv-
ileges, can invoke the AppFork service API. We sign our
AppFork app with the platform key of our Android custom
build so that it inherits system privileges.

5.2 Per-App Profiles

In AppFork, a profile consists of a policy and a set of apps
that are allowed to run under the profile. An app can be asso-
ciated with multiple profiles. AppFork profiles are different

1% party apps 3" party apps

ontacts
AppFork Camera ) -

Pandora(_Facebook

”””””””””””””””””””””””””””””” App API
Application Framework
System Services Activity System
Manager Content
AppFork ‘ ProfiIeManager‘ ‘ CrossProfileFilter ‘ Package Providers

Manager

Contacts

Service Monit Sensor
’ Android Runtime / Dalvik/ Zygote ‘
fffffffffffffffffffffffffffffffffffffffffffffffffffffffff INI
’ Native Libraries (SQLite, libc, etc.) ‘
FileSystem Linux Kernel

Figure 4: AppFork’s architecture.

from user accounts because they are activated/deactivated on
a per-app basis.

The profile owner determines the policy and the set of
apps allowed in that profile. AppFork stores this informa-
tion in the file system (with access restricted to system pro-
cesses). A profile owner may be the owner of the device or
an external actor, such as an employer. In the latter case, the
employer determines the policy and provides a list of pre-
approved apps that the device owner can selectively install.
As discussed in §3, a profile owner approves apps for that
profile, and AppFork trusts those apps within the scope of
that profile (i.e., it is not AppFork’s responsibility to block
malicious apps approved by an employer); this is akin to
trusting the work-installed apps on a work-issued phone. A
profile’s policy applies only to the apps in that profile. For
instance, a work policy like the one in Figure 3 wipes only
work-related data and apps after five consecutive failed lo-
gins.

Each time a user changes an app’s active profile, AppFork
checks whether the app is currently running and, if so, stops
the app and all associated background processes. The app’s
profile is switched (more details on this below) and the app
is started in the new profile.

5.3 Profile Partitions

AppFork maintains a separate storage partition for each
profile, ensuring only data belonging to that profile is stored
in that partition and is not accessible to other profiles.

Files saved to the internal storage are by default private
to the app®, and stored at the path /data/data/<packagename>.
When the app is first installed, AppFork creates a partition
for a “default” profile by moving the content of the app’s
original folder to /data/data/<packagename>-default and creat-
ing a symbolic link with a path of /data/data/<packagename>
pointing to this folder. Suppose this app is added to both
the “work” and “personal” profiles. The first time the
app is switched into one of the profiles, AppFork dynam-

®Qur analysis in §4 showed that very few apps have shared UIDs
so we can make this assumption without loss of generality.



ically creates a storage partition for each profile, at loca-
tion /data/data/<packagename>-work if the profile is “work”
or /data/data/<packagename>-personal if the profile is “per-
sonal”. These newly created folders have the same structure
as the “default” profile’s folder, except that AppFork cre-
ates symbolic links in them to point to the “default” lib sub-
folder located at /data/data/<packagename>-default/lib, which
contains the app’s precompiled libraries. With symbolic
links, the lib folder is never replicated, minimizing App-
Fork’s storage overhead.

When the user starts or switches an app into a given pro-
file, AppFork creates a symbolic link in the original app
folder /data/data/<packagename> pointing to the partition of
the active profile. The file system permissions are set so
that the folder of the active profile is accessible by processes
with the app’s uid, while folders containing inactive profiles
have android.uid.system permissions. Thus, an approved app
running in profile “personal” cannot maliciously access files
within the “work” partition, even if it is aware of the sym-
bolic link switch. This approach provides isolation for all file
system operations, which includes apps’ SQLite databases,
since they are stored in the same app-specific folders.

Note that our approach based on symbolic links can pos-
sibly generate many replicated files across profiles. A more
advanced solution is to use a copy-on-write approach in
which symbolic links are maintained for previously unmodi-
fied or static files resident in their app’s original folder. Files
are copied into the appropriate partition only if a write is
scheduled from any of the profiles. This solution, however,
increases the implementation complexity and potentially the
processing overhead, as it requires keeping track of all write
operations. In the evaluation, we compare AppFork’s stor-
age overhead against this optimized implementation.

Android apps with the READ_EXTERNAL_STORAGE or
WRITE_EXTERNAL_STORAGE permissions can read or write
files in external storage (the SD card). Files saved here are
world-readable, so accessible to any app with such permis-
sions. Our solution to provide isolation for external storage
builds on two observations. First, as per Android guide-
lines, external storage offers minimal protection for stored
data, hence apps should not store sensitive data here, but
instead in the app-private directories which can be effec-
tively protected. Second, starting with Android 4.4, exter-
nal storage is structured like internal storage, with package-
specific directories such that apps can access their private
partitions (e.g., /sdcard/Android/data/<packagename>) without
holding the broad EXTERNAL_STORAGE permission.

We assume apps will follow the above guideline of us-
ing app-specific directories on external storage and not re-
quest the EXTERNAL_STORAGE permission. Then, App-
Fork can use a partitioning approach similar to that of in-
ternal storage, except that symbolic links cannot be cre-
ated in external storage due to the vfat partition. At a
profile switch, AppFork changes the name of the resident
folder, /sdcard/Android/data/<packagename>, used in the pre-

vious profile to either /sdcard/Android/data/<packagename>-
work or /sdcard/Android/data/<packagename>-personal, depend-
ing on the profile. However, AppFork does not isolate profile
data stored in shared public directories on external storage,
such as Music, Pictures, and Ringtones. Since these directories
can be essential for some apps (e.g., to avoid a huge storage
overhead or to simplify their syncing strategy), we do allow
them. It is up to profile owners (e.g., corporations) to ver-
ify that approved applications comply with this policy and
the Android guidelines for sensitive data. Recall AppFork’s
goal of approximating two phones with a single phone—
since external storage is world-readable, profile owners may
not approve an application violating these guidelines for sen-
sitive data even on a dedicated phone for each profile. Chan-
nelCheck logs how an app uses external storage and can sup-
port this assessment.

5.4 Cross-Profile Isolation

Android apps can share data across profiles in several
ways (see §4). Table 2 summarizes which channels App-
Fork automatically blocks: we address potential leakages
through ICC (discussed below), internal and external storage
(discussed above), and built-in content providers (discussed
below); we do not address the use of Linux IPC since it is
rarely used in Android apps and the same functionality can
be achieved with more lightweight ICC, and also because
ChannelCheck can identify applications that use IPC; we do
not address the use of networks to leak data across profiles
as this is also possible with the use of two dedicated phones
(see §3).

Direct intents. Android apps are allowed to start other apps
or services through respective calls to either startActivity or
startService(bindService). Additionally, Android allows apps
to delegate tasks to other apps through calls to startActivity-
ForResult. These features are facilitated by Android’s Intent
class. While useful, these feature pose security and privacy
risks at odds with AppFork’s goal of cross-profile isolation.
For example, we found that a Book Catalogue app delegates
scanning of barcodes to a Barcode Scanner app. If Book
Catalogue runs under one profile, it may leak information to
the Barcode Scanner, which might maintain a record of all
scanned barcodes irrespective of Book Catalogue’s current
profile.

A solution to the potential cross-profile leakage threat in
the case of task delegation is non-trivial. Consider the ex-
ample shown in Figure 1, in which the user runs K9 Mail
and AcrobatReader, both allowed in both profiles. K9 Mail
may delegate opening an attachment to AcrobatReader, cur-
rently running under the other profile. To prevent data leak-
age across profiles, we envision at least four options which
can be implemented at the system level: (1) The calling app
cannot arbitrarily force another app to switch its current pro-
file, so it has to wait for a timeout to expire or for the needed
app to end; (2) the calling app has the right to force the
called app to switch profile such that it can be used immedi-



ately; (3) the called app switches profile only after the user
is prompted with a dialog and approves the switch; (4) the
request of the calling app is rejected and a SecurityException is
thrown or a friendlier failed status is returned to the calling
app.

The first three options can lead to a denial-of-service at-
tack: a malicious app running in the background may con-
tinuously invoke AcrobatReader and prevent other profiles
from using the app. Even in the case of the third option, the
user, unaware of what is happening, may keep approving the
profile switch. Another drawback of the second approach is
that it is not immediately clear what profile should be given
precedence, and a drawback of the third approach is that di-
alogs are disruptive to users.

For these reasons, we argue that this class of conflict is
better resolved by taking the apps’ semantics into account.
In fact, whether the profile switch should be automatically
authorized depends on how trusted the apps are (e.g., first-
party apps may be able to force a switch) and on the type of
task (e.g., another app for viewing PDF files may be avail-
able for use instead). Our current solution is based on the
fourth approach described above, in which the calling app re-
ceives a SecurityException thrown by AppFork from within the
startActivityLocked member function of the ActivityStack class.
This approach builds on the assumption that apps that dele-
gate tasks to other apps should already be prepared to handle
such exceptions, in the event that the needed app is unavail-
able.

For unresolved intents that result in Android’s “‘chooser”
activity, we modified the onCreate and rebuildList functions of
the ResolverActivity and ResolveListAdapter classes respectively,
to only display apps approved under the active profile of the
intent creator.

Finally, we also ensure that app components cannot bind
to services running under different profiles, with the excep-
tion of critical system services (e.g., Location Manager, Ac-
count Manager, Power Manager). This is implemented by
intercepting calls to startServiceLocked and bindService of Ac-
tivityManagerService, where we deny requests to start or bind
to services across profile boundaries.

Broadcast intents. Android apps may also send broadcast
intents, which are delivered to all subscribed receivers (pos-
sibly subject to a predefined permission). Cross-profile data
leakage can happen if a trusted app in one profile sends sen-
sitive information to receivers in apps under a different pro-
file. A data leak can even occur through subscriber registra-
tion because upon successful registration, the last available
sticky broadcast is automatically sent to the new broadcast
receiver. AppFork resolves this potential threat by filter-
ing out registered or registering receivers with active pro-
files that are different from the one of the sending app.
Specifically, we modified the broadcastintentLocked and reg-
isterReceiver member functions of the ActivityManagerService
class.
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Content providers. Android apps can also share data
through built-in and custom content providers. For built-
in content providers like the Contacts provider, AppFork en-
forces a logical partition of the provider’s database. Specif-
ically, we modified the getDatabaseLocked API of the SQLi-
teOpenHelper class to fork and control access to the appropri-
ate databases for each profile. At a profile switch, AppFork
forces a switch of the database to the one belonging to the
active profile, for any database function specified in the Con-
tentProvider class.

For custom content providers, we cannot modify the cor-
responding ContentProvider classes (per our requirement of
supporting unmodified apps) so we take a different ap-
proach. AppFork checks whether the calling app and the
owner of the custom content provider are within the same
profile (this happens by instrumenting the acquireProvider and
acquireExistingProvider APIs of the ActivityThread class). If they
belong to different profiles, a null reference is returned. Oth-
erwise, the requested provider is returned. This solution pro-
vides isolation at the cost of making custom providers avail-
able only in one profile at the time.’

5.5 Policy Specification and Enforcement

Profiles are specified in XML and stored on the device.
They are currently not encrypted, but could be in the future.
We provide a simple template that can be extended as more
policy constructors are introduced. Each profile specifica-
tion consists of two parts: a list of packages approved for
use under that profile and a policy. Each policy consists of
one or more conditions to be monitored and one or more
actions to be executed if those conditions are detected. Fig-
ure 5 shows an example of a “work™ and of a “personal”
profile. The “work™ policy specifies that after five consec-
utive failed logins, data belonging to that profile must be
wiped; the “personal” policy specifies that apps requesting
the TYPE_ACCELEROMETER resource should be denied ac-
cess.

Each time the phone boots or new profiles are created, the
policy specifications are parsed. The map of all supported
apps approved under the profile is stored in memory, and
each policy is translated into subscriptions to policy moni-
tors. As an example, we describe the monitors and actuators
we implemented for the policies shown in Figure 5.

For the “work” policy, we implemented a Password Mon-
itor that keeps track of incorrect password entries. We modi-
fied the reportFailedPasswordAttempt() method of the DevicePol-
icyManagerService class to send a sticky broadcast with infor-
mation about the number of incorrect password entries each
time a wrong password is entered. If the maximum num-
ber of wrong attempts is reached, the Wipe Off Actuator is
invoked to erase all profile data. Once the profile has been
deleted, a notification is sent to the other components and
the AppFork app to reflect the changes.

"Because the support for custom content providers comes with this
limitation, in Table 2 we list them as not supported by AppFork.



<profile name="work">
<packages>
<approved name="com.google.android.gm">
<approved name="com.mobisystems.office">
</packages>
<policy>
<sensor name="failed-login" maxOccurs="5"/>
<actuator name="wipe-profile"/>
</policy>
</profile>
<profile name="personal">
<packages>
<approved name="com. facebook.katana">
<approved name="com.google.android.gm">
</packages>
<policy>
<sensor name="access-resource"
TYPE_ACCELEROMETER" />
<actuator name="block-access"/>
</policy>
</profile>

value="

Figure 5: Examples of AppFork profile specifications.

For the “personal” policy, we implemented a Blacklisted
Resources Monitor that keeps track of apps’ requests for de-
vice resources, particularly sensors such as proximity, ac-
celerometers, and light. We modified the Contextimpl, Sensor-
Manager and SystemSensorManager classes to monitor app’s
access to device sensors. If access is requested, the Resource
Block Actuator grants or denies access depending on the pol-
icy. For simplicity, if access has to be denied it filters out the
app’s subscriptions for sensor readings. This approach pre-
vents apps from crashing as opposed to if their requests were
outrightly rejected. We envision other more advanced imple-
mentations where the sensor readings could be returned but
in an obfuscated or generalized manner as proposed in [16].

Policy Enforcer is designed in a modular fashion such that
new monitors and actuators can be easily plugged in. Addi-
tional monitors can cover important contextual information,
such as home or work location, battery level, or WiFi net-
work information. Additional actuators can provide a more
comprehensive set of actions, such as blocking network traf-
fic, switching network radio, and backing up data to the
cloud. For instance, we envision policies such as “if at work
and using the corporate WiFi network, use the cellular net-
work for transmitting ‘personal’ data” or “block apps from
communicating with blacklisted network domains”.

6. EVALUATION

We discussed the security analysis of our system inline
with its design in §5. In this section, we focus our evalua-
tion on three goals: (1) AppFork is able to support unmodi-
fied Android apps; (2) AppFork’s storage overhead is small
compared to state-of-the-art solutions; and (3) the time re-
quired for switching an app from one profile to another is
small enough to not impact app usability. We tested App-
Fork on a Samsung Nexus S phone running our custom build
of Android 4.1.2. AppFork was configured with two pro-
files, “work™ and “personal”, with associated policies (see
Figure 5).
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6.1 Support of Unmodified Apps

Referring to the results of the app analysis described in
§4 (Table 2), by counting the number of apps that make
use of the channels explicitly handled by AppFork, we es-
timate AppFork being able to achieve automatic profile iso-
lation for 65% (9089) of the 14,067 apps we tested using
ChannelCheck. For the rest of the apps, ChannelCheck is
provided to help profile owners (e.g., corporations) evalu-
ate the possible leakage channels not explicitly handled by
AppFork, particularly public shared directories and custom
content providers.

We also tested AppFork in depth with a smaller set of 24
apps.® We selected 21 free apps based on popularity and
functionality.” We then added 3 more apps (Box, K9 Mail,
OI Notepad) because their functionality makes them popu-
lar in the BYOD context (e.g., email was the most popu-
lar multi-profile app identified by our survey respondents).
Thus, we report our evaluation results on these 24 apps.

Methodology. We installed each app and added it to the two
profiles. First, we verified that each app could be switched
successfully from one profile to the other via AppFork. Sec-
ond, we interacted with each app for 3 minutes in each pro-
file, in a manner consistent with the app’s functionality.'?
For example, interacting with K9 Mail involved syncing the
inbox, composing an email, sending it, checking the sent
folder, and returning to the inbox. For Facebook, it involved
posting a status update, visiting a friend’s page, and return-
ing to the status update page. During these tests we also
explicitly initiated actions that triggered task delegation oc-
currences. For example, in testing YouVersion Bible and
Zillow, we performed activities that resulted in starting the
browser to visit embedded URLSs. For apps requiring an ac-
count, such as Facebook, K9 Mail, Netflix, and Skype, we
created and populated dummy accounts.

We then verified that a partition was created for the app’s
data under each profile and that no data was shared across
profiles via the channels described in §4. For file system and
external storage, we inspected the files created under each
profile. For content providers, we inspected the correspond-
ing databases. For broadcast and direct intents, we inspected
the execution logs and verified such operations were con-
fined to a profile.

Results. Table 4 lists the tested apps. All 24 apps worked

8During development AppFork was successfully tested with a total
of 35 apps including AngryBirds, Amazon and Marvel Comics.
“We took the top 13 free apps in the U.S. view of the Google Play
Market and the top app in each of the top 15 app categories [2] (as
of February 12, 2014). We excluded from our evaluation 3 apps
in the Personalization, Tools, Arcade & Action categories, respec-
tively, because they provide services that are not sensibly associated
with a unique user profile. This gave us a total of 21 apps (not 25,
because there were overlaps between the two selection criteria).
1%We experimented also with longer interaction times and found 3
minutes of targeted and continuous activity to be sufficient for trig-
gering an app’s cross-profile channels.



App Category Support | Possible
F | M Leak

Candy Crush Saga Games v

Clumsy Bird Games v

CNN News & Magaz. | v

Duolingo Education v

Facebook Social v
FacebookMessenger | Social& Local v

Google Earth Travel v

Guess the 90’s Brain & Puzzle v

Indeed Jobs Business v

Instagram Social v SDcard
Ironpants Arcade & Action | v’

Kik Messenger Communication v SDcard
Myfitnesspal Health & Fitness | v/
NBCSportsLiveExtra | Sports v SDcard
Netflix Entertainment v

Pandora Music & Audio v

Skype Communication | v’

SnapChat Social v

Unroll Me Brain & Puzzle v

You Version Bible Books & Refer. v

Zillow Lifestyle v

Box Business v

K9 Mail Communication | v

OI Notepad Productivity v

Table 4: Apps tested on AppFork. ‘F’ means the app is
automatically fully isolated and ‘M’ means the app is iso-
lated but requires manual evaluation for a specific chan-
nel.

seamlessly on AppFork without any modification. For 21
apps out of 24, AppFork was able to "automatically" block
any possible cross-profile data channel, so we considered
them "fully isolated" (hence ‘F’ in the table). For 3 apps,
also identified by ChannelCheck, although correctly run-
ning, AppFork detected they used folders on the SD card
outside of their app-specific directories. Kik Messenger cre-
ated a public folder but did not store any data in it while NBC
stored temporary files in a folder outside its designated app
directory. Instagram stored pictures and videos taken while
using the app, in the shared “Pictures” and “Videos” directo-
ries. As discussed in §5, today AppFork has no means to au-
tomatically prevent such occurrences, and it is not intended
to do so because, for non-sensitive data shared directories
are a legitimate channel to share data. For this reason, App-
Fork defers the treatment of these cases to a manual testing
of the app by the profile owner (hence ‘M’ in the table).

6.2 Storage Overhead

AppFork may increase the apps’ storage overhead because
its symbolic link-based implementation may cause dupli-
cated files.

Methodology. We measure the storage space occupied
by AppFork with two profiles and compare it to that of a
baseline system, such as a virtualization-based system like
Cells [3]. We ran each app on AppFork and interacted with
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Figure 6: AppFork’s storage overhead. Comparison be-
tween Baseline, AppFork and an ideal version of App-
Fork (called AppForkOptimal) that eliminates replicated
files.

it for 3 minutes in each profile. We then ran the same app for
the same duration and repeated the same actions on a clean
build of Android. For both builds, we measured the amount
of data stored in each profile under the app directories in
internal and external storage. This includes the app’s state
and files as well as APKs and dex files stored in the /data/app
and /data/dalvik-cache directories, respectively. To estimate
the baseline overhead, we double the total size of APK and
dex files on the clean build, since the app would need to be
duplicated across VMs.

Results. Figure 6 shows the storage overhead. In addition to
the results for AppFork and the device simulating the base-
line, we report AppForkOptimal, which represents the ideal
case of a (hypothetical) AppFork implementation that tracks
and eliminates redundant files across profiles. We identify
files duplicated across profiles by comparing the hashes of
similarly named files.

AppFork reduces the storage overhead compared to the
baseline by an average of about 36%. For most apps (e.g.,
Skype, Ironpants, CNN), the baseline requires almost double
the storage because these apps maintain little state compared
to the app’s installation files. On the other hand, for apps like
Facebook or IndeedJobs, the app’s state is larger and the gap
between baseline and AppFork is smaller. AppFork also per-
formed well compared to AppForkOptimal. On average, the
extra overhead introduced by our unoptimized implementa-
tion is 7%, not significant enough to justify the complexity
of the AppForkOptimal implementation (see §5.3).

6.3 Profile Switching Overhead

Due to its design, AppFork’s processing overhead for iso-
lating profiles is negligible. In fact, switching symbolic links
and filtering cross-profile operations (broadcast or direct in-
tents) introduces negligible delays; also policy monitors lis-
ten to events already being broadcast. On the other hand,
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Figure 7: Time to switch an app between profiles.

while usability is not a goal of our implementation or evalu-
ation, the time necessary for switching apps between profiles
may be high for some use cases.

Methodology. We measure the time AppFork requires to
stop an app, switch its profile, and reload it. For each app,
we perform the switch 5 times and take an average.

Results. Figure 7 reports the switching time (including the
time for terminating the app) and the app start time. The
switching time is small, on average below 0.44 seconds. The
time for starting an app (after being stopped) is unaffected by
AppFork and, of course, varies by app; most apps took about
1.5 seconds, Skype over 7 seconds. Overall, the switching
time is acceptable: it only slightly increases the time users
already have to wait for apps to start.

We conclude with some observations about the AppFork
user experience. In fact, one of us, who was not a developer
of AppFork, used AppFork with his real work and personal
accounts. He found AppFork to be functional and easy to
use. His feedback solely had to do with the user interface
which we stated as a non-goal. During his testing, the au-
thor accidentally entered his PIN incorrectly too many times
in a row, thereby wiping his work profile. The author appre-
ciated not having his personal profile data wiped—a direct
but unintentional example of the benefits of the AppFork de-
sign, and the ability to separately enforce work and personal
policies.

7. REFLECTIONS

Our study finds that it is feasible to offer the convenience
of one phone, but the security properties of two phones, in a
way that is compatible with many unmodified Android appli-
cations. There are, however, some limitations of AppFork,
including corner cases that AppFork does not handle. These
unhandled corner cases are often due to limitations in the
underling Android platform and APIs. We begin this section
with a broad discussion of several key issues related to our
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current AppFork prototype and the general design. We then
reflect on how the Android platform might evolve to enable
AppFork to overcome the limitations discussed herein.

7.1 Discussion

Multi-profile concurrent background apps. In AppFork,
an app in one profile remains in that profile until the user ex-
plicitly switches it. Background processes associated with
that app also run only in the current profile. Automatically
switching the profiles of apps running in the background
raises multiple questions, including: how often should the
switch happen? How can AppFork avoid switching the app
at times not expected by the user? To maximize profile
awareness and user control, we chose not to support such
switching in our current implementation.

Profile/app approval and verification. We expect re-
mote profile owners (like corporations) to sign their profile-
specific policies, which include the package names of apps
authorized under that profile, with company credentials
whose counterparts are installed on the device (e.g., with
the help of the company’s IT support staff). AppFork also
supports the creation of local policies on the device.

Profile switching burden. Our threat model places the re-
sponsibility on users to switch between profiles. Future work
should study the usability of manual profile switching and
other approaches. For example, instead of relying on explicit
user actions, profile changes could be suggested or made au-
tomatically based on context [26].

App versions. AppFork cannot run different versions of an
app under different profiles, which may pose a problem if
different profile owners have approved different versions of
the same app.

Exposing app weaknesses. AppFork may expose existing
flaws in Android apps that do not fail gracefully when denied
permissions to start components in other packages. We ar-
gue that apps that depend on others to perform certain tasks
should also anticipate the likelihood that those components
may not be installed.

7.2 Recommended Android Enhancements

Profile-aware content providers. Due to Android’s imple-
mentation of custom providers, AppFork only allows one
profile’s instance of a custom content provider to be active
at a time. This poses problems when multiple apps running
in different profiles wish to use the same content provider.
To address this issue, we recommend that Android’s custom
content provider support be reimplemented to be profile-
aware by providing ways to switch underlying database con-
nections of derived content provider classes.

Profile-aware system services. To prevent potential side-
channel attacks from queries to critical system services, sys-
tem services should also be designed to be profile-aware by



detecting active profiles of clients and enforcing data isola-
tion between profiles.

Support multiple phone instances. AppFork does not sup-
port profile isolation for telephony-related apps (e.g,. Phone,
SMS) which would require the phone to have multiple phone
numbers. To provide full cross-profile isolation, we thus
suggest that mobile platforms intended for BYOD scenar-
ios support multiple phone instances, either physically (with
two SIM cards, which is a common feature on phones in
some countries) or virtually (with multiple International Mo-
bile Subscriber Identities (IMSIs) on a single SIM card, as
in [4], or with VoIP support, as in Cells [3]).

Integrating content from multiple profiles. Users may
wish to view content from multiple profiles simultaneously.
For example, in a calendar app, users may want to see both
their work and personal events at once. To display isolated
content from two profiles within the same user interface, we
recommend that Android adopt techniques from prior work
on user interface isolation [25].

Linux IPC restrictions. One of the possible cross-profile
leakage channel not prevented by AppFork is standard Linux
IPC, such as local sockets or pipes. Since these communi-
cation methods are not commonly used by Android applica-
tions (they were found in 0.5% of the apps in our measure-
ments study)—but are hard to prevent without hooking each
method individually—and since applications can achieve the
same goals using Android-specific communication channels
(such as intents), we recommend that mobile platforms like
Android restrict apps from using Linux IPC. In the mean-
time, ChannelCheck can be used to detect use of Linux IPC.

Stepping back. Our work on AppFork design provides a
foundation for a single-phone solution to the BYOD prob-
lem, and our prototype demonstrates the feasibility of App-
Fork in practice. The current AppFork implementation al-
ready addresses important use cases which, based on our
app analysis, are the most common in today’s apps. The
recommendations outlined above, if adopted by Android,
would further facilitate an AppFork-like model that supports
lightweight, per-app profile switching.

8. RELATED WORK

Some recent work on virtualization has been successfully
applied to smartphones [3,4, 18, 19]. “Classical virtualiza-
tion” approaches require duplicating the phone OS and the
Android stack, a challenge on resource-constrained mobile
devices [6, 33]; optimizations can reduce this overhead. For
example, Cells [3] is a lightweight OS-level virtualization ar-
chitecture that enables multiple virtual phones to run on the
same physical smartphone, enabling virtual work and per-
sonal phones. In contrast to AppFork, in such an approach,
applications are duplicated across virtual phones with a clear
overhead. Moreover, foreground and background applica-
tions must belong to the same domain (profile). User ac-
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counts, recently introduced on tablets (e.g., Microsoft Sur-
face and Android 4.2 tablets) suffer from the same problems.

Other (non-virtualization-based) security frameworks ex-
ist for untrusted domain isolation. Examples include
TLR [28] and TrustDroid [6]. We could apply this approach
to the BYOD context, although it is unclear whether the
trusted domain is work or personal—in fact, both profiles
have sensitive information to hide from each other. More-
over, unlike AppFork, TrustDroid does not consider leaks
through external storage, and allows an application to be-
long only to one domain.

Previous work on building trusted execution environ-
ments [12, 20, 21, 28, 29] typically rely on a Trusted Plat-
form Module (TPM) and a trusted kernel. The Trusted Lan-
guage Runtime (TLR) architecture [28,29] is such a system
that aims (unlike others) to also be easy to program. In the
BYOD context, one could use TLR to run apps with sensitive
data and avoid leakage to another profile. While extremely
secure, solutions like TLR are not likely to scale for BYOD
applications: they would require rewriting all apps, and they
are not designed to run entire apps within the trustbox.

MOSES [26, 27], a policy-based framework for enforc-
ing software isolation of applications and data, is closely re-
lated to AppFork. Unlike AppFork, MOSES does not sup-
port per-application profiles and requires heavyweight taint
tracking [9] at run time.

Finally, Divide [1] provides a workspace application that
supports work-related functions like calendar, email and
office-like applications. Worklight [32] provides a secure
SDK for developing applications. Such solutions are easy to
deploy, but they cannot support existing unmodified appli-
cations. Moreover, their application isolation relies on the
Android permission framework, which, as we discussed in
§4, is not sufficient, and is subject to attacks such as privi-
lege escalation [5,8, 11, 30].

9. CONCLUSIONS

We studied the problems that BYOD raises on current
mobile platforms, and proposed AppFork, a novel approach
based on the notion of per-app profiles. AppFork provides
the security and privacy properties of two phones, but with
a single phone. Meeting both the security and functionality
goals of AppFork is challenging because today’s apps, de-
spite being sandboxed, have many cross-application chan-
nels available for sharing data. These channels can turn into
data leaks across profiles. We created ChannelCheck, a tool
that uses static and dynamic analysis to automatically detect
such leakage channels, and we reported on the results of run-
ning it on over 14,000 Android apps. Based on these results,
we studied how to prevent cross-profile data leakage via the
most prominent channels, and implemented our resulting de-
sign in AppFork. Our evaluation showed that AppFork is
effective at supporting unmodified existing apps, with low
overheads in terms of storage and profile switching time.
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