APPENDIX

Theorem A.1: V(-) is the variance. If Ly = {a;}}]-,
and Lp = {b;}", are two disjoint set of positive real
numbers. Let L = {a;} U {b;} , then

|LalV(La) + |Ls|V(Ls)

AV(L) =V(L) 1 > 0.
Ifa; <as...a, <bi... < by, then the equality holds
onlyifai=a=...=a,=b1...=by,

Proof: Let
> a; 2 > b 2
- a, Zal — b,z ;
We have
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(m + n)z (a ) ( )
the statement follows. [

Theorem A.2 (Theorem 3.6): L = {x;}X, is sorted,
denote L} = {a;}i—, and L = {a; iy, let

LOWELY) + 1221V (L)
1] '

If AV&L) = max;{AV(L)}, then AV(L)|L]|
AVLY LD and AV(L)[L] = AV(LE) LY for Vi
1,2,..., N, the equality holds only if AV(LX)) =
and AV(LS;) ) = 0 respectively.

Proof: Without loss of generality, let L be ascend-
ing. We prove AV(L)|L| > AV(LX))|LX)|, the other
inequality can be similarly proved. Suppose

AVO(L) = V(L) — |

>
0

argmaX{AV(i) (L)} =n.

let m = N —n then according to the proof of Theorem
Al,

AV(L)|L| = CET) - (a—b)*. (15)
Denote

AV(LHYILY) = % (@ = V)2

- AV(L) = max{ AV (L)} = AV™(L)
. _om/(m+tn-—m) o )2 mn u D)
Tt R ¢ TS Gy (@0
. m/(m+n-—m') Y mn " b)?
Tt ) & TS Gy @70
(16)

where

,  ma+nb—m'd
CcC =

e — >V (L is ascending).
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We now show
m'n’

m/'(m+n—m’)

@ S =)

< . ((I/ o C/)2.
(17)
Note the function (z — a’)? is increasing w.rt z when

x > a’, then

(b/ o a/)2 S (Cl o a/)2 (18)
And function

m'x m’

is increasing w.r.t z. Since n’ < m +n —m/, we have

m'n’ m'(m+n—m’)
(m'+n')  (m'+(m+n-—m'))

Combined with Eq. 18, Eq. 17 holds. According to Eq.
16, then AV(L)|L| > AV(LY)|LY|, the equality holds

only if ' =V’ thus AV(L(Z ) =0.

(19)

U

Definition A.3 (FIFO property): Given a network
G = (V, E), where the travel time of each edge in G
is time-dependent, we say G is FIFO if for any arc
(¢,7) in E, given A leaves node i starting at time ¢;
and B leaves node i at time ¢5 > t;, then B cannot
arrive at j before A .

Theorem A.4: Let c;;(t) be a strictly positive function
defined for a time interval [0, 7], which specifies how
much time it takes to travel from i to j if departing i at
time t. The graph is FIFO < t+c;;(¢) is non-decreasing
for any (i,j) € E, t € [0,T].

Proof: Note that t + ¢;;(t) is the earliest arriving
time at node j for one leaving node ¢ at time ¢. Then
the correctness of this theorem is a direct consequence
of the FIFO'’s definition. O]

Theorem A.5: 1f ¢;;(t) is piecewise linear, then G is
FIFO if and only if the right derivative c;j L(t) > -1,
vt € [0,T].

Proof: Since ¢;;(t) is piecewise linear, then accord-
ing to Theorem A.4, we have

G is FIFO if and only if (¢ + ¢;;(t))} > 0,Vt € [0, 7]
G is FIFO if and only if ¢, (t) > —1,Vt € [0,T](20)

Then the theorem follows. O
Theorem A.6: 1f the range of a single time slot At
satisfies:

At > tas (21)

, we can reconstruct an continuous travel time func-
tion from a step travel time function to obey the FIFO
rule (given the user’s custom factor).

Proof: For each time interval (¢1,t2) C [0,7] con-
taining a discontinuity point ¢,/, e.g.

if <
sij(t):{fl ift, <t <ty

. (22)
fo ifty <t <t
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(b) A refined travel time function

Fig. 18. Travel Time Function

denote ty; = tar —| f1 — f2|. The refined function ¢;;(t)
can be defined as:

fl if ty <t <ty
cij(t) = § fi+ (ot —thy) if tar <t <ty (23)
fa if ty <t <t

Note that |s;;(t)| < tmaee so that |fi — fo| < thmae
then according to inequality (21), tps is in the same
time interval with ¢,,. Fig. 18(b) is the refined travel
time function of Fig. 18(a). Since the gradient of the
piecewise linear function ¢;;(t) can only be -1,0,1, it is
clear that the refined travel time function satisfies the
inequity (20). O

16



