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ABSTRACT 

The development and iterative refinement of inference models for 

multimodal systems can be challenging and time intensive. We 

present a framework for multimodal data collection, visualization, 

annotation, and learning that enables system developers to build 

models using various machine learning techniques, and quickly 

iterate through cycles of development, deployment and 

refinement. 

Categories and Subject Descriptors 

D.2.m [Software Engineering]: Miscellaneous – Rapid 

Prototyping I.2.6 [Artificial Intelligence]: Learning – Parameter 

Learning 

General Terms 

Algorithms, Design, Measurement. 

Keywords 

Multimodal systems, tools, visualization, annotation, learning. 

1. INTRODUCTION 
Systems that engage in open-world interaction, such as embodied 

conversational agents or robots, typically rely on models that fuse 

multiple streams of evidence to enable them to “understand” the 

surrounding environment, and the activities, beliefs, and 

intentions of people around them. These models are often 

constructed in a data-driven manner, by using machine learning 

techniques over corpora of collected and annotated data.  In 

general, this is a time consuming process. 

A number of tools for multimodal data visualization, annotation, 

and analysis have been developed and are used in the research 

community [1, 2, 3, 4, 5]. We present a framework that provides 

these functions, and additionally supports model building using a 

variety of machine learning techniques. By bringing these 

functions together in a single platform, the framework enables its 

users to explore data in place, gain insights for model 

development, and quickly iterate through cycles of deployment 

and refinement. 

2. FRAMEWORK 
At the center of the data analysis and learning framework lies an 

infrastructure for capturing the values of floating point temporal 

variables into feature streams. For example, the x-location of a 

face tracked in a video can be captured into a feature stream, 

XCenter, visualized in Figure 1; a binary feature stream can 

capture whether speech is in progress or not; and so forth. In 

general, feature streams can store information gathered from any 

sensory modality, or produced by the system’s components at 

runtime.  

System developers work with feature streams as strongly typed 

variables in code. Like standard variables, feature streams can be 

created, destroyed, assigned to and read from; in addition, the 

infrastructure manages the feature stream timeline, and values are 

automatically logged to disk in a compact format at every time 

point. Feature streams can be organized in hierarchical 

collections, and derived feature streams can be computed by 

applying operators to existing streams. For instance, the horizontal 

speed of a face XCenter.Slope can be computed by applying a 

Slope operator to the XCenter feature stream. 

A log exploration tool, shown in Figure 1, displays the data 

logged by a system along a timeline. It visualizes feature streams 

and events logged by system components, such as detected 

utterances and corresponding recognition results. The tool 

supports variable speed audio and video replay, and overlays the 

results of scene analysis computations performed by the system. It 

supports the construction of manual annotations, and allows for 

user-defined tagging schemes and segmentation. 

To enable rapid development of machine learned models, the 

framework provides a graphical user interface that allows system 

engineers to manage the multiple stages of the model building 

process. We outline them briefly below. 

Define a learning problem. Model construction begins by 

defining the structure of the learning problem, i.e. how training 

instances and corresponding labels are generated from logged 

data. The framework supports binary, regression, and multinomial 

classification problems. Training instances can be generated for 

every time point within custom-defined intervals, e.g. where a 

feature stream exists, or where a condition over a feature stream 

holds. This mechanism enables the specification of a diverse set 

of multimodal inference problems, such as: predict at every point 

a face is visible whether the face is tracked correctly; or predict at 

every point between utterances the next time someone will speak.  

Features used to train a model can be selected from the set of 

feature streams logged by the system. Novel features can also be 

constructed by applying operators to existing streams. For 

example, derived features such as “the average value of the 

FaceConfidence feature stream in the last 2 seconds” can be 

added easily. A number of basic statistical and signal processing 

operators over time intervals are supported, and developers can 
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extend this set. Derived feature streams can be visualized in-place, 

supporting insight and allowing for quick iteration over their 

design.  

Labels can be generated based on manual tags, or automatically, 

by various parametric mechanisms. For instance, to predict 

whether an actor will start speaking within the next second, a label 

can be generated automatically based on a condition on an 

existing feature stream. Multiple label generation mechanisms are 

available and we continue to extend the set. 

Construct a training dataset. Given a learning problem 

definition and control file specifying input sessions, a training 

data set is constructed from recorded data and output in a simple 

text format that can easily be imported to other tools such as 

Matlab or Excel. Any derived feature streams or automatically-

generated labels specified in the problem definition are computed. 

In addition to the training data files, this process produces a report 

containing basic global and per-feature statistics. 

Train a model. The framework supports a variety of machine 

learning approaches, such as boosted decision trees, linear SVMs, 

and logistic regression. The training process produces a model file 

and a report containing performance metrics such as accuracy, 

log-likelihood, and mean squared error. 

Run/evaluate a model. The resulting models are easily integrated 

into our systems for use at runtime; derived feature streams are 

computed automatically by the framework and no additional code 

needs to be written. A model may also be run and evaluated 

offline on any collection of sessions or extracted datasets. The 

model predictions can be output to simple text files, or to feature 

streams, which can be immediately visualized in the log explorer. 

Together, the feature streams infrastructure, log exploration and 

learning tools enable quick iterations through model building and 

support a variety of problem types and machine learning 

approaches. We continue to work on extending this repertoire and 

the overall capabilities of the framework.  

3. DEMONSTRATION PLAN 
Our demonstration will showcase this multimodal analysis and 

learning framework to conference participants – see 

accompanying video at [6]. We will illustrate the different steps of 

the model-building process with several learning problems we 

have explored using data collected from deployed systems. We 

will discuss and highlight the important aspects of the overall 

framework, including the feature streams infrastructure, the 

construction and in-place visualization of derived feature streams, 

automatic label generation, different learning problem structures, 

and quick iteration over model building with different machine 

learning techniques. We will seek feedback from demonstration 

participants to shape the future development of this platform. 
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Figure 1. The log explorer tool enables visualization, annotation and learning. 


