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ABSTRACT

The development and iterative refinement of inference models for
multimodal systems can be challenging and time intensive. We
present a framework for multimodal data collection, visualization,
annotation, and learning that enables system developers to build
models using various machine learning techniques, and quickly
iterate through cycles of development, deployment and
refinement.

Categories and Subject Descriptors

D.2.m [Software Engineering]: Miscellaneous - Rapid
Prototyping 1.2.6 [Artificial Intelligence]: Learning — Parameter
Learning

General Terms
Algorithms, Design, Measurement.

Keywords

Multimodal systems, tools, visualization, annotation, learning.

1. INTRODUCTION

Systems that engage in open-world interaction, such as embodied
conversational agents or robots, typically rely on models that fuse
multiple streams of evidence to enable them to “understand” the
surrounding environment, and the activities, beliefs, and
intentions of people around them. These models are often
constructed in a data-driven manner, by using machine learning
techniques over corpora of collected and annotated data. In
general, this is a time consuming process.

A number of tools for multimodal data visualization, annotation,
and analysis have been developed and are used in the research
community [1, 2, 3, 4, 5]. We present a framework that provides
these functions, and additionally supports model building using a
variety of machine learning techniques. By bringing these
functions together in a single platform, the framework enables its
users to explore data in place, gain insights for model
development, and quickly iterate through cycles of deployment
and refinement.

2. FRAMEWORK

At the center of the data analysis and learning framework lies an
infrastructure for capturing the values of floating point temporal
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variables into feature streams. For example, the x-location of a
face tracked in a video can be captured into a feature stream,
XCenter, visualized in Figure 1; a binary feature stream can
capture whether speech is in progress or not; and so forth. In
general, feature streams can store information gathered from any
sensory modality, or produced by the system’s components at
runtime.

System developers work with feature streams as strongly typed
variables in code. Like standard variables, feature streams can be
created, destroyed, assigned to and read from; in addition, the
infrastructure manages the feature stream timeline, and values are
automatically logged to disk in a compact format at every time
point. Feature streams can be organized in hierarchical
collections, and derived feature streams can be computed by
applying operators to existing streams. For instance, the horizontal
speed of a face XCenter.Slope can be computed by applying a
Slope operator to the XCenter feature stream.

A log exploration tool, shown in Figure 1, displays the data
logged by a system along a timeline. It visualizes feature streams
and events logged by system components, such as detected
utterances and corresponding recognition results. The tool
supports variable speed audio and video replay, and overlays the
results of scene analysis computations performed by the system. It
supports the construction of manual annotations, and allows for
user-defined tagging schemes and segmentation.

To enable rapid development of machine learned models, the
framework provides a graphical user interface that allows system
engineers to manage the multiple stages of the model building
process. We outline them briefly below.

Define a learning problem. Model construction begins by
defining the structure of the learning problem, i.e. how training
instances and corresponding labels are generated from logged
data. The framework supports binary, regression, and multinomial
classification problems. Training instances can be generated for
every time point within custom-defined intervals, e.g. where a
feature stream exists, or where a condition over a feature stream
holds. This mechanism enables the specification of a diverse set
of multimodal inference problems, such as: predict at every point
a face is visible whether the face is tracked correctly; or predict at
every point between utterances the next time someone will speak.

Features used to train a model can be selected from the set of
feature streams logged by the system. Novel features can also be
constructed by applying operators to existing streams. For
example, derived features such as “the average value of the
FaceConfidence feature stream in the last 2 seconds” can be
added easily. A number of basic statistical and signal processing
operators over time intervals are supported, and developers can
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Figure 1. The log explorer tool enables visualization, annotation and learning.

extend this set. Derived feature streams can be visualized in-place,
supporting insight and allowing for quick iteration over their
design.

Labels can be generated based on manual tags, or automatically,
by various parametric mechanisms. For instance, to predict
whether an actor will start speaking within the next second, a label
can be generated automatically based on a condition on an
existing feature stream. Multiple label generation mechanisms are
available and we continue to extend the set.

Construct a training dataset. Given a learning problem
definition and control file specifying input sessions, a training
data set is constructed from recorded data and output in a simple
text format that can easily be imported to other tools such as
Matlab or Excel. Any derived feature streams or automatically-
generated labels specified in the problem definition are computed.
In addition to the training data files, this process produces a report
containing basic global and per-feature statistics.

Train a model. The framework supports a variety of machine
learning approaches, such as boosted decision trees, linear SVMs,
and logistic regression. The training process produces a model file
and a report containing performance metrics such as accuracy,
log-likelihood, and mean squared error.

Run/evaluate a model. The resulting models are easily integrated
into our systems for use at runtime; derived feature streams are
computed automatically by the framework and no additional code
needs to be written. A model may also be run and evaluated
offline on any collection of sessions or extracted datasets. The
model predictions can be output to simple text files, or to feature
streams, which can be immediately visualized in the log explorer.

Together, the feature streams infrastructure, log exploration and
learning tools enable quick iterations through model building and
support a variety of problem types and machine learning

approaches. We continue to work on extending this repertoire and
the overall capabilities of the framework.

3. DEMONSTRATION PLAN

Our demonstration will showcase this multimodal analysis and
learning framework to conference participants — see
accompanying video at [6]. We will illustrate the different steps of
the model-building process with several learning problems we
have explored using data collected from deployed systems. We
will discuss and highlight the important aspects of the overall
framework, including the feature streams infrastructure, the
construction and in-place visualization of derived feature streams,
automatic label generation, different learning problem structures,
and quick iteration over model building with different machine
learning techniques. We will seek feedback from demonstration
participants to shape the future development of this platform.
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