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Abstract

Speaker diarization finds contiguous speaker segments in anau-
dio stream and clusters them by speaker identity, without using
a-priori knowledge about the number of speakers or enrollment
data. Diarization typically clusters speech segments based on
short-term spectral features. In prior work, we showed thatneu-
ral networks can serve as discriminative feature transformers for
diarization by training them to perform same/different speaker
comparisons on speech segments, yielding improved diarization
accuracy when combined with standard MFCC-based models.
In this work, we explore a wider range of neural network archi-
tectures for feature transformation, by adding additionallayers
and nonlinearities, and by varying the objective function during
training. We find that the original speaker comparison network
can be improved by adding a nonlinear transform layer, and
that further gains are possible by training the network to per-
form speaker classification rather than comparison. Overall we
achieve relative reductions in speaker error between 18% and
34% on a variety of test data from the AMI, ICSI, and NIST-RT
corpora.
Index Terms: speaker diarization, artificial neural networks,
discriminative feature extraction.

1. Introduction
Speaker diarization answers the question “who spoke when” in
a multiparty conversation, i.e., it aims to identify all speech
coming from the same speaker, without prior knowledge of
the number of speakers or samples of their speech [1, 2]. Di-
arization has been studied in various domains such as broadcast
news [3], telephone calls [4], and on spontaneous meeting room
conversations [2, 5, 6]. The main issues in performing speaker
diarization of meeting room recordings arise due to far-field
audio (background noise and room reverberation) and conver-
sational speaking style (short speaker turns, interruptions, and
overlaps).

State of the art systems for speaker diarization use an ag-
glomerative (bottom-up) clustering framework [7, 6]. These
systems typically use short-term spectral characteristics, such
as Mel-frequency cepstral coefficients (MFCCs) to represent the
vocal tract characteristics of a speaker, as features for diariza-
tion. MFCCs are not optimized for speaker discrimination as
they reflect various other factors such as channel characteristics,
ambient noises, and phonemes being spoken. To overcome this,
factor-analysis based techniques, such as i-vectors, which are
popular in the speaker-verification domain, have been adapted
to the speaker diarization task [8], but so far have had success
only for two-party telephone conversations. The same is true
of approaches using linear discriminant analysis (LDA) to ob-
tain discriminative features [9]. In another approach [10], in-

formation bottleneck (IB) features derived from an initialpass
of IB diarization system [6] were used to improve MFCC-based
speaker diarization.

In prior work [11] we have proposed using an artificial neu-
ral network (ANN) trained as a classifier to extract featuresfor
diarization. In order to induce speaker-discriminative features,
we trained the ANN classifier to perform speaker comparison:
decide whether two given speech segments belong to the same
or different speakers, and then use the input-to-hidden weights
learned by the network as a feature transform on test data. The
resulting features are combined at the level of Gaussian likeli-
hoods with the standard cepstral features, and yield substantial
error reductions on test data that is well-matched to the train-
ing data. In this work we further explore the general idea of
ANN-induced features for diarization, by considering a wider
range of network architectures and training criteria. First, we
consider a “deeper” version of the speaker comparison network,
with added hidden layer and the ability to learn a nonlinear fea-
ture transform. Second, we examine an alternative ANN trained
to perform speaker classification (rather than comparison), as
was previously explored for the speaker verification task [12].
Finally, we consider an auto-associative network (autoencoder)
as a baseline for ANN-based feature transform learning. The
features resulting from all these architectures are evaluated by
themselves and in conjunction with baseline cepstral features
(MFCCs), using speaker diarization on commonly used meet-
ing speech corpora.

2. ANN Features for Speaker Diarization

Artificial neural networks are extensively used in supervised
tasks such as automatic speech recognition and speaker identifi-
cation/verification tasks. In these applications, neural networks
are trained to predict the posterior probabilities of the desired
classes (phonemes and speakers, respectively). The posterior
probabilities obtained from a neural network can be directly
used to infer the class. Another way of using neural networks
for these tasks is to use a network trained to identify the classes
as a discriminative feature extractor. Here, the activations of the
hidden layer prior to the final layer are used as input features
to another classifier (such as an HMM/GMM). An example of
this approach is Tandem acoustic modeling in speech recogni-
tion [13]. The motivation behind the later approach is to com-
bine the discriminative power of neural networks with the state-
of-the-art statistical systems which are typically based on the
HMM/GMM framework.

In the current work, we follow a similar approach where
we explore three different neural network architectures asfea-
ture extractors for speaker diarization. The neural networks are
trained to perform tasks related to speaker diarization, such as
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Figure 1: Various ANN architectures used to generate features for speaker diarization: (a) Shallow speaker comparisonANN (b) Deep
speaker comparison ANN (c) Speaker classification ANN.

speaker comparison or classification; we also investigate au-
toencoding as an additional baseline.

2.1. ANNs for speaker comparison

Following the approach in [11], we train a neural network for
classifying two given speech segments as belonging to the same
or different speakers. We trained two such comparator networks
with different numbers of hidden layers: ashallow speaker
comparison networkwith two hidden layers, and adeep speaker
comparison networkwith three hidden layers.

2.1.1. Shallow speaker comparison network

Figure 1(a) shows the architecture of the shallow speaker com-
parison network. We split the input layer of the network into
two halves, left and right, to represent acoustic features belong-
ing to the two speech segments being compared. The first hid-
den layer (bottleneck) is also split into two halves similarto
the input layer, so each half receives input from the respec-
tive input segment. We tie the weight matrices (denoted by
W in Figure 1(a)) connecting the right and left halves of input
and hidden layers so that the network learns a common trans-
form for all speakers. The second hidden layer connects both
halves of the first hidden layer to the output layer. The output
layer has two units denoting the class labels—-same or differ-
ent speakers— depending on the source of the two input speech
segments (segment1, segment2 in Figure 1(a)). All the hidden
layers have sigmoid activation functions; the output layerhas
a softmax function to estimate the posterior probabilitiesof the
classes (same/different). The network is trained using a cross-
entropy objective function.

After training the network, we use the first hidden layer ac-
tivations, before applying the sigmoid function, as features for
speaker diarization in a HMM/GMM system. To generate fea-
tures from the network, we use a window of speech as input
to one half of the input layer and extract activations at the cor-
responding half of the bottleneck layer. Also, since the fea-
tures are extracted from the first hidden layer before applying
the sigmoid nonlinearity, they represent a linear transform of
the MFCC vector at the input. Below we refer to this network
and resulting features asspkr-com.

2.1.2. Deep speaker comparison network

The deep speaker comparison network contains three hidden
layers. When compared to shallow speaker comparison ANN, it
contains an extra hidden layer before the bottleneck layer (from
which features are extracted). As a result, the features extracted
from this network (activations at the bottleneck layer) undergo a
nonlinear transform before the bottleneck layer (second hidden
layer). The architecture of the network is shown in Figure 1(b).
It is similar to that of the network shown in Figure 1(a) except
that it has an extra hidden layer before the layer from which the
features are extracted. As before, the left and right halvesof the
hidden layer weights up to the bottleneck are tied.

Once the network is trained the features are extracted by
feeding speech segments to one (say, the left) half of the net-
work and obtaining the activations from the second hidden layer
(bottleneck layer) of the respective half before applying the sig-
moid nonlinearity. Below, we refer to this network and resulting
features asDspkr-com.

2.2. ANN for speaker classification

Konig et al. [12] used a multilayer perceptron (MLP) with five
layers, trained to classify speakers, as a feature extractor for
speaker recognition. The MLP was discriminatively trainedto
maximize speaker recognition performance. They used the out-
puts from the second hidden layer (units of which had linear ac-
tivation function) as features in a standard GMM-based speaker-
recognition system.

In the current work, we trained a similar network with
speakers as output classes as shown in Figure 1(c). The net-
work is trained by providing a frame along with its context as
input and the corresponding speaker as the output class label.
The output layer has a softmax function to estimate the poste-
rior probability of the speaker. The second hidden layer (bottle-
neck) has linear activation functions, and the units in the rest of
the hidden layers have sigmoid nonlinearities.

After training the network, the hidden layer activations ob-
tained from the bottleneck layer (second hidden layer) are used
as features in speaker diarization. The network performs a non-
linear transform of the input features as they are fed through
sigmoid activation function in the first hidden layer. We refer to
this ANN and the resulting features asspkr-class.
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Figure 2: Autoencoder: The network reconstructs the center
frame of the input (center frame + context) at the output layer.

2.3. Autoencoder ANN

Autoencoders are used in the literature to generate featurerepre-
sentations and for nonlinear dimensionality reduction [14]. An
autoencoder encodes the input in a representation which in turn
is used to reconstruct the input. Therefore, in training theout-
put targets are the inputs themselves. In the current work, we
use an autoencoder with three hidden layers, as depicted in Fig-
ure 2. Unlike in standard autoencoders, the input comprisesnot
just the current frame but also includes a window of context as
used by the other network architectures presented earlier;this
ensures that all networks have the same input information at
their disposal. The network is trained to reconstruct the current
frame at the output with as little reconstruction error as possible,
as measured by mean squared error.

Once the network is trained, the features are generated by
giving an input frame with its context as input to the network
and obtaining the activations of the second hidden layer be-
fore applying the sigmoid nonlinearity. Similar to deep speaker
comparison and speaker classification ANNs, this network per-
forms a nonlinear transform of the input features, albeit with
an objective function that is not directly related to the speaker
diarization task. In the experiments described later we refer to
this network and features asautoen.

3. Experiments and Results
3.1. Data sets

Our experiments make use of meeting room recordings from
several corpora: AMI [15], ICSI [16], and 2006/2007/2009
NIST-RT [17]. Table 1 summarizes the characteristics of these
data sets. The AMI data set is split into train and test sets of
148 and 12 meetings, respectively, such that they are disjoint
in speakers. Out of the ICSI corpus, 20 meetings are set aside
for development and tuning (“dev”), and the remaining 55 ICSI
meetings form an additional test set. The combined 2006, 2007,
and 2009 NIST-RT evaluation sets are also used for testing.

3.2. ANN training

We trained the ANNs using data from the AMI corpus. To
avoid skewing the training towards particular speakers, wesam-
pled 50 utterances from each of 138 speakers used for training.
Each utterance has a duration of around 10 seconds. We manu-
ally aligned speech transcripts to the close-talking microphone
recordings to obtain frame-level speaker labels. For training

Table 1:Meeting corpus statistics as used in experiments.
Corpus Speakers Sites Meetings

Train Dev Test
AMI 150 3 148 - 12
ICSI 50 1 - 20 55
NIST-RT 100 6 - - 24

purposes we removed speech segments containing overlapping
speech. For input features we extracted 19 MFCCs from a frame
of 30 ms with a frame increment of 10 ms. The features are
extracted from the audio signal captured by one of the single
distant microphones (SDM) used to record the meetings.

The objective function for the ANN training was cross-
entropy for the speaker comparison (both shallow and deep)
and speaker classification networks and mean square error for
the autoencoder network. Training used error backpropagation
and stochastic gradient descent for 25 epochs. The ANNs are
trained with inputs with different context lengths and the op-
timal context for each network is obtained by minimizing di-
arization error on the ICSI development set. The dimension of
the feature extraction (bottleneck) layer is fixed to 20 in all the
networks to be similar to that of the MFCCs. The dimension of
the second hidden layer for deep speaker comparison (Dspkr-
com), speaker classification (spkr-class) and autoencoders (au-
toen) is fixed to 512 (for each half in case of Dspkr-com). The
dimension of the last hidden layer in all the networks is fixedto
100. The number of output units is two in speaker comparison
ANNs (both Dspkr-com & spkr-com), 138 in speaker classifi-
cation ANN (spkr-class), and 19 for the autoencoder (autoen).

When sampling training data for the ANNs, we allow the
input window to contained speech from a single speaker only.
In testing, on the other hand, the context part of the input win-
dow might contain nonspeech and speech from other speakers.
In separate experiments, we did try presenting test-like hetero-
geneous speech input during training as well, but found the
results to be worse. Therefore, it seems that pure, speaker-
homogeneous training data is more important than the mis-
match between training and test conditions that this entails.

3.3. Speaker diarization experiments

We now report the speaker diarization results based on the
bottleneck features obtained using the various ANN architec-
tures. All bottleneck features are compared against the base-
line 19-dimensional MFCC features. The MFCCs are extracted
from the single distant microphone (SDM) audio signal of
the meetings. The speaker diarization system is based on the
HMM/GMM framework [7] that has been shown to give state-
of-the-art performance in several NIST-RT evaluations. The di-
arization output is evaluated using a metric called diarization
error rate (DER), which is the standard metric used in NIST-RT
evaluations [18]. DER is the sum of speech/non-speech error
and speaker error. Speech/non-speech error is the sum of miss
and false alarm errors by the automatic speech/non-speech de-
tection system. Speaker error is the portion of speech time for
which the speaker is labeled incorrectly (under the best possible
mapping of output to true speaker labels). A forgiveness col-
lar of ±0.25 seconds is applied around the reference segment
boundaries while scoring the automatic systems’ output. Since
all comparisons between systems involve a shared speech/non-
speech segmentation (which is either the reference or automat-
ically determined) we will be reporting only speaker error fig-



Table 2:Optimal context length (cntxt) in the number of frames
and optimal feature stream weights (used while combining with
MFCCs) for different ANN features (bnck-wt) based on tuning
experiments on the ICSI dev set.

ANN spkr-com Dspkr-com spkr-class autoen
cntxt 20 10 10 50

bnck-wt 0.5 0.1 0.7 0.9

Table 3:Speaker errors on test data sets for various bottleneck
features.

Test-set spkr-com Dspkr-com spkr-class autoen MFCC
AMI-test 22.9 21.8 29.3 25.9 24.8
ICSI-test 23.1 24.3 19.8 20.9 19.8
NIST-RT 21.3 20.4 21.5 12.5 14.3

ures here.
To identify the optimal input context length for ANNs to

generate features for diarization, we performed tuning experi-
ments on the ICSI dev meetings. The optimal context lengths
for the various ANN architectures are summarized in the second
row of Table 2, and were subsequently used in all experiments.

Table 3 shows the speaker errors for different bottleneck
features and the MFCC baseline features. In these experiments
we use speech regions obtained from ground-truth segmentation
as input to the speaker diarization system.

We observe from Table 3 that the bottleneck features from
shallow (spkr-com) and deep (Dspkr-com) speaker comparison
ANNs give lower speaker error than MFCC features on AMI
test data and increase the error on ICSI-test and NIST-RT data
sets. Note that AMI-test is drawn from the same corpus as the
ANN training set, and is therefore best matched to the training
condition (though the speakers are disjoint). Bottleneck features
from the autoencoder, by contrast, produce lower error on RT
test data. The bottleneck features obtained from the speaker
classification ANN increase error on all but the ICSI test set. In
summary, we find that none of the ANN features by themselves
perform consistently better than MFCCs.

In spite of this initially disappointing result, we can hypoth-
esize that the bottleneck features capture some information that
is complementary to that in the MFCC features, and could still
be helpful for speaker diarization when combined with the base-
line features. To test this hypothesis, we combine the MFCC
features with bottleneck features at the model level [19]: sep-
arate GMM models are estimated for each feature stream, for
every cluster (state), and the overall cluster log-likelihoods are
obtained as a weighted combination of the log-likelihoods ac-
cording to individual feature streams. The combination weights
sum to unity and are fixed by tuning speaker error on the ICSI
dev data. The third row (bnck-wt) of Table 2, shows the op-
timized weights assigned to bottleneck features for the vari-
ous ANNs types; these are subsequently used while performing
multistream diarization on the test sets.

Table 4 shows the results obtained using combined MFCC
and ANN features. We observe that the combination M+Dspkr-
com decreases the speaker error on all test sets when compared
to the MFCC features. It also performs better than the M+spkr-
com combination on all the test sets except on the AMI-test set.
The combination of MFCCs and autoencoder bottleneck fea-
tures (M+autoen) does not show significant changes from the
single stream autoencoder system (cf. autoen in Table 3). This

Table 4: Speaker errors on test data sets after combining dif-
ferent bottleneck features with MFCCs. The final row shows
results with automatic speech activity detection.

Test-set
M+

spkr-
com

M+
Dspkr-
com

M+
spkr-
class

M+
autoen

MFCC

AMI-test 19.7 23.1 19.2 24.9 24.8
ICSI-test 18.5 15.6 13.1 21.1 19.8
NIST-RT 17.3 11.7 11.9 14.3 14.3

NIST-RT-SAD 16.0 11.3 12.2 12.7 14.2

shows that the autoencoder bottleneck features are not capturing
information that is complementary to MFCCs. The combination
of MFCCs with speaker classification features (M+spkr-class)
produces a significant decrease in speaker error on all test sets,
and the largest error reduction on the ICSI test set (34% rela-
tive).

Finally, we also perform speaker diarization experiments
using speech regions obtained from an automatic speech/non-
speech detection system, which is the more realistic applica-
tion scenario. We perform these experiments on the NIST-RT
data set. Speech activity detection (SAD) is performed using
the SHOUT toolkit [20]. The total speech/non-speech error
was 7.7%, which includes a missed speech error of 7.3% and
a false alarm error of 0.4%. The results in the last row of Ta-
ble 4 (NIST-RT-SAD) show that the combination of MFCCs and
deep speaker comparison features gives the best diarization out-
put, reducing the speaker error from 14.2% (MFCCs) to 11.3%.

4. Conclusions
Our results confirm the effectiveness of ANN-trained feature
transforms for speaker diarization and show improvements over
previous work. Adding an additional, nonlinear hidden layer to
the ANN trained for speaker comparison results in substantial
error reduction over the earlier, linear-transform ANN features.
In particular, it yields improvements over the baseline forall
our test sets, both matched (AMI and ICSI) and mismatched
(NIST-RT); all improvements are obtained by combining trans-
formed and baseline features (MFCCs) at the level of model
likelihoods. Speaker error on NIST-RT test data processed with
automatic speech activity detection is reduced by 20% relative.

An alternative training criterion (first suggested for speaker
verification [12]) induces a nonlinear feature transform bytrain-
ing the ANN to perform speaker classification, and also results
in error reductions over baseline; though the improvementson
NIST-RT data are not as large as with speaker comparison train-
ing. For additional comparison, we also trained a bottleneck
feature extractor based on autoencoder ANNs. While the re-
sulting bottleneck features give some gains over the baseline on
RT data, they do not improve in combination with the baseline,
and are worse than multistream features based on speaker com-
parison and classification training, confirming the importance
of discriminative training related to the diarization task.
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