
Runtime Protection via Dataflow Flattening

Bertrand Anckaert
Department of Electronics and Information Systems

Ghent University
B-9000 Ghent, Belgium

banckaer@elis.UGent.be

Mariusz H. Jakubowski
Ramarathnam Venkatesan

Chit Wei (Nick) Saw
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{mariuszj, venkie, chitsaw}@microsoft.com

Abstract—Software running on an open architecture, such
as the PC, is vulnerable to inspection and modification. Since
software may process valuable or sensitive information, many de-
fenses against data analysis and modification have been proposed.
This paper complements existing work and focuses on hiding
data location throughout program execution. To achieve this, we
combine three techniques: (i) periodic reordering of the heap,
(ii) migrating local variables from the stack to the heap and (iii)
pointer scrambling. By essentialy flattening the dataflow graph of
the program, the techniques serve to complicate static dataflow
analysis and dynamic data tracking. Our methodology can be
viewed as a data-oriented analogue of control-flow flattening
techniques.

Dataflow flattening is useful in practical scenarios like DRM,
information-flow protection, and exploit resistance. Our proto-
type implementation compiles C programs into a binary for
which every access to the heap is redirected through a memory
management unit. Stack-based variables may be migrated to the
heap, while pointer accesses and arithmetic may be scrambled
and redirected. We evaluate our approach experimentally on the
SPEC CPU2006 benchmark suite.

Keywords—software protection; data hiding; obfuscation; se-
curity

I. INTRODUCTION

Software running on an untrusted host is inherently vul-
nerable to inspection and modification. Recent advances on
the theoretical level have shown both negative [1], [2] and
positive [3], [4] results on the possibility of protecting software
within this severe threat model. However, little is known about
the type of application one usually wants to protect.

Intuitively, any protection scheme other than a physical
one depends on the operation of a finite state machine.
Ultimately, given physical access, any finite state machine can
be examined and modified at will, given enough time and
effort [5]. However, we can observe increasing deployment of
software on open architectures in scenarios where the software
contains secret information or where integrity of the software
is required by the business model.

For example, access to copyrighted music and video is
increasingly controlled by software-based digital containers.
The experience of multi-player games relies heavily on users
not being able to gain competitive advantages through cheat-
ing. Software licenses may be enforced through technical
protection mechanisms embedded in the software. As a fi-

nal example, ad-supported software relies on the ads being
correctly displayed and reported.

The above examples illustrate current demand for practical
defense mechanisms. Even if theoretically secure protection is
impossible, the question is more whether we can increase the
time and effort required to attack software to make the benefits
outweigh the costs. As an example, consider a simple “Hello
World” program. Assume we want to protect this against
modification of the “Hello World” message. Without coun-
termeasures, an attacker could easily replace the characters
of “World” by, e.g., “Alice” in the binary, using tools such
as strings and hex editors. However, a limited amount
of obfuscation would easily foil this straightforward attack
and make it more economically viable for Alice to write her
own “Hello Alice” program from scratch than to modify the
existing “Hello World” program. From an economical point of
view, the binary would then be sufficiently protected against
this type of attack.

Practical obfuscation techniques are thus about raising the
bar to a level that supersedes the incentive of the attacker.
This incentive is composed of many factors, such as the
perceived consequences, facilitating conditions and habits [6].
In this paper, we present a novel technique to raise the bar
by hiding the location of data. This technique is orthogonal to
many other software protection techniques from the domain
of obfuscation and tamper-resistance. We advocate having
an arsenal of software protection techniques, as we believe
that combined and iterated application of different techniques
can create complexity, including emergent properties due to
interaction among various transformations.

At the core of our technique is a software-based Memory
Management Unit (MMU). An input program is rewritten so
that every operation on the heap goes through the MMU. As
the MMU mediates every access to the heap, the MMU is the
only component that needs to know the exact location of the
data. As a result, the MMU can now periodically reorder the
heap. This will make it harder for the attacker to track data
when the program is running. After all, if software protection
is a cat-and-mouse game, we don’t want the data to be a sitting
duck.

This technique is reminiscent of the oblivious RAMs dis-
cussed by Goldreich and Ostrovsky [7]. They rightfully argue
that a physically shielded CPU combined with an encrypted



program is insufficient to protect the software fully, since
addresses of accessed memory are not hidden; as a result,
information such as loop structure may leak. They introduce
the concept of oblivious RAMs to hide the original memory-
access pattern. Essentially, each fetch/store cycle is replaced
by many fetch/store cycles. They show how to do an on-line
simulation of an arbitrary RAM by a probabilistic oblivious
RAM with a polylogarithmic slowdown in the running time.

This illustrates the high cost of software protection even in
the presence of a trusted hardware component. Our technique
is similar, but results in a more practical compromise amongst
cost, security and viability. Despite the promise of a more
widespread distribution of Trusted Platform Modules (TPMs),
we believe that many scenarios will not be able to rely on
hardware in the years to come. These scenarios may require
the correct operation of the software on legacy systems or
on systems whose owners are reluctant to enable the TPM
because of fears such as privacy breaches and user lock-
in. Furthermore, as discussed above, less stringent security
requirements may be sufficient in practical settings. Therefore,
our design allows for parameterization of the extent and
frequency of reordering.

As reordering the heap does not protect all data (e.g., stack-
based local variables), we have added the option to migrate the
local variables automatically to the heap. This is done by (i)
allocating the required memory when the variable is declared,
(ii) rewriting all accesses to the variable to go through the
pointer, and (iii) freeing the memory when the variable goes
out of scope.

Finally, we have included the option of scrambling the
pointers seen by the program. If the pointers are scrambled,
the program can no longer perform pointer arithmetic on those
pointers, so in this case, we need to intercept pointer arithmetic
as well.

The remainder of this paper is structured as follows. A more
detailed description of the operation of the MMU is given
in Section II. Section III provides an analysis of the added
complexity from the viewpoint of the attacker. More practical
implications of the technique are discussed in Section IV. An
experimental evaluation is given in Section V. Related work
is the topic of Section VI and suggestions for future work
are made in Section VII. Finally, conclusions are drawn in
Section VIII.

II. OPERATION OF THE MMU

The main idea behind our approach is to reorder the data on
the heap periodically while retaining the original functionality
of the program. The MMU will mediate all accesses to the
heap, making the reordering as transparent as possible to
the original program. As accessing the heap is a common
operation, the overhead cannot be too large. Therefore, we
use a mechanism derived from paging to keep track of the
current location of the data.

The heap is divided into pages of a certain size s (e.g., s =
4KiB) and we keep track of the location of each allocated page
through a mapping. For every access to the heap, we randomly

heap

Memory 
Management 

Unit

program

Fig. 1. High-level overview

permute n + 1 pages with probability 1/p, where n and p are
security parameters that can be tweaked to enable a trade-
off between performance and security. Additionally, the pages
are encrypted. To make it harder to detect the permutation
through binary similarities, we use the technique of salting.
This means that before every encryption, the pages are padded
with a different value, which will result in different encrypted
pages, even for identical content (because of the unique salt).

Because of this reordering mechanism, the correspondence
between pointers in the program’s data space and the actual
location of the data in memory varies over time. The correct
mapping is considered to be known only to the MMU. As with
traditional paging mechanisms, the tables to map pointers to
the actual locations of the pages can be stored in pages as
well. With 4KiB pages, for example, two levels of indirection
would suffice to retrieve the requested page.

Software-based protection in the malicious-host model suf-
fers from the absence of a nucleus of trust. In order to make
claims about the security of the applied technique, we will
assume that the MMU can be trusted. This is an engineering
assumption. However, if we can make the trusted component
small enough, the problem of protecting a generic program is
reduced to the problem of protecting a very specific, smaller
piece of code. The MMU can then in practice be protected
by existing techniques from the domain of obfuscation and
individualization. The security claims in the next section
assume that the MMU can perform encryption and decryption,
has access to a pseudo-random number generator, and has the
memory required to swap two pages. The operation of the
MMU is depicted in Figure 1.

III. SECURITY ANALYSIS

Each time a data item on a given page is read or written by
the program, n additional pages are pulled into the MMU with
probability 1/p. This results in an expected overhead of n/p
extra pages. The requested operations are performed, the pages
are salted differently, re-encrypted, and put back into memory



in a random permutation. This is the root of confusion for the
attacker.

With every step, different candidate locations exist for the
location of a particular piece of data. If we assume that the ac-
cesses to the heap are random, then the following construction
may be used to get the average number of possible candidates,
assuming that p = 1.

Let’s assume that there are N pages in total. We tackle this
problem as follows: When a page is accessed, it will be pulled
into the MMU, along with n additional pages. After the first
timestep t1, n pages are written back to memory in a random
permutation over the n + 1 pages, while one page is retained
in the MMU. After the first timestep, there are n+1 candidate
locations for the page that was actually requested. We denote
this as C(t1) = n+1, or the confusion at timestep t1 is n+1.

We therefore mark these pages “red”. In the next step, n
random pages are taken from the N − 1 pages not yet in the
MMU. Every taken page which was not yet marked “red” now
becomes “red.”

To assess the additional number of pages marked at each
timestep, we note that a sequence of draws from a finite
population without replacement is defined by a hypergeometric
distribution. As such, the average number of marked pages
in a sequence of n draws from the N − 1 candidates, of
which C(ti) − 1 are marked at timestep ti+1, is given by
n(C(ti) − 1)/(N − 1). The average number of non-marked
pages is then n−n(C(ti)−1)/(N−1). As a result, we obtain
the following equations for the confusion:

C(t1) = 1 + n

C(ti+1) = C(ti) + n− n(C(ti)− 1)/(N − 1)

One can easily verify that this converges to N , since no
more candidates are added once C(ti) equals N . Thus, for n =
N − 1 and p = 1, we would obtain true oblivious RAMs [7]
under the specified assumptions.

IV. PROTOTYPE IMPLEMENTATION

In this section, we will elaborate on the more practical
aspects of the suggested transformation. Our prototype im-
plementation compiles C programs into programs with the
described properties. The prototype is built on top of the
Phoenix framework [8], which is discussed in Section IV-A.
The core of the transformation, namely redirecting all heap
accesses through the MMU, will be discussed in Section IV-B.
The two optional transformations — migrating local variables
to the heap and scrambling the pointers in the program’s data
space — will be discussed in Section IV-C and IV-D. The next
two sections (IV-E and IV-F) elaborate on the complications
that arise when pointer usage crosses the boundary between
code within the reach of our transformation and external
code. The final section (IV-G) discusses the robustness of the
prototype implementation.

A. Phoenix

Our prototype implementation is built on top of Phoenix1,
a framework for building compilers and tools for program
analysis, optimization and testing. Phoenix consists a com-
prehensive set of modules and can process different languages
for different target platforms. Our prototype implementation
targets the C language compiled to x86 code.

Conceptually, the prototype is a C2 plugin, which means
that we graft ourselves onto the backend of the compiler. The
backend reads the C Intermediate Language (CIL) generated
by the front end and lowers it to machine code.

B. Mediating Heap Accesses

The MMU will be mediating every access to the heap. It
will take care of the allocation and release of dynamic memory
as well. Therefore, all calls to memory-management functions
(malloc, calloc, realloc and free) are redirected. The current
dynamic memory allocation mechanism uses buddy blocks for
allocations smaller than or equal to the page size s. When no
previously allocated memory is available for reuse, memory
is allocated per page. If the block is more than twice as large
as desired, it is broken in two. One of the halves is selected,
and the process repeats until the block is the smallest power
of two larger than or equal to the request.

A list of free blocks of different sizes is maintained. When
blocks are freed, the buddy of that block is checked; if it is
free as well, they can be merged once again. In the presence of
free blocks, a request for memory is started from the smallest
free block that can serve the request. For blocks larger than
the page size s, we allocate the smallest number of pages
sufficient to serve the request.

The pointers returned to the program do not need to
correspond directly to the actual location of the data. However,
if we want to allow the program to perform pointer arithmetic
independently, care needs to be taken that the returned pointers
can be the result of a regular allocation mechanism. This
means that memory requests cannot return pointers that fall
within previously allocated memory areas in the program’s
data space. Otherwise, during a subsequent memory access,
we will not be able to determine whether the pointer was
computed through an offset from the earlier allocation, or
originates from the new request.

Currently, this is resolved by maintaining a straightforward
relation between the pointers returned by the regular memory
requests performed by our MMU behind the screens and the
pointers returned to the program. The relation is not one-to-
one to facilitate future memory accesses.

As the pointers seen by the program do not correspond
to the location of the data in memory, we need to intercept
every read and write operation to the heap. These memory
accesses may be anywhere in the memory area allocated by the
program, and we need an easy way to translate the addresses
to the correct location of the data at the time the request is
made. Therefore, we make sure that the pointers returned to

1http://research.microsoft.com/Phoenix/



the program from a memory request are page-size aligned. On
subsequent accesses, we can then easily determine the offset
on the page, and a mapping will translate the page addresses
as seen by program to the actual current location of the page.

C. Migrating Local Variables to the Heap
The technique discussed above only affects data on the

heap. In many scenarios, the local variables of a program may
contain critical information or their integrity may be crucial
for uncompromised execution of the program. Therefore, we
have added the option of migrating local variables from the
stack to the heap.

In practice, definitions of the local variables are replaced by
pointer creations through memory requests. Subsequent uses
of the local variable are adapted to go through the pointer. If
the variable goes out of scope, the memory is freed.

D. Pointer Scrambling
If we wish to blur the relation between the different

pointers returned to program, we need to scramble them. If
left unscrambled, the relation between different pointers can
reveal, for example, that different smaller memory areas have
been allocated on the same page, or that two independently
computed pointers are related. If we want the program to be
able to perform pointer arithmetic, the transformation needs
to be isomorphic with respect to addition, subtraction, and the
order relation.

Transforming the page addresses to page-size aligned ad-
dresses to facilitate subsequent data accesses, as described
in Section IV-B, has this isomorphic property. However, this
restriction makes it hard to hide the relation between different
pointers well. On the other hand, if the pointers are scrambled
more thoroughly, the program can no longer operate on the
pointers directly. As a result, if extensive pointer scrambling
is turned on, we will redirect all pointer arithmetic to the MMU
as well.

E. Escaping Pointers
As with any form of data obfuscation, interfacing with

external code poses a challenge. The problem is that the
external code is not under our control and can therefore not
be modified to take the data obfuscation into account. As a
result, the data needs to be put into its original format before
it is passed to external code. This poses a potential security
risk, as it forces the code to contain functionality to undo the
transformations. Therefore, we advocate that the reliance on
external code be reduced to the absolute minimum. If possible,
library functions should be internalized and included in the
transformation as much as possible. Ideally, the only time data
is normalized is just before I/O, as this cannot be avoided when
preserving the relevant behavior of the program.

In our case, as the pointers in the program’s data space no
longer point to the actual data, a problem arises when pointers
are passed to code that is beyond our control. This problem
occurs when pointers escape to library functions or system
calls. Other than internalizing external code, we discuss two
main strategies to deal with this.

The first is to normalize the data. This would mean that
we reorder all of the memory accessible through the escaping
pointers so that the memory is in the correct layout and to
pass the correct pointer to this memory area. This may require
extensive normalization of the memory via a recursive process,
since external code may receive aggregate arguments that in
turn contain pointers to various memory locations from which
other memory locations may become accessible.

The second approach is to redirect calls to those library
functions to internal code that will emulate the library func-
tions in such a way that they take the shuffled layout into
account.

The first approach is more general and requires less domain-
specific knowledge. However, it increases the attack surface of
the MMU, as it should now contain functionality to turn the
memory back into a normal layout. We would clearly like to
avoid this. Therefore, we may opt instead not to include any
data that may escape to library functions or system calls in the
transformation. This makes sense, as this data may be revealed
anyway when crossing the boundary. On the other hand, it may
not always be easy to determine conservatively and accurately
the data that could potentially escape during an execution of
the program. These motivations, along with the fact that we
are currently targeting C programs with only limited reliance
on library code, have led us to switch to the second approach.

Our experimental evaluation shows that the number of
library functions called from the inspected benchmarks (C
programs of the SPECCPU 2006 benchmark suite) is limited.
These library calls consist mainly of three types of operations:
(i) memory operations such as memset, memcpy and mem-
move; (ii) string operations such as strlen, strcat and strcpy;
and (iii) basic file operations such as read, open, and remove.
The workload of creating the required function wrappers
which take the shuffled memory layout into account proved
to be limited. The wrappers typically divide the operation
into a sequence of calls to the library function, so that the
library function can operate on contiguous chunks of data
(typically of size s). Furthermore, the SPEC benchmarks do
not pass complicated structures containing pointers to the
outside world.

F. Incoming Pointers

A related problem is pointers coming in from library func-
tions. These may pose a problem because it may be hard to
distinguish them from scrambled pointers. Again, we see two
possible solutions. The first is to take the “all or nothing”
approach. In this solution, as soon new pointers are created
(by library calls or dereferences), we will absorb them into
our scheme by notifying the MMU of the creation, and using
a modified pointer subsequently. This way, we are certain that
the pointers have been masked (if masking is turned on), and
that we need to go through the translation mechanism for every
heap operation.

Once again, this may create problems if pointers to pointers
or structs containing pointers are passed to the program. From
our experiments, we have learned that most pointers created by



external functions are the result of memory allocation, which
is intercepted anyway. One notable exception are command-
line arguments, which are passed as an array of strings (char
pointers). As the number of arguments is known and the
structure of the array is well known, we can absorb these
pointers as well.

The second approach is to mark the pointers under the
control of the MMU. We do this by relying on the fact that on
our target operating system (Windows), the upper 2GiB of the
virtual address space are reserved for the kernel. This means
that the program shouldn’t see pointers for which the highest
bit is set. Our marking thus consists of setting this highest
bit, which will identify pointers that are part of our scheme.
Furthermore, this marking does not break pointer arithmetic,
which means that such arithmetic can still be done directly by
the program if extensive pointer scrambling is not turned on.

We have implemented both approaches and made the first
approach optional.

G. Robustness of the Prototype

The transformation as implemented by our prototype re-
quires a correct interpretation of the operation of the C code.
This is no problem for the evaluated benchmarks, and the
interpretation will generally be correct for programs that have
not been made hard to analyze deliberately. For completeness,
we report a number of limitations that may become apparent
with programs that unintentionally or deliberately contain
“unclean” code. In practice, the programs that one wants to
protect should adhere to rigorous coding practices, as these
are required for maintainability and portability.

The transformation redirects a number of operations, includ-
ing function calls. This means that calls to those functions
(e.g., malloc) need to be detected. Currently, our tool supports
indirect function calls, but only as long as they do not escape
pointers to the outside world. This is an implementation issue
and could be resolved through run-time checks at the cost of
additional slowdown.

Another more fundamental limitation would arise if the
program performs illegitimate pointer arithmetic on scrambled
pointers (e.g., by casting the pointers to integers and operating
on the integers). Aside from being a portability issue, this
would prevent the framework from detecting and redirecting
the pointer operations.

In general, any disguised pointer usage will potentially
compromise the correct operation of our transformation. As
already mentioned, this does not occur in the benchmarks
from the SPEC CPU2006 benchmark suite, which have been
tested extensively by others and ported across 32-bit and 64-bit
systems.

V. EXPERIMENTAL EVALUATION

We tested the transformation on five C benchmarks from
the SPEC CPU2006 suite listed in Table I. The obfuscated
benchmarks were run and timed on a Pentium 3.0 GHz
workstation with 2 GB of RAM. For timing comparisons
with the unmodified benchmarks, we applied the obfuscation

by adding the following individual transformations in stages.
The implementation of these transformations is described
elsewhere in this paper:

• Mediated Heap Access
• Migrating Local Variables to the Heap
• Pointer Scrambling

A. Benchmarks

Table I lists the benchmarks against which we tested.
We ran each of the baseline benchmarks on the test ma-

chine to get the base execution timings. We then applied the
obfuscation in stages as described and collected the timings of
each test run. These timings were then expressed as a factor
of the baseline timing to represent the overhead of the applied
transformation. These results are shown in Table II.

It should be noted that in running these tests, the transforma-
tions were applied over the entire program in order to achieve
an unbiased and consistent set of results for comparison of
the various techniques. As every memory access in the code
is redirected through the MMU, the impact on the run times
can be significant.

We also performed the tests on two simple functions that
we created that repeatedly perform a specific operation in
a loop to see the effect the transformations have on these
particular types of operations. The first function, pseudorand,
computes the function xn = (axn−1 + b) mod c 30,000,000
times. In the program, a single variable x is allocated on the
heap. The second function, sumlist, calculates the summation
of 30,000,000 integers stored in a linked list. In this case,
all 30,000,000 list elements are allocated on the heap. The
results for these tests are shown in Table III. The difference
in the overhead illustrates that the method is sensitive to the
amount and type of data on which it is applied, and judicious,
targeted application can significantly improve performance.
Section VII mentions some further practical ways to alleviate
the slowdown.

B. Performance Issues

Even with the slowdown levels incurred by our preliminary
implementation, selective application of our techniques may
find some practical use. For example, applications such as
DRM and access control involve Boolean checks executed
outside performance-sensitive program paths. Such security
tests may be required just once, a few times, or infrequently
during runtime. These operations often can be made orders
of magnitude slower without perceptibly affecting user expe-
rience.

When better optimized, our implementation may also be
useful in more performance-oriented applications, such as
stream decryption with sensitive keys. Runtime profiling and
user input can help to determine which parts of the application
would benefit most from our techniques. To avoid attracting
attention to security-critical code, we would typically protect
various unrelated parts of the application as well.



TABLE I
DESCRIPTION OF THE BENCHMARKS

Benchmark Description
401.bzip2 Compression
429.mcf Combinatorial optimization
433.milc Physics: quantum chromodynamics
458.sjeng Artificial intelligence: chess
470.lbm Fluid dynamics

TABLE II
TRANSFORMATION OVERHEAD FOR SELECTED BENCHMARKS

Transformation 401.bzip2 429.mcf 433.milc 458.sjeng 470.lbm
Mediated Heap 117.7 47.9 15.5 4.5 8.7
Mediated Heap + Pointer Scrambling 151.1 61.0 21.7 93.9 8.8
Mediated Heap + Migrated Local Variables 518.3 91.2 114.6 542.1 23.5
Mediated Heap + Migrated Variables + Scrambling 523.6 102.3 117.4 619.4 23.7

TABLE III
TRANSFORMATION OVERHEAD FOR SIMPLE FUNCTIONS

Transformation pseudorand sumlist
Mediated Heap 3.7 156.7
Mediated Heap + Pointer Scrambling 4.0 160.5
Mediated Heap + Migrated Local Variables 9.1 315.3
Mediated Heap + Migrated Variables + Scrambling 10.2 338.2

VI. RELATED WORK

The technique described can be used for both obfuscation
and tamper-resistance. Most existing techniques from the
domain of tamper-resistance focus on protecting the integrity
of code and are based on checksumming segments of the
code [9], [10]. A generic attack against such schemes has been
devised for the x86 through the manipulation of processor-
level segments, and for the UltraSparc through a special
translation look-aside buffer load mechanism [11]. Related
techniques [12] hash the execution of a piece of code, while
others have looked at the reaction mechanism in more detail.
Once tampering is detected, appropriate action needs to be
taken. If the manifestation of this action is too obvious, it can
be easily tracked down. Delayed and controlled failures [13]
are a way to make it harder to locate the reaction mechanism.

Software obfuscation [14], [1] aims to make programs
harder to understand. There is a considerable body of work
on code obfuscation that focuses on making it harder for
an attacker to decompile a program and extract high level
semantic information. Our technique is complementary to most
existing work and focuses specifically on making it harder to
detect dynamic data flow.

White-box cryptography [15] can be seen as a specific,
clearly defined problem in obfuscation. Here the goal is to
hide a secret key in a cryptographic software implementation
in the malicious-host model. Our solution can help to defend
against certain attacks based on analyzing dataflow, but should
be viewed as just one component of a comprehensive software-
protection toolbox.

VII. EXTENSIONS

The prototype implementation could be improved and ex-
tended in a number of ways. While our prototype tool is a
compiler plug-in to transform source code, the techniques may
be used on binaries and byte-codes as well (e.g., by hooking
data accesses to pass through the MMU). Future work includes
optimizing the code, especially that of the MMU to reduce
the cost of the applied transformation. We continue with a
discussion of a number of possible extensions.

A. Alternative Heap Management

The current heap management is based upon a paging
mechanism, and pages are permuted periodically. Alternative
schemes are possible as well. One suggested alternative ap-
proach is to keep the data in a self-balancing binary search
tree. This way, data would be retrieved by looking for it
in a binary tree. As the tree is self-balancing, the data
reordering would be automatic. A splay-tree implementation,
as suggested by Varadarajan et al. [16], could furthermore
exploit data locality, as recently accessed items will be near
the top of the tree.

B. Code Reordering

A more elaborate extension would consist of including the
code (not just the data) in the reordering mechanism. This
would typically be done after the assembly representation has
been generated, possibly as a link-time transformation. The
code can be divided into chunks that can fit on a single page
as, at this point, the exact code size is known. We could then
redirect control-transfer instructions to code on other pages to



go to the MMU. The MMU could then make the requested
code available for execution by the CPU. Requests for code
pages can be handled similarly to data accesses to permute the
code and data.

C. User-directed Application

The operation of our current prototype is fully automated.
Furthermore, the results reported in the evaluation section are
obtained by applying the transformation to the entire program.
The slowdown could easily be alleviated through profiling, as
a result of the 10/90 rule of thumb: 10 percent of the code
is responsible for 90 percent of the execution time. If we
could avoid frequently executed code, the slowdown would
be considerably smaller. We believe that the reported timing
information enables the reader to get a good feel of the real
cost of the technique.

In practice, however, it is often the case that the programmer
has domain-specific information as to which data needs to be
protected and which data is less vital. Therefore, the option
may be provided to mark that data at the source level and to
limit the transformation to this data.

VIII. CONCLUSION AND FUTURE WORK

This paper has presented a practical approach to hiding
data-access patterns in real-life programs. The technique in-
volves shuffling and encrypting data in memory, as well
as protecting pointer references. Realizing some benefits of
oblivious memory accesses [7], [16], the approach complicates
attacks based on dataflow analysis and memory traces. In
addition to the extensions discussed above, future work will
involve integrating dataflow flattening into a general-purpose
protection framework. Our tool implementation may be useful
standalone against certain targeted dataflow attacks, but also
serves well as an element of more comprehensive protection
systems that support analysis of security [17].

REFERENCES

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” in
Proceedings of the 21st IACR Crypto Conference, ser. Lecture Notes
in Computer Science, vol. 2139, 2001, pp. 1–18.

[2] Y. T. Kalai and S. Goldwasser, “On the impossibility of obfuscation
with auxiliary inputs,” in Proceedings of the 46th IEEE Symposium on
Foundations of Computer Science (FOCS 05), 2005.

[3] B. Lynn, M. Prabhakaran, and A. Sahai, “Positive results and techniques
for obfuscation,” in Eurocrypt, 2004.

[4] H. Wee, “On obfuscating point functions,” in STOC ’05: Proceedings
of the Thirty-seventh Annual ACM Symposium on Theory of Computing.
New York, NY, USA: ACM Press, 2005, pp. 523–532.

[5] F. Cohen, “Operating system evolution through program evolution,”
Computers and Security, vol. 12, no. 6, pp. 565–584, 1993. [Online].
Available: http://www.all.net/books/IP/evolve.html

[6] M. Limayem, M. Khalifa, and W. Chin, “Factors motivating software
piracy: A longitudinal study,” in 20th Int’l Conf. Information Systems,
1999, pp. 124–131.

[7] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473,
1996.

[8] Microsoft Corporation, “Phoenix compiler framework,” 2008.
[9] H. Chang and M. Atallah, “Protecting software code by guards,” in

Proceedings of the 1st ACM Workshop on Digital Rights Management,
ser. Lecture Notes in Computer Science, vol. 2320. Springer-Verlag,
2002, pp. 160–175.

[10] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan, “Dynamic self-
checking techniques for improved tamper resistance,” in Proceedings
of the 1st ACM Workshop on Digital Rights Management, ser. Lecture
Notes in Computer Science, vol. 2320. Springer-Verlag, 2002, pp.
141–159.

[11] G. Wurster, P. van Oorschot, and A. Somayaji, “A generic attack on
checksumming-based software tamper resistance,” in The 26th IEEE
Symposium on Security and Privacy, 2005, pp. 127–138.

[12] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski,
“Oblivious hashing: a stealthy software integrity verification primitive,”
in Proceedings of the 5th Information Hiding Conference, ser. Lecture
Notes in Computer Science, vol. 2578. Springer-Verlag, 2002, pp.
400–414.

[13] T. Gang, C. Yuqun, and M. Jakubowski, “Delayed and controlled failures
in tamper-resistant systems,” in The 8th Information Hiding Conference,
2006.

[14] C. Collberg, C. Thomborson, and D. Low, “Breaking abstractions
and unstructuring data structures,” in Proceedings of the
6th International Conference on Computer Languages. IEEE
Computer Society Press, 1998, pp. 28–38. [Online]. Available:
citeseer.nj.nec.com/collberg98breaking.html

[15] S. Chow, P. Eisen, H. Johnson, and P. Van Oorschot, “White-box
cryptography and an AES implementation,” in Proceedings of the 9th
Workshop on Selected Areas in Cryptography, ser. Lecture Notes in
Computer Science, vol. 2595. Springer-Verlag, 2003, pp. 250–270.

[16] A. Varadarajan and R. Venkatesan, “Limited obliviousness for data
structures and efficient execution of programs,” Microsoft Research,
Tech. Rep., 2006.

[17] N. Dedic, M. H. Jakubowski, and R. Venkatesan, “A graph game model
for software tamper protection,” in 2007 Information Hiding Workshop,
2007.


