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ABSTRACT 

Model building in machine learning is an iterative process. 
The performance analysis and debugging step typically 
involves a disruptive cognitive switch from model building 
to error analysis, discouraging an informed approach to 
model building. We present ModelTracker, an interactive 
visualization that subsumes information contained in 
numerous traditional summary statistics and graphs while 
displaying example-level performance and enabling direct 
error examination and debugging. Usage analysis from 
machine learning practitioners building real models with 
ModelTracker over six months shows ModelTracker is used 
often and throughout model building. A controlled 
experiment focusing on ModelTracker’s debugging 
capabilities shows participants prefer ModelTracker over 
traditional tools without a loss in model performance. 
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INTRODUCTION 

Machine learning is an iterative process. In supervised 
machine learning, practitioners iteratively collect and label 
a sample of data, create features to represent the data, train 
a model with the data and features, and then inspect the 
model’s performance to determine how to proceed in the 
next iteration (e.g., collecting more data, adding/editing 
features, experimenting with a different learning algorithm). 
Once a model has achieved a sufficient level of 
performance, typically determined by its intended use, the 
model can be deployed in the target application (e.g., 
relevance ranking, activity detection, recommendations).  

The performance inspection step of the machine learning 
process can itself be quite involved. Performance inspection 
typically begins with an assessment of a model’s overall 
ability to correctly predict labels on data, often represented 
with summary statistics or graphs of common metrics (e.g., 
accuracy values, precision-recall curves). If summary 
metrics indicate poor performance, a practitioner may 
decide to continue iterating in a trial-and-error manner or 
debug the model by examining its behavior and trying to 
diagnose problems to inform the next iteration [8,18].  
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Figure 1. ModelTracker conveys overall model performance while enabling direct data inspection. Boxes represent user labeled 

examples and color indicates the label given (green for positive and red for negative). Test examples are placed at the top and train 

examples at the bottom. Examples are laid out horizontally according to the model’s prediction scores, with low scoring examples 

to the left and high scoring examples to the right. A high performing model will have most green boxes to the right and most red 

boxes to the left of the display. Users can interact directly with ModelTracker to reveal additional information (e.g., hovering over 

an example reveals its nearest neighbors in the current feature space), inspect examples (by clicking on boxes to pull up the 

corresponding raw data in the display), and annotate examples for better performance tracking. 



Debugging model performance typically requires a 
disruptive cognitive switch from the primary task of 
building a model to the task of analyzing prediction errors 
(i.e., examples whose user-provided labels are predicted 
incorrectly by the model). For example, performance 
analysis may involve first locating errors within large 
datasets via sorting and filtering (e.g., sorting by model 
prediction scores, filtering by errors types) and then 
inspecting raw data to form hypotheses about potential 
causes of those errors. Many tools have also been created to 
facilitate deeper model analysis and error debugging (e.g., 
dimensionality reduction [20,7,4] and scatterplot analysis 
[12,6]). Such tools, however, are often more complex and 
heavy weight than inspecting raw data [7]. Switching 
between these extremes of viewing summary statistics to 
debugging model performance behavior can result in a loss 
of context and disrupts the flow of model building [18]. 
These disruptions can be partially mitigated with integrated 
environments supporting both model building and error 
analysis tasks. However, existing integrated environments 
only support coarse statistics and fine-grained raw data 
inspection tools (e.g., [16,21]), thereby still requiring mode 
switches between model building and performance analysis. 
In practice, therefore, performance analysis and debugging 
is often performed only after trial-and-error strategies fail 
rather than to drive subsequent iterations of model building. 

In this paper, we present ModelTracker (Figure 1), an 
interactive visualization designed to encourage a more 
informed approach to model building in machine learning. 
ModelTracker subsumes information contained within 
numerous traditional summary statistics and graphs while 
displaying example-level performance within a single 
compact visualization. It also supports direct error 
examination and debugging, reducing disruption caused by 
context switching from model building to error analysis.  

ModelTracker is not algorithm or data type specific, 
requiring only prediction scores and user labels on data to 
visualize performance. It can therefore support a variety of 
supervised machine learning tasks and algorithms. In this 
paper, we examine ModelTracker within the context of a 
general purpose machine learning environment called ICE 
(Interactive Classification and Extraction) [21].  

This paper makes the following contributions:  

• ModelTracker, a generally applicable interactive 
visualization supporting performance analysis during 
model building in supervised machine learning while 

enabling direct error examination and debugging. 

• Usage behavior from machine learning practitioners 
building real models (for research and product 
deployments) with ModelTracker over a six month 
period. Observations and feedback show that 
practitioners interacted with ModelTracker throughout 
model building, indicating that ModelTracker’s support 
for performance analysis and direct access to data helps 

circumvent a disruptive context switch between summary 

statistics and separate data inspection tools.  

• A controlled experiment comparing ModelTracker’s 
support for direct debugging of common sources of errors 
against traditional summary statistics and separate 
debugging tools, showing that participants prefer 
ModelTracker over traditional tools without a loss in 

model performance or debugging ability.  

RELATED WORK 

In this section, we review common techniques for 
conveying model performance in machine learning and 
related tools for debugging performance issues.  

Conveying Model Performance 

Summary statistics are the most common technique for 
conveying model performance in machine learning. 
Common statistics include accuracy, precision, recall, F-
scores, and area under the curve (AUC). Sometimes these 
are plotted over model variables (e.g., precision-recall 
curves are plotted over prediction thresholds (Figure 2)). 
Confusion matrices are another popular tool for conveying 
model performance by contrasting user provided labels with 
predicted labels (using a fixed prediction threshold) in a 
table, displaying the frequency of examples categorized 
within each cell. For example, in binary classification, 
confusion matrices are displayed using a 2x2 grid (Figure 
2) showing the number of user-model agreements along the 
diagonal and false positives and negatives off the diagonal. 
Sometimes color or shading is also used to emphasize cell 
counts, drawing attention to problematic categories [22]. 

Most popular machine learning toolkits provide built-in 
functionality for computing summary statistics and 
confusion matrices because they provide an efficient and 
consistent means of conveying performance over a wide 
variety of tasks (e.g., Weka [11], Matlab [13], R [19]). 
However, while summary statistics and confusion matrices 
can convey the presence of errors, they do not indicate 
severity or the potential causes of those errors. Practitioners 
must therefore use separate tools to locate and examine 
individual errors. Summary statistics therefore lend 
themselves well to trial-and-error, rather than an informed 
approach to model building [8,18]. ModelTracker bridges 
the gap between performance analysis and debugging, 
reducing disruptions caused by context switching. 

Debugging Performance Issues 

Debugging model performance often involves direct 
examination of individual prediction errors [3,18]. Errors 
are typically located by sorting, filtering, and grouping 
operations over raw data in a separate display (e.g., sorting 
by prediction scores, filtering by error category). Once 
errors are located, they can be examined and hypotheses 
can be generated about potential causes. This process of 
locating and examining individual errors can often be 
tedious, particularly as the size of the data set grows. In 



addition, focusing on individual errors can result in a loss of 
context, making it difficult for users to prioritize or 
generalize from their observations. A similar strategy is 
direct evaluation, where users provide new data to the 
model to examine its predictions in real time (e.g., 
[9,10,21]). However, as with direct examination, this 
strategy does not facilitate prioritization or generalization of 
errors. In contrast, ModelTracker presents both summary 
and example-level performance information directly within 
its visualization, facilitating error identification and 
prioritization without the need for context switching. 

Dimensionality reduction techniques such as principal 
components analysis, multidimensional scaling, and 
clustering can also be used for model debugging [20]. 
Dimensionality reduction projects high-dimensional data 
onto fewer dimensions to enable visual inspection of 
relationships between individual examples, often via two-
dimensional scatterplots. While these techniques facilitate 
deeper model analysis, they can also be complex and 
difficult to extract insight from [7]. Multidimensional 
scaling, for example, requires determining a distance 
function to represent the similarity between data, choosing 
a scaling mechanism, and then interpreting results. 
Scatterplot analysis can itself be difficult because 
meaningful substructures (e.g., clusters) may not be visually 
salient and reduced dimensions may not correspond to real 
variables of the data. Projected dimensions will also 
typically change with each round of model building (e.g., 
adding new data or features), requiring reinterpretation with 
each iteration. In contrast, ModelTracker visualizes 
individual examples along consistent and real dimensions, 
eliminating the need to reorient and reinterpret visual 
dimensions after each iteration while fostering expectations 
about how performance should appear over time. 

Many tools have been proposed to aid visual exploration of 
structures within projections manually (e.g., [12,14]) or 
semi-automatically (e.g., [7,6,4]). These tools are often 

complex or immersive, providing functionality to support 
visual data mining and knowledge discovery. In practice, 
therefore, cognitively demanding tools are typically only 
used when a deeper analysis of unexpected performance is 
necessary rather than to drive each iteration of model 
building [18]. In contrast, ModelTracker’s compact 
visualization enables it to be always accessible for 
lightweight performance analysis and debugging 
throughout the model building process.   

Scatterplots are also used for displaying other properties of 
the data during model building. Scatterplots and scatterplot 
matrices, for example, are often used to display correlations 
between features over the current data set [20]. This can 
help identify feature dependencies as well as potential 
clusters and outliers. However, these techniques suffer from 
the same issues as dimensionality reduction techniques 
including a significant amount of user effort in 
interpretation and an explicit context switching from 
building a model to examining properties of the model to 
interpret errors. In another example, Patel et al. [17] used a 
scatterplot to visualize the results of multiple models 
simultaneously during the machine learning process. Data 
points are plotted over fixed axes of entropy and 
incorrectness. This configuration aids detection of errors 
potentially caused by either mislabeled data or missing 
features. While this visualization can also help practitioners 
prioritize efforts in model debugging, unlike ModelTracker, 
it requires a large number of models to be trained 
simultaneously and does not provide an at-a-glance 
summary of any individual model that would eventually be 
exported for use in an application. 

Finally, several tools have been created to help practitioners 
build and inspect specific types of models (e.g., decision 
trees [1], naïve Bayes [2], support vector machines [5], and 
ensemble models [22]). However, the cost of learning new 
tools for each type of model or machine learning task can 
make special purpose tools prohibitive in practice. 

 
Figure 2. Common performance metrics used during model building in machine learning. Typically each metric is shown over 

both the test and train data. Confusion matrices contrast user labels with labels predicted by a model at a specific prediction 

threshold. Precision-recall curves plot precision versus recall over varying model thresholds. The area under the precision-recall 

curve (AUC) is often used as a summary of model performance where higher scores indicate better performance. While AUC 

values can be read from the corresponding curves, they are shown explicitly in the figure for emphasis. This also allows for display 

of change in AUC performance from one iteration of model building to the next (shown in parentheses). This figure also shows a 

chart illustrating the current ratio of positive and negative examples, used to encourage the user to provide balanced data. 



ModelTracker is not algorithm or data type specific, and 
therefore can provide a consistent means for performance 
analysis and debugging across a variety of supervised 
machine learning tasks (as discussed further in Discussion).  

MODEL BUILDING REVIEW 

ModelTracker was designed for use throughout model 
building in machine learning. While ModelTracker can be 
used for many supervised machine learning tasks, in the 
following sections we focus on its use in binary 
classification for ease of explanation. In this section, we 
briefly review the process of building a binary classifier. 
We then describe relevant aspects the ICE model building 
environment that we examined ModelTracker in [21]. 

Building a binary classifier typically begins with collecting 
and labeling data as either belonging (positive) or not-
belonging (negative) to the target class. Next, features are 
defined to characterize relevant aspects of the data in a 
machine understandable representation. Features should 
help a classifier discriminate between the positive and 
negative classes as labeled by the user. Labeled data and 
features are then fed into a machine learning algorithm to 
create a model. The labeled data is typically first split into a 
train and test set, where the train set is used to fit the model 
and the test set is used to estimate model performance on 
new data. Sometimes a third validation set is also set aside 
for tuning model parameters. Performance is then typically 
displayed on both the train and test sets. 

ICE is a general purpose machine learning environment for 
model building, supporting binary and multi-class 
classification as well as entity extraction. Figure 3 shows 
the ICE interface. Here, a user is building a binary classifier 
to classify web-pages as cycling or non-cycling related 
pages. Users find (via keyword search) and label within the 

main labeling area (top right). Users define and refine 
features for the classifier to use via the panel on the left of 
the display. For example, features that might help a 
classifier discriminate between cycling and non-cycling 
pages may be whether or not the page contains terms 
pertaining to types of cycles (e.g., “cycle” or “bicycle”) or 
an image of a cycle. Given labels and features, ICE 
automatically splits the labeled data into a train and test set 
and then trains a model for review.   

Prior to introducing ModelTracker into ICE, users would 
assess model performance via traditional summary statistics 
and graphs (Figure 2 and shown in the context of ICE at the 
bottom of Figure 3). These included confusion matrices, 
precision-recall curves, AUC statistics, and a label chart 
showing the balance of positive and negative labels 
currently provided. These metrics were computed and 
displayed for both the train and test sets. If performance 
analysis indicated problems, individual errors could be 
inspected by switching from labeling to a review mode. 
Errors could then be located via sorting and filtering and 
then paging through the raw data. After error inspection, 
users would switch back to labeling mode to continue (e.g., 
with labeling more data or adding or refining features). 

MODELTRACKER 

ModelTracker was iteratively designed with feedback from 
real users over one year to enable lightweight performance 
analysis and direct error examination during model building 
in machine learning. In this section, we explain how 
ModelTracker conveys model performance and how it can 
be used to debug common sources of errors in machine 
learning. Throughout this section, we also describe design 
decisions made based on observations and user feedback 
with early ModelTracker prototypes. Figure 1 shows our 
current version of ModelTracker (which replaces the panel 
of metrics in ICE, bottom panel in Figure 3) after a user has 
provided approximately 500 labeled examples and 7 
features, and will be referenced throughout this section. 

Conveying Model Performance 

Each square box in ModelTracker corresponds to one user 
labeled example with color indicating the label given (green 
for positive and red for negative). Labeled examples can be 
shown from two sets simultaneously. In Figure 1, test 
examples are shown on top while train examples are shown 
at the bottom of the display (separated by a horizontal line). 
The boxes are laid out horizontally according to the 
model’s prediction scores (e.g., ranging from 0 to 1), where 
examples with low scores are to the left and those with high 
scores are to the right. This means that a well-performing 
model will have most green boxes to the right and most red 
boxes to the left. Conversely, errors are shown by red boxes 
to the right and green boxes to the left. An early 
ModelTracker prototype displayed items as boxes in sorted 
order but without distributed them according to model 
scores. However, user feedback revealed that while 

 

Figure 3. The ICE interface with traditional performance 

metrics used in machine learning (bottom panel). Users 

interactively label data in the labeling area (top right) and 

modify features in the featuring area (left). ICE automatically 

trains a model as a user supplies labels and features and 

displays its current performance in the panel at the bottom. 

 



ordering examples indicated relative prediction scores (and 
therefore relative error severity), users also wanted to 
understand the magnitude of separation between individual 
examples to better prioritize efforts in debugging errors, 
leading to our current display. 

As labeled examples accumulate, boxes with the same 
prediction score are binned and stacked away from the 
horizontal line (e.g., examples in the top section are stacked 
upwards). Boxes within each bin are sorted such that 
examples potentially needing attention (e.g., errors) appear 
closer to the horizontal line. This helps keep problematic 
examples visible as data accumulates. Feedback from users 
using ModelTracker for binary classification with datasets of 
about 1700 examples on average confirm that this is 
sufficient for providing at-a-glance performance analysis 
while still alerting them to potential issues needing further 
inspection. In the Discussion section, we discuss other 
techniques we employ for scaling to larger number of 
examples (e.g., sampling for entity extraction in ICE). 

ModelTracker subsumes information contained in several 
traditional summary statistics and graphs while also 
displaying more detailed, example-level performance. 
Confusion matrices, for example, display the number of user-
model label agreements and disagreements given a specific 
prediction threshold. While ModelTracker does not display 
numerical sums, it displays agreement and disagreement via 
horizontal positioning of boxes according to model scores, 
where agreement is indicated by green boxes to the right and 
red boxes to the left and disagreement by red boxes to the 
right (false positives) and green boxes to the left (false 
negatives). This has the advantage of making error severity 
visible, in contrast to numerical sums which treat all errors 
equally. This also makes ModelTracker threshold 
independent. A vertical line in the display (Figure 1) depicts 
a threshold value, but functions only as a visual aid. For 
example, moving the line to the right emphasizes a reduction 
of false positives as the threshold increases (because fewer 
red boxes will appear to the right of the line) while 
potentially increasing the number of false negatives (because 
more green boxes may appear to the left). To display the 
same information using confusion matrices would require a 
separate matrix for each threshold. Moreover, to display this 
information over two sets (e.g., a test and train set) would 
require twice the number of confusion matrices. 

ModelTracker also subsumes information conveyed by 
precision-recall curves (Figure 2). Precision is the number of 
accurately predicted positive examples over the total number 
of examples predicted as positive by the model, whereas 
recall represents the number of examples accurately 
predicted as positive by the model out of all of the examples 
labeled as positive by the user. Precision-recall curves plot 
precision values versus recall values over various prediction 
thresholds. Typically, the larger the area under the precision-
recall curve (AUC), the better the model. Again, while 
ModelTracker does not display numerical precision-recall 

values, it depicts precision and recall via its distribution of 
boxes, enabling precision and recall to be visible at all 
thresholds simultaneously. For any given threshold value, 
precision is illustrated by the proportion of green boxes to the 
right of the threshold line out of all the boxes to the right of 
the line. Analogously, recall is illustrated by the proportion 
of green boxes that appear to the right of the line out of all 
the green boxes visible. In contrast, numerical values omit 
this important information about the distribution of data (i.e., 
the same numerical value may represent vastly different 
distributions). ModelTracker’s interactive threshold line can 
also help to emphasize how precision and recall vary over 
different thresholds. For example, moving the line to the left 
illustrates an increase in recall (as more green boxes will 
appear to the right of the line) but at a cost of precision (as 
more red boxes will also tend to appear to the right). 

Monitoring Performance during Model Building 

ModelTracker automatically updates as a user iterates in 
model building, adding boxes as more data is provided and 
rearranging boxes as prediction scores change (e.g., with new 
data or features). This results in a spreading and 
accumulating effect of the green boxes to the right and the 
red boxes to the left over subsequent iterations, provided the 
performance of the model is generally improving. 

ModelTracker also emphasizes prediction score changes on 
individual examples from one iteration to next to help users 
better understand the effects of their actions (e.g., feature 
modifications tend to produce larger effects than the addition 
of a few more labeled examples) and alert them to potentially 
unexpected changes. An early ModelTracker prototype 
illustrated changes via rotating boxes whose prediction 
changed from one iteration to the next. User feedback, 
however, suggested a need to show not only that a prediction 
changed, but also the magnitude of that change. The current 
version of ModelTracker, therefore, displays the magnitude 
of score changes via directed arcs from an example’s 
previous score location to its current score location (Figure 
1). Because scores on all examples tend to shift slightly from 
one iteration to the next, arcs are only displayed on examples 
whose predicted label (computed by comparing the model’s 
prediction score to the current prediction threshold) changed 
from the previous iteration (e.g., on examples that went from 
a positive to a negative prediction). Therefore, all arcs 
displayed will cross the prediction threshold line.  

Observations of users interacting with ModelTracker also 
revealed that users often inspected and then attempted to 
correct errors (causing an automatic update to 
ModelTracker’s display), but were left uncertain as to 
whether the error was in fact corrected as a result of their 
actions. To aid users in monitoring and tracking examples 
during model building, ModelTracker supports direct 
annotation of examples via bookmarking or tagging. For 
example, a user can tag an error and then monitor if the 
example was in fact corrected in the next update resulting 
from their action by tracking the tag in the display. 



Debugging Common Errors 

In this section, we describe how ModelTracker supports 
interactive inspection and debugging of three common 
sources of errors in machine learning: mislabeled data, 
inadequate features to distinguish between concepts, and 
insufficient data for generalizing from existing examples. 
Note that these errors may manifest in different ways 
depending on several factors including which set the error is 
in (e.g., train or test), which algorithm is being used, and 
whether or not the model is currently over-fitted to the data. 
Where possible, we explain these differences. Note also that 
aside from correcting mislabels, attempting to correct test 

errors is typically not recommended to prevent overfitting 
(maintaining a model’s ability to estimate performance on 
new data). In the Discussion section, we suggest techniques 
for preventing potential overfitting in ModelTracker.  

Errors Caused by Mislabeled Data 

Mislabeled data (often referred to as label or class noise) 
frequently occurs during data collection in machine learning 
[15] and can be resolved by locating and correcting the 
incorrect labels. Egregious errors in the train set in 
ModelTracker (red boxes to the far right or green boxes to 
the far left) tend to be candidates for mislabeled data. This is 
provided the model is not over-fitted to the data (in which 
case mislabels may appear at any location). If a user suspects 
a mislabel, they can click on the corresponding box to bring 
up the raw data in a separate viewing area (e.g., as a popup 
over the labeling area in ICE). Mislabels can then be 
corrected and resubmitted to the system. 

Errors Caused by Feature Deficiencies 

Another common source of error in machine learning is 
caused by failing to supply a model with adequate features to 
accurately discriminate between target concepts. For 
example, a model intended to recognize cycling from non-

cycling pages may confuse a page about motorcycling as 
cycling if only given features representing terms such as 
“ride” or “bike” as these may appear in both pages. 
Correcting this type of error often requires supplying the 
model with additional features (e.g., the addition of features 
with the terms “motorcycle” or “motorbike”).  

Potential feature related confusion can manifest as 
examples that the model views as similar given the current 
feature space but for which the user has given different 
labels. This is because the ability to generalize often implies 

that similar inputs (examples represented by features) have 
similar outputs (predicted labels). Therefore, if two 
examples are seen as similar by the model but different by 
the user (i.e., are neighbors in feature space but have 
different labels), this is an indication that the model is 
currently feature blind to some difference that the user can 
see. Locating such candidates for feature related errors in 
ModelTracker requires first hovering over errors to reveal 
neighboring examples (shown via connector lines between 
boxes, Figure 4), and then identifying neighbors with 
different labels (i.e., boxes with different colors connected 
with lines). Neighbors can be computed in many ways. We 

use the distance function:  

||x - y||2 = xTx + yTy – 2xTy 

where x and y are feature vectors representing two labeled 
examples. These are the same vectors supplied to the 
learning algorithm in ICE and therefore reflect the same 
information the classifier receives. For each example, we 
select the five nearest neighbors (i.e., with shortest distance 
to the target example) as the most similar and connect them 
with lines on hover. Clicking on boxes also brings up both 
the clicked example as well as the neighbors for further 

examination and feature ideation. 

ModelTracker can also display how features are correlated 
with the target class as is often examined via scatterplot 
analysis. For example, a positive correlation is suggested if 
values of a particular feature are higher for the positive 
class than for the negative class. Correlations can reveal 
feature deficiencies if unexpected trends are observed (e.g., 
if a feature was expected to be positively correlated but has 
high values in both the positive and negative classes). 
Feature correlation is displayed on demand in 
ModelTracker (triggered by hovering over a feature in 
ICEa) and is shown via box highlighting (Figure 5) where 
brighter and dimmer boxes indicate larger and smaller 

values of the corresponding feature, respectively.  

Errors Caused by Insufficient Data 

Insufficient data can also result in errors. These errors are 
most common in the test or validation set for regions of the 
input space (defined by the current set of features) that are 
insufficiently represented in the train set. Depending on the 
details of the modeling algorithm, however, they can also 

 

Figure 5. Correlations between features and the target class 

are displayed on demand via highlighting of boxes based on 

feature values. Brightness represents the value of the feature

in the corresponding example.  More bright green boxes on 

the right and dimmer red boxes towards the left show a 

feature that is highly correlated with the positive class. 

 

Figure 4. Connector lines showing examples considered as 

similar in feature space to the example hovered over. On the 

right, an outlier in feature space is depicted with a circle around 

the corresponding example.    



occur in the train set when there is not yet enough examples 
to overcome some bias in the model (e.g., in highly-
regularized linear models). Insufficient data errors often 
manifest as outliers – isolated examples distant from others 
in the current feature space. These errors can be corrected 
by providing additional data to the model.  

In early ModelTracker prototypes, outliers could be 
identified by locating examples with distant neighbors 
(shown via lines between boxes). However, observations 
indicated that users often missed potential outliers because 
distance is relative to the overall distribution of examples in 
feature space, which is not readily apparent. To more 
directly draw attention to potential outliers, the current 
version of ModelTracker indicates outliers via circles 
around corresponding boxes (Figure 4).  

Many techniques exist for computing outliers in statistics 
and machine learning. We compute outliers as examples 
whose nearest neighbors in feature space are greater than 
two standard deviations from the mean distance between all 
pairs of neighboring examples. By clicking on outliers, 
users can again inspect the corresponding example and then 
find additional examples similar to the outlier to supply to 
the model to try and correct the error. 

USAGE BEHAVIOR 

In this section, we report on the usage behavior of machine 
learning practitioners building real models (for research and 
product deployments) with ICE along with ModelTracker 
over six months to demonstrate how ModelTracker’s 
visualization and support for direct access to data 
encourages frequent and regular data inspection throughout 
model building. We limit our analysis to binary classifiers 
(via logistic regression) built by people outside of our team 
and containing at least 400 labels. This includes 40 different 
models built by seven practitioners (ranging from novices 
to experts) over text and web page data. Example concepts 
these models were built to detect include restaurant web 
pages, happy or angry sentiment in text, and text containing 
opinions. These models were interactively built over an 
average of 5.1 hours (SD=3.8), with 1714.5 (SD=1260.2) 
labels and 12.1 (SD=7.7) features, and achieving final test 
AUC performances of 0.91 (SD=0.17). Note that some 
features such as ModelTracker’s support for item tagging 
and identification of feature deficiencies and outliers were 

introduced during this period. Therefore, we only report 
usage statistics on features present throughout this period. 

Out of the 40 sessions we examined, 35 (87.5%) involved at 
least one interaction with ModelTracker (i.e., one box 
click). If people interacted with ModelTracker, they clicked 
on an average of 63.3 examples (4.1% of their data) during 
their sessions. Figure 6 shows the average distribution of 
ModelTracker interactions over time, indicating that people 
interacted with ModelTracker throughout model building, 
increasing interactions as they progressed. 

Interestingly, of the examples clicked in ModelTracker, 
only 41.6% (SD=23.6%) were in error at the time they were 
clicked, on average. However, because errors are computed 
given a specific prediction threshold, this does not 
necessarily capture whether people were clicking on 
examples that were technically correct but were still 
potentially problematic (e.g., negative examples with 
relatively high scores but still less than the threshold). 
Figure 7 shows the average percentage of examples clicked 
per score bin, indicating that users tended to click more on 
examples at the far ends of the display, but also still clicked 
on examples in the uncertain middle range. 

Post-deployment interviews revealed a common usage 
strategy that naturally arose from unguided user interaction 
with ModelTracker. Practitioners explained that they often 
ignored ModelTracker until some initial data was collected 
(e.g., one participant said “about 30 or so [initial] labels”). 
Then they began inspecting errors at the far ends of the 
visualization, often with false positives at the far right, and 
then working their way inwards. They explained that these 
errors seemed to have “easier” and more “obvious” 
solutions (e.g., “I always start with the biggest outliers [at 

the far ends] in part because it’s a sign that the label was 

wrong”), whereas errors in the middle were deemed as 
harder cases. During error inspection, practitioners reported 
trying to determine causes and actions to take including 
“adding features,” “changing labels,” or “adding labels.”  

Practitioners also commented on ModelTracker’s visual 
aids and diagnostic capabilities. For example, one 
practitioner reported initial confusion about the connector 
lines showing example neighbors in feature space, 
suggesting the need for more instructional support. 
Practitioners did report that the directed arcs helped to 

 
Figure 6. The average distribution of ModelTracker 

interactions throughout the model building process. 

 
Figure 7. The average percentage of examples clicked in the 

ModelTracker per score bin. 

 



verify whether an action taken resolved a suspected issue. 
One commented that it “was rewarding or not [when the 

action did not help].” Another commented that the arcs 
“helped when it matched my expectations [about what I 

thought was going to happen].” Practitioners also remarked 
that the arcs were less useful when there were too many of 
them and that the direction was sometimes hard to see. 

Overall, feedback from our practitioners were positive 
towards ModelTracker. One practitioner commented that it 
is the “most important instrument in ICE [for model 

building]” and “you can’t go back [to operating without 

it].” In comparing ModelTracker to summary statistics, one 
practitioner commented that “[ModelTracker] gives you the 

complete picture. Looking at summary statistics is very 

good for comparing models, but I can’t see what I need to 

do. I need to do other mini-experiments to figure that out.” 
However, some practitioners still desired summary 
statistics. One commented that “[ModelTracker is] useful 

for someone new to machine learning, but I still wanted to 

get AUC, for people who don’t use GUIs.” Interestingly, 
one practitioner who commented on their developed 
reliance on ModelTracker also requested summary statistics 
to help gauge improvement over time, saying “What [the 

directed arcs are] getting at is a good thing, but I still want 

a number for whether it got better or worse overall.”  

EVALUATION OF DEBUGGING CAPABILITIES 

We performed a controlled experiment to examine 
ModelTracker’s support for debugging three common 
errors in machine learning discussed previously (i.e., 
mislabeled data, feature deficiencies, and insufficient data) 
compared to the traditional method of using separate tools 
to debug. Specifically, we compared ModelTracker’s 
interface with a Traditional interface, where traditional 
summary metrics are provided for performance analysis 
(Figure 2) and individual errors can then be inspected via a 
review mode. Mislabels are located via filtering by errors or 
error categories (false positives and negatives) and then 
paging through and viewing raw data. Feature deficiencies 
are discovered by locating errors and then clicking a button 
to reveal similar examples with opposite labels in the 
current feature space. Finally, outliers are located by 
filtering by outliers. Both interfaces were used within the 
context of ICE. The study was run using a within-subjects 
design, counterbalancing interface order. 

Tasks 

To examine debugging capabilities, we created two tasks 
requiring participants to fix or improve existing classifiers. 
These tasks occur in real scenarios such as during model 
maintenance (e.g., when a deployed model must be updated 
in light of new data) and when labels are outsourced and 
initial features are insufficient to model the target concept. 

To create our tasks, we first built binary web-page 
classifiers (via logistic regression) targeting concepts 
related to common activities (e.g., cooking, travel). To 

build each classifier, we sampled data (using uncertainty-
based active learning) from the Open Directory Project 
database (http://www.dmoz.org), an open directory of 
human-categorized web pages. We used the concept 
descriptions given in this database to guide our labeling and 
featuring. From these classifiers, we selected two that 
achieved a comparable level of performance (measured via 
their test AUC values) with 400 labels and 11 features. The 
classifiers we selected targeted gardening and travel related 
web-pages and achieved test AUCs of 0.95 and 0.96, 
respectively. We then “broke” each classifier to generate 
errors by first removing a random subset of 130 examples 
(~33% of the initial data), randomly removing 5 of the 11 
features, and then randomly flipping 27 (10%) of the 
remaining labels. These broken gardening and travel 

classifiers served as the starting points for our study tasks. 
We also created a broken cycling classifier in the same way 
to use during the demos and practice with each condition.  

Participants and Procedure 

We recruited 14 participants (10 male) from a large 
software company including developers, test engineers, and 
program managers ranging in age from 23 to 53 years old. 
Participants self-reported as novice or proficient in machine 
learning, had previously built at least one model, and were 
familiar with precision and recall. Participants were run in 
groups of at most four, each working on an identical PC 
running Windows 8, with a 24” 1920x1200 monitor. All 
relevant interface actions were time-stamped and logged. 

Each session began with a review of the general model 
building process and a hands-on tutorial of ICE (with both 
the Traditional and ModelTracker panels hidden). Before 
each condition, the experimenter gave a tutorial on the 
corresponding interface and then allowed participants to 
practice debugging the broken cycling classifier with it. 
Prior to starting each task, the experimenter walked through 
the target concept description. Participants were then given 
20 minutes to debug and improve their broken classifiers as 
much as possible. Questionnaires were distributed after 
each condition and at the end of the study. Each session 
took three hours. Participants were given $30 worth of 
dining coupons and a $50 prize was awarded to the person 
with the largest classifier improvement. 

Results 

We analyzed classifier performance and logged data from 
our study using paired-samples t-tests. We analyzed 
performance in two ways. First, we computed the AUC 
improvement from the beginning to end of each task on a 
holdout dataset comprised of the 130 examples we removed 
as part of breaking each classifier. Second, we computed 
the number of corrected mislabels out of the 27 we 
introduced as part of breaking each classifier. Table 1 
shows all means and standard deviations of performance 
and the number of labels and features included in 
participants’ final classifiers. We found no significant 



difference in participant ability to debug or improve model 
performance between the two interfaces. 

We analyzed our post-condition Likert-scale questions 
using Wilcoxon signed-rank tests. Figure 8 shows 
preference counts and Likert-scale question medians. 10 out 
of 14 participants (71.4%) preferred ModelTracker over the 
Traditional interface. Participants favored ModelTracker in 
terms of their perceived ease of identifying and debugging 
both feature deficiencies (Z=-2.49, p=.013) and insufficient 
data (outlier) errors (Z=-1.99, p=.046). No significant 
differences were found in participants’ stated ability to 
understand their classifiers’ performance or their perceived 
ease of identifying and debugging mislabeled data. 

DISCUSSION AND FUTURE WORK 

Our examination of real ModelTracker usage and our 
controlled experiment revealed that practitioners relied on 
ModelTracker throughout model building and preferred it 
over traditional tools without a loss in performance or 
debugging ability. Participants commented that 
ModelTracker was simpler and more intuitive than the 
many summary statistics and graphs required to display 
equivalent performance information in the traditional 
interface. One participant said “I thought this UI was more 

intuitive… I think it is great to take such a complex concept 

and make it accessible.” Another said “The single 

visualization captures all of the segmented version and 

more.” Participants also commented on the reduced 
overhead ModelTracker provided in terms of direct error 
identification and reduced mode switching: “I liked being 

able to focus on the data without having to go between 

screen[s],” “Finding issues within the set was easy,” and 
“Very actionable information.” Of the participants who 
preferred the traditional interface, some commented on 
missing the more familiar statistics: “[Traditional] is better 

if you know a bit about how classifiers work.” Some also 
requested a hybrid view. One participant said “I would like 

to see both integrated.” Another recommended to “have 

[the ModelTracker] UI default, but the ability to bring up 

the confusion matrix and PR curves as optional UI.”  

In the ModelTracker visualization, we displayed both the 
train and test data to users as the ICE system provides 
access to both sets during model building. This has the 
potential to encourage overfitting by tempting users to over-
engineer models to fix test errors. However, since 
overfitting only happens when users edit features or adjust 
model parameters (not when fixing labels), one solution 

may be to disable inspection of test examples, thereby only 
using the test area to monitor generalization performance. 
Another solution may be to remove the test altogether (or 
replace it with a validation set), and rely on summary 
statistics to show generalization performance in a hybrid 
system. Further investigation is necessary to evaluate these 
options for reducing the potential to overfit.  

We concentrated on binary classification via logistic 
regression in this paper for ease of explanation. However, 
ModelTracker can visualize other classifiers that output 
probabilities (e.g., any calibrated classifier) and other 
supervised machine learning models. For example, within 
ICE [21] we also use ModelTracker for entity-extraction 
which uses conditional random field models to identify 
sequences of tokens belonging to a hierarchical set of 
entities (e.g., an address containing street and city entities). 
We use ModelTracker to visualize performance with 
respect to each entity by creating a green box for each 
entity (or a red box for each non-entity) labeled token or 
sequence of tokens. Prediction scores represent the relative 
confidence that the model assigns to these hypotheses, 
computed by taking the difference in probability of a parse 
consistent with the label and the next most likely 
inconsistent parse. In entity extraction, the number of boxes 
can grow quickly, particularly when there is one box per 
token. When this happens, we sample down the boxes in 
each score range while maintaining the same fraction of 
positive and negative labels. 

Entity-extraction problems also have similar characteristics 
to multi-class classification problems, in that both can 
involve multiple prediction categories (hierarchical entities 
and multiple classes, respectively). In both cases, we can 
view the one-vs-remaining performance for each category 
in ModelTracker. An opportunity remains to integrate 
between-class confusability information into a single 
visualization to better support light-weight performance 
analysis and debugging in multi-class scenarios. 

ModelTracker may have some benefits as a stand-alone 
static visualization to replace traditional performance 
statistics and graphs. Clearly, however, many of 
ModelTracker’s benefits increase when it is integrated into 
an environment supporting an iterative process of model 
building and error analysis. As discussed earlier, when 
ModelTracker is linked back to the individual examples, 

 
Figure 8. Overall preference counts and Likert medians. 

Metrics with *’s indicate significant effects were observed. 

 Traditional ModelTracker 

AUC Improvement  .008 (.042) .026 (.027) 

Mislabels Corrected 8.57 (6.02) 9.86 (4.89) 

Final Num Labels 327.5 (28.1) 320.9 (25.5) 

Final Num Features 8.64 (1.86) 8.57 (1.34) 

Table 1. Mean (SD) of performance and usage statistics. 

 



mislabeled data can be quickly discovered, examples with 
few neighbors can be brought forward and examined, and 
situations where new features need to be identified can be 
called out. Even closer integration allows overall model 
performance as well as performance on individual examples 
to be monitored as the model is iteratively retrained. Further 
investigations are therefore necessary to understand the 
benefits of ModelTracker as a stand-alone tool. 

CONCLUSION 

We introduced ModelTracker, a generally applicable 
interactive visualization for performance analysis and 
debugging in machine learning. Our examination of 
ModelTracker usage by machine learning practitioners 
building real models with ModelTracker for research and 
product deployments over a six month period demonstrates 
that ModelTracker is used regularly throughout model 
building. Our controlled experiment further shows that 
ModelTracker is preferred over traditional tools for 
performance analysis and debugging for its simplicity and 
intuitiveness without a loss in model performance. This 
suggests that ModelTracker can replace current tools for 
performance analysis and debugging, encouraging a more 
informed approach to model building in machine learning. 
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