
ModelTracker: Redesigning Performance Analysis
Tools for Machine Learning

Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice Simard, Jina Suh

Microsoft Research
Redmond, WA

{samershi, dmax, sdrucker, bongshin, patrice, jinsuh}@microsoft.com

ABSTRACT

Model building in machine learning is an iterative process.
The performance analysis and debugging step typically
involves a disruptive cognitive switch from model building
to error analysis, discouraging an informed approach to
model building. We present ModelTracker, an interactive
visualization that subsumes information contained in
numerous traditional summary statistics and graphs while
displaying example-level performance and enabling direct
error examination and debugging. Usage analysis from
machine learning practitioners building real models with
ModelTracker over six months shows ModelTracker is used
often and throughout model building. A controlled
experiment focusing on ModelTracker’s debugging
capabilities shows participants prefer ModelTracker over
traditional tools without a loss in model performance.

Author Keywords

Machine Learning; Interactive Visualization; Performance
Analysis; Debugging.

ACM Classification Keywords

H.5.2. Information interfaces and presentation (e.g., HCI):
User interfaces.

INTRODUCTION

Machine learning is an iterative process. In supervised
machine learning, practitioners iteratively collect and label
a sample of data, create features to represent the data, train
a model with the data and features, and then inspect the
model’s performance to determine how to proceed in the
next iteration (e.g., collecting more data, adding/editing
features, experimenting with a different learning algorithm).
Once a model has achieved a sufficient level of
performance, typically determined by its intended use, the
model can be deployed in the target application (e.g.,
relevance ranking, activity detection, recommendations).

The performance inspection step of the machine learning
process can itself be quite involved. Performance inspection
typically begins with an assessment of a model’s overall
ability to correctly predict labels on data, often represented
with summary statistics or graphs of common metrics (e.g.,
accuracy values, precision-recall curves). If summary
metrics indicate poor performance, a practitioner may
decide to continue iterating in a trial-and-error manner or
debug the model by examining its behavior and trying to
diagnose problems to inform the next iteration [8,18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright 2015 ACM 978-1-4503-3145-6/15/04…$15.00 .

http://dx.doi.org/10.1145/2702123.2702509

Figure 1. ModelTracker conveys overall model performance while enabling direct data inspection. Boxes represent user labeled

examples and color indicates the label given (green for positive and red for negative). Test examples are placed at the top and train

examples at the bottom. Examples are laid out horizontally according to the model’s prediction scores, with low scoring examples

to the left and high scoring examples to the right. A high performing model will have most green boxes to the right and most red

boxes to the left of the display. Users can interact directly with ModelTracker to reveal additional information (e.g., hovering over

an example reveals its nearest neighbors in the current feature space), inspect examples (by clicking on boxes to pull up the

corresponding raw data in the display), and annotate examples for better performance tracking.

Debugging model performance typically requires a
disruptive cognitive switch from the primary task of
building a model to the task of analyzing prediction errors
(i.e., examples whose user-provided labels are predicted
incorrectly by the model). For example, performance
analysis may involve first locating errors within large
datasets via sorting and filtering (e.g., sorting by model
prediction scores, filtering by errors types) and then
inspecting raw data to form hypotheses about potential
causes of those errors. Many tools have also been created to
facilitate deeper model analysis and error debugging (e.g.,
dimensionality reduction [20,7,4] and scatterplot analysis
[12,6]). Such tools, however, are often more complex and
heavy weight than inspecting raw data [7]. Switching
between these extremes of viewing summary statistics to
debugging model performance behavior can result in a loss
of context and disrupts the flow of model building [18].
These disruptions can be partially mitigated with integrated
environments supporting both model building and error
analysis tasks. However, existing integrated environments
only support coarse statistics and fine-grained raw data
inspection tools (e.g., [16,21]), thereby still requiring mode
switches between model building and performance analysis.
In practice, therefore, performance analysis and debugging
is often performed only after trial-and-error strategies fail
rather than to drive subsequent iterations of model building.

In this paper, we present ModelTracker (Figure 1), an
interactive visualization designed to encourage a more
informed approach to model building in machine learning.
ModelTracker subsumes information contained within
numerous traditional summary statistics and graphs while
displaying example-level performance within a single
compact visualization. It also supports direct error
examination and debugging, reducing disruption caused by
context switching from model building to error analysis.

ModelTracker is not algorithm or data type specific,
requiring only prediction scores and user labels on data to
visualize performance. It can therefore support a variety of
supervised machine learning tasks and algorithms. In this
paper, we examine ModelTracker within the context of a
general purpose machine learning environment called ICE
(Interactive Classification and Extraction) [21].

This paper makes the following contributions:

• ModelTracker, a generally applicable interactive
visualization supporting performance analysis during
model building in supervised machine learning while

enabling direct error examination and debugging.

• Usage behavior from machine learning practitioners
building real models (for research and product
deployments) with ModelTracker over a six month
period. Observations and feedback show that
practitioners interacted with ModelTracker throughout
model building, indicating that ModelTracker’s support
for performance analysis and direct access to data helps

circumvent a disruptive context switch between summary

statistics and separate data inspection tools.

• A controlled experiment comparing ModelTracker’s
support for direct debugging of common sources of errors
against traditional summary statistics and separate
debugging tools, showing that participants prefer
ModelTracker over traditional tools without a loss in

model performance or debugging ability.

RELATED WORK

In this section, we review common techniques for
conveying model performance in machine learning and
related tools for debugging performance issues.

Conveying Model Performance

Summary statistics are the most common technique for
conveying model performance in machine learning.
Common statistics include accuracy, precision, recall, F-
scores, and area under the curve (AUC). Sometimes these
are plotted over model variables (e.g., precision-recall
curves are plotted over prediction thresholds (Figure 2)).
Confusion matrices are another popular tool for conveying
model performance by contrasting user provided labels with
predicted labels (using a fixed prediction threshold) in a
table, displaying the frequency of examples categorized
within each cell. For example, in binary classification,
confusion matrices are displayed using a 2x2 grid (Figure
2) showing the number of user-model agreements along the
diagonal and false positives and negatives off the diagonal.
Sometimes color or shading is also used to emphasize cell
counts, drawing attention to problematic categories [22].

Most popular machine learning toolkits provide built-in
functionality for computing summary statistics and
confusion matrices because they provide an efficient and
consistent means of conveying performance over a wide
variety of tasks (e.g., Weka [11], Matlab [13], R [19]).
However, while summary statistics and confusion matrices
can convey the presence of errors, they do not indicate
severity or the potential causes of those errors. Practitioners
must therefore use separate tools to locate and examine
individual errors. Summary statistics therefore lend
themselves well to trial-and-error, rather than an informed
approach to model building [8,18]. ModelTracker bridges
the gap between performance analysis and debugging,
reducing disruptions caused by context switching.

Debugging Performance Issues

Debugging model performance often involves direct
examination of individual prediction errors [3,18]. Errors
are typically located by sorting, filtering, and grouping
operations over raw data in a separate display (e.g., sorting
by prediction scores, filtering by error category). Once
errors are located, they can be examined and hypotheses
can be generated about potential causes. This process of
locating and examining individual errors can often be
tedious, particularly as the size of the data set grows. In

addition, focusing on individual errors can result in a loss of
context, making it difficult for users to prioritize or
generalize from their observations. A similar strategy is
direct evaluation, where users provide new data to the
model to examine its predictions in real time (e.g.,
[9,10,21]). However, as with direct examination, this
strategy does not facilitate prioritization or generalization of
errors. In contrast, ModelTracker presents both summary
and example-level performance information directly within
its visualization, facilitating error identification and
prioritization without the need for context switching.

Dimensionality reduction techniques such as principal
components analysis, multidimensional scaling, and
clustering can also be used for model debugging [20].
Dimensionality reduction projects high-dimensional data
onto fewer dimensions to enable visual inspection of
relationships between individual examples, often via two-
dimensional scatterplots. While these techniques facilitate
deeper model analysis, they can also be complex and
difficult to extract insight from [7]. Multidimensional
scaling, for example, requires determining a distance
function to represent the similarity between data, choosing
a scaling mechanism, and then interpreting results.
Scatterplot analysis can itself be difficult because
meaningful substructures (e.g., clusters) may not be visually
salient and reduced dimensions may not correspond to real
variables of the data. Projected dimensions will also
typically change with each round of model building (e.g.,
adding new data or features), requiring reinterpretation with
each iteration. In contrast, ModelTracker visualizes
individual examples along consistent and real dimensions,
eliminating the need to reorient and reinterpret visual
dimensions after each iteration while fostering expectations
about how performance should appear over time.

Many tools have been proposed to aid visual exploration of
structures within projections manually (e.g., [12,14]) or
semi-automatically (e.g., [7,6,4]). These tools are often

complex or immersive, providing functionality to support
visual data mining and knowledge discovery. In practice,
therefore, cognitively demanding tools are typically only
used when a deeper analysis of unexpected performance is
necessary rather than to drive each iteration of model
building [18]. In contrast, ModelTracker’s compact
visualization enables it to be always accessible for
lightweight performance analysis and debugging
throughout the model building process.

Scatterplots are also used for displaying other properties of
the data during model building. Scatterplots and scatterplot
matrices, for example, are often used to display correlations
between features over the current data set [20]. This can
help identify feature dependencies as well as potential
clusters and outliers. However, these techniques suffer from
the same issues as dimensionality reduction techniques
including a significant amount of user effort in
interpretation and an explicit context switching from
building a model to examining properties of the model to
interpret errors. In another example, Patel et al. [17] used a
scatterplot to visualize the results of multiple models
simultaneously during the machine learning process. Data
points are plotted over fixed axes of entropy and
incorrectness. This configuration aids detection of errors
potentially caused by either mislabeled data or missing
features. While this visualization can also help practitioners
prioritize efforts in model debugging, unlike ModelTracker,
it requires a large number of models to be trained
simultaneously and does not provide an at-a-glance
summary of any individual model that would eventually be
exported for use in an application.

Finally, several tools have been created to help practitioners
build and inspect specific types of models (e.g., decision
trees [1], naïve Bayes [2], support vector machines [5], and
ensemble models [22]). However, the cost of learning new
tools for each type of model or machine learning task can
make special purpose tools prohibitive in practice.

Figure 2. Common performance metrics used during model building in machine learning. Typically each metric is shown over

both the test and train data. Confusion matrices contrast user labels with labels predicted by a model at a specific prediction

threshold. Precision-recall curves plot precision versus recall over varying model thresholds. The area under the precision-recall

curve (AUC) is often used as a summary of model performance where higher scores indicate better performance. While AUC

values can be read from the corresponding curves, they are shown explicitly in the figure for emphasis. This also allows for display

of change in AUC performance from one iteration of model building to the next (shown in parentheses). This figure also shows a

chart illustrating the current ratio of positive and negative examples, used to encourage the user to provide balanced data.

ModelTracker is not algorithm or data type specific, and
therefore can provide a consistent means for performance
analysis and debugging across a variety of supervised
machine learning tasks (as discussed further in Discussion).

MODEL BUILDING REVIEW

ModelTracker was designed for use throughout model
building in machine learning. While ModelTracker can be
used for many supervised machine learning tasks, in the
following sections we focus on its use in binary
classification for ease of explanation. In this section, we
briefly review the process of building a binary classifier.
We then describe relevant aspects the ICE model building
environment that we examined ModelTracker in [21].

Building a binary classifier typically begins with collecting
and labeling data as either belonging (positive) or not-
belonging (negative) to the target class. Next, features are
defined to characterize relevant aspects of the data in a
machine understandable representation. Features should
help a classifier discriminate between the positive and
negative classes as labeled by the user. Labeled data and
features are then fed into a machine learning algorithm to
create a model. The labeled data is typically first split into a
train and test set, where the train set is used to fit the model
and the test set is used to estimate model performance on
new data. Sometimes a third validation set is also set aside
for tuning model parameters. Performance is then typically
displayed on both the train and test sets.

ICE is a general purpose machine learning environment for
model building, supporting binary and multi-class
classification as well as entity extraction. Figure 3 shows
the ICE interface. Here, a user is building a binary classifier
to classify web-pages as cycling or non-cycling related
pages. Users find (via keyword search) and label within the

main labeling area (top right). Users define and refine
features for the classifier to use via the panel on the left of
the display. For example, features that might help a
classifier discriminate between cycling and non-cycling
pages may be whether or not the page contains terms
pertaining to types of cycles (e.g., “cycle” or “bicycle”) or
an image of a cycle. Given labels and features, ICE
automatically splits the labeled data into a train and test set
and then trains a model for review.

Prior to introducing ModelTracker into ICE, users would
assess model performance via traditional summary statistics
and graphs (Figure 2 and shown in the context of ICE at the
bottom of Figure 3). These included confusion matrices,
precision-recall curves, AUC statistics, and a label chart
showing the balance of positive and negative labels
currently provided. These metrics were computed and
displayed for both the train and test sets. If performance
analysis indicated problems, individual errors could be
inspected by switching from labeling to a review mode.
Errors could then be located via sorting and filtering and
then paging through the raw data. After error inspection,
users would switch back to labeling mode to continue (e.g.,
with labeling more data or adding or refining features).

MODELTRACKER

ModelTracker was iteratively designed with feedback from
real users over one year to enable lightweight performance
analysis and direct error examination during model building
in machine learning. In this section, we explain how
ModelTracker conveys model performance and how it can
be used to debug common sources of errors in machine
learning. Throughout this section, we also describe design
decisions made based on observations and user feedback
with early ModelTracker prototypes. Figure 1 shows our
current version of ModelTracker (which replaces the panel
of metrics in ICE, bottom panel in Figure 3) after a user has
provided approximately 500 labeled examples and 7
features, and will be referenced throughout this section.

Conveying Model Performance

Each square box in ModelTracker corresponds to one user
labeled example with color indicating the label given (green
for positive and red for negative). Labeled examples can be
shown from two sets simultaneously. In Figure 1, test
examples are shown on top while train examples are shown
at the bottom of the display (separated by a horizontal line).
The boxes are laid out horizontally according to the
model’s prediction scores (e.g., ranging from 0 to 1), where
examples with low scores are to the left and those with high
scores are to the right. This means that a well-performing
model will have most green boxes to the right and most red
boxes to the left. Conversely, errors are shown by red boxes
to the right and green boxes to the left. An early
ModelTracker prototype displayed items as boxes in sorted
order but without distributed them according to model
scores. However, user feedback revealed that while

Figure 3. The ICE interface with traditional performance

metrics used in machine learning (bottom panel). Users

interactively label data in the labeling area (top right) and

modify features in the featuring area (left). ICE automatically

trains a model as a user supplies labels and features and

displays its current performance in the panel at the bottom.

ordering examples indicated relative prediction scores (and
therefore relative error severity), users also wanted to
understand the magnitude of separation between individual
examples to better prioritize efforts in debugging errors,
leading to our current display.

As labeled examples accumulate, boxes with the same
prediction score are binned and stacked away from the
horizontal line (e.g., examples in the top section are stacked
upwards). Boxes within each bin are sorted such that
examples potentially needing attention (e.g., errors) appear
closer to the horizontal line. This helps keep problematic
examples visible as data accumulates. Feedback from users
using ModelTracker for binary classification with datasets of
about 1700 examples on average confirm that this is
sufficient for providing at-a-glance performance analysis
while still alerting them to potential issues needing further
inspection. In the Discussion section, we discuss other
techniques we employ for scaling to larger number of
examples (e.g., sampling for entity extraction in ICE).

ModelTracker subsumes information contained in several
traditional summary statistics and graphs while also
displaying more detailed, example-level performance.
Confusion matrices, for example, display the number of user-
model label agreements and disagreements given a specific
prediction threshold. While ModelTracker does not display
numerical sums, it displays agreement and disagreement via
horizontal positioning of boxes according to model scores,
where agreement is indicated by green boxes to the right and
red boxes to the left and disagreement by red boxes to the
right (false positives) and green boxes to the left (false
negatives). This has the advantage of making error severity
visible, in contrast to numerical sums which treat all errors
equally. This also makes ModelTracker threshold
independent. A vertical line in the display (Figure 1) depicts
a threshold value, but functions only as a visual aid. For
example, moving the line to the right emphasizes a reduction
of false positives as the threshold increases (because fewer
red boxes will appear to the right of the line) while
potentially increasing the number of false negatives (because
more green boxes may appear to the left). To display the
same information using confusion matrices would require a
separate matrix for each threshold. Moreover, to display this
information over two sets (e.g., a test and train set) would
require twice the number of confusion matrices.

ModelTracker also subsumes information conveyed by
precision-recall curves (Figure 2). Precision is the number of
accurately predicted positive examples over the total number
of examples predicted as positive by the model, whereas
recall represents the number of examples accurately
predicted as positive by the model out of all of the examples
labeled as positive by the user. Precision-recall curves plot
precision values versus recall values over various prediction
thresholds. Typically, the larger the area under the precision-
recall curve (AUC), the better the model. Again, while
ModelTracker does not display numerical precision-recall

values, it depicts precision and recall via its distribution of
boxes, enabling precision and recall to be visible at all
thresholds simultaneously. For any given threshold value,
precision is illustrated by the proportion of green boxes to the
right of the threshold line out of all the boxes to the right of
the line. Analogously, recall is illustrated by the proportion
of green boxes that appear to the right of the line out of all
the green boxes visible. In contrast, numerical values omit
this important information about the distribution of data (i.e.,
the same numerical value may represent vastly different
distributions). ModelTracker’s interactive threshold line can
also help to emphasize how precision and recall vary over
different thresholds. For example, moving the line to the left
illustrates an increase in recall (as more green boxes will
appear to the right of the line) but at a cost of precision (as
more red boxes will also tend to appear to the right).

Monitoring Performance during Model Building

ModelTracker automatically updates as a user iterates in
model building, adding boxes as more data is provided and
rearranging boxes as prediction scores change (e.g., with new
data or features). This results in a spreading and
accumulating effect of the green boxes to the right and the
red boxes to the left over subsequent iterations, provided the
performance of the model is generally improving.

ModelTracker also emphasizes prediction score changes on
individual examples from one iteration to next to help users
better understand the effects of their actions (e.g., feature
modifications tend to produce larger effects than the addition
of a few more labeled examples) and alert them to potentially
unexpected changes. An early ModelTracker prototype
illustrated changes via rotating boxes whose prediction
changed from one iteration to the next. User feedback,
however, suggested a need to show not only that a prediction
changed, but also the magnitude of that change. The current
version of ModelTracker, therefore, displays the magnitude
of score changes via directed arcs from an example’s
previous score location to its current score location (Figure
1). Because scores on all examples tend to shift slightly from
one iteration to the next, arcs are only displayed on examples
whose predicted label (computed by comparing the model’s
prediction score to the current prediction threshold) changed
from the previous iteration (e.g., on examples that went from
a positive to a negative prediction). Therefore, all arcs
displayed will cross the prediction threshold line.

Observations of users interacting with ModelTracker also
revealed that users often inspected and then attempted to
correct errors (causing an automatic update to
ModelTracker’s display), but were left uncertain as to
whether the error was in fact corrected as a result of their
actions. To aid users in monitoring and tracking examples
during model building, ModelTracker supports direct
annotation of examples via bookmarking or tagging. For
example, a user can tag an error and then monitor if the
example was in fact corrected in the next update resulting
from their action by tracking the tag in the display.

Debugging Common Errors

In this section, we describe how ModelTracker supports
interactive inspection and debugging of three common
sources of errors in machine learning: mislabeled data,
inadequate features to distinguish between concepts, and
insufficient data for generalizing from existing examples.
Note that these errors may manifest in different ways
depending on several factors including which set the error is
in (e.g., train or test), which algorithm is being used, and
whether or not the model is currently over-fitted to the data.
Where possible, we explain these differences. Note also that
aside from correcting mislabels, attempting to correct test

errors is typically not recommended to prevent overfitting
(maintaining a model’s ability to estimate performance on
new data). In the Discussion section, we suggest techniques
for preventing potential overfitting in ModelTracker.

Errors Caused by Mislabeled Data

Mislabeled data (often referred to as label or class noise)
frequently occurs during data collection in machine learning
[15] and can be resolved by locating and correcting the
incorrect labels. Egregious errors in the train set in
ModelTracker (red boxes to the far right or green boxes to
the far left) tend to be candidates for mislabeled data. This is
provided the model is not over-fitted to the data (in which
case mislabels may appear at any location). If a user suspects
a mislabel, they can click on the corresponding box to bring
up the raw data in a separate viewing area (e.g., as a popup
over the labeling area in ICE). Mislabels can then be
corrected and resubmitted to the system.

Errors Caused by Feature Deficiencies

Another common source of error in machine learning is
caused by failing to supply a model with adequate features to
accurately discriminate between target concepts. For
example, a model intended to recognize cycling from non-

cycling pages may confuse a page about motorcycling as
cycling if only given features representing terms such as
“ride” or “bike” as these may appear in both pages.
Correcting this type of error often requires supplying the
model with additional features (e.g., the addition of features
with the terms “motorcycle” or “motorbike”).

Potential feature related confusion can manifest as
examples that the model views as similar given the current
feature space but for which the user has given different
labels. This is because the ability to generalize often implies

that similar inputs (examples represented by features) have
similar outputs (predicted labels). Therefore, if two
examples are seen as similar by the model but different by
the user (i.e., are neighbors in feature space but have
different labels), this is an indication that the model is
currently feature blind to some difference that the user can
see. Locating such candidates for feature related errors in
ModelTracker requires first hovering over errors to reveal
neighboring examples (shown via connector lines between
boxes, Figure 4), and then identifying neighbors with
different labels (i.e., boxes with different colors connected
with lines). Neighbors can be computed in many ways. We

use the distance function:

||x - y||2 = xTx + yTy – 2xTy

where x and y are feature vectors representing two labeled
examples. These are the same vectors supplied to the
learning algorithm in ICE and therefore reflect the same
information the classifier receives. For each example, we
select the five nearest neighbors (i.e., with shortest distance
to the target example) as the most similar and connect them
with lines on hover. Clicking on boxes also brings up both
the clicked example as well as the neighbors for further

examination and feature ideation.

ModelTracker can also display how features are correlated
with the target class as is often examined via scatterplot
analysis. For example, a positive correlation is suggested if
values of a particular feature are higher for the positive
class than for the negative class. Correlations can reveal
feature deficiencies if unexpected trends are observed (e.g.,
if a feature was expected to be positively correlated but has
high values in both the positive and negative classes).
Feature correlation is displayed on demand in
ModelTracker (triggered by hovering over a feature in
ICEa) and is shown via box highlighting (Figure 5) where
brighter and dimmer boxes indicate larger and smaller

values of the corresponding feature, respectively.

Errors Caused by Insufficient Data

Insufficient data can also result in errors. These errors are
most common in the test or validation set for regions of the
input space (defined by the current set of features) that are
insufficiently represented in the train set. Depending on the
details of the modeling algorithm, however, they can also

Figure 5. Correlations between features and the target class

are displayed on demand via highlighting of boxes based on

feature values. Brightness represents the value of the feature

in the corresponding example. More bright green boxes on

the right and dimmer red boxes towards the left show a

feature that is highly correlated with the positive class.

Figure 4. Connector lines showing examples considered as

similar in feature space to the example hovered over. On the

right, an outlier in feature space is depicted with a circle around

the corresponding example.

occur in the train set when there is not yet enough examples
to overcome some bias in the model (e.g., in highly-
regularized linear models). Insufficient data errors often
manifest as outliers – isolated examples distant from others
in the current feature space. These errors can be corrected
by providing additional data to the model.

In early ModelTracker prototypes, outliers could be
identified by locating examples with distant neighbors
(shown via lines between boxes). However, observations
indicated that users often missed potential outliers because
distance is relative to the overall distribution of examples in
feature space, which is not readily apparent. To more
directly draw attention to potential outliers, the current
version of ModelTracker indicates outliers via circles
around corresponding boxes (Figure 4).

Many techniques exist for computing outliers in statistics
and machine learning. We compute outliers as examples
whose nearest neighbors in feature space are greater than
two standard deviations from the mean distance between all
pairs of neighboring examples. By clicking on outliers,
users can again inspect the corresponding example and then
find additional examples similar to the outlier to supply to
the model to try and correct the error.

USAGE BEHAVIOR

In this section, we report on the usage behavior of machine
learning practitioners building real models (for research and
product deployments) with ICE along with ModelTracker
over six months to demonstrate how ModelTracker’s
visualization and support for direct access to data
encourages frequent and regular data inspection throughout
model building. We limit our analysis to binary classifiers
(via logistic regression) built by people outside of our team
and containing at least 400 labels. This includes 40 different
models built by seven practitioners (ranging from novices
to experts) over text and web page data. Example concepts
these models were built to detect include restaurant web
pages, happy or angry sentiment in text, and text containing
opinions. These models were interactively built over an
average of 5.1 hours (SD=3.8), with 1714.5 (SD=1260.2)
labels and 12.1 (SD=7.7) features, and achieving final test
AUC performances of 0.91 (SD=0.17). Note that some
features such as ModelTracker’s support for item tagging
and identification of feature deficiencies and outliers were

introduced during this period. Therefore, we only report
usage statistics on features present throughout this period.

Out of the 40 sessions we examined, 35 (87.5%) involved at
least one interaction with ModelTracker (i.e., one box
click). If people interacted with ModelTracker, they clicked
on an average of 63.3 examples (4.1% of their data) during
their sessions. Figure 6 shows the average distribution of
ModelTracker interactions over time, indicating that people
interacted with ModelTracker throughout model building,
increasing interactions as they progressed.

Interestingly, of the examples clicked in ModelTracker,
only 41.6% (SD=23.6%) were in error at the time they were
clicked, on average. However, because errors are computed
given a specific prediction threshold, this does not
necessarily capture whether people were clicking on
examples that were technically correct but were still
potentially problematic (e.g., negative examples with
relatively high scores but still less than the threshold).
Figure 7 shows the average percentage of examples clicked
per score bin, indicating that users tended to click more on
examples at the far ends of the display, but also still clicked
on examples in the uncertain middle range.

Post-deployment interviews revealed a common usage
strategy that naturally arose from unguided user interaction
with ModelTracker. Practitioners explained that they often
ignored ModelTracker until some initial data was collected
(e.g., one participant said “about 30 or so [initial] labels”).
Then they began inspecting errors at the far ends of the
visualization, often with false positives at the far right, and
then working their way inwards. They explained that these
errors seemed to have “easier” and more “obvious”
solutions (e.g., “I always start with the biggest outliers [at

the far ends] in part because it’s a sign that the label was

wrong”), whereas errors in the middle were deemed as
harder cases. During error inspection, practitioners reported
trying to determine causes and actions to take including
“adding features,” “changing labels,” or “adding labels.”

Practitioners also commented on ModelTracker’s visual
aids and diagnostic capabilities. For example, one
practitioner reported initial confusion about the connector
lines showing example neighbors in feature space,
suggesting the need for more instructional support.
Practitioners did report that the directed arcs helped to

Figure 6. The average distribution of ModelTracker

interactions throughout the model building process.

Figure 7. The average percentage of examples clicked in the

ModelTracker per score bin.

verify whether an action taken resolved a suspected issue.
One commented that it “was rewarding or not [when the

action did not help].” Another commented that the arcs
“helped when it matched my expectations [about what I

thought was going to happen].” Practitioners also remarked
that the arcs were less useful when there were too many of
them and that the direction was sometimes hard to see.

Overall, feedback from our practitioners were positive
towards ModelTracker. One practitioner commented that it
is the “most important instrument in ICE [for model

building]” and “you can’t go back [to operating without

it].” In comparing ModelTracker to summary statistics, one
practitioner commented that “[ModelTracker] gives you the

complete picture. Looking at summary statistics is very

good for comparing models, but I can’t see what I need to

do. I need to do other mini-experiments to figure that out.”
However, some practitioners still desired summary
statistics. One commented that “[ModelTracker is] useful

for someone new to machine learning, but I still wanted to

get AUC, for people who don’t use GUIs.” Interestingly,
one practitioner who commented on their developed
reliance on ModelTracker also requested summary statistics
to help gauge improvement over time, saying “What [the

directed arcs are] getting at is a good thing, but I still want

a number for whether it got better or worse overall.”

EVALUATION OF DEBUGGING CAPABILITIES

We performed a controlled experiment to examine
ModelTracker’s support for debugging three common
errors in machine learning discussed previously (i.e.,
mislabeled data, feature deficiencies, and insufficient data)
compared to the traditional method of using separate tools
to debug. Specifically, we compared ModelTracker’s
interface with a Traditional interface, where traditional
summary metrics are provided for performance analysis
(Figure 2) and individual errors can then be inspected via a
review mode. Mislabels are located via filtering by errors or
error categories (false positives and negatives) and then
paging through and viewing raw data. Feature deficiencies
are discovered by locating errors and then clicking a button
to reveal similar examples with opposite labels in the
current feature space. Finally, outliers are located by
filtering by outliers. Both interfaces were used within the
context of ICE. The study was run using a within-subjects
design, counterbalancing interface order.

Tasks

To examine debugging capabilities, we created two tasks
requiring participants to fix or improve existing classifiers.
These tasks occur in real scenarios such as during model
maintenance (e.g., when a deployed model must be updated
in light of new data) and when labels are outsourced and
initial features are insufficient to model the target concept.

To create our tasks, we first built binary web-page
classifiers (via logistic regression) targeting concepts
related to common activities (e.g., cooking, travel). To

build each classifier, we sampled data (using uncertainty-
based active learning) from the Open Directory Project
database (http://www.dmoz.org), an open directory of
human-categorized web pages. We used the concept
descriptions given in this database to guide our labeling and
featuring. From these classifiers, we selected two that
achieved a comparable level of performance (measured via
their test AUC values) with 400 labels and 11 features. The
classifiers we selected targeted gardening and travel related
web-pages and achieved test AUCs of 0.95 and 0.96,
respectively. We then “broke” each classifier to generate
errors by first removing a random subset of 130 examples
(~33% of the initial data), randomly removing 5 of the 11
features, and then randomly flipping 27 (10%) of the
remaining labels. These broken gardening and travel

classifiers served as the starting points for our study tasks.
We also created a broken cycling classifier in the same way
to use during the demos and practice with each condition.

Participants and Procedure

We recruited 14 participants (10 male) from a large
software company including developers, test engineers, and
program managers ranging in age from 23 to 53 years old.
Participants self-reported as novice or proficient in machine
learning, had previously built at least one model, and were
familiar with precision and recall. Participants were run in
groups of at most four, each working on an identical PC
running Windows 8, with a 24” 1920x1200 monitor. All
relevant interface actions were time-stamped and logged.

Each session began with a review of the general model
building process and a hands-on tutorial of ICE (with both
the Traditional and ModelTracker panels hidden). Before
each condition, the experimenter gave a tutorial on the
corresponding interface and then allowed participants to
practice debugging the broken cycling classifier with it.
Prior to starting each task, the experimenter walked through
the target concept description. Participants were then given
20 minutes to debug and improve their broken classifiers as
much as possible. Questionnaires were distributed after
each condition and at the end of the study. Each session
took three hours. Participants were given $30 worth of
dining coupons and a $50 prize was awarded to the person
with the largest classifier improvement.

Results

We analyzed classifier performance and logged data from
our study using paired-samples t-tests. We analyzed
performance in two ways. First, we computed the AUC
improvement from the beginning to end of each task on a
holdout dataset comprised of the 130 examples we removed
as part of breaking each classifier. Second, we computed
the number of corrected mislabels out of the 27 we
introduced as part of breaking each classifier. Table 1
shows all means and standard deviations of performance
and the number of labels and features included in
participants’ final classifiers. We found no significant

difference in participant ability to debug or improve model
performance between the two interfaces.

We analyzed our post-condition Likert-scale questions
using Wilcoxon signed-rank tests. Figure 8 shows
preference counts and Likert-scale question medians. 10 out
of 14 participants (71.4%) preferred ModelTracker over the
Traditional interface. Participants favored ModelTracker in
terms of their perceived ease of identifying and debugging
both feature deficiencies (Z=-2.49, p=.013) and insufficient
data (outlier) errors (Z=-1.99, p=.046). No significant
differences were found in participants’ stated ability to
understand their classifiers’ performance or their perceived
ease of identifying and debugging mislabeled data.

DISCUSSION AND FUTURE WORK

Our examination of real ModelTracker usage and our
controlled experiment revealed that practitioners relied on
ModelTracker throughout model building and preferred it
over traditional tools without a loss in performance or
debugging ability. Participants commented that
ModelTracker was simpler and more intuitive than the
many summary statistics and graphs required to display
equivalent performance information in the traditional
interface. One participant said “I thought this UI was more

intuitive… I think it is great to take such a complex concept

and make it accessible.” Another said “The single

visualization captures all of the segmented version and

more.” Participants also commented on the reduced
overhead ModelTracker provided in terms of direct error
identification and reduced mode switching: “I liked being

able to focus on the data without having to go between

screen[s],” “Finding issues within the set was easy,” and
“Very actionable information.” Of the participants who
preferred the traditional interface, some commented on
missing the more familiar statistics: “[Traditional] is better

if you know a bit about how classifiers work.” Some also
requested a hybrid view. One participant said “I would like

to see both integrated.” Another recommended to “have

[the ModelTracker] UI default, but the ability to bring up

the confusion matrix and PR curves as optional UI.”

In the ModelTracker visualization, we displayed both the
train and test data to users as the ICE system provides
access to both sets during model building. This has the
potential to encourage overfitting by tempting users to over-
engineer models to fix test errors. However, since
overfitting only happens when users edit features or adjust
model parameters (not when fixing labels), one solution

may be to disable inspection of test examples, thereby only
using the test area to monitor generalization performance.
Another solution may be to remove the test altogether (or
replace it with a validation set), and rely on summary
statistics to show generalization performance in a hybrid
system. Further investigation is necessary to evaluate these
options for reducing the potential to overfit.

We concentrated on binary classification via logistic
regression in this paper for ease of explanation. However,
ModelTracker can visualize other classifiers that output
probabilities (e.g., any calibrated classifier) and other
supervised machine learning models. For example, within
ICE [21] we also use ModelTracker for entity-extraction
which uses conditional random field models to identify
sequences of tokens belonging to a hierarchical set of
entities (e.g., an address containing street and city entities).
We use ModelTracker to visualize performance with
respect to each entity by creating a green box for each
entity (or a red box for each non-entity) labeled token or
sequence of tokens. Prediction scores represent the relative
confidence that the model assigns to these hypotheses,
computed by taking the difference in probability of a parse
consistent with the label and the next most likely
inconsistent parse. In entity extraction, the number of boxes
can grow quickly, particularly when there is one box per
token. When this happens, we sample down the boxes in
each score range while maintaining the same fraction of
positive and negative labels.

Entity-extraction problems also have similar characteristics
to multi-class classification problems, in that both can
involve multiple prediction categories (hierarchical entities
and multiple classes, respectively). In both cases, we can
view the one-vs-remaining performance for each category
in ModelTracker. An opportunity remains to integrate
between-class confusability information into a single
visualization to better support light-weight performance
analysis and debugging in multi-class scenarios.

ModelTracker may have some benefits as a stand-alone
static visualization to replace traditional performance
statistics and graphs. Clearly, however, many of
ModelTracker’s benefits increase when it is integrated into
an environment supporting an iterative process of model
building and error analysis. As discussed earlier, when
ModelTracker is linked back to the individual examples,

Figure 8. Overall preference counts and Likert medians.

Metrics with *’s indicate significant effects were observed.

 Traditional ModelTracker

AUC Improvement .008 (.042) .026 (.027)

Mislabels Corrected 8.57 (6.02) 9.86 (4.89)

Final Num Labels 327.5 (28.1) 320.9 (25.5)

Final Num Features 8.64 (1.86) 8.57 (1.34)

Table 1. Mean (SD) of performance and usage statistics.

mislabeled data can be quickly discovered, examples with
few neighbors can be brought forward and examined, and
situations where new features need to be identified can be
called out. Even closer integration allows overall model
performance as well as performance on individual examples
to be monitored as the model is iteratively retrained. Further
investigations are therefore necessary to understand the
benefits of ModelTracker as a stand-alone tool.

CONCLUSION

We introduced ModelTracker, a generally applicable
interactive visualization for performance analysis and
debugging in machine learning. Our examination of
ModelTracker usage by machine learning practitioners
building real models with ModelTracker for research and
product deployments over a six month period demonstrates
that ModelTracker is used regularly throughout model
building. Our controlled experiment further shows that
ModelTracker is preferred over traditional tools for
performance analysis and debugging for its simplicity and
intuitiveness without a loss in model performance. This
suggests that ModelTracker can replace current tools for
performance analysis and debugging, encouraging a more
informed approach to model building in machine learning.

REFERENCES

1. Ankerst, M., Elsen, C., Ester, M., and Kriegal, H. Visual
Classification: An Interactive Approach to Decision
Tree Construction. Proc. KDD 1999, ACM Press

(1999), 392-396.

2. Becker, B., Kohavi, R., and Sommerfield, D.
Visualizing the Simple Bayesian Classifier. Information

Visualization in Data Mining and Knowledge Discovery.
Fayyad, U., Grinstein, G.G., and Wierse, A. (eds).

Morgan Kaufmann Publishers, 2001, 237-249.

3. Bird, S., Klein, E., and Loper, E. Natural Language

Processing with Python. O’Reilly Media, 2009.

4. Broekens, J., Cocx, T., and Kosters, W. Object-Centered
Interactive Multi-Dimensional Scaling: Ask the Expert.
Proc. BNAIC 2006, 59-66.

5. Caragea, D., Cook, D., and Honavar, V. Gaining
Insights into Support Vector Machine Pattern Classifiers
Using Projection-Based Tour Methods. Proc. KDD

2001, ACM Press (2001), 251-256.

6. Chan, Y., Correa, C., and Ma, K-L. Flow-based
Scatterplots for Sensitivity Analysis. Proc. VAST 2010,

IEEE (2010), 43-50.

7. Choo, J., Hanseung, L., Liu, Z., Stasko, J., and Park, H.
An Interactive Visual Testbed System for Dimension
Reduction and Clustering of Large-Scale High-
Dimensional Data. Proc. SPIE Electronic Imaging 2013,

865402–865402–15.

8. Domingos, P. A Few Useful Things to Know about

Machine Learning. CACM 55, 10 (2012), 78-87.

9. Fails, J.A. and Olsen, D.R. Interactive Machine

Learning. Proc. IUI 2003, ACM Press (2003), 39-45.

10. Fiebrink, R., Cook, P.R., and Trueman, D. Human
Model Evaluation in Interactive Supervised Learning.

Proc. CHI 2011, ACM Press (2011), 147-156.

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., and Witten, I.H. The WEKA Data
Mining Software: An Update. SIGKDD Explorations

11, 1 (2009).

12. Hao, M.C., Dayal, U., Sharma, R.K., Keim, D.A., and
Janetzko, H. Variable Binned Scatter Plots. Information

Visualization 9, 3 (2010), 194-203.

13. MATLAB 9.0 and Statistics Toolbox Release 2014a,
The MathWorks, Inc., Natick, Massachusetts, United
States, http://www.mathworks.com/products/statistics,

2014.

14. Mayorga, A. and Gleicher, M. Scatterplots: Overcoming
Overdraw in Scatter Plots. IEEE TVCG 19, 9 (2013),

1526-1538.

15. Nettleton, D. F., Orriols-Puig, A., and Fornells, A. A
Study of the Effect of Different Types of Noise on the
Precision of Supervised Learning Techniques. AI

Review 33, 4 (2010), 275-306.

16. Patel, K., Bancroft, N., Drucker, S.M., Fogarty, J., Ko,
A., and Landay, J.A. Gestalt: Integrated Support for
Implementation and Analysis in Machine Learning

Processes. Proc. UIST 2010, ACM Press (2010), 37-46.

17. Patel, K., Drucker, S.M., Fogarty, J., Kapoor, A., and
Tan, D.S. Using Multiple Models to Understand Data

Proc. IJCAI 2011, AAAI Press (2011), 1723-1728.

18. Patel, K., Fogarty, J., Landay, J.A., and Harrison, B.
Examining Difficulties Software Developers Encounter
in the Adoption of Statistical Machine Learning. Proc.

AAAI 2008, AAAI Press (2008), 1563-1566.

19. R Core Team, “R: A Language and Environment for
Statistical Computing,” R Foundation for Statistical

Computing, http://www.R-project.org, 2013.

20. Rossi, F. Visual Data Mining and Machine Learning

Proc. ESANN 2006, 251-264.

21. Simard, P., Chickering, D., Lakshmiratan, A., Charles,
D., Bottou, L., Suarez, C.G.J., Grangier, D., Amershi,
S., Verwey, J., and Suh, J. ICE: Enabling Non-Experts
to Build Models Interactively for Large-Scale Lopsided
Problems. 2014, arXiv:1409.4814.

22. Talbot, J., Lee, B., Kapoor, A., and Tan, D.
EnsembleMatrix: Interactive Visualization to Support
Machine Learning with Multiple Classifiers. Proc. CHI

2009, ACM Press (2009), 1283-1292.

