Mapping XSD to OO Schemas

Suad Alagi¢ and Philip A. Bernstein
Microsoft Research
One Microsoft Way
) Redmond, WA, USA)
alagic@cs.usm.maine.edu, philbe@microsoft.com

ABSTRACT

This paper presents algorithms that make it possible to pro-
cess XML data that conforms to XML Schema (XSD) in a
mainstream object-oriented programming language. These
algorithms are based on our previously developed object-
oriented view of the core of XSD. The novelty of this view is
that it is intellectually manageable for object-oriented pro-
grammers while still capturing the complexity of the core
structural properties of XSD. This paper develops two map-
pings based on this view. The first one is specified by a set of
rules that map a source XSD schema into its object-oriented
schema. The second one maps XML instances that conform
to an XSD schema to their representation as objects. In ad-
dition to mapping elements and attributes, these mappings
reflect correctly the particle structures including different
types of groups, and type derivation by restriction and ex-
tension. The structural properties of identity constraints
are also mapped correctly. Formally defined mappings or
algorithms of this sort have not been available so far, and
existing industrial tools typically do not handle the level of
complexity of XSD that our mappings do.

1. INTRODUCTION

1.1 TheProblem

XML Schema (XSD for short) is a standard for specifying
structural features of XML data [14]. In addition, XSD al-
lows specification of constraints that XML data is required
to satisfy. Application programmers are faced with the prob-
lem of processing data that conforms to XSD in a general-
purpose object-oriented programming language. For this to
be possible, an object-oriented interface to XML data must
be available to application programmers.

To enable this scenario we need a schema mapping that
translates each XSD schema X into a corresponding object-
oriented schema O. The schema mapping from X to O cre-
ates the object-oriented interface for application program-
mers. We also need an instance mapping between instances
of X (i.e., XML documents) and instances of O (i.e., sets of
objects). The instance mapping is used to translate XML
documents into objects that can be manipulated by applica-
tions, and to translate objects that are created or modified
by applications back into XML documents.

Developing such translations poses nontrivial problems due
to the mismatch of the core XSD features and the features
that are expressible in type systems underlying mainstream
object-oriented languages. All object-oriented interfaces to
XML suffer the implications of this mismatch [7].

One implication is that XML data conforming to an XSD
schema can be manipulated in its object-oriented representa-
tion to produce data that, when translated back into XML,
no longer conforms to the XSD schema. A related implica-
tion is that two distinct XSD schemas may be represented
by the same object-oriented interface, making it impossible
for the application programmer to predict the exact nature
of the XML documents that her program will produce by
looking only at the object-oriented interface.

The starting point is a user’s XSD schema. An off-the-shelf
XSD schema compiler is used in our approach to translate
the user’s schema into an object-oriented representation,
such as .NET’s XML Schema Object Model (SOM) [12].
The schema mapping rules translate the user’s XSD schema
into object-oriented interfaces. These interfaces comprise
the user’s programming model. They are a combination
of predefined interfaces that are based only on XSD itself
and user-schema-specific interfaces that are generated from
a user’s XSD schema. A program can use these interfaces
to access pieces of an XML document that conforms to the
XSD schema. Enabling this access requires that there be
a mapping that translates an XML document into objects
whose classes implement the generated XSD interfaces.

1.2 Motivating example

To motivate some of the detailed problems that need to be
solved by such a system, let us consider how to map an
example XSD schema into object-oriented (OO) interfaces.

Consider the complex type DictionaryType defined in the
XSD schema above. The structure of this type is defined
as a sequence group where the number of elements in the
sequence ranges from zero to an arbitrary and unspecified
natural number. An OO representation of this type will ob-
viously be based on a parametric type of sequence or list.
However, as soon as we specify a type SmallDictionary-
Type that is derived by restriction from DictionaryType,
we encounter a nontrivial problem.

<xsd:schema id="XMLDictionarySchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd: complexType name="DictionaryType"/>
<xsd: sequence>
<xsd:element name="item" type="ItemType"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ItemType">
<xsd:sequence>
<xsd:element name="typeOfEntity"
type="EntityType" />
</xsd:sequence>
<xsd:attribute name="key" type="xsd:string" />
</xsd:complexType>
<xsd:element name="dictionary"
type="DictionaryType">
<xsdkey name="searchKey">
<xsd:selector xpath="item"/>
<xsd:field xpath="@key"/>
</xsdkey>
</xsd:element>
<xsd:complexType name="SmallDictionaryType"/>
<xsd:restriction base= "DictionaryType"/>
<xsd:sequence>
<xsd:element name="item" type="ItemType"
minOccurs="1" maxOccurs="1000"/>
</xsd:sequence>
</xsd:restriction>
</xsd:complexType>
<xsd:complexType name="AddressType"/>
<xsd:extension base="ItemType"/>
<xsd:sequence>
<xsd:element name="firstName"
type="xsd:string"/>
<xsd:element name="lastName"
type="xsd:string"/>
<xsd:choice>
<xsd:element name="POboxAddress"
type="xsd:string"/>
<xsd:element name="streetAddress"
type="streetAddressType"/>
</xsd:choice>
</xsd:sequence>
</xsd:extension>
</xsd:complexType>
</xsd:schema>

XSD type definitions are represented in the OO schema by
inheritance. But in this case, the structural specification
of DictionaryType and SmallDictionaryType is identical.
What is different is that the range-of-occurrences constraint
has been strengthened. OO type systems cannot represent
this constraint and hence cannot represent type derivation
by restriction in XSD. Well-known OO interfaces to XSD
typically lack any suitable representation of this type of
construct and of type derivation by restriction as defined
in XSD.

Consider now an actual dictionary specified as an XSD el-
ement. This element type will also be represented as an
object type (a class or an interface). One problem of exist-
ing OO interfaces to XML is not distinguishing between two
type hierarchies in XSD as in [10]. One hierarchy represents
the actual instances, starting with elements. But an element
has a name (i.e., a tag) and a value. The value of an element
may be simple or complex, and hence belongs to a type that
is defined in a different hierarchy of XSD types, all of which

are derived from the root type anyType.

Yet another subtlety in this example is that a dictionary el-
ement is equipped with a key constraint, a typical database
constraint that captures the essential semantics of a dictio-
nary. Well-known OO interfaces to XML do not consider
representation of this constraint. In fact, key constraints
are not representable in OO type systems.

Now consider ItemType, which is the type of dictionary el-
ements. Its complex structure is specified as a sequence
group. In addition, this type is equipped with an attribute
key. In the most straightforward representation of ItemType
its corresponding object type will have properties typeOfEn-
tity and key. This seems to be a preferred OO user view of
ItemType[10]. However, it comes with nontrivial problems.

The first problem is the lack of distinction between elements
and attributes. The second is that in XML two elements or
an element and an attribute may have the same name. In
those situations the straightforward representation does not
work because the names of elements and attributes cannot
be the property names in the corresponding object type, as
they must be unique.

Consider now a specific item type AddressType of a dictio-
nary. This type will be specified in XSD as derived by ex-
tension from the type ItemType. This type derivation has a
fairly accurate representation by inheritance. The extension
is specified as a sequence group with one subtlety. The third
component of the sequence is specified as a choice-group,
so an XML instance has either POboxAddress or streetAd-
dress but not both.

XSD choice represents a major problem for OO interfaces
to XML. Specifying a fixed number of subtypes of a type is
contrary to the core features of the OO model. Because of
the lack of a suitable representation for choice, some OO in-
terfaces use the same representation for choice and sequence
groups. This representation has nontrivial implications be-
cause these two types of groups have different semantics.
In fact, widely known OO interfaces to XML do not have a
suitable representation of XSD groups and its three subtypes
(i.e., sequence, choice, and all groups).

There are many more problems in mapping XSD schemas
to OO schemas [7]. The above analysis outlines the most
important structural problems as we see them and the mis-
match between the two models. Many of these problems
can be resolved by an OO constraint language, i.e., a much
more expressive formal system than an OO type system un-
derlying the mainstream OO languages. But OO constraint
languages are not supported for the mainstream OO lan-
guages, and their underlying technology is significantly more
complex and still under development. We refer to some ap-
proaches like these in Section 5.

The challenge that we face in this paper is to produce an OO
representation of the core of XSD within the limitations of
OO type systems. The existing interfaces fail to represent
accurately the core structural features of XSD, which can
compromise data integrity. In addition, OO programmers
do not have an OO view of XSD that communicates the

core structural and semantic features of XSD.

To see the implications of structural misrepresentation of
an XSD schema in its corresponding OO schema, assume
that we have a database that conforms to an XSD schema.
Suppose that application programs will be developed in an
OO language and will be based on the OO representation of
XSD schema. Manipulating OO representations of XSD in-
stances will now lead to object structures that do not reflect
the structure of XSD instances. Installing the updated XSD
instances presents a huge challenge because of this structural
mismatch. This is why our goal is to produce an OO repre-
sentation of XSD that is as structurally accurate as possible,
so that manipulating OO instances does not violate struc-
tural and semantic constraints of XSD.

1.3 Contributions and outline

In our previous work we isolated the structural core of XSD,
which contains the essential structural features of XSD and
abstracts away a variety of other XSD features [1]. How-
ever, that work gives an intuitive description with examples,
but no algorithms, formal syntax or formal semantics. This
paper complements [1] with a more rigorous technical devel-
opment. The main research contributions of this paper are
as follows:

e We specify the syntax for the XSD core (in Section 2).

e We specify the rules for mapping an XSD core schema
to its corresponding OO schema (Section 3).

e We specify an algorithm for mapping instances that
conform to a source XSD core schema to their OO
counterparts (Section 4).

Formally defined mappings or algorithms of this sort have
not been available so far, and existing industrial tools typi-
cally do not handle the level of complexity of XML Schema
that our mappings do.

Related work is described in Section 5, and Section 6 is the
conclusion.

2. XML SCHEMA CORE

2.1 Syntactic specification

In this section we define a subset of XSD, which we call the
XSD core [1]. It is comprised of features that we regard as
essential to XSD and is the focus of our mapping from XSD
schemas to OO interfaces.

In the XSD core, attributes and elements are specified as
(Name, Type) pairs. Name stands for the tag and Type for
the type of the associated value. The type of an attribute
is required to be simple, and the type of an element may be
either simple or complex.

Attribute ::= Name simpleType
Element ::= Name Type

The key notion of the XSD core is that of a Particle, which
is a term followed by the range of occurrences. A term is
either an Flement or a Group. So a particle is a sequence
of repeated terms where the number of occurrences of the
term is between minOccurs and maxOccurs.

Particle := Term Range
Term := Element | Group
Range := [minOccurs|[maxOccurs]

There are three types of groups in the core: sequence-groups,
choice-groups and all-groups. A sequence-group is specified
as a sequence of particles. The same applies to a choice-
group, but its semantics is different. In a sequence-group all
particles must be present, while in the choice-group exactly
one of them must be present in a document fragment that
conforms to the group definition. Particles of an all-group
are of a particular type: they are elements. So an all-group
is specified as a sequence of elements.

Group := Sequence | Choice | All
Sequence ::= Particle{ Particle}
Choice ::= Particle{ Particle}
All := Element{Element}

A type is either simple or complex.

Type ::= [Name] simpleOrComplexType
simpleOrComplexType ::= simpleType | complexType

A simple type either is a built-in type or is derived from
another simple type (its base) by simple type restriction.

sitmpleType ::= builtInType |
simpleType simpleTypeRestriction

A simple type restriction is specified by a sequence of facets.
simpleTypeRestriction ::= facet{ facet}

Facets include direct enumeration, specification of ranges of
values, and specification of patterns of regular expressions.
All of these facets specify the values belonging to the re-
stricted type.

facet ::= enumeration | range| regExpression

A complex type is derived from its base type (denoted by
Type below) by a complex type derivation:

complexType ::= Type complexTypeDerivation
There are three kinds of complex type derivation:

complexTypeDerivation ::= simpleTypeExtension |
complexTypeExtension | complexTypeRestriction

Simple type extension applies to complex types with simple
content. Since the content is simple, the only allowed exten-
sion is adding attributes. Hence, this form of type deriva-
tion by extension is specified by a sequence of additional
attributes.

simpleType Extension ::= { Attribute}

Complex type extension includes both extending the set of
attributes and extending the particle structure of the base
type. The extended particle structure is specified by a group.
This group is obtained by forming a sequence-group of the
base type particle of the complex type and appending addi-
tional particles specified in the complex type derivation.

complexTypeExtension ::= { Attribute} Group

Complex type restriction allows restriction of the base type
by a set of facets, making changes in the set of attributes of
the base type, and restricting the constraints in the particle
structure of the base type. The particle structure may omit
optional elements. Otherwise it remains the same, hence it
is repeated, but the constraints will be different. An excep-
tion is omitting optional elements. The particle structure
obtained this way is specified as a group.

complexTypeRestriction ::= {Facet}{ Attribute} Group

There are three types of identity constraints in XSD: unique-
ness, key and referential integrity (foreign key) constraints.
An identity constraint consists of a specification of the key
fields along with the scope to which the constraint applies.
This scope is specified by an XPath expression.

identityConstraint ::= Name field {field} path

In addition, a referential integrity constraint contains spec-
ification of the key constraint to which it refers.

Specification of a schema includes its name and sets of global
elements, types, attributes, groups and identity constraints:

Schema ::= Name Element{Element}{Type}{Attribute}
{Group}{identityConstraint}

Both sets and sequences in this syntactic specification are
represented as sequences.

2.2 Coreinterfaces

The library of predefined interfaces includes the two type
hierarchies presented by the diagrams in figures 1 and 2.
Figure 1 represents the particles as defines in XSD. Since the
range constraint may be associated with any type of a term,
in a slightly simplified representation that follows SOM [12],
elements and groups are viewed as subtypes of the particle
type. Specific types of groups are defined as subtypes of the
group type. The range constraints are specified by methods
minOccurs and maxOccurs of the particle interface.

All types are derived from XSD anyType as shown in Figure
2. We specify two subtypes of anyType that stand for simple
and complex types. Specific simple and complex types will
be derived from those.

The above two hierarchies are related. Since a complex type
will in general be equipped by a set of attributes and a par-
ticle structure, it will in general refer to the types specified
in the particle hierarchy.

XMLParticle

XMLAttribute

A

| XMLElement

XMLGroup

XMLAIIGroup

| XMLChoiceGroup

|XMLSequenceGroup |

Figure 1: XSD particle hierarchy

XMLanyType

XMLanySimpleType XMLanyComplexType

Figure 2: XSD type hierarchy

The third type hierarchy represents XSD identity constraints,
shown in Figure 3. In this paper we do not consider the im-
plications of using a constraint language such as JML or
Spec#, so that the representation of constraints is necessar-
ily structural.

3. MAPPING SCHEMAS

This section presents an algorithm for mapping XSD schemas
to OO interfaces. The algorithm assumes that the source
XSD schema is valid. Its representation could be of any
form, as long as its XSD schema components are available
via correctly typed expressions such as:

XMLElement(elementName, typeName),
XML Atttribute(attributeName,typeName),
XMULsimple Type(base TypeName, typeName, facets)

and the like. For example, the first expression above indi-
cates that the source XSD schema contains an element type
whose name is elementName and the type of its value is
typeName. For concreteness, we use the representation of
the source XSD schema that would be generated by SOM
[12].

XMLlIdentityConstraint

o

XMLUniqunessConstraint

XMLRefConstraint

|XMLKeyConstraint

Figure 3: XSD constraints hierarchy

The source XSD schema contains global elements, attributes,
types, groups, etc. The algorithm is a set of mapping rules,
each of which specifies how to map one of these source con-
structs to its OO representation. For each rule, we spec-
ify the typing assumptions under which the rule applies.
The typing assumptions follow from our assumption that
the XSD schema is valid. They are specified as typing rules
with respect to a typing environment.

The typing environment, denoted by 7, includes facts about
the types in an XSD schema. In particular, it includes a
mapping from names to types and sub-typing relationships.
The fact that an identifier id has a type typeName in the
environment 7 is expressed as

T +id : typeName.

Since the inheritance relationships are identified with sub-
typing in mainstream object-oriented languages, we will use
the subtyping symbol <: in the typing rules. So if typeName
is the name of an XML type, the typing environment will al-
low the following deduction, which says that the XML type
typeName is a subtype of XMLanyType in T:

T + typeName <: X M LanyType

The typing environment is initialized with the core inter-
faces such as XMLElement, XMLAttribute, XMLParticle,
XMLGroup, XMLSequenceGroup, XMLChoiceGroup, XM-
LAllGroup, XMLanySimple Type, XMLanyComplexType, etc.

3.1 Mapping eementsand attributes

First consider mapping element types and attribute types
from the source XSD into OO interfaces. If typeName stands
for an object representation of an XML type, and element-
Name is a valid name, then the expression
XMLElement(elementName, typeName) is well typed and
its type is XMLFElement:

T + typeName <: X M LanyType,
T + elementName : NameType

T + XM LElement(elementName, typeName) : X M LElement

The above conditions summarize the typing assumptions
about an element type in the source XSD schema. The con-

ditions are the consequence of the fact that the source XSD
schema has been validated. If e is a well typed expression

XMLElement(elementName,typeName), then its object-oriented

image is map(e):

e = X M LElement(elementName, type N ame)

map(e) = inter face elementName : X M LElement {
NameType name(); typeName value()}

The typing and mapping rule for the attribute types follows
the same pattern except the value of an attribute must be
of a simple type so that we would have the following in the
corresponding typing rule:

T F typeName <: X M LanySimpleType

3.2 Mapping types

If the source XSD schema contains a specification of an XML
simple type whose name is typeName, then this type will in
general be derived by restriction from its base type which
is also simple. The set of constraining facets must also be
specified in the source schema. Hence the information about
a simple type in the source schema is summarized in an
expression of the form XMLanySimple Type(base TypeName,
typeName, facets).

The conditions under which

XMLanySimple Type (base Type Name, typeName, facets) is a well
typed expression of type XMLanySimple Type that are based
on the assumed validation are as follows:

T + baseTypeName <: X M LanySimpleType,
T + typeName : NameT ype,
T & facets : XM LSet < XM LFacet >

T + X M LanySimpleType(baseTypeName, typeName, facets) :
X M LanySimpleType

If T is a well-typed expression
XMLanySimple Type (base TypeName, typeName, facets)

then its object-oriented image map(T) is:

T = X M LanySimpleType(baseType N ame, type Name, facets)

map(T) = inter face typeName : baseTypeName {
XMLSet < XMLFacet > facets()}

A complex XML type is derived from some other type, its
base type. In the simplest case the base type is simple and
the complex type is obtained by adding attributes. So in this
case the information coming from the XSD source will be
given by an expression XM LanyComplexType(base TypeName,
typeName, attributes). The typing constraints for XMLany-
ComplexType(base TypeName, typeName, attributes) that fol-
low from the fact that the source has been validated are:

T F baseTypeName <: X M LanySimpleType,
T + typeName : NameT ype,
T F attributes : X M LSet < X M LAttribute >

7T+
X M LanyComplexType(baseTypeName, typeName,
attributes) : X M LanyComplexType

If T is an expression
XMLanyComplexType(base TypeName, typeName, attributes),

then its object-oriented image map(T) is:

T = XM LanyComplexType(baseTypeName,
type N ame, attributes)

map(T) = inter face typeName : baseTypeName {
XMLSet < XMLAttribute > attributes()}

In a more complex specification of an XML complex type,
the base type is complex, and the type derivation includes
a set of attributes and a new particle structure obtained
either by extending the particle of the base type or re-
stricting its range constraints. So the information about a
complex XML type coming from the source XSD schema
is assumed to have the form of an expression XMLany-
ComplexType(base TypeName, typeName, attributes, parti-
cleType). The typing constraints for this expression that
follow from its validation are:

T + baseTypeName <: X M LanyComplexType,
T + typeName : NameType,
T + attributes : X M LSet < X M LAttribute >,
T t particleType <: X M LParticle

7T+
X M LanyComplexType(baseTypeN ame, typeN ame,
attributes, particleType) : X M LanyComplexType

If T is a well typed expression

XMLanyComplexType(base TypeName, typeName,attributes,
facets,particle Type), then its object-oriented image map(T)
is:

T = XM LanyComplexType(baseTypeName, type Name,
attributes, particleType)

map(T) = inter face typeName : baseTypeName{
XMLSet < X MLAttribute > attributes();
particleType particle()}

If the type is derived by restriction, a set of facets is also
specified. So the information about a complex XML type
coming from the source XSD schema is assumed to have the
form of an expression XMLanyComplexType(base TypeName,
typeName, attributes, facets, particleType). The typing con-
straints for this expression that follow from its validation
are:

T + baseTypeName <: X M LanyComplexType,

T + typeName : NameType,
T + attributes : X M LSet < X M LAttribute >,
T I facets : XM LSet < XMLFacet >,
T t particleType <: X M LParticle

T+
X M LanyComplexType(baseTypeN ame, typeN ame,
attributes, facets, particleType) : X M LanyComplexType

If T is a well typed expression

XMLanyComplexType(base TypeName, typeName, attributes,
facets, particleType), then its object-oriented image map(T")
is:

T = XM LanyComplexType(baseTypeName, typeName,
attributes, particleType)

map(T) = inter face typeName : baseTypeName {
XMLSet < X MLAttribute > attributes();
XMLSet < XM LFacet > facets();
particleType particle()}

3.3 Mapping groups

If the source XSD schema contains a group, the first piece
of information that is available is the type of the group. In
addition, a group specifies a sequence of particles, which in
the case of an all-group are elements. In the rules for groups
we assume that a group has a name (as global groups do) so
that information from the source for a sequence-group has
the form of an expression XMLSequenceGroup(groupName,
particles). The typing constraints for an expression
XMLSequenceGroup(groupName, particles) that follow from
the assumed validation are:

T + groupName : NameType,
T + particles : X M LSequence < X M LParticle >

T + X M LSequenceGroup(groupN ame, particles) :
X M LSequenceGroup

If g is a well typed expression
XMLSequenceGroup(groupName, particles)

then its object-oriented image map(g) is:

g = XM LSequenceGroup(groupN ame, particles)

map(g) = inter face groupName : X M LSequenceGroup {
X MLSequence < X MLParticle > particles()}

A choice-group is also specified in the source XSD schema as
a sequence of particles. XML ChoiceGroup(groupName, par-
ticles) is a well typed expression of type XMLChoiceGroup
under the following conditions:

T + groupName : NameType,
T + particles : X M LSequence < X M LParticle >

T + X M LChoiceGroup(groupName, particles) :
XM LChoiceGroup

If g is a well typed expression XML ChoiceGroup(groupName,
particles) then its object-oriented image map(g) is:

g = XM LChoiceGroup(groupName, particles)

map(g) = inter face groupName : X M LChoiceGroup {
XMLSequence < X MLParticle > particles()}

The only difference in the specification of an all-group is that
in its sequence of particles, the particles must be elements.

3.4 Mapping identity constraints

The above developed mapping framework allows specifica-
tion of mapping rules for the XSD identity constraints, a
feature missing in just about all other approaches. The ap-
proach presented in this paper cannot express the semantics
of the identity constraints, but it makes it possible to map
their structural specification.

The typing information about an identity constraint coming
from a validated specification of such a constraint in the
source XML schema is summarized in the rule given below:

T + name : NameType,
T F fields : XM LSequence < X M LString >,
T + path : X M LPath

T + XM LidentityConstraint(Name, fields, path) :
X M LIdentityConstraint

The corresponding mapping rule that maps a constraint ¢
into its corresponding object-oriented interface is:

¢ = XM LIdentityConstraint(Name, fields, path)

map(c) = inter face Name : X M LIdentityConstraint {
X MLSequence < String > fields();
X M Lpath path()}

The above rules apply to the uniqueness and key constraints.
Referential key constraint is trivially more complex as it
contains specification of a key constraint to which is refers.

4. MAPPING INSTANCES

The mapping rules for schemas and documents are clearly in-
dependent of the underlying implementation platform. But
the XSD core may be viewed as an abstraction on top of
SOM [11] which is our implementation platform. Given an
XSD schema, SOM will process it and make its OO repre-
sentation available. This is why in the algorithm for map-
ping instances we assume that the source schema has been
mapped to the target OO schema according to the rules in
Section 3. We also assume that the source XML instances
have been validated with respect to the source XSD schema.
So the presented algorithm implements the map from XML
instances to their corresponding OO instances according to
figure 4.

mapsTo

XML documents XML objects

conformsTo conformsTo

mapsTo

S i

XSD schemas

Figure 4: Mapping schemas and objects

Since the source schema has been mapped to the OO schema,
the algorithm will consult the OO schema for the schema
information required to correctly map the source XML in-
stances to the corresponding objects. The information in the
core interfaces in Section 2 is available both at the schema
level and in the programming language interface. The dis-
tinction between the two levels will be indicated by the prefix
Schema for the interfaces at the schema level.

A given object instance will in general represent a particle
object. A whole document will be represented as an element
object. The complete structural representation is available
using reflection. From a particle object one can get all the
information required to generate a valid XSD particle re-
cursively from a sequence of sub-particles. The recursion
terminates when a particle of type element whose type is
simple is reached. For a particle object that represents an
element, the name and the type will be available from the
element object. If the type of an element is derived from
XML complex type, the actual complex particle structure
of the element will be discoverable from the corresponding
object type information. The object type representing an
XML complex type contains a specification of the underlying
particle structure which is how the algorithm gets invoked
recursively.

The source XML instance is assumed to be available via a
collection of methods of the class Input. The source XML
document consists of a single element. Hence invocation
of the method mainDocument will create a single element
object. The tag of the element will be retrieved from the
input, and then the createElementObject method will be
invoked with the element tag as its argument.

XMLElement mainDocument() {
string tag =Input.getTag();
return(createElementObject (tag))

}

The tag of the input element is used to access the schema
information. The type of the element value is looked up
in the schema. If the type is simple, the value of the ele-
ment is taken from the input. If the type is complex, then
an object of the type XMLanyComplexType will be created as
the element’s value. This is accomplished by invoking the
method createComplexValueObject which parses the com-
plex structure of the input element.

XMLElement createElementObject(string tag) {
Schema.XMLanyType type = Schema.lookUpType(tag);
if type <: Schema.XMLanySimpleType then
XMLanySimpleType value =

(XMLanySimpleType) Input.getValue() ;
else XMLanyComplexType value =
createComplexValueObject (
(Schema.XMLanyComplexType) type) ;
return newInstance(getClass("XMLElementClass"),
[10bject{tag,valuel});

Mapping an attribute instance follows a similar logic, but
it is much simpler because the value of an attribute is of a
simple type. The tag of the input attribute is taken from the
input and used to look up the type of the value which must
be simple. The value of the attribute is then taken from the
input and a new attribute instance is created. There are
some obvious typing details that are omitted here as well
as in reading the value of an element from the input. The
appropriate procedure for a specific simple type should be
used and the result type cast to the specific simple type.

XMLAtttribute createAttributeObject(string tag)
{Schema.XMLanySimpleType type =
Schema.lookUpType(tag) ;
XMLanySimpleType value =
(XMLanySimpleType) Input.getValue();
return newInstance(getClass("XMLAttributeClass"),
[10bject{tag, valuel);

Classes such as XMLElementClass and XMLAttributeClass
are not available in the user interface. Even in the above
cases specific element and attribute classes will be used which
would in fact happen if reflection is used. We do not show
it since it would make the algorithm less readable.

The method createComplexValueObject has a complex schema

type as its argument. The newly created instance will have
two components: a set of attributes (which we represent as
a sequence) and a particle structure. These two components
are created invoking the methods createAttributesObject
and createParticleObject, and then the object represent-
ing complex element value will be created.

XMLanyComplexType createComplexValueObject (
Schema.XMLanyComplexType type){
XMLSequence<XMLAttribute> attributes =
createAttributesObject (type.attributes());
XMLParticle particle =
createParticleObject (type.particle());
return newlInstance(getClass("XMLanyComplexType"),
[JObject{attributes, particle})
}

Creating an object that represents a set of attributes in the
input instance that belongs to a value of a complex type
requires getting successive tags invoking the method cre-
ateAttributeObject for each tag. The created attribute
objects are appended to a sequence of attribute objects.

XMLSequence<XMLAttribute> createAttributesObject(
XMLSet<Schema.XMLAttribute> attributes) {
XMLSequence<XMLAttribute> attributes =
new XMLSequence<XMLAttribute>();
for (Schema.XMLAttribute a in attributes) {
string tag = Input.getTag();
XMLAttribute attribute =
createAttributeObject(tag);
attributes.append(attribute); }
return attributes;

}

The second component of a complex value object is a particle
object that conforms to the XMLParticle type. This object
is constructed invoking the method createParticleObject
which takes an argument of type Schema.XMLParticle so
that it will have the source schema specification of the par-
ticle that is coming up in the input. An object of type XML-
Particle will have the range specified by minOccurs and
maxOccurs according to the schema information, and a se-
quence of particles coming up in the input whose number
of occurrences will be determined by minOccurs and max-
Occurs. Since each one of those particles appears as a se-
quence of particles, its particle sequence must be correctly
recognized in the input and its sequence of particle objects
constructed. This is possible only by looking at the schema
information about the type of the particle under considera-
tion

XMLParticle createParticleObject
(Schema.XMLParticle particle)d{
XMLSequence<XMLParticle> particles =
new XMLSequence<XMLParticle>;
for (int i=1; i < particle.minOccurs; i=i+1){
particles.Append(
getParticleSequence(particle.particles(i)))};
for (int i = particle.minOccurs;
< particle.maxOccurs; i=i+1) {
particles.Append(
getParticleSequence(particle.particles(i)))};
return newlInstance(getClass("XMLParticleClass"),
[JObject{particle.minOcccurs,
particle.maxOccurs,particles}) }

The method getParticleSequence tests the type of the par-
ticle as specified in the source XSD schema and returns a
particle sequence that corresponds to each particular type
of a particle.

XMLSequence<XMLParticle>
getParticleSequence (Schema.XMLParticle particle){
if particle instanceOf Schema.XMLSequenceGroup
then return sequenceGroupParticles(
(Schema.XMLSequenceGroup)particle)
else if particle instanceOf Schema.XMLChoiceGroup
then return choiceGroupParticles(
(Schema.XMLChoiceGroup)particle)
else return allGroupElements(
(Schema.XMLAllGroup)particle)

Consider a sequence of particles appearing in the input that
corresponds to a sequence group. The argument of the
method sequenceGroupParticles is a sequence group in the

source XSD schema and hence it contains a specification of
a sequence of particles. For each particle in the sequence,
the type of particle is tested to see whether it is an ele-
ment. If so, the element tag is read from the input, an
element object is constructed and appended to the output
particle sequence. If the type of the ith particle as specified
in the source schema is not an element, then the method
createParticleObject is invoked recursively.

XMLSequence<XMLParticle> sequenceGroupParticles(
Schema.XMLSequenceGroup seqGr)
{ XMLSequence<XMLParticle> particleSeq =
new XMLSequence<XMLParticle>;
for(int i = 1;
i < seqGr.particles().high(); i=i+1)
{ ithParticle = seqGr.particles()(i);
if ithParticle instanceOf Schema.XMLElement
then {string tag = Input.getTag();
XMLElement newElement =
createElementObject (tag) ;
particleSeq.append(newElement) 3}
else {XMLParticle newParticle =
createParticleObject (ithParticle);
particleSeq.append(newParticle) };
return particleSeq

}

If the type of a particle is a choice group, the schema will
still contain a specification of a sequence of particles, but
only one of them will appear in the input. Which one is de-
termined by the first tag that appears in the input particle.
This is why we need a method getFirstElementTag.

The result of the getChoiceGroupParticle method is a se-
quence of particles because of type compatibility, but it will
contain a single particle. The sequence of particles in the
schema representation of the choice group is accessed and
for each one of them the input tag is compared with the
first element tag of the ith particle. When those are equal,
the ith particle description in the schema will be taken as
the valid description of the input particle.

XMLSequence<XMLParticle> getChoiceGroupParticle(
Schema.XMLSchemaChoiceGroup choiceGr) {
XMLSequence<XMLParticle> particleSeq =
new XMLSequence<XMLParticle>;
string tag = Input.getTag();
for (int i=1;
i < choiceGr.particles() .high(); i=i+1)
{ithParticle = choiceGr.particles()(i);
if tag = getFirstElementTag(ithParticle) then
{particleSeq.append(ithParticle);
return(particleSeq)}

Constructing a particle sequence of an all group follows the
above logic with one simplification. We know that a se-
quence of particles in the input should be interpreted as a
sequence of elements of an all group.

5. RELATED WORK

One of the first OO models of XML was DOM [4]. Although
it is a part of W3C activities, DOM is very limited in its

support of XSD. It contains interfaces such as Element and
Attribute which are subtypes of the interface Node. The
DOM model has a variety of other XSD-specific features.
However, it is far from capturing the structural complexity
of XSD.

LINQ to XML is an OO interface to XML data that is based
on the assumption that an XML schema is not available
[9]. LINQ to XML has a fixed collection of classes such as
XElement, XAttribute, XNode, XContainer, etc. An input
XML document is parsed and viewed through the methods
available in these classes. This approach requires extensive
type casting and hence dynamic type checking. LINQ to
XML supports LINQ queries, but the above typing issues
apply to queries just as well.

LINQ to XSD takes a different approach in which specific
classes are specified for specific element types that appear in
the source XSD schema [10]. It has a variety of techniques
for representing some structural features of XSD such as se-
quence groups, type derivation by inheritance etc. However,
the representation model, as appealing as it may be, is too
simple to represent XSD accurately. In particular, LINQ to
XSD does not distinguish between elements and attributes,
has nontrivial problems when the names of elements are
repeated, does not represent the notion of a particle with
range constraints, does not represent identity constraints,
and cannot represent type derivation by restriction because
this form of type derivation in XSD is based on constraints.

Paper [13] presents a view of the essence of XSD but it is not
object-oriented. This model is limited to well-established
and well-understood constructs in type systems. However,
some of those constructs are actually not available in main-
stream OO languages. Since this approach is based on what
is expressible in type systems, it cannot represent particle
structures with general range constraints, type derivation by
restriction in general, or identity constraints.

The .NET Schema Object Model (SOM) is the most accu-
rate and OO representation of XSD that we know of [12].
SOM is in fact our underlying implementation platform.
Given an XSD schema SOM produces its OO representa-
tion which we use in our approach. However, the complexity
of SOM is prohibitive for typical application programmers.
This is why we develop an OO interface that represents a
correct abstraction over XSD, but is intellectually manage-
able. We also use some more recent features of type systems
of mainstream OO languages such as parametric polymor-
phism, which SOM does not have. Lack of such typing fea-
tures in SOM creates undesirable representation problems
for SOM which we do not have.

Data Contracts in .NET is the only system we know of that
supports both schema level and instance level mappings in
both directions: from XSD to OO and the other way around
[4, 8]. This system relies on SOM. Data Contracts has non-
trivial limitations as to what kind of XSD schema features
it can handle. For example, it cannot handle attributes. In
the other direction, Data Contracts can handle only certain
object types whose structure is such that this system can
map them to XSD types.

An analysis of the mismatch between XML and OO lan-
guages is presented in [7]. LINQ to XSD in fact follows some
of the representation options from [7]. The main difference
between our work [1] and [7] is that we represent explicitly
and accurately the structural core of XSD, its particle (el-
ements and groups) and type hierarchies. In addition, we
represent accurately the complex structure of content mod-
els, type derivations, and the identity constraints which are
missing in all other approaches except in SOM.

The only work we know of that goes beyond the limitations
of type systems is [2, 3]. This research is based on OO
constraint languages such as the Java Modeling Language
[6] or Spec# [11]. It is thus able to represent all the XSD
constraint-related features such as general range constraints
for particles, type derivation by restriction, semantics of dif-
ferent types of groups (sequence versus choice), and identity
constraints (keys and referential integrity). This approach
is also equipped with a prover to verify constraint-related
features and transaction safety with respect to the schema
integrity constraints. The overall technology is considerably
more sophisticated and more complex than the technology
based on type systems, mostly because of the prover which
requires sophisticated users.

6. CONCLUSIONS

Our first contribution is to show that in spite of the com-
plexity of XML Schema, it is actually possible to define its
structural core and specify it formally in terms of the syntac-
tic and typing rules commonly used for mainstream object-
oriented programming languages. This makes it possible to
present to object-oriented programmers a well-defined core
of XSD that is intellectually manageable and a solid basis
for complex object-oriented applications that process XML
data. This is important because most object-oriented pro-
grammers have a limited understanding of XML Schema and
are not willing to get involved in deciphering its complexity.

Our second contribution is in the algorithm for mapping
XSD schemas to object-oriented schemas. This algorithm
is specified through a collection of rules that includes the
typing assumptions under which the rules apply. Our rules
for mapping XSD schemas into object-oriented schemas are
the first such rules ever specified in an explicit and formal
manner. One novelty in these rules is that they have two
important properties: (i) they are lossless for the XSD core;
and (ii) they produce object-oriented interfaces that conform
to the rules of object-oriented type systems of mainstream
object-oriented languages.

The rules are lossless in the sense that the mapping from the
XSD-core structures of an XSD schema to object-oriented
types preserves the core structural features which include
particle structures (elements and different types of groups)
and the type hierarchy based on type derivations by ex-
tension and by restriction. The structural specifications of
range constraints and identity constraints are also preserved.
We conjecture that the mapping can be proved to be lossless
in a precise mathematical sense—a subject for future work.

Our third contribution is the first algorithm for mapping
XML instances conforming to a given source schema to their

10

object-oriented representation. The existing object-oriented
interfaces to XML have underlying algorithms that are nei-
ther visible nor published.

The framework for the mapping rules allows for the first time
mapping identity constraints of the source XSD schema into
their object-oriented representation. Although this repre-
sentation is necessarily structural, it is critical to avoid los-
ing the integrity constraints of the source schema, as they
are in just about all other approaches. The implications on
data integrity are obvious and nontrivial.

7. REFERENCES

[1] S. Alagic and P. Bernstein, An object-oriented core
of XML Schema, Microsoft Research Technical
Report MSR-TR-2008-182, 2008.

[2] S. Alagic, M. Royer, and D. Briggs, Verification
theories for XML Schema, Proc. of BNCOD, LNCS
4042, pp. 262-265, 2006.

[3] S. Alagic, M. Royer, and D. Briggs, Program
verification techniques for XML Schema-based
technologies, Proc. of ICSOFT Conf., Vol. 2, pp. 86 -
93, 2006.

[4] Data Contracts,
http://msdn2.microsoft.com/en-
us/library /ms123402.aspx.

[5] Document Object Model (DOM),
http://www.w3.org/TR/REC-DOM-Level-1/.

[6] Java Modeling Language,
http://www.eecs.ucf.edu/ leavens/JML/.

[7] R. Lammel and E. Meijer, Revealing the X/O
impedance mismatch, Datatype-Generic
Programming, Springer, LNCS 4719, 2007, pp.
285-367.

[8] Microsoft Corp., Using Data Contracts,
http://msdn.microsoft.com/en-
us/library /ms733127.aspx.

[9] Microsoft Corp., LINQ to XML,
http://msdn.microsoft.com/en-
us/library /bb387098.aspx.

[10] Microsoft Corp., LINQ to XSD Alpha 0.2, 2008,

http://blogs.msdn.com/xmlteam /archive/2006/11/27 /typed-

xml-programmer-welcome-to-LINQ.aspx

Microsoft Corp., Spec#,
http://research.microsoft.com/specsharp/.

Microsoft Corp., XML Schema Object Model (SOM),
http://msdn2.microsoft.com/en-

us/library /bs8hh90b(vs.71).aspx

J. Simeon and P. Wadler, The Essence of XML,
Proceedings of POPL 2003, ACM, pp. 1-13, 2003.
W3C: XML Schema 1.1,
http://www.w3.org/XML/Schema.

(11]

(12]

