Improving Web Spam Classification using Rank-time
Features

Krysta M. Svore
Microsoft Research
1 Microsoft Way
Redmond, WA
ksvore@microsoft.com

Qiang Wu
Microsoft Research
1 Microsoft Way
) Redmond, WA
giangwu@microsoft.com

Chris J.C. Burges
Microsoft Research
1 Microsoft Way
Redmond, WA
cburges@microsoft.com

Aaswath Raman
Microsoft
1 Microsoft Way
Redmond, WA
aaswathr@microsoft.com

ABSTRACT

In this paper, we study the classification of web spam. Web
spam refers to pages that use techniques to mislead search
engines into assigning them higher rank, thus increasing
their site traffic. Our contributions are two fold. First, we
find that the method of dataset construction is crucial for
accurate spam classification and we note that this problem
occurs generally in learning problems and can be hard to
detect. In particular, we find that ensuring no overlapping
domains between test and training sets is necessary to accu-
rately test a web spam classifier. In our case, classification
performance can differ by as much as 40% in precision when
using non-domain-separated data. Second, we show rank-
time features can improve the performance of a web spam
classifier. Our paper is the first to investigate the use of
rank-time features, and in particular query-dependent rank-
time features, for web spam detection. We show that the use
of rank-time and query-dependent features can lead to an in-
crease in accuracy over a classifier trained using page-based
content only.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation|: Hy-
pertext/Hypermedia; K.4.m [Computers and Society]:
Miscellaneous; H.4.m [Information Systems]: Miscella-
neous

General Terms

Measurement, Experimentation, Algorithms

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AIRWeb '07, May 8, 2007 Banff, Alberta, Canada.

Copyright 2007 ACM 978-1-59593-732-285.00.

Keywords

Web characterization, web pages, web spam, data mining

1. INTRODUCTION

As the amount of information on the World Wide Web
grows, the use of search engines to find relevant information
becomes ever more critical. A search engine retrieves pages
relevant to a user’s query by comparing the attributes of
pages, together with other features such as anchor text, and
returning those that best match the query. The user is then
typically shown a ranked list of between 10 and 20 URLss
per page. The ranking of pages by search engines has proved
to be a crucial component of how users browse the web.
This arises not only from the simple gathering of information
for users, but also from commercial transactions that result
from the search activity.

Some commercial companies, to increase their website
traffic, hire search engine optimization (SEO) companies to
improve their site’s ranking. There are numerous ways to
improve a site’s ranking, which may be broadly categorized
as ethical, or white-hat, and less ethical, or gray-hat (or
black-hat), SEO techniques. White-hat SEO methods focus
on improving the quality and content of a page so that the
information on the page is useful for many users. Such a
method for improving a site’s rank may be to improve the
content of the site, such that it appears most relevant for
those queries one would like to target.

However, there are many unethical methods of improving
ranking. Gray-hat and black-hat SEO techniques include
methods such as link stuffing, keyword stuffing, cloaking,
web farming, and so on [§]. Link stuffing is the practice of
creating many pages that have little content or duplicated
content, all of which link to a single optimized target page.
Link-stuffed pages can fool a ranker based on link structure
into thinking that the target page is a better page since so
many pages link to it. Keyword stuffing is when a page is
filled with query terms, making it appear very relevant to
a search whose query contains one or more of those terms,
even though the actual relevance of the page may be low.
A keyword-stuffed page will rank higher since it appears to
have content relevant to the query. For overloaded terms on
the page, the page will appear higher in the search results

and will ultimately draw users to click on the site. For a
more detailed list of gray-hat techniques, see [8].

Web spam is defined as a page that uses gray-hat or black-
hat methods to improve ranking; it is designed solely to
increase ranking and not to increase the quality or content
of the page®. Typically, webspam pages are either useless to
a user or simply do not reveal as high of quality of content
as an actual relevant page.

As a result, search engines now face the challenge of elim-
inating or demoting these types of pages in the ranking of
results. This challenge is not simple to overcome since the
webspam pages’ content may be duplicated from a quality
page, the link structure may be complicated to detect, or
they may hide pages’ content or functionality from the web
crawler through cloaking techniques [14]. Therefore, it is
hard to determine which page features are the best to dif-
ferentiate between web spam and relevant web pages.

The elimination of web spam from search results is im-
portant for many reasons. First, users who consistently see
spam ranked highly in search results will over time turn to
another search engine to perform information retrieval. Sec-
ond, significant financial gains can occur due to the position
of a site in the search engine ratings. If spam sites are consis-
tently in the top positions, then ultimately legitimate sites
are deprived of those financial gains. This can lead to good
sites using spamming techniques to improve their ratings.
Third, if there are many spam pages in a search engine’s in-
dex, then the search engine wastes resources on illegitimate
sites. Each page must be crawled, indexed, and searched for
each query to the search engine. If a significant fraction of
the indexed pages are in fact spam, the search engine (and
the end users) lose in many ways. Therefore, it is crucial to
devise automated spam detection methods. Human labeling
alone cannot scale to handle the size of the problem.

Currently, web search engines employ an array of spam de-
tectors targeted toward different kinds of web spam. Spam
can potentially be caught at many levels: at crawl-time, at
index-generation time, or at rank time. Of course, it is best
to remove spam as early in the chain as possible, so as not
to waste valuable resources on web spam pages. Ideally, we
desire an index free of spam. However, such a scenario is
virtually impossible. Thus, for our study we focus on pages
already in the index and perform spam detection at rank
time.

In this paper, we begin by identifying a common practice
within the literature, in particular the training and testing
of a web spam classifier on a random sampling of URLs, and
highlight the inaccuracies in this approach. We demonstrate
that classification performance on a random set of URLs
is misleading since the classifier may in fact be learning a
relationship between feature vectors and domain. We urge
the use of domain-separated datasets to determine accurate
classification performance. We emphasize that although this
problem may seem obvious in hindsight, it does occur in
much of the literature.

We then build a classifier to detect web spam by training
a linear SVM-based classifier on a set of page attributes. We
study the addition of rank-time features to our initial feature
set, which is a novel approach to spam detection. The use of
rank-time features, of which most are query dependent, may
seem counterintuitive at first, since a page is either spam or

! This is not to be confused with email spam, which is typi-
cally referred to as “spam”.

not spam, regardless of the query used to find it. However, if
the spam page has fooled the ranking algorithms, then that
act alone may give spam pages properties which are missing
from legitimate pages. A good way to appreciate this is to
consider ranking algorithms that use feature vectors, derived
from the query, the document, and other sources such as
anchor text. Those feature vectors have a distribution, and
in general it should be difficult for spammers to match this
distribution since they do not have access to large amounts
of ranking data. For example, a linear neural net classifier
[3] with a positive weight for the number of query words
that occur in the body of the page will be easily fooled by
simply increasing that number; but such a feature vector
will be an outlier from the distribution of feature vectors
generated from legitimate pages. Our studies show improved
classification performance when using rank-time features.

Our paper is organized as follows. In Section 2 we briefly
describe support vector machines and the web spam detec-
tion problem. In Section 3 we describe the construction
of our real-world datasets. We highlight the importance of
domain-separated data and present several compelling ex-
amples in Section 4. We briefly describe our initial set of
features in Section 5 and also examine the accuracy of our
classifier based on these features. In Section 6 we motivate
the use of rank-time features for classification and describe
both our query-independent and query-dependent rank-time
features. The results on our datasets using the rank-time
features are discussed in Section 7. In Section 8 we dis-
cuss related work and finally, in Section 9, we conclude and
comment on future directions of our work.

2. WEB SPAM DETECTION

Web spam detection can be viewed as a classification prob-
lem. To detect web spam pages, we build a classifier to label
a given web page as spam or not spam. Classification con-
sists of training and test data that is composed of a number
of labeled instances, or samples, where each sample has a
vector of attributes, or features. In our case, the labels are
determined by human judges, as described in Section 3.

Classification involves producing a model during training
to predict the label of each instance in the test set given only
the vector of feature values. To construct a classifer, we first
train it on a number of labeled training samples and deter-
mine the parameters of our classifier. During testing, the
classifier examines a vector of features jointly to determine,
based on the feature values, if a web page is spam or not.
The classifier is evaluated during testing by comparing the
label given by the classifer with the instance’s assigned label.
Our feature set includes variants of page- and domain-level
features. Our feature set will be discussed in Section 5.

There are many different classification algorithms that can
be used to detect web spam. In this paper, we demonstrate
the use of rank-time features to improve web spam classifi-
cation using a support vector machine. At a high level, a
support vector machine, developed by Vapnik [12], produces
a linear separating hyperplane between two class labels in a
transformed version of the feature space. Instances are then
classified based on where they lie in the transformed version
of feature space. The SVM finds the separating hyperplane
with maximal margin in the high-dimensional space, where
C > 0 measures how much to penalize the error term. In this
paper, we apply a linear kernel function: K(x;,x;) = X7 X;.
We choose a linear SVM since it is simple and tends to

Table 1: Sizes of our datasets.
Dataset | # Total | # Spam [# Non-spam | % Spam |

1 6334 705 5629 11.13
2 6291 673 5618 10.70
3 6324 639 5685 10.10
4 6268 614 5654 9.80
5 6083 502 5581 8.25

perform well on high-dimensional problems. Our goal is to
demonstrate the performance gain by using rank-time fea-
tures for classification.

3. DESCRIPTION OF DATASETS

In this paper, we emphasize that we focus on page-level,
content-based classification, as opposed to host-level classi-
fication or link-level classification. Our rank-time web spam
classifier could be used in conjunction with a domain-level
or link-level classifier, by using our classifier at rank time
and another classifier at index-generation time, for exam-
ple. We do include, however, features based on domain and
link information. Building a supervised web spam classi-
fier requires labeled samples (see [4] for a relevant discus-
sion of a labeling process of another (public) spam dataset).
For our experiments, we use a large set of human-labeled
(query, URL) pairs. First we decide on a list of queries from
the Microsoft Live search engine query logs. The queries
are frequency subsampled such that the set of queries we
use represent a realistic distribution of queries that users
would submit to a search engine. The query frequencies
are determined from toolbar data as well as query logs.
Queries include commercial queries, spam, queries, and non-
commercial queries. Our query set consists of 1697 unique
queries.

A human judge is then given the list of queries and issues
each query. A returned list of 10 results with snippets is
shown to the judge. For each URL appearing in the top 10
returned search results, the judge labels the URL as spam,
not spam, or unknown. The judgment is made based on
the quality of content, the use of obvious spam techniques,
and whether or not the result should appear in the top 10.
In our datasets, we use only URLSs labeled as spam or non-
spam and choose not to use URLs labeled as unknown. The
URLs were gathered for our query set in July 2006.

To measure our performance, we perform five-fold cross
validation. The five datasets were constructed by randomly
assigning each domain in our set of URLSs to one of five files
and then assigning every URL from that domain to that
file. On average, there are 4105 domains per file. Five-fold
cross validation consists of training our model on four of the
five files and testing the performance of the model on the
remaining file. We repeat this for all combinations of files.
Our collection contains 31300 total URLs, of which 3133 are
labeled spam (9.99% spam). We divide our collection into
five similar-sized files, as listed in Table 1.

Note that with only 10% spam on average in our files that
the problem of web spam detection becomes very difficult.
Previous studies have used datasets with around 25% spam
[4, 11], thus previously reported results have higher precision
and recall than the results reported in this paper.

4. DOMAIN SEPARATION IN DATASETS

In constructing our five files, we could have randomly as-
signed each URL to one of five files, but instead we randomly
assigned a domain to each file. We find that training and
testing on non-domain-separated data can result in mislead-
ing performance; this is a critical point in this paper. We
found in our studies that separating the data by domain
among the training and test sets was crucial. The problem
here is in fact a general problem facing any machine learn-
ing algorithm when the data contains large-scale structures
that may go unnoticed by the researcher. We briefly describe
here the problem as we encountered it, and then we briefly
explain why we believe that this problem is general, and in-
sidious, in that it can invalidate results in a way that goes
unnoticed by those who train machine learning classifiers.

For the problem investigated in this paper, suppose that
the separation into the training and test sets was done ran-
domly, that is, the feature vectors were chosen in random
order from the data. Since spammers often buy large blocks
of domains for their purposes, it is often the case that entire
domains are spam?. Suppose now that one of the features is
a number that is generated by a hash of the domain name.
If most domains in the data are either all spam, or all not
spam, then the classifier can simply learn the mapping from
that hash value to the spam label. If care was not taken to
separate the data by domain, then the classifier can appear
to do well on the (randomly chosen) test set, whereas in fact
it generalizes very poorly on new domain data.

In the instantiation of this problem considered in this pa-
per (separation of the data by domain), domain separation
is a fairly obvious precaution to take, although we do take
this opportunity to warn other workers of this danger, since
even with reasonably large amounts of data, this effect can
grossly bias the results. Previous reports in the literature
have failed to separate data by domain, thus performance
results in the literature may in fact be worse than reported.

However this problem can occur in any machine learning
classification task. If there exist subsets of the data (anal-
ogous to domains for the spam classification problem), for
which, in a given subset, most of the data has the same la-
bel, and for which the algorithm can more easily learn the
mapping from the feature vectors to the subsets, rather than
the mapping from the feature vectors to the labels we care
about, then measured test results can turn out to be wildly
and incorrectly optimistic. In general, this may be far harder
to detect than in the spam case considered in this paper:
the mapping from input features, to subset hash, may be
nonlinear and non-obvious, and the subsets themselves may
be objects whose existence is not suspected. By testing on
domain-separated data, we obtain worst-case performance
results. However, our approach does not solve the training
problem; the model still learns a mapping from feature vec-
tors to subset hash to labels instead of feature vectors to
labels. We leave this general issue to future work.

4.1 Motivating example

To motivate the need for domain-separated training and
test sets, we present compelling results using non-domain-
separated and domain-separated datasets. We construct a
model using a feature set that includes dynamic-rank fea-
tures that are both query-independent and query-dependent,

2This is not always the case, e.g., for openly editable pages
that contain guest links to spam pages.

1 ‘ T T T
- = = =Randomly sep.
Domain sep. |1

081

0.7F

061

05r

Recall

041

0.3r

0.2

01r

1 1 1 1 1
01 02 03 04 05 06 07 08 09 1
Precision

0 ! ! !

Figure 1: Precision vs. recall on randomly separated
(dashed line) and domain-separated (solid line) test
sets using the feature set FEAT41p+g on test sets
consisting of 25% spam. Results on randomly sepa-
rated data achieve 90% precision at 50% recall. Re-
sults on domain-separated data indicate less than
60% precision at 50% recall.

denoted by FEATA+B+qg. These features are described in
Section 6. We construct two datasets: the first is domain-
separated and the second is random. Domain separation
means that for a given URL pair, the same domain cannot
appear in both the training and test sets.

We construct a linear SVM-based model using the ran-
domly separated datasets. We then repeat our experiment,
but now train a model using our domain-separated datsets,
using the same set of features. With our particular choice of
features, we can achieve almost 100% precision at 50% re-
call on the randomly separated datasets. Figure 1 shows
the precision-recall curve achieved using randomly sepa-
rated datasets and domain-separated datasets on feature set
FEATA4+B+q(see Section 6), for datasets consisting of 25%
spam.

Evaluation of our results for the domain-separated datasets
indicates that at 50% recall the precision drops to less than
60%. Such a noticeable drop in precision occurs because
the model has learned a mapping from feature vectors to
domain to label instead of a mapping from feature vectors
to label. Performance on our test sets declines since the
model cannot rely on the feature vectors to domain map-
ping it has learned since there are no overlapping domains
between training and test sets. In the worst case, there will
be no overlapping domains between training and test sets,
so our results on domain-separated data are reflective of
worst-case performance. We also experimented with remov-
ing obviously domain-related features from our feature set
and the classifier is still able to learn a mapping from feature
vector to domain to label from some other combination of
features.

Figure 2 shows the precision—recall curve achieved using

1 : : :
— Query, Domain Sep.
0.91 - = - Query, Randomly Sep.||

081

061

Recall
o
()]

041

0.2

0.1r

. - o’
0 01 02 03 04 05 06 07 08 09
Precision

Figure 2: Precision vs. recall on randomly sep-
arated (dashed line) and domain-separated (solid
line) test sets using the feature set FEATA+p1g on
domain-separated test sets with 10% spam. Results
on randomly separated data indicate improved per-
formance over results on domain-separated data.

the randomly separated datasets on our rank-time-dependent
feature set FEAT A1+ (see Section 6), for datasets con-
sisting of 10% spam. Table 1 lists the details of our training
and test sets used for results shown in Figure 2. Since a
dataset consisting of 10% spam is more difficult, the preci-
sion drops on both randomly separated and domain-separated
test sets. However, testing on randomly separated data still
indicates slightly misleading performance; when we separate
by domain, the model is unable to abuse the learned feature
vectors to domain mapping.

A subtlety such as the learning of a mapping from fea-
ture vectors to some subset, such as domain, and then to
label can be recognized in this instance since we are able
to examine the results and perform two experiments that
clearly indicate this learning behavior. However, in other
circumstances, it may not be apparent that such “cheating”
is occurring. We warn the reader that the presence of such
structures may be hard to detect and caution classifier de-
signers against such woeful misfortunes. How to choose a
set of features to prevent learning a connection is an open
research problem. For the remainder of the paper, we report
only on the domain-separated datasets given in Table 1. In
this way, we are certain to report worst-case performance
results.

5. RANK-INDEPENDENT CLASSIFICATION
MODEL

Our initial classification model is built using URL page-
level attributes. The attributes include domain-level fea-
tures, page-level features, and link information. We deter-
mine the values of all features by mining feature information
for each URL in our test and training sets. We initially build
a model using features that take advantage of basic domain

Table 2: Sample features in FEATA.
Number of spammy in-links

Top level domain of the site

Quality of phrases in the document
Density of keywords (spammy terms)

and page information. In total, we use 21 features, denoted
by FEAT,. Table 2 lists sample features in FEAT4. The
number of spammy in-links is the number of in-links com-
ing from labeled spam pages. The quality of phrases in the
document is a score that indicates the quality of terms on
the page. The density of keywords is a score that indicates
how many terms on the page are spam terms.

5.1 Evaluation

In spam classification, it is very important that non-spam
pages not be mislabeled as spam, as typically spam detec-
tion results in demotion of a spam page in search rank, or
more extreme, a removal from the search index. Quality
pages must remain in the index, so we want to be sure to
have high precision, and a low rate of false positives. True
positives (TP) are correctly labeled spam instances. False
positives (FP) are non-spam classified incorrectly as spam.
True negatives (TN) are correctly labeled non-spam pages.
False negatives (FN) are spam pages incorrectly classified as
non-spam pages.

In our work, we use two statistics for evaluation of our

classifiers: precision, given by %7 and recall, given by

TP
TP rn - Drecision is the fraction of correctly classified spam

samples out of all samples classified as spam. Recall is the
fraction of correctly classified spam samples out of all spam
samples. Positive labels are spam labels and negative labels
are non-spam labels.

We also plot results using a receiver operating character-
istic (ROC) curve. An ROC curve plots false positive rate
versus recall. The false positive rate is given by FPI‘;%.
An ideal ROC curve follows the y-axis veritcally and then
the x-axis horizontally, tracing the upper-left corner of the
graph. A poor ROC curve follows a diagonal line (indicated
by the dotted line in the figure). That is, perfect classi-
fication results in 100% recall, or sensitivity, and finds all
true positives (TPs) and 100% specificity and finds no false
positives (FPs).

5.2 Resaults

We first study the performance of a linear SVM on our set
of features FEAT 4. This will be our baseline classifier. We
determine the parameter of the linear kernel to be C' = 0.01
by testing a range of C values during one round of cross
validation. We then set C' to be the same for the remaining
four rounds of cross validation. We find that a linear kernel
achieves a mean precision on our test sets of around 60.00%
at a mean recall of 10.80%. The results are shown in Figure
3. Note that because the dataset consists of only 10% spam,
the resulting precision vs. recall curve will be fairly poor.
Our SVM-based classifier serves as a baseline for comparison
against a classifier using additional rank-time and query-
dependent features. In the remaining sections we discuss
methods of improving our SVM-based classifier.

6. RANK-TIME FEATURES

ool [Al

0.8t)l

! k., |

0.2f z]

fop f

0 0.2 0.4 0.6 0.8 1
Precision

Recall

Figure 3: Precision vs. recall on our test sets using
a linear SVM on our feature set FEAT,.

We now examine the improvement of a spam detector
which uses feature set F'E AT 4, by adding query-independent
and query-dependent rank-time features. We study the sen-
sitivity of our results to these additional features with a
linear kernel SVM. We first describe the intuition behind
using rank-time features and then describe the features in
detail.

6.1 Motivation

A large number of web spam pages appear in ranked
search results. In order to receive a high rank, web spam
pages must contain content that “fools” algorithms used for
populating the index and for ranking search results. These
algorithms take feature vectors as input, where the feature
vectors have a specific distribution over the feature set. The
distribution is difficult to match without knowledge of how
the crawling, indexing, and ranking algorithms work. Even
though the ranker believes the web spam page to be highly
relevant, another classifier, with the same feature data as
input, but trained on spam labels, should be able to easily
identify web spam pages, since they will be outliers of the
distribution. Since the ranker is trained to solve a differ-
ent problem, namely the ordering of relevant pages, not the
identification of web spam pages, by using a separate clas-
sifier trained to catch web spam, we can demote web spam
in the ranked results.

Our spam classifier takes advantage of the distribution of
rank-time feature values to identify web spam. Web spam
pages typically display spikes in particular feature values,
like keyword stuffing. These spikes will fool a linear ranking
algorithm if the corresponding weight is positive, but our
spam classifier can identify such characteristics because they
will be outliers in our distribution of non-spam data. It is
in fact most important that the web spam be outliers in the
conditional distributions. That is, genuinely relevant non-
spam pages will look very different from web spam pages
that appear to be relevant.

Table 3: Query-independent features FEATE.
Page-level

Static rank

Most frequent term
Number unique terms
Total number of terms
Number of words in path
Number of words in title
Domain-level

Domain rank

Average number of words
Top-level domain
Popularity

Domain hits

Domain users

URL hits

URL users

Time

Date crawled

Last change date

Time since crawled

6.2 Rank-time Features

We consider 360 rank-time features. We separate the

rank-time features into query-independent and query-dependent

features since the query-independent rank-time features are
in fact static and could be used without knowledge of the
query. We denote the query-independent rank-time feature
set by FEATE and the query-dependent rank-time feature
set as FEATq.

The query-independent rank-time features can be grouped
into page-level features, domain-level features, anchor fea-
tures, popularity features, and time features.

Page-level features are features that can be determined
by looking just at a page or URL. We use several page-
level features including two static rank features, the count
of the most frequent term, the count of the number of unique
terms, the total number of terms, the number of words in
the path, and the number of words in the title.

Domain-level features are computed as averages across all
pages in a domain. Domain-level features include the rank of
the domain, the average number of words, and the top-level
domain.

Popularity features are features that measure the popular-
ity of pages through user data. Our popularity features are
derived from MSN Toolbar data, where the user has agreed
to provide access to data collected during his logged session.
Our popularity features include four domain- and page-level
features. The features are the number of hits within a do-
main, the number of users of a domain, the number of hits
on a URL, and the number of users of a URL.

Time features include the date the URL was crawled, the
last date page changed, and the time since the page was
crawled.

Previous studies have indicated the importance of some
of the features in our feature set [11], such as frequent term
counts, anchor text features, etc. Our query-independent
features are listed in Table 3.

Query-dependent features are content features that relate
to the query term(s). Our feature set includes 344 query-

Table 4:
FEATg.

Sample query-dependent features in

Number query terms in title

Freq. counts of query term in doc.

Freq. counts of query term over all docs.
Number docs. containing query term
n-grams over query terms,/ doc.

dependent features computed for each (query, URL) pair.
Query-dependent features are generated from the query, doc-
ument content, and URL. Query-dependent features can de-
pend just on the query or on the match between query and
document properties. Query-dependent features include the
number of query terms in the title and the frequency of a
query term on the page, as well as counts of the different
occurrences of the query term across documents, the num-
ber of documents that contain the query term, and n-gram
overlaps between the query terms and the document, for
different values of n and for different skip n-grams. Table 4
lists several query-dependent features used in our classifier.

Although we use query-dependent features to build our
model, a spam label should not be query-dependent. Cur-
rently, however, spam is judged such that a query is issued
and then each returned page is examined to determine if it
is spam or not. Thus, in our datasets there are cases where
a URL will have disagreeing labels for different queries. In
the future, we hope to label spam based solely on the URL
and not on the relevance of a URL to a query.

7. EXPERIMENTSAND RESULTS

In this section we present results for our classification
model trained on the original features plus the rank-time
features described in the previous section. By using rank-
time features, the precision—recall curve improves. We train
a SVM using a linear kernel, with C' = 0.01, and perform
five-fold cross validation. We denote the use of features in
sets FEATA and FEATE as FEAT 44+ B.

Figure 4 shows the ROC curve for a linear kernel SVM on
both feature sets FEATA and FEATA+B+q. The results
are micro-averaged across all five test sets. Using query-
independent and query-dependent rank-time features, our
ROC curve improves dramatically over the curve resulting
from using the feature set FEAT 4.

Figure 5 shows a precision-recall curve for feature sets
FEATA, FEAT A4+ B, and FEAT A+ p+¢g. We plot the mean
recall value for precision values between 0 and 1. The error
bars are determined by calculating 95% confidence intervals.

The addition of query-independent rank-time features to
feature set FFEATA produces the majority of the gain in
performance. We find in particular that time features and
user behavior features play an important role in classifica-
tion. Since web spam typically does not have a long life
due to costs of domain registration and typically has fewer
users, these features help discriminate between spam and
non-spam pages.

The addition of query-dependent rank-time features (FEATq)

causes a further increase in performance over the feature set
FEAT41p in regions of high precision. At 70% precision,
FEAT 4+ p yields a mean recall of 7.04% while FEAT s+ B+
yields a mean recall of 12.14%. Overall, by augmenting the
original page-level features with rank-time features, we can

True Positive Rate

— FEATA+B+Q |

- = -FEAT,
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure 4: ROC curve on test sets using a linear SVM
on features FEAT4 and FEATA+B+g. The dashed
line represents feature set FEAT4 and the solid line
represents the rank-time feature set FEAT A1 B+q.

091

0.8f

0.71

061

0.5F

Recall

0.4r

0.3f

0.2

0.1p

0 : =~
0 0.2 0.4 0.6 0.8 1
Precision

Figure 5: Precision vs. mean recall on test sets
using a linear SVM on features FEATA, FEAT+B,
and FEATA+B+qQ.

Table 5: Mean recalls at 60% precision.
| Feature Set | Precision | Recall | Std. Error |
FEATA 60.0% 10.8% 5.98%
FEATALB 60.0% 36.91% 2.82%
FEATA+B+Q 60.0% 34.49% 3.53%

improve the recall by around 25% for a similar precision.
Our results may be further improved by using non-query-
based spam judgements.

8. RELATED WORK

Our work is related to many previous studies of feature-
based web spam classification. Since the beginning of the
World Wide Web, there has been a need to rank pages ac-
cording to relevance to a given query. However the gen-
eration of large amounts of revenue from rank-related ad-
vertising, and the reliance of businesses on the ranking of
their pages for exposure to customers, is only a relatively
recent development. These significant opportunities for new
business models come at the cost of a high reward, and low
bar (in terms of cost), for unscrupulous players hoping to tilt
the game in their favor, at the expense of the common good.
With such high incentives, black and grey hat SEOs have
rapidly learned to use increasingly sophisticated techniques.
The response from the academic community has ramped up
only recently: in [9], Henzinger et al. declared web spam
classification to be one of the most important challenges to
search engines. In particular, they discuss the degradation of
search engine quality due to web spam. Their paper sparked
a significant increase in interest of web spam classification
in the academic community.

One promising method of identifying web spam uses link
information. Link spam stuffs pages with extraneous links
to web pages or adds extraneous pages with links to other
pages to increase the size of the link farm and the rank
of pages. Davison investigates link spam in [5]. Amitay
et al. used feature-based methods to identify link spam [1].
Many other papers have investigated link spam and devel-
oped classification methods to detect link farms [2, 7, 15].

In addition, content-based web spam classification has
been the recent subject of many studies. In [11], Ntoulas
et al. studied specific content-based features. In [6], Fet-
terly et al. examine statistical properties of web pages to
devise a set of content-based features for use in a web spam
classifier. Blog spam detection is studied in [10].

More recently, there has been much work on detecting
large amounts of web spam by discovering doorway pages, or
cloaking methods. Cloaking is when one version of a page is
shown to the user and another version of the page is shown
to the crawler. Recently, in [14], cloaking methods have
been detected through examining three copies of a page. In
[13], Wang et al. propose to identify redirection spam pages
by connecting spammers and advertisers through redirection
analysis.

All of these responses are just first steps in combating web
spam: the necessarily adversarial nature of the task results
in a rapidly evolving problem, and this property (of finding
techniques that succeed in the face of adversarial adapta-
tion) is new to many in the machine learning community
and brings with it many new challenges.

9. CONCLUSIONS

In this paper we have studied the sensitivity of a web
spam classifier to rank-time features. Through numerous
studies based on real-world datasets, we have demonstrated
the necessity of evaluating web spam classifiers on domain-
separated data. We note that the problem of intermediate
structures in the data, which can mislead workers into be-
lieving overly optimistic results, is likely to exist in the more
general machine learning setting as well and we note that
this may be a fruitful area for research. Our results indi-
cate that an extended set of features based on rank-time
content is more effective in classifying web spam pages than
a purely page-based feature set. Our experiments confirm
our intuition that the goal of spammers to generate data to
fool search engine ranking algorithms can lead to tell-tale
properties of their data that can be detected by secondary
classifiers.

One advantage that search engine companies have, that
the spammers don’t, is large quantities of data: it will be
difficult for spammers to construct pages (and associated
link structure) that will not become outliers in the distribu-
tion of features. As classifiers earlier in the chain of spam
classifiers improve, and as more spam pages are removed
from the index, we expect the precision rates of our clas-
sifier to degrade, since only “hard” web spam will remain.
We view this as a positive development and will face the
challenge of determining even better differentiating features
in the future.

The increasing importance of search for business needs,
and the increasing amounts of revenue generated by online
advertising, lead us to believe that the number of spam at-
tacks is likely to go on increasing for the foreseeable future.
As search engine designers develop new web spam classifiers,
spammers will also derive new techniques for “beating” the
ranking algorithms. There will continue to be an “arms
race” between spammers and search engine designers. The
focus of our work is to improve a user’s search engine ex-
perience by removing as much web spam as possible from
search results and to increase the potential profits of legiti-
mate pages. Ultimately, a search engine employs web spam
classifiers to enhance and protect the online experience of
legitimate users and businesses.

10. ACKNOWLEDGMENTS

We would like to thank Andrey Zaytsev, Jacob Richman,
and Matt Richardson for assisting in obtaining our datasets.
We would also like to thank Andy Laucius for many fruitful
discussions.

11. REFERENCES

[1] E. Amitay, D. Carmel, A. Darlow, R. Lempel, and
A. Soffer. The connectivity sonar: Detecting site
functionality by structural patterns. In 14th ACM
Conference on Hypertext and Hypermedia, 2003.

[2] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and
R. Baeza-Yates. Using rank propagation and
probabilistic counting for link-based spam detection.
In Proceedings of the Workshop on Web Mining and
Web Usage Analysis (WebKDD). ACM Press, August
2006.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier,

M. Deeds, N. Hamilton, and G. Hullender. Learning to

(12]

(13]

(14]

(15]

Rank using Gradient Descent. Bonn, Germany, 2005.
C. Castillo, D. Donato, L. Becchetti, P. Boldi,

M. Santini, and S. Vigna. A reference collection for
web spam. In SIGIR Forum, volume 40, December
2006.

B. Davison. Recognizing nepotistic links on the web.
In Artificial Intelligence for Web Search, pages 23-28.
AAAT Press, 2000.

D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: Using statistical analysis to
locate spam web pages. In S. Amer-Yahia and

L. Gravano, editors, WebDB, pages 1-6, 2004.

Z. Gyongyi and H. Garcia-Molina. Link spam
alliances. In Proceedings of the 31st VLDB
Conference, 2005.

Z. Gyongyi and H. Garcia-Molina. Web spam
taxonomy. In First International Workshop on
Adversarial Information Retrieval on the Web
(AIRWeb 05), 2005.

M. Henzinger, R. Motwani, and C. Silverstein.
Challenges in web search engines. In Proc. of the 18th
International Joint Conference on Artificial
Intelligence, pages 1573-1579, 2003.

G. Mishne, D. Carmel, and R. Lempel. Blocking blog
spam with language model disagreement. In First
International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb 05), 2005.

A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly.
Detecting spam web pages through content analysis.
In L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, and
M. Dahlin, editors, WIWWW, pages 83-92. ACM, 2006.
V. Vapnik. The Nature of Statistical Learning.
Springer-Verlag, 1995.

Y. Wang, M. Ma, Y. Niu, and H. Chen. Spam
double-funnel: Connecting web spammers with
advertisers. In Proc. of International World Wide Web
(WWW), May 2007.

B. Wu and B. Davison. Cloaking and redirection: a
preliminary study. In First International Workshop on
Adversarial Information Retrieval on the Web
(AIRWeb ’05), May 2005.

B. Wu and B. Davison. Identifying link farm spam
pages. In Proceedings of the 14th International World
Wide Web Conference, Industrial Track, May 2005.

