Somniloquy: Augmenting Network Interfaces to Reduce PC Energy Usage

Yuvraj Agarwal, Steve HodgésRanveer Chandia James Scott Paramvir Bahl, Rajesh Gupta

TMicrosoft Research, *University of California, San Diego
tyuvraj@cs.ucsd.edii{ shodges, ranveer, jws, bgt@microsoft.comigupta@cs.ucsd.edu

Abstract tion servers or configure network hardware. A few initial

Reducing the energy consumption of PCs is becoming inlProposals suggest the use of network proxies [4, 7, 11]
creasingly important with rising energy costs and environmen-{0 perform lightweight protocol functionality, such as re-
tal concerns. Sleep states such as S3 (suspend to RAM) sa&onding to ARPs. However, such a system too requires
energy, but are often not appropriate because ongoing networlgignificant modifications to the network infrastructure,
ing tasks, such as accepting remote desktop logins or performand to the best of our knowledge such a prototype has

ing background file transfers, must be supported. In this papenot been described in published form (see Section 6 for
we presenSomniloguyan architecture that augments network g fy| discussion).

interfaces to allow PCs in S3 to be responsive to network traf- In this paper, we present a system, called Som-
fic. We show that many applications, such as remote desktop ' '

and VolP, can be supported without application-specific codemloquyl’ that supports continuous operation of many

in the augmented network interface by using application-IeveInet\’m,rk'facIng appllcatlon§, evgn Wh'IFj' aPCis aslegp.
wakeup triggers. A further class of applications, such as in->0mniloquy provides functionality that is not present in
stant messaging and peer-to-peer file sharing, can be support€isting wake-up systems. In particular, it allows a PC to
with modest processing and memory resources in the networgleep while continuing to run some applications, such as
interface. Experiments using our prototype Somniloquy imple-BitTorrent and large web downloads, in the background.
mentation, a USB-based network interface, demonstrates enn existing systems, these applications would stop when
ergy savings of 60% to 80% in most commonly occuring sce-the PC sleeps.

narios. This translates to significant cost savings for PC users. Somniloquy achieves the above functionality by em-

bedding a low power secondary processor in the PC’s
1 Introduction network interface. This processor runs an embedded op-

erating system and impersonates the sleeping PC to other
Many personal computers (PCs) remain switched orhosts on the network. Many applications can be sup-
for much or all of the time, even when a user is notported, either with or without application-specific code
present [23], despite the existence of low power modes;stubs” on the secondary processor. Applications sim-
such as sleep or suspend-to-RAM (ACPI state S3) anghly requiring the PC to be woken up on an event can be
hibernate (ACPI state S4) [1]. The resulting electricity supported without stubs, while other applications require
usage wastes money and has a negative impact on tisgubs but in return support greater levels of functionality
environment. during the sleep state.

PCs are left on for a variety of reasons (see Section 2), We have prototyped Somniloquy using a USB-based
including ensuring remote access to local files, maindiow power network interface. Our system works for
taining the reachability of users via incoming email, in- desktops and laptops, over wired and wireless networks,
stant messaging (IM) or voice-over-IP (VolIP) clients, file and is incrementally deployable on systems with an
sharing and content distribution, and so on. Unfortu-existing network interface. It does not require any
nately, these are all incompatible with current power-changes to the operating system, to network hardware
saving schemes such as S3 and S4, in which the PC doés.g. routers), or to remote application servers. We have
not respond to remote network events. Existing solutionsmplemented support for applications including remote
for sleep-mode responsiveness such as Wake-On-LANesktop access, SSH, telnet, VoIP, IM, web downloads
(WoL) [18] have not proven successful “in the wild” for
a number of reasons, such as the need to modify applica- *somniloquy: the act or habit of talking in one’s sleep.

and BitTorrent. Our system can also be extended to sup Host PC
port other applications. We have evaluated Somnilogquy Apps S?;;;‘]'%qn”y
in various settings, and in our testbed (Section 5) a PC ir

Somniloquy mode consumes 11x to 24x less power thar

Operating system, including
networking stack

aPCinidle state. For commonly occurring scenarios this / , Appln
. Host processor, /| Port filters
translates to energy savings of 60% to 80%. RAM, peripherals, etc. stubs
We make the following contributions in this paper: I 7 Embedded OS, incl.
networking stack
. o Secondary processor
e We present a new architecture to significantly re- : N Embedded CPU,
i)) Network interface hardware NS RAM. flash
duce the energy consumption of a PC while main- . fas

taining network presence. This is accomplished
without changes in the network infrastructure. . . .
e We show that several applications — BitTorrent, Figure 1: Somniloquy augments the PC network inter-

web downloads, IM, remote desktop, etc. — canface with a low power secondary processor that runs an
consume much less energy. This is achieved W|th_embedded OS and netWOfking StaCk, network port filters

e We present and empirically validate a model to pre_Shading indicates elements introduced by Somniloquy.
dict the energy savings of Somniloquy for various
applications.

e We demonstrate the feasibility of Somniloquy via a
prototype using commodity hardware. This proto-
type is incrementally deployable, and saves signifi-
cant energy in a number of scenarios.

PCs don't go to sleep even when they are unused. Sec-
ond, significant energy savings can be achieved if only a
few applications — remote reachability, file sharing, file
downloads, instant messaging, e-mail — can be handled
when the PC is asleep.

2 Motivation 3 The Somniloquy Architecture

Our primary aims during the development of Somnilo-

Prior studies have shown that that users often leav uy were:

their computer powered on, even when they are largely
idle [4]. A study by Roberson et. al. [23] shows thatin e to allow an unattended PC to be in low power
offices, 67% of desktop PCs remain powered on outside S3 state while still being available and active for
work hours, and only 4% use sleep mode. In home envi- network-facing applications as if the PC were fully
ronments, Roth et. al. [24] show that average residential on;

computer is on 34% of the time, but is not being actively e to do so without changing the user experience of the
used for more than half the time. PC or requiring modification to the network infras-

To uncover the reasons why people do not use sleep tructure or remote application servers.

mode, we conducted an informal survey. We passed it .) ,
among our contacts who in turn circulated it further. We We accomplish these goals by augmenting the PC's

had 107 respondents from various parts of the world, oftetwork interface hardwarehwith an .always-on,. low
which 58 worked in the IT sector. 30% of the respon- power embedded CPU, as shown in Figure 1. Beis-

dents left at least one machine at home on all of the time®dary processohas a relatively small amount of mem-

and 75% of the respondents left at least one work ma®"Y and flash storagewhich consumes much less power
chine on even when no one was using it than if it were sharing the larger disk and memory of the

Among the people who left their home machine pow- host processor. It runs an embedded operating system

ered on, 29% did so for remote access, 45% for quicl{/_ith a full TCP/IP networking stack, such as embedded

availability and 57% for applications running in the back- Inux or Wénoflfows CE. Th;: flasbh fstoraﬁe (ijs us_ed as a
ground, of which file sharing/downloading (40%) and temporary buffer to store data before the data is trans-

IM/e-mail (37%) were most popular. In the office envi- ferred in a larger chunk to the PC. A larger flash on the
ronment, 52% of respondents left their machines on fmsecondary processor allows the PC to sleep longer (Sec-

remote access, and 35% did so to support applicationtéon 3.2. This architecture has a couple of useful prop-

running in the background, of which e-mail and IM were erties. First, it does not require any changes to the host
most popular (47%) ' operating system, and second, it can be incrementally de-

Although this survey should not be regarded as repreployed on existing PCs using a peripheral network inter-

sentative of all users, and is not statistically significént face (Section 4).
does highlight two important points. First, a number of 20ur prototype had 64 MB DRAM and 2 GB of flash.

The software components of Somniloquy and their in- ——————

teractions are illustrated in Figure 2. The high-level eper Application state Application
ation of Somniloquy is as follows: When the host PC is || Aprlications || stub configlapp-layer wakeup filters stubs
powered on, the secondary processor does nothing; the f,g/aw\a\,erWakeupﬁners —
. . nil
network stack on the host processor communicates di- M —
rectly with the network interface hardware. When the PC || somnioquy Port-based wakeup fters (TCP, UDP,
initiates sleep, the Somniloquy daemon on the host pro-|| daemon LI Netye,, ICMP etc)
rk baseq wake
cessor captures the sleep event, and transfers the netwol ~—| up filters
. . B
state to the secondary processor. This state includes th| || cevset Current ntmore Network
. . confi :
ARP table entries, IP address, DHCP lease details, anc| || e "o 7| confio
associated SSID for wireless networks i.e. MAC- and IP-
layer information. It also includes details of what events Sleep detection/signalling
the host should be woken on, and application-specific de-|| Operating _ Sleep/wake
. . . . System Wake-up signal and updated state mgmt
tails such as ongoing file downloads that should continue
during sleep. Following the transfer of this information
to the secondary processor, the host PC enters sleep. Secondary
. _ HostPC) processor
Although the host processor is asleep, power to the o J

network interface and the secondary processor is main-

tained [1]. To maintain transparent reachability 10 thegijgyre 2: Somniloquy software components on the host
host while it is asleep, the secondary processor IMperpC and the secondary processor, and their interactions.
sonates the host by using the same MAC and IP ad-

dresses, host name, DHCP details, and for wireless, thge to]d to wake the computer when it detects a particular
same SSID. It also handles traffic at the link and networkpacket, analogously to the magic packets used by Wake
layers, such as ARP requests and pings — thereby maiy, | AN, though not requiring the MAC address to be
taining basic presence on the network. New incomingenown by the remote host (see further discussion in Sec-
connection requests for the host processor are now reion 6). Trigger conditions at the transport layer may also
ceived and handled by the network stack running on thg,e specified, for example, wake on TCP port 23 for telnet
secondary processor. In this way the PC’s transition imc}equests. Similarly, Somniloquy also supports wake-ups
sleep is transparent to remote hosts on the network. 5 patterns in the application payload.

To ensure that the host PC is reachable by various ap- Although the host PC will wake up within a few sec-
plications, a process on the secondary processor Mofngs, it will not receive the packet(s) that triggered the
itors incoming packets. This process watches for patyake-up. One way to solve this problem is to buffer the
terns, such as requests on specific port numbers, whichacket on the secondary processor and replay it on the
should trigger wake-up of the host processor. Althoughnetwork stack of the host processor once it has woken
this simple architecture [4, 7, 11] supports several apyp. However, since the time to wake up is just a few sec-
plications with minimal complexity, Somniloquy can get onds, most sources can be relied upon to retry the con-
much greater energy savings for some applications byection request. For example, any protocol using TCP
not waking up the host processor for simple tasks, foras the transport layer will automatically retransmit the
example, to send instant messenger presence updates. jigjal SYN packet. Even UDP-based applications that
perform these tasks on the secondary processor, we I'gre designed for Internet use are designed to cope with
quire the application writer to add a small amount of packet loss using automatic retransmissions.
application specific code (“stubs”) on the host and sec- Tpjs simple packet filter based approach to trigger-
ondary processor. In the rest of this section we describﬁ1g wake-ups has the advantage that application-specific
in more detail how we handle various applications — withcoge does not need to be executed on the secondary pro-
and without application stubs. cessor. Nonetheless, it is sufficient to support many ap-

plications that get triggered on remote connection re-
3.1 Somniloquy without Application Stubs quests, such as remote file access, remote desktop access,
telnet and ssh requests to name a few.
The Somniloquy daemon on the host processor speci-
fies packet filters, i.e. patterns on incoming packets, o 5 Application-specific Extensions
which the secondary processor should wake up the host
processor from sleep state. The Somniloquy daemon creSeveral applications maintain active state on the PC even
ates filters at various layers of the network stack. At thewhen it is idle, and hence prevent a PC from going to
link layer and network layer, the secondary processor casleep. For example, a movie download client on a home

PC (e.g. from Netflix) will require the host PC to be ues depend on the application being handled by the stub.
awake for a few hours while downloading the movie. An The second callback function, which is called when the
instant messenger (IM) client will require the PC to be host resumes from sleep, checks the event that caused
on in order for the user to stay “online” (reachable) to the wakeup — whether it was caused by a trigger con-
their contacts. dition on the secondary processor or due to user activ-
Somniloquy provides a way for these applicationsity. It handles these events differently. If the wakeup
to consume significantly less power. By performing was caused by user activity, the stub transfers state from
lightweight operations on the secondary processor, ithe secondary processor, and disables it. However, if the
can opportunistically put the host processor to sleepwakeup was caused by a trigger condition on the sec-
For example, the secondary processor can send and rendary processor, the application stub handles it as de-
ceive presence updates to/from the IM server while thdined by the user. For example, for an incoming VoIP
host processor is asleep. During a large download, theall, the stub engages the incoming call functionality of
secondary processor can download portions of the filethe VoIP application.
putting the host processor to sleep in the meantime. Having determined what functionality needs to be sup-
The key to supporting these applications is the usegorted by the application stub and host-based callbacks,
of stubs that run on the host and the secondary procesnd what state must pass between them, the final step is
sor. We have implemented stubs for three popular apto implement this. We have used two manual approaches
plications — IM (MSN, AOL, ICQ), BitTorrent, and web to doing this. For the download stub, we built all the
download. Here, we will describe the general guidelinesfunctionality ourselves based on detailed knowledge of
for writing these stubs, and describe the specific implethe application protocols, and for the BitTorrent and IM
mentations for the three applications in Section 4. stubs, we trimmed down existing application code to re-
Writing application stubs: When designing an appli- duce memory and CPU footprint. An alternative could
cation stub, the first step is to understand the subset of thee to automatically learn protocol behavior to build these
application’s functionality that needs to run when the PCapplication stubs. However, we believe that this is an
is asleep. This is implemented as a stub on the secondasktremely difficult problem. There are parts of the ap-
processor. For example, for an IM stub, the functionalityplication that are difficult to infer, and any inaccuracy in
to send and receive presence updates is essential to maiie application stub will make it unusable. For exam-
tain IM reachability. However, the stub need not includeple, knowledge of how BitTorrent hashes the file blocks
any Ul-related code — such as opening a chat window. is necessary for the stub to successfully share a file with
We note that it is not feasible for the stub to reuse thepeers. We are unaware of any automatic tool that can
entire original application code from the host PC. Thelearn such application behavior. Therefore, we believe
application code might depend on drivers (display, diskthat the best (although perhaps not the most elegant)
etc.) that are absent on the secondary processor. Furthépproach to building these stubs is to modify applica-
more, running the entire application might overload thetion source code and remove functionality that is not re-
secondary processor. Therefore, only the essential confiuired by the secondary processor. In the future, with
ponents of the application are implemented as part of th@ greater incentive to save energy, we expect that appli-
application stub. cation developers will compete for energy consumption,
Another step in designing application stubs is to de-and hence provide stubs for their applications using the
cide when to wake up the host processor. Triggers ca@uidelines described in this section.
be user-defined, for example waking up on an incoming We realize that partial application stubs might be cre-
call from a specific IM contact. Triggers may also occurated using tools such as the Generic Application-Level
when the secondary’s processor’s resources are insuffRrotocol Analyzer [6] and Discoverer [8], which auto-
cient, for example when the flash is full or more CPU re-matically learn the behavior and message formats for a
sources are needed. In all of these cases, the stub wakegnge of protocols. As part of future work, we plan to
up the host processor. explore how the knowledge of the protocol can be aug-
To interface with the application on the host PC andmented with application-specific behavior to ease the de-
the Somniloquy daemon, the application stub needs t&elopment of application stubs.
have a component on the host processor. This compo- When to use application stubs?Not all applications
nent registers two callback functions with the Somnilo-are conducive to low-power operation via application
quy daemon — one that is called just before the PC goestubs. A CPU intensive application, such as a compi-
to sleep and the other just after it has woken up. Thdation job, will be very slow on the secondary processor
first function transfers the application state to the stub orsince it has a less powerful CPU and low memory. Simi-
the secondary processor, and also sets the trigger condarly, an I/O intensive application, such as a disk indexer,
tions on which to wake the host processor. These valwill need to read the disk very often and will therefore

need the PC to be awake. Download and file sharing ap~hen it would previously have been awake. For applica-

plications are an interesting exception, because portionsons without stubs, this proportion is largely dependent

of a file can be transferred by the secondary processasn the actions of a remote user - how frequently a re-

whilst the host sleeps. We will discuss this approach inmote ssh session is initiated for example, and for how

more detail in Section 4.4. long. On the other hand, for applications with stubs the
Even for an application stub that saves energy for asecondary processor may regularly wake up the host to

given application, it is not always useful to offload the ap-perform some task or other. We quantify the energy sav-

plication to the secondary processor when the host PC iggs for an application with different wake-up intervals

going to sleep. Several other applications may also wanin Section 5.4.4.

to run their application stubs on the secondary processor. More formally, suppose the host is woken up once ev-

This might overload the CPU of the (weaker, low power) ery T§,..,, Seconds, whereupon it stays awakeZXpy,q k.

secondary processor. In this case, it might be beneficisdeconds. T4k includes the time it takes to transfer

to keep the host PC awake. data between the PC and the secondary processor. Also
One way to solve this problem is to modify the Som- assume that is sum of the time to wake up the host plus

niloquy daemon to predict the CPU utilization of the the time to transition to sleep. Suppose:

stubs for all applications that are willing to be offloaded . . o

to the secondary processor. However, making this pre- ® Fa IS the power consumption of the PC when it is

diction is extremely difficult. There might be little cor- awake (in W)

relation between the CPU utilization of the application

on the host PC, and the stub on the secondary proces-

sof, .becausg of different processor architectures, and , p jg power consumed by the secondary (embed-

varying application demapds. Instead, we tgke a Sys- ded) processor (in W)

tems approach. We monitor the CPU utilization of the

secondary processor; if it remains at more than 90%The energy (E) consumed during Somniloquy operation

continuouslyt-30 seconds), we wake up the PC, and re-is given by:

sume all applications on the host processor. If the CPU

utilization of these applications decreases by more thaf®’somniloqguy = EPCinSicepMode + EPCinAwakeMode

e P, is power consumed in sleep mode (in W), and

10% on the host processor, we repeat the same procedure +FEsccondaryProcessor
— offload to the secondary processor and stay there if = Tgieep * Ps + (Tawake + d) * P,
CPU utilization is less than 90%. In our Somniloquy de- +(Tawake + d+ Tsieep) * Pe Joules

ployment the need to move applications arose when run- :
. : S In the absence of Somniloquy, the amount of energy
ning multiple application stubs on the secondary proces- . . .
onsumed by the host PC in the same tim&is,; =
sor, such as two concurrent 8 Mbps web downloads an
a

two concurrent BitTorrent downloads of Section 5.3.2. ene*r (T%%aﬁéuTneTSleép) S\](;)rzlr?ilsc; Ihecrg:r?rz,rézetcﬁ:ce) ﬁfost
Incremental Deployment: We realize that Somnil- 9y y auy P

oquy may never be universally deployed, and that get-pC being always on is given by:

ting software vendors to try for incremental deployment Esomnitoquy _ Tetcep*(PetPo) tTawane#(PatPe) +d4(PatPs)

. . - Ehost Pa,*(Tawake"FTsleep)
requires a low-effort mechanism to ensure that their
Sqmniloquy—enhanced software is compatiblg with ma- Typically, as we show in Section B, and P, are two
chines and platforms that do not have Somniloquy supprders of magnitude less tha? for a desktop computer,
port. The Somniloquy daemon queries the OS to deandd is around 10 seconds (to wake up the host, and put
termine the presence of a secondary processor, and thepack to sleep). Therefore, for most energy savings,
supported application stubs. Applications then need tqQye would WantT, k. to be much less thafi,;..,, i.e.
query the Somniloquy daemon, and invoke the applicajs Towake < Tsicep, then the ratiof . mnitoguy/ Enost
tion stubs qnly if the OS supports Somniloquy, and thejs approximately(P, + P,)/P,. We will present the
corresponding stubs are implemented on the secondagypproximate energy savings for different applications in

processor. Section 4.
Of course, Somniloquy could save more energy by dis-
3.3 Quantifying Energy Savings abling the secondary processor when the PC is awake.

This would require the PC to enable the secondary pro-
The amount of energy saved through adoption of Someessor before going to sleep, and disable it when the PC
niloquy is quite easy to predict; it depends on the relativehas woken up. We were unable to fully implement this
power consumption of the awake and sleep states, anfdinctionality in our prototype, but we expect this to be a
the proportion of time that a machine can be kept asleeminor fix in a production system.

3.4 Discussion cause of the lack of truly fine-grained power control of
PC components such as the Northbridge, Southbridge,
Security: A common requirement of corporate IT de- memory buses, parts of the storage hierarchy and various
partments is that all PCs should be up to date with theyeripherals. Even if fine-grained control were available,
latest OS and application patches. Somniloquy can ente pase power consumption of individual components
sure that this constraint is met even when PCs are asleeg\”Q hard drive) is significant (see Table 2). One way
This is achieved using a port-based trigger to wake up thgg reduce this base power draw would be to have a sep-
host PC when the SMS (Systems Management Servegrate and relatively simple core with a small amount of
contacts the host PC to install updates. associated memory running from a separate power do-
Somniloquy ensures that the secondary processor igain so that it can function without powering on other
secure by patching its OS whenever security updategomponents. Such an architecture is very similar to Som-
become available. Also, it prevents attackers from re-iloquy, and most of our design principles can easily be
placing the secondary processor by requiring that it beadopted.
a physically part of the PC (as part of the network in-
terface). In some cases however, the functionality that .
Somniloquy provides could be misused to conduct at-4 Prototype Implementation
tacks that spuriously wake up the PC and waste energ

This kind of denial-of-service attack would be particu- ower modular embedded processor platform manufac-
larly effective for mobile devices where a drained bat-p . b b)
tured by Gumstix Inc that support a wide variety of pe-

tery might result. One way to address this issue is to.

: : ! . -ripherals.
disable port triggers, and instead exclusively use appli-
cation stubs which ensure that only authenticated remote

hosts are allowed to trigger wakeup. 4.1 Hardware and Software Overview

Another concern is that application st’ubs, and henceyp, important goal when prototyping Somniloquy was to
the use of extra code, increases the PC's attack surfacgye it work with existing unmodified desktops and lap-
To mitigate the impact of this vulnerability we use a few tops, and for both wired and wireless networks. Further-
techniques. First, the secondary processor pnly Iistethore' we required the platform to be low power, have
on ports that have been opened by applications on thg gma| form factor, and be well supported for develop-
host PC. Second, we require the PC and the secondafyent The gumstix platform served all these design re-
processor to be on the same administrative domain. uirements well. The specific components we use for

We also note that modern processors have additionagomnnoquy include a connex-200xm processor board,
security features built in, for example an execute-disableyn etherstix network interface card (NIC) (for wired Eth-
bit, used by some applications to prevent executing arsrpet), a wifistix NIC (for Wi-Fi), and a thumbstix com-
bitrary code and preventing buffer overflows. We realizepined USB interface/breakout board. The connex-200xm
that a low power processor may not currently support thi%mploys a low power 200 MHz PXA255 XScale pro-
advanced functionality, although we expect that in thegessor, with 16 MB of non-volatile flash and 64 MB of
future low-power chips will also be available with these RAM. The etherstix provides a 10/100BaseT wired Eth-
features. ernet interface plus an SD memory slot to which we have

Alternative Design: With the increasing prevalence attached a 2GB SD card. The thumbstix provides a USB
of multi-core PCs, one idea to alleviate the need for theconnector, serial connections and general purpose input
additional secondary processor introduced by Somniloand output (GPIO) connections from the XScale.
guy would be to use one of the cores of the host CPU in- To enable Somniloquy we needed mechanisms to
stead. Running just one core at the lowest possible clockyake-up the host PC, and also to detect its state (awake
frequency would minimize energy consumption and ob-or in S3). To achieve this we added a custom de-
viate the need for a separate low power processor in thgigned circuit board that incorporates a single chip — the
NIC. FT232RL from FTDI. The FT232RL is a USB-to-Serial

However, it turns out that such an approach is not useeonverter chip supporting functionality such as sending
ful without significant modification to today’s PC archi- a resume signal to the host and detecting the state of the
tecture. Our measurements (see Section 5.1) show thabst, both over the USB bus. This board is attached to
the power consumption of a multi-core PC with only onethe computer via a second USB port and to the thumb-
core active, running at the lowest permissible clock speedtix module (and thence to the XScale processor) via a
is still approximately 50 times that of our low power sec- two-wire serial (RS232) interface plus two GPIO lines.
ondary processor, even with all other peripherals in theitOne GPIO line is connected to the FT232RL’s ‘ring indi-
lowest power modes — e.g. disk spun down. This is be<€ator’ input to wake up the computer. The second GPIO

¥ve have prototyped Somniloquy usigmimstix a low

Sleep detection FTDI USB
. to serial
¢ Wake-up signal e
usB I
Interfaces

(\ 4 USB Interface (debug + Wakeup) |
Custom PCB}

| USB Interface (power + USBNet) |

N

Power
TCP/IP link thumbstix

(USB and breakout board)

Somnilogquy / - \ SD Storage
Daemon So&nn[loquy
evice
XScale P
software processor rocessor
Windows Embedded
Vista Linux
| 100Mbps Ethernet Interface |
\ connex-200xny
|
(" TEmhermetNic) Figure 4:Photograph of the gumstix-based Somniloquy
\ DeskwonlLaptop) | | oMC | etnersix | prototype - Wired-1NIC version.

Figure 3: Block diagram of the Somniloquy prototype 4.2 Three different prototypes

system - Wired-1NIC version. The figure shows variousye have prototyped three different Somniloquy designs

components of the gumstix and the USB interfaces to thgy explore different aspects of operation. The first uses

host laptop. the gumstix as an augmented Ethernet interface, as de-
scribed in Section 3. However, in our prototype this has

o . , ~some performance limitations so we have also imple-
line is connected to the FT232RL’s ‘sleep’ output which nented a second design which uses the gumstix in co-

can be polled by the gumstix to detect whether the hospperation with an existing high-speed Ethernet interface.
PC s active orin S3. Finally, we have a Wi-Fi version. All three prototypes

As mentioned above (and shown in Figure 3), the comare described in further detail below:
puter is connected to the secondary processor via two Augmented Network Interface: We call this imple-
USB connections. One of these provides power and twomentation theéwired-1NICversion. The architecture is
way communications between the two processors. It ishown in Figure 3, with a photograph of the prototype
configured to appear as a point-to-point network inter-shown in Figure 4. In this prototype, we disable the NIC
face (“USBNet”), over which the gumstix and the host of the host, and configure the PC to use the USBNet in-
computer communicate using TCP/IP. The second USBerface (USB connection between the gumstix and the
interface provides sleep and wake-up signaling, and a sdost) as its only NIC. The gumstix is connected to the
rial port for debugging purposes. The use of two USBnetwork using its Ethernet connection. To enable the host
interfaces is not a fundamental requirement, it is simplyPC to be on the network, we set up a transparent layer-2
for ease of prototyping. software bridge between the USBnet interface to the host
. and the Ethernet interface of the gumstix. This bridge is
Since we use standard USB ports for interfacing With .(ie \yhen the host is awake. When the host transitions

the host ang folr(sleep lsignaling, our prototyggl\?/)vovr\lfs Mo sleep, the gumstix disables the bridge, and resets the
any recent desktop or laptop that supports - We TURYAC address of its Ethernet interface to that of the US-

an embedded distribution of Linux on the gumstix thatBNet interface of the host. The gumstix thus appears to
supports a full TCP/IP stack, DHCP, configurable rOUtIngthe rest of the network as the host itself, since it has the

tables, a configurable firewall, SSH and serial port COM-<2me network parameters (IP, MAC address). When the

munication. T_his prov_ides a flexible prototyping plat- host wakes up, the gumstix resets its MAC address to its
form for Somniloquy with very low power operation. original value and starts bridging traffic to the host again.
We have implemented the Somniloquy host software Although our Wired-1NIC prototype hardware sup-
on Windows Vista. The Somniloquy daemon detectsports a 100 Mbps Ethernet interface, we are limited to a
transition to S3 sleep state, and before this is allowedhroughput of 5 Mbps due to the bandwidth supported by
to occur we transfer the network state (MAC address, IRhe USBNet interface driver. There is also a slight over-
address, and in the case of the wireless prototype, thbead of bridging traffic on the gumstix. Although this
SSID of the AP) and other information about the wakeuplimits bandwidth to the host significantly in our proto-
triggers as discussed in Section 3. type, we note that in a final integrated version, this over-

head of bridging can be avoided by allowing both theor the existing applications on the PC, which were only
host and the low power secondary processor to accessvailable to us in binaries. To capture the state of the
the NIC directly. application for the respective stub, we wrote wrappers
Using Existing Network Interface: Somniloquy can around the binaries.
coexist with an existing NIC. On such systems, the over- Background Web Downloads: We developed the
head of bridging is avoided by using the existing Ether-web download stub fonget which works as follows:
net interface on the host PC for data transfer when it iSvhen the host PC transitions to sleep, the status of ac-
awake, with the gumstix using its own Ethernet interfacetive downloads is sent to the stub running on the gum-
(while still impersonating the host PC) when the host isstix. The status includes the download URL, the offset
asleep. We have built this version where the gumstixof how much download has taken place, the buffer space
does not perform Layer-2 bridging, and call it féred- available, and the credentials (if required for the down-
2NIC prototype. load). Most popular web servers (e.g. IS and Apache)
Using Wi-Fi: We have also implemented a wireless allow these byte ranges to be specified using the HTTP
version of Somniloquy. We were unable to implement a‘Accept-Ranges’ primitives [22]. The web download
one-NIC version since the Marvell 88W8385 802.11 b/gstub then resumes the downloads from the respective off-
chipset present on the wifistix does not currently sup-sets of the files, and stores the data on the flash storage
port layer 2 bridging. We have however implemented aof the gumstix. If the flash memory fills up before the
Wireless-2NIGversion. downloads complete, the stub wakes up the host PC and
transfers the downloaded files from flash storage to the
C . host PC, thereby freeing up space. The host PC then goes
4.3 Applications Without Stubs back to sleep while the stub continues the downloads. At
We have implemented a flexible packet filter on the gum-the end of a download, the gumstix wakes up the host
stix using the BSD raw socket interface to support appli-PC, and transfers the remaining part of the file.
cations that do not require stubs, e.g. RDP, SSH, telnet The download stub consumes significantly less energy
and SMB connections. Every application in this classto download a file than keeping the PC awake to down-
provides a regular expression matched against incomintpad it. The overhead is a slight increase in latency. We
packets to decide whether to trigger host wakeup. Focan quantify the savings and overhead using the model
example, handling incoming remote desktop requests redescribed in Section 3.3. If flash storageFisMB and
quires the host to be woken up when the gumstix receivethe download bandwidth i8 MBps, then the host PC is
a TCP packet with destination port 3389. woken up everyF'/B seconds, and it is awake fét/T
We note that waking up the host computer is notseconds, wheré is the transfer rate between the host
enough; the incoming connection request must somehownd the gumstix. Therefore, using the formula in Sec-
be conveyed to the host. We accomplish this by usingion 3.3, Somniloquy gives most energy savings at low
thei pt abl es firewall on the gumstix to filter any re- B and highT'. We empirically validate this observation
sponse to TCP or UDP packets that the gumstix does ndn Section 5.4.4. Whef" is of the same order aB,
handle itself. Thus trigger packets are not acknowledged®omniloquy might not save much energy. This can hap-
by the gumstix and the remote client sends retries. Afpen if the NIC supports very high rates (e.g. 1 Gbps),
ter the host has resumed, one of the retries will reach iwhile the secondary processor can only support lower
(since it is still using the same IP and MAC addressesyata rates (up to 100 Mbps) or if the transfer ratés
and it will respond directly. Using port-based filtering, limited. However, we anticipate the download stub to be
we have implemented wake-up triggers for four appli-primarily used in scenarios where the download speeds
cations: remote desktop requests (RDP), remote securye limited by the last mile connection of at most a few
shell (SSH), file access requests (SMB), and Voice ovetens of Mbps — here, this stub is nearly always beneficial.
IP calls (SIP/\VoIP). BitTorrent: For the BitTorrent stub we customized
a console-based clienttorrent, to run on the gumstix
with a low CPU utilization and memory footprint. Prior
to suspending to S3, the host computer transfers the *.tor-
To demonstrate how modest application stubs can enabkent’ file and the portion of the file that has already been
significant sleep-mode operation in Somniloquy, we havedownloaded to the gumstix. The BitTorrent stub on the
also implemented application stubs for three applicationgumstix then resumes download of the torrent file and
that were popular in our informal survey: background stores it temporarily on the SD flash memory of the gum-
web download, peer to peer content distribution usingstix. When the download completes, the stub wakes up
BitTorrent, and instant messaging. For all these applithe host and transfers the file.
cations, we did not have to modify the operating system When only downloading content, the energy saved by

4.4 Applications Using Stubs

using this stub is similar to that of the web download Condition Optiplex | Dimension
stub, i.e., frequency of waking up the PC and the duration 745 4600
for which it is woken up depends on the download band- Normal idle state 102.1W | 727W
width B, the transfer speet and the flash siz&. How- Lowest CPU frequency| 97.4W N/A
ever, when uploading/sharing (which is key to altruis- Disable multiple cores | 93.1W N/A

tic P2P applications), the energy savings are much more. ‘Base power 93.1W | 727W
The same file chunk can be uploaded to many peers, and L__Suspendstate(S3) | 12w 3.6W
hence the PC can sleep for much longer —implying more | _ TimetoenterS3 | 9.4s 5.8s
energy savings using the formula in Section 3.3. Time to resume from S3 4.4s 6.2s

Instant Messagi.ng: For the IM stub, we used a Table 1: Power consumption and S3 suspend/resume
console-only IM client calledinch that supports many ime for two desktops under various operating condi-
IM protocols such as MSN, AOL, ICQ, etc. On the PC, yjons | a1l cases the processor is idle and the hard disk

we used the corresponding GUI version of the IM client. ;¢ spun down. The power consumed by other peripherals
To ensure our goal of a low memory and CPU footprintsuch as displays is not included.

we customized finch to include only the features salient

to our aim of waking up the host processor when an in- Condition Lenovo | Toshiba| Lenovo
coming chat message arrives. This only requires authent X60 M400 | Te0
tication, presence updates and notifications; we disabled Normal idle state 16.0W | 27.4W | 29.7W
other functionality. The host processor transfers over thg Backlight minimum | 13.8W | 22.4W | 24.7W
authentication credentials for relevant IM accounts be-| ~ Screen turned off 11w | 183W | 21.3W
fore going to S3. The gumstix then logs into the rele- ‘Base power’ 11W | 18.3W | 21.3W
vant IM servers, and when an incoming message arrives___Suspend state (S3) | 0.74W | 1.15W | 0.55W
it triggers wakeup. The energy saved by the IM stub is Battery capacity 65Wh | 50Wh | 85Wh

thus similar to applications that are handled using packet Base lifetime 5.9h | 2.7h | 4.0h
filters (e.g. SSH/RDP), where the duration for which a Suspend lifetime 88h 43h | 155h
host can sleep depends on the frequency of occurrence Time to enter S3 87s | 55s | 49s

Time to resume from S3 3.0s 3.6s 4.8s

of wake-up triggers.

Table 2:Power consumption and battery lifetime of three
5 System Evaluation laptops under various operating conditions, and the time
to change power states.

We present the benefits of Somniloquy in four steps.)
First, we show that gumstix consumes much less poweP.1 Microbenchmarks — Power, Latency

than a PC by profiling standalone desktops, laptops an% K Table 1 h
the gumstix in different power states. Second, we mea- esktops: Table 1 presents the average power consump-

; { for two Dell desktop machines: an Intel dual core
sure the energy saved (and latency introduced) by So 1on . .
niloguy when used on an “idle” host processor. Third, We(2.4 GHz Core2Duo) OptiPlex 745 with 2 GB RAM run-

show how Somniloquy affects the performance of vari-1""9 Windows Vista, and a 2.4 GHz Pentium 4 Dimen-

ous applications, with and without application stubs. Fi-Ston 4600 with 512 MB RAM running Windows XP. The

nally, we quantify Somniloquy’s energy savings — mon- display is turned off in these experiments_, and only the

etary and environmental cost for an enterprise and batgssennal :_system processes are Ie_ft running. The power

tery lifetime increase for laptops. consumption of the desktop in S3 is two orders of mag-
Methodology: To measure the power consumption of nitude less than when it is awake. This is consistent with

laptops and desktop PCs, we used a commercially avail"'o" published data on the pf)wer consur’npu_on_of mod-
able mains power metewatts-Up®. To measure the ern PCs [7]. We use the term ‘base power’ to indicate the

power consumption of the standalone gumstix, we bu”tlowest power mode that a PC can be in and still be re-

a USB extension cable with a 10000.1% sense resis- _srponstn{[ﬁitonncintvgo:kxaf?crt(r\:v |:houtl ujlggvf:mnllg%ug)i
tor, which was inserted in series with the +5V supply 0 get this numpber, we Turther scaled do € °

line, and we used this cable to connect the gumstix to th%he lowest permissible frequency on these desktops. Fur-

computer. We calculated the power draw of the gumstiXthermore, we disabled the multi-core functionality using

by measuring the voltage drop across the sense resistop.e system BIOS to effectively use only one core and

All power numbers presented in this section are averageéerféi(lstgst :r[])eu?ﬁli?tesrz W"I’i dagt“?:éldo;_rr‘]ge ‘:’icr)nté%;(sel:rrlug
across at least five runs. P y supplied by Intel.

for the desktops to resume from S3 and reconnect to the
Shtt p: // www. wat t supnet ers. conl network is of the order of a few seconds (Table 1).

Gumstix state Power | 200 & ssconds SR
Wired version % 180) . — j%
1 gumstix only - no Ethernet 210mwW s Al B c it p
2 gumstix + Ethernet idle 1073 mwW S 120 L i R
3 gumstix + Ethernet bridging 1131 mw g 100 1: l i e
4 | gumstix + Ethernet + write to flash 1675 mw g % Y '
5 | gumstix + Ethernet broadcast storm1695 mw S 4 E \: i/ !
6 | gumstix + Ethernet unicast storm 1162 mW g 20 e ! i
Wireless version =0 O N DB PP ,bt; R N q;u & Ao P
7 gumstix only — no Wi-Fi 210 mwW Time (Seconds)
8 | gumstix + Wi-Fi associated (PSM) 290 mW
9 | gumstix + Wi-Fi associated (CAM) 1300 mW
10 | gumstix + Wi-Fi broadcast storm| 1350 mW Figure 5: Power consumption and state transitions for
11 gumstix + Wi-Fi unicast storm | 1600 mW our desktop testbed.

Table 3:Power consumption for the gumstix platform in 5.2 Somniloquy in Operation

various states of operation. We now report the power consumption of Somniloquy in

operation. For these measurements we use two testbed

Laptops: Table 2 presents the average power Con_systems: a desktop (Dell OptiPlex 745 with 2GB RAM

: ; running Windows Vista) with the Wired-1NIC prototype
sumption of three popular laptops: a Lenovo X60 tablet .

. . X : . of Somniloquy, and a laptop (Lenovo X60 tablet PC run-
PC with 2 GB RAM running Windows Vista, a Toshiba ning Windows Vista) with the Wireless-2NIC version of
laptop with 1 GB RAM running Windows XP, and a 9

X ; . Somniloquy. Thus, our tests span both Ethernet and Wi-
l\‘/?srtlgvo,:gfglllagagrﬂtgaiﬁgmiﬁx rtl;]nenlnrgcvg/;r;g(r)vi\;ss Fti networks, and both the integrated single network in-
X P ' P EEen‘ace, and the higher performance versions which uses

to the lowest speed and is idle, the hard disk is spun dowr'h S . L
. . . the existing internal network interface. The test traffic is
and the wireless network interface is powered on. The

base power is between 11 W and 22 W, resulting in a batgenerated using a standgrd desktop machine running on
L : : the same (wireless or wired) LAN subnet as the testbed
tery lifetime of around 4 to 5 hours with the batteries that .
- achine.
are present on these laptops. Using the sleep/S3 state2C .
. 3 Figure 5 shows the power consumption of our desktop
can dramatically extend the battery lifetime, to between - . .
testbed. Initially the desktop’s host processor is awake
40 and 150 hours for the laptops we tested, although the . T
laptop is unreachable in this state. and uses the gumstix for brldglng, and the whole sys-
tem draws 104 W of power. At time ‘A’ a state change
Gumstix: Table 3 shows the average power con-to S3 is initiated by the user. This request completes at
sumed by the gumstix (with both etherstix and wifistix) time ‘B’ after which the power draw of the system is
in various states of operation. The gumstix has a basapproximately 4.4 W, i.e. 24x less. This power is split
power of approximately 210 mW when no network in- between the gumstix, the DRAM of the PC, and other
terface is present (row 1). A gumstix with an active net-power chain elements in the PC. Subsequently at time
work interface typically consumes approximately 1070-‘C’ the gumstix, which has been actively monitoring the
1300 mW (rows 2 and 9), however with an associatechetwork interface, wakes up the host in response to a net-
Wi-Fi interface in power save mode it consumes onlywork event. This request completes at time ‘D’ when the
290 mW (row 8). The power consumption of the gumstix host system has fully resumed. As the figures illustrate
when its network interface is active and the downloadecdhis resume event takes about 4 seconds. We do not show
data is being written to flash is around 1675 mW (rowthe laptop figure for space reasons; the trace looks very
4). Broadcast and unicast ‘storms’ (continuous traffic)similar with a starting power of 16 W with the screen on
increase the power consumption by a few hundred milli-(which drops to 11 W if the screen is turned off), a power
watts!. Importantly, the power consumption of the gum- draw of 1 W when using Somniloquy (11x less than the
stix is approximately one tenth that of an awake laptop inscreen-off case) and a resume time of 3 seconds.
the lowest power state, and approximately 50 times less

than an idle desktop. 5.3 Application Performance

As described earlier there are two classes of applications

4Wi-Fi broadcasts are sent at 6 Mbps while unicasts are sent that are Squorted by Sommlquy' first, a Iarge class of

54 Mbps in our setup. Consequently a unicast storm consumes mor@pplications that do not require appllcatlon stubs, and
power than a broadcast storm. second a smaller class of applications that can be sup-

40

. = Asleep (Somniloquy) TCP ports used by SMB,i.e. ports 137 and 445.
7 o Awake Remote file copy (SMB): The SMB protocol was
% used again, but this time to transfer a 17 MB file from
the Somniloquy testbed to the tester machine.

25

i: VolIP call (SIP): A Voice-over-IP call was placed to
2 . a user who had been running a SIP client on the Som-
2 s F r r I niloquy laptop before it had entered S3. On receipt of

o . the incoming call the SIP server responded with a TCP

E connection to the testbed, causing the gumstix to trig-

: 3 £ ger wakeup. A similar procedure was used in [2]. Once
again, the latencies were measured using a stopwatch to
measure true user-perceived delay.

As Figure 6 shows, Somniloquy adds between 4-10s

_ o . latency in all cases. As described in Section 5.2 earlier,
Figure 6:Application-layer latency for three Somniloquy part of this latency is attributed to resuming from S3, i.e.

testbeds and four application types. 4-5s for the desktop and 2-3s for the laptop, and is in-
dependent of Somniloquy. Further latency is due to the
ported using application stubs running on the gumstixdelay for TCP to retransmit the request, and for the host
We performed a number of experiments to evaluate theéo respond to the request (which may take longer since
performance of both these classes of applications. it has just resumed). Note that the Wired-1NIC proto-

type shows higher latency than the Wired-2NIC proto-
53.1 Applications without stubs type. This is purely an artifact of our prototype caused

by the overhead of MAC bridging and largely the slower
We now quantify the end-to-end latency (as perceived byspeed of the USBNet IP link between the gumstix and
users) incurred by the applications that are handled byhe host. The latter is particularly obvious in the file copy
Somniloquy without using application stubs. For thesetest, where the file copy time with the Wired-2NIC case
experiments, we use the same two testbeds as above, wihmuch faster than for Wired-1NIC (although the Wired-
the addition of a third testbed based on the Wired-2NICLINIC speed is still faster than Wireless-2NIC). While
prototype (using same desktop machine as the WiredSomniloquy does result in 4-10 s additional application-
1NIC case), providing a direct comparison between thdayer latency, these delays are acceptable for real usage
1NIC and 2NIC cases. In each case the latency reporte@including VoIP [2]) in exchange for the substantial ben-
is the mean over five test runs. efit of 20x-50x power savings.

Figure 6 reports the time taken to satisfy an incoming

application-layer request for four sample ::1pp|ications.5 3.2 Applications Requiring Stubs
For each application, we show the latency for “awake”

operation (i.e. when the host is on and directly respondsn this section we present evaluations for applications
to the request) and when the host is in S3 and Somnilothat require stub support on the gumstix, primarily look-
quy prototype receives the incoming packet and triggersng at the overhead in terms of memory consumption
wake-up of the host. and processing capabilities that they impose on the gum-
The four applications we tested were: stix. We have implemented application stubs for three
Remote desktop access (RDPHere we used a stop- common applications — background downloads using
watch to measure the latency between initiating a remot¢he http protocol, P2P file sharing using BitTorrent, and
desktop session to the host and the remote desktop beiaintaining presence on IM networks — as described in
ing displayed. A stopwatch was used to ensure that tru&ection 4.
user-perceived latency was measured. The gumstix was To study the overhead of IM clients, we run the cor-
configured to wakeup the main processor on detectingesponding application stub using up to three different
TCP traffic on port 3389 (the RDP port). IM protocols simultaneously — MSN Messenger, AOL
Remote directory listing (SMB): A directory listing Messenger and ICQ Chat. Table 4 shows the processor
from the Somniloquy testbed was requested by the testattilization and memory footprint of the Wired-1NIC pro-
machine (via Windows file sharing, which is based on thetotype when running these IM clients. Since the behav-
SMB protocol). The time between the request being ini-ior of the IM stub is such that it maintains presence of
tiated and the listing being returned was measured usinthe user on various networks and on receipt of an appro-
a simple script. The secondary processor was configuregriate trigger (IM from someone) wakes up the host, the
to initiate wake-up on detection of traffic on either of the latency values are similar to those of the VoIP application

p!

-level task

Time (s) till app
i 1NIC
2NIC
2NIC
ANIC
2N

Wired:
Wired-1NIC
Wired-2NIC

Wired
Wireless-
Wired
Wired
Wireless-2NIC
Wireless-2NIC
Wired-1NIC
Wired-2NIC
Wireless-2NIC

Remote desktop List remote Remote file copy

Call connect (VOIP)
connect (RDP) directory (SMB) (SMB)

Accounts Processor Memory Configuration Processor Memory

95th percentile| 95th percentile 95th percentile| 95th percentile
None 0.0% 5.9MB Single download

MSN only 10.0% 6.5MB 2Mbps 9.2% 1.8MB

MSN+AOL 21.6% 6.7 MB 4Mbps 21% 1.8MB

MSN+AOL+ICQ 26.0% 6.9 MB 8Mbps 50% 1.8MB
Table 4: P d tilization for the IM Two simultaneous downloads (4 Mbps each)

?bef : Processor a;p m:;mory_t; |t|z|a ion for fe " st download 31% 18MB

stub for various configurations. Total memory for the | , 4 26.3% 1.8MB

gumstix is 64 MB.

Table 6: Processor and memory utilization for the web
download stub for various configurations. Total memory
for the gumstix is 64 MB.

Configuration Processor Memory
95th percentile| 95th percentile

Single download

4MB cache 16.0% 6.5MB ing using relatively modest resources on the gumstix. It
8MB cache 16.0% 10.6 MB is important to note that the power consumption of the
16MB cache 16.1% 18.9MB gumstix did not exceed 2 W in all of these experiments.
Two simultaneous downloads (4 MB cache)
1st download 16% 6.5MB

ond download 24% 7 OMB 5.4 Energy Savings using Somniloquy

In addition to evaluating the operating performance of
our Somniloquy prototypes, it's also important to assess
the higher level goal of this work, namely the impact on
PC energy consumption. In this section we present some
data which demonstrates the potential of Somniloquy to
as reported in Figure 6. For our Wired-1NIC prototype reduce both desktop and laptop energy usage in general
the additional latency for the IM stub when using Som-terms. We also verify the energy saving model presented
niloquy is around seven seconds. in Section 3.3, which allows the specific savings in a

To evaluate the overhead of P2P file sharing using th@iven application scenario to be calculated. Unless other-
BitTorrent stub on the gumstix, we initiated downloads Wise noted, we are using the Wired-1NIC version of our
using a torrent from a remote websiiato the 2GB SD prototype for the desktop energy measurements and the
card of the Wired-1NIC gumstix. We varied the mem- Wireless-2NIC version for the laptop energy measure-
ory cache available to the stub while conducting a singlenents.
download, and then tested two simultaneous downloads.
The resu.Its in Table 5 shov_v that the memory foqtprint ofg 41 Reducing Desktop Energy Consumption
the stub increases proportionally to the cache size as ex-
pected, while the processor utilization remains constantOur testbed desktop PC consumes 102 W in normal op-
When there are two simultaneous downloads, each ineration and<5W in S3 with Somniloguy. Somniloquy
stance of the stub uses memory proportional to its specitherefore saves around 97 W. On this basis, if Somnilo-
fied 4 MB cache. guy were to be deployed in an environment where a PC

Finally, to evaluate the web-download stub on theis actively used for an average of 45 hours each week
gumstix we initiate download of a large (300 MB) file (i.e. 27% of the time), this would result in 620 kWh
from a local web server. We varied the throughput ofof savings per computer in a year. Assuming 0.61 kg
the downloads and measured the processor utilizatio€O/kWH® and US$0.09/kWH this means an annual
and the memory consumption of the gumstix, and expersaving of 378 kg of CQ (to put it in perspective, the av-
imented with two simultaneous downloads. As shown inerage US residents annual €@missions are 20 metric
Table 6, the processor utilization increases as the dowrtonnes as compared to a worldwide average of 4 met-
load rate increases although the memory footprint forric tonnes per pers8hand US$56 per computer. We
each download remains constant. - _ o

The above results show that using application stubs, nttp://wwmeia. doe. gov/cneaf/electricity/

. L. . page/ co2_report/co2report.htm

we can support fairly complex tasks and applications, in- 7y ¢ p: /1w, ei a. doe. gov/ cneaf/ el ectri city/

cluding background web downloads and P2P file sharepa/epa_sum htni
8ht t p: // www. sci encedai | y. cont r el eases/ 2008/
Shttp://www.legaltorrents.com/ 04/ 080428120658. ht m

Table 5: Processor and memory utilization for the Bit-
Torent stub for various configurations. Total memory for
the gumstix is 64 MB.

IBM X60 Power Consumption %Energy Savings (Analytical) ® %Energy Savings (Measured)
%Latency Increase (Analytical) m %Latency Increase (Measured)
g 16W 100
o 1 90
2 6] (4.1 Hrs) 20
S 14 11.05W ot
H 1
2 12 (5.9 Hrs) 60
:E; 10 A 50 +—
g 8 — 40
S 61 30
o 4] 0.74W 1.04W 20
g P (88 HrS) (63 Hrs) 10 —— k k
& o ; ; ; 0 u -
Sleep (S3) Somniloquy Bassline (Low Normal 512Kbps 1Mbps 1Mbps 2Mbps 1Mbps
ower) (200MB) (Ideal)

Figure 7:Power consumption and the resulting estimatedFigure 8:Comparing the analytical results with the mea-
battery lifetime of a Lenovo X60 using Somniloquy. Thesured values for the web-download stub. The flash stor-
lifetime is calculated using the standard 65 Watt hourage available on the gumstix is set to 100 MB, unless
battery of the laptop. stated otherwise.

believe this is significantly higher than the bill of ma- 1 W, as compared to the 11 W of the idle laptop. This
terials cost of the components required to implementmeans that when the laptop needs to be attached to the
a commoditized Somniloquy-enabled network card. Innetwork and available for remote applications but is oth-
this case, deployments of Somniloquy-enabled devicesrwise idle, it can be putinto Somniloquy mode to enable
would pay for themselves within a year. an order of magnitude decrease in power consumption
and a resulting increase in battery lifetime from 5.9 hours

5.4.2 Desktop Energy Savings for Real Workloads to 63 hours (using the standard 65 Watt-Hour battery).

We now estimate the energy savings enabled by Somnilg 4 4 Energy Savings for Specific Applications
oquy under realistic workloads. We use the data provided

by [20], relating to the use patterns of twenty two distinct The basic analysis of energy consumption and battery
desktop PCs; each of which is classified as being eithelifetime presented above is very generic; for a given us-
idle, active, sleep or turned off. We then compute theage scenario it should be possible to use the energy sav-
energy consumed by each of the PCs with and withoutng model presented in Section 3.3 to predict savings
Somniloquy using the formula of Section 3.3. For ease ofmuch more accurately. In order to validate this model
exposition, we bin the data into three different categorieswe ran experiments downloading content from a remote
PCs that are idle fox:25% of the time (7 machines), idle web server, and measured both energy consumption and
for 25%-75% of the time (6 machines) and finally thoselatency so as to compare them with their corresponding
that are idle for>75% of the time (9 machines). The analytical values. Note that we only measure the energy
average energy savings for these twenty two PCs whenonsumption for the duration of the application.

using Somniloguy is 65%, as compared to normal oper- The web download stub was chosen since it was rela-
ation without Somniloquy. The average energy savingdively easy to change the duty-cycle of the host, i.e. the
for the PCs in the individual categories are 38%, 68%duration for which the host can sle€fi/..,) after which

and 85% respectively. As expected, the most energy savt needs to be woken up to transfer data from the gumstix
ings are for the PCs with larger idle times since they haveT;,qk.). AS discussed in Section 3.B,;.., depends on
more opportunity to use Somniloquy. the download bandwidth and the amount of flash storage
on the gumstix, whil€,.x. depends on the amount of
flash storage on the gumstix and the transfer rate between
the gumstix and the host. We downloaded a 300 MB
Figure 7 shows the average power consumption of thdile at various link bandwidths ranging from 512 Kbps
laptop testbed when operating normally (i.e. no powerto 2 Mbps, and used two different flash storage sizes at
saving mechanisms), with standard power saving mechthe gumstix - 100 MB and 200 MB, effectively varying
anisms in place (the baseline power), when Somniloquyl;..., from approximately 1600 seconds down to 400
(Wireless-2NIC) is operational, and in the standard S3econds. We measured the power consumed during the
mode (without the gumstix attached). Somnilogquy addsdownload using the methodology described in the begin-
a relatively low overhead of 300 mW to S3 mode, result-ning of this section. In Figure 8, we present the measured
ing in a total power consumption which is close to just energy savings and the corresponding predicted values

5.4.3 Increasing Laptop Battery Lifetime

using our model for four different data points. As we pattern that is set by the host PC, followed by 8 copies
can see from the figure, the predicted energy savings anadf the NIC's MAC address. In WoWLAN, the only dif-
the increased latency closely match the measured valudsrence is that this packet is sent over the Wireless LAN.
(within 1.5%). The values do not exactly match since Although most modern NICs implement WoL function-
the actual measured power values vary over time, andlity, few deployed systems actually use this function-
the time taken to suspend and resume also varies acroafity, due to four main reasons. First, the remote host
runs. We used a fixed value for these in the formula. must know that the PC is asleep and that it must wake
Figure 8 also illustrates that increasing the bandwidtht up before pursuing application functionality. Second,
from 512 Kbps to 2 Mbps reduces the energy savingghe remote host must have a way of sending a packet to
from 85% to 50%, and increases the latency from 11% tdhe sleeping PC through any firewalls/NAT boxes, which
43%, although a larger amount of flash storage improvesypically do not allow incoming connections without spe-
the energy saving and latency. As explained earlier thigial configuration. Third, the remote host must know
is due to the limited transfer speed of the USBnet interthe MAC address of the sleeping PC. Fourth, WoWLAN
face in our prototype<5 Mbps), because of which the does not work when laptops change their subnet because
PC is awake for longer periods of time while transfer- of mobility. In contrast, Somniloquy does not require the
ring the data from the gumsti¥{.,.x.= 181 seconds to extra configuration of firewalls/NAT boxes, and is trans-
transfer 100 MB of data). In Figure 8 we have also plot-parent to remote application servers. It can handle mo-
ted an ideal case (1 Mbps-ideal) where the host can reakility across subnets since the secondary processor can
the flash storage of the gumstix directly. For the idealre-associate with services such as Dynamic DNS (to redi-
case the duration for which the host needs to stay awakeect a permanent host name to the PC’s new IP address),
to transfer data from the gumstix reduces considerablyand re-log-in to servers such as IM servers. In addition
(T.ware= 23 seconds). This improves energy savings tao these differences, Somniloquy also allows applications
91% and limits the increase in latency when using Som+o be offloaded to the low power processor. There is no

niloquy to less than 5%. such concept in WoL, which instead wakes up the host
when any pattern is matched.
6 Related Work Intel recently announced its Remote-Wake’ [14]

chipset technology (RWT) that claims to extend WoL on

There have been several proposals to reduce the effew motherboards by allowing VoIP calls to wake up a
ergy consumption of desktop PCs and laptops. Priosystem, although its general applicability to other appli-
work can |arge|y be grouped in three Categories: re_cations is not known. The details of this technology are
ducing the active power consumption of devices (whernot published. In contrast, Somniloquy goes beyond just
awake) [3, 5, 9, 10, 16, 17], reducing the power con-WoL or RWT. It allows low power operation for various
sumption of the network infrastructure (e.g. routers and@pplications other than VoIP. Furthermore, Somniloquy
switches) [11, 12, 21], and opportunistically putting the does not require modifications to application end points
devices to sleep. Somniloquy falls in the third category.or servers. RWT requires applications to first contact a
Since a machine in sleep state consumes significantl§erver, which then sends a special packet to the PC to
less power than in lowest power active state [11, 27] (versignal a wake up.
ified by us in Section 5), significant energy savings are Another approach is to use additional “low-power”
possible by putting the machine to sleep whenever posaetwork interfaces to maintain connectivity to the PC that
sible. is asleep. This approach has been proposed for use with
For opportunistic-sleep systems, the biggest challengenobile devices. For example, Wake-on-Wireless [26]
is to ensure connectivity when the host is asleep. Priowakes up the host PC on receiving a special packet on
techniques to solve this problem either use advancethe low power network interface. Turducken [27] uses
functionality in the NIC [18] or use extra network in- several tiers of network interfaces and processors with
terfaces [26, 27]. We now compare and contrast Somnildifferent power characteristics, and wakes up the upper
oquy to both these classes of work. tier when the lower tier cannot handle a task. In con-
Among schemes that do not use an extra netirasttothese schemes, Somniloguy requires only a single
work interface, the most well-known are Wake-on-LAN network interface, and presents the paradigm of a single
(WoL) [18] and its wireless equivalent, Wake-on-WLAN PC to users rather than a multi-tiered system, preserv-
(WoWLAN). In both these schemes, the NIC parses in-ing the current user experience and therefore requiring
coming packets when the host is asleep. It wakes upess training to use. Somniloquy also gives the impres-
the host PC whenever an incoming “magic” packet is re-sion to remote application servers that a device remains
ceived. According to the specification [18], the magic awake all the time even though it is actually asleep, since
packet payload must include 6 characters of a wakeuphe same MAC and IP addresses are used. This level of

transparency is not provided either by Wake-on-Wirelesgo be run in sleep mode: BitTorrent, instant messaging,
or Turducken. Finally, we have gone into more detailand web downloads.
than previous work on ways of supporting applications Somnilogquy achieves these energy savings without re-
that require interactions among the secondary and thquiring any modifications to network, to remote appli-
host processor to perform offload — such as IM, BitTor-cation servers, or to the user experience of the PC. Fur-
rent and web downloads. thermore, Somniloquy can be incrementally deployed on
To reduce the power consumed by desktop PCs, somiegacy network interfaces, and does not rely on changes
early proposals have suggested the use of proxies on the the CPU scheduler or the memory manager to imple-
subnet that function on behalf of the desktop PC when iiment this functionality, thus it is compatible with a wide
is asleep [4, 7, 11]. The proxy monitors incoming pack-class of machines and operating systems.
ets for the PC, and wakes it up using WoL when the PC Qur prototype implementation, based on a USB pe-
needs to handle the packet. We are not aware of any pubipheral, includes support for waking up the PC on net-
lished prototype implementations of such systems. Rework events such as incoming file copy requests, VoIP
cently, Sabhanatarajan et. al. [25] propose a smart Nialls, instant messages and remote desktop connections,
that can act as proxy for a host to save power. How-and we have also demonstrated that file sharing/content
ever, the authors focus primarily on the design of a highdistribution systems (e.g. BitTorrent, web downloads)
speed packet classifier for such an interface. In comparean run in the augmented network interface, allowing for
ison, Somniloquy has much wider applicability than thefile downloads to progress without the PC being awake.
above schemes. It can be used in homes and small offic&Sur tests show power savings of 24x are possible for
where it might be infeasible to deploy a dedicated servegesktop PCs left on when idle, or 11x for laptops. For
to handle processing for another PC. PCs that are left idle most of the time, this translates to
A contemporaneous effort to Somniloquy is the ideaenergy savings of 60% to 80%. The electricity savings

of a Network Connection Proxy (NCP) [15, 20], which made are such that deploying a productized version of
is a network entity that maintains the presence of a sleepSomniloquy could pay for itself within a year.

ing PC. In [15], the authors define the requirements of

an NCP and propose modifications to the socket layer

(similar to Split TCP) for keeping TCP connections alive Acknowledgements

through a PC'’s sleep transitions. In [20], the authors ex-

tend these APIs to support other protocols as well. SomWe would like to thank John Dunagan, Gunjan Gupta,

niloquy is similar in spirit to NCP, and NCP’s socket Srikanth Kandula, Jitu Padhye, Patrick Verkaik, Kashi

APIs can reduce Somniloquy’s overhead when wakingvishwanath and the anonymous reviewers for their com-

up from sleep (Section 3.1). Furthermore, to the best ofments on various versions of this paper. We would also

our knowledge, Somniloquy is the first published proto-like to acknowledge the feedback received from Alex

type of any proxying system. Snoeren, Stefan Savage and Geoff Voelker. Finally, we
We note that the concept of adding more processare grateful to our shepherd, Jeffrey Mogul for meticu-

ing to the network interface is not new. Existing prod- lously guiding us towards the final version of the paper.

ucts offload processing to the NIC to improve perfor- His help was invaluable.

mance (TCP offload [19]) and remote manageability (In-

tel AMT [13]). Somniloquy uses a similar offloading

paradigm, but to conserve energy instead of improvingReferences

erformance or manageability. ' .
P 9 Y [1] ACPI. Advanced Configuration and Power Interface

Specification, Revision 3.0b.htt p://ww. acpi .
7 Conclusions i nfo.

. [2] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin,
We have presented Somniloguy, a system that augments = 5,4 R, Gupta. Wireless Wakeups Revisited: Energy Man-

network interfaces to allow PCs to be put into low-power agement for VoIP over Wi-Fi Smartphones. MobiSys
sleep states opportunistically, without sacrificing func- '07: Proceedings of the 5th international conference on
tionality. Somniloquy enables several new energy sav- Mobile systems, applications and servicesges 179—
ing opportunities. First, PCs can be put to sleep while 191, New York, NY, USA, 2007. ACM.

maintaining network reachability, without special net- [3] Y. Agarwal, T. Pering, R. Want, and R. Gupta. “SwitchR:
work infrastructure as needed by previous solutions (€.9." * Reducing System Power Consumption in a Multi-Clients,
WoL). Second, some applications can be run in sleep Multi-Radio Environment”. InProceedings of IEEE In-
mode thereby requiring much less power. In this paper, ternational Symposium on Wearable Computing (ISWC)
we have shown the feasibility for three such applications 2008.

(4]

(3]

(6]

(7]

[8] W. Cui, J. Kannan, and H. J. Wang.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Allman, K. Christensen, B. Nordman, and V. Paxon.
Enabling an Energy-Efficient Future Internet Through Se-
lectively Connected End Systems.8th ACM Workshop
on Hot Topics in Networks (HotNetsACM, November
2007.

(18]

M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning [19]

Wireless Network Power Management.MtobiCom '03:
Proceedings of the 9th annual international conference
on Mobile computing and networkingpages 176-189,
New York, NY, USA, 2003. ACM Press.

N. Borisov, D. Brumley, H. J. Wang, J. Dunagan, P. Joshi,
and C. Guo. A generic application-level protocol ana-
lyzer and its language. IRroceedings of the 14th An-

(20]

nual Network and Distributed System Security Sympo{21]

sium (NDSS)2007.

K. Christensen, C. Gunaratne, and B. Nordman. The Next
Frontier for Communication Networks: Power Manage-
ment. Computer Communication®7(18):1758-1770,
2004.

Discoverer :
Automatic Protocol Reverse Engineering from Network
Traces. InProceedings of the USENIX Security Sympo-
sium 2007. [

K. Flautner, S. K. Reinhardt, and T. N. Mudge. Auto-
matic Performance Setting for Dynamic Voltage Scaling.
In MobiCom '01: Proceedings of the 6th annual interna-
tional conference on Mobile computing and networking
pages 260-271, 2001.

[22

]

23]

J. Flinn and M. Satyanarayanan. Managing Battery Life- [24]

time with Energy-Aware AdaptationACM Trans. Com-
put. Syst.22(2):137-179, 2004.

C. Gunaratne, K. Christensen, and B. Nordman. Manag
ing Energy Consumption Costs in Desktop PCs and LAN
Switches with Proxying, Split TCP Connections, and
Scaling of Link SpeedInt. J. Netw. Manag.15(5):297—
310, 2005.

M. Gupta and S. Singh. Greening of the Internet. In
SIGCOMM '03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols
for computer communicationpages 19-26, New York,
NY, USA, 2003. ACM.

Intel. Intel Active Management Technology (AMT).
http://ww.intel.comtechnol ogy/
pl atform technol ogy/intel -ant/.

Intel. Intel Remote Wake Technologht t p: / / www.
intel.con support/chipsets/rwt/.

M. Jimeno, K. Christensen, and B. Nordman. A Network
Connection Proxy to Enable Hosts to Sleep and Save En-
ergy. InIEEE International Performance Computing and
Communications Conferenc2008.

R. Kravets and P. Krishnan. Application-driven Power
Management for Mobile CommunicatioMWireless Net-
works 6(4):263-277, 2000.

X. Li, R. Gupta, S. V. Adve, and Y. Zhou. Cross-
Component Energy Management: Joint Adaptation of

[25]

(26]

(27]

Processor and MemoryACM Trans. Archit. Code Op-
tim., 4(3):14, 2007.

P. Lieberman. Wake-on-LAN technology.
http://ww. |iebsoft.comindex.cfm
whi t epaper s/ Wake_On_LAN.

J. C. Mogul. TCP Offload Is a Dumb Idea Whose Time
Has Come. IrHotOS pages 25-30, 2003.

S. Nedevschi, J. Chandrashekar, B. Nordman, S. Rat-
nasamy, and N. Taft. Skilled in the art of being idle:
reducing energy waste in networked systems. Pio-
ceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSROD9.

S. Nedevschi, L. Popa, G. lannaccone, S. Ratnasamy, and
D. Wetherall. Reducing Network Energy Consumption
via Sleeping and Rate-Adaptation. Pmoceedings of the

5th USENIX Symposium on Networked Systems Design
and Implementation (NSDIpages 323-336. USENIX
Association Berkeley, CA, USA, 2008.

R.Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, and T. Lee. Hypertext Transfer Protocol — HTTP/1.1.
RFC 2616, June 1999.

J. Roberson, C. Webber, M. McWhinney, R. Brown,
M. Pinckard, and J. Busch. After-hours Power Status of
Office Equipment and Energy use of Miscellaneous Plug-
load Equipment. Lawrence Berkeley National Labora-
tory, Berkeley, California. Report# LBNL-53729-Revised
2004.

K. Roth and K. McKenney. Energy Consumption by Con-
sumer Electronics in US Residencésnal Report to the
Consumer Electronics Association (CEAD07.

K. Sabhanatarajan, A. G.-R. M. Oden, M. Navada, and
A. George. Smart-NICs: Power Proxying for Reduced
Power Consumption in Network Edge Devices|$VLSI
‘08, 2008.

E. Shih, P. Bahl, and M. J. Sinclair. Wake on Wireless:
An Event Driven Energy Saving Strategy for Battery Op-
erated Devices. ImMobiCom '02: Proceedings of the
8th annual international conference on Mobile computing
and networking pages 160-171, New York, NY, USA,
2002. ACM Press.

J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Tur-
ducken: Hierarchical Power Management for Mobile De-
vices. InMobiSys '05: Proceedings of the 3rd interna-
tional conference on Mobile systems, applications, and
services2005.

