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Multiprocessor scheduling in a shared multiprogramming environment can be structured as two-
level scheduling, where a kernel-level job scheduler allots processors to jobs and a user-level thread
scheduler schedules the work of a job on its allotted processors. We present a randomized work-
stealing thread scheduler for fork-join multithreaded jobs that provides continual parallelism feed-
back to the job scheduler in the form of requests for processors. Our A-STEAL algorithm is appro-
priate for large parallel servers where many jobs share a common multiprocessor resource and in
which the number of processors available to a particular job may vary during the job’s execution.
Assuming that the job scheduler never allots a job more processors than requested by the job’s
thread scheduler, A-STEAL guarantees that the job completes in near-optimal time while utilizing
at least a constant fraction of the allotted processors.

We model the job scheduler as the thread scheduler’s adversary, challenging the thread sched-
uler to be robust to the operating environment as well as to the job scheduler’s administrative
policies. For example, the job scheduler might make a large number of processors available exactly
when the job has little use for them. To analyze the performance of our adaptive thread scheduler
under this stringent adversarial assumption, we introduce a new technique called trim analysis,
which allows us to prove that our thread scheduler performs poorly on no more than a small number
of time steps, exhibiting near-optimal behavior on the vast majority.

More precisely, suppose that a job has work T1 and span T∞. On a machine with P processors,
A-STEAL completes the job in an expected duration of O(T1/P̃ + T∞ + L lg P ) time steps, where L is
the length of a scheduling quantum, and P̃ denotes the O(T∞ + L lg P )-trimmed availability. This
quantity is the average of the processor availability over all time steps except the O(T∞ + L lg P )
time steps that have the highest processor availability. When the job’s parallelism dominates the
trimmed availability, that is, P̃ � T1/T∞, the job achieves nearly perfect linear speedup. Con-
versely, when the trimmed mean dominates the parallelism, the asymptotic running time of the
job is nearly the length of its span, which is optimal.

We measured the performance of A-STEAL on a simulated multiprocessor system using syn-
thetic workloads. For jobs with sufficient parallelism, our experiments confirm that A-STEAL
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provides almost perfect linear speedup across a variety of processor availability profiles. We com-
pared A-STEAL with the ABP algorithm, an adaptive work-stealing thread scheduler developed by
Arora et al. [1998] which does not employ parallelism feedback. On moderately to heavily loaded
machines with large numbers of processors, A-STEAL typically completed jobs more than twice as
quickly as ABP, despite being allotted the same number or fewer processors on every step, while
wasting only 10% of the processor cycles wasted by ABP.
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1. INTRODUCTION

When many parallel applications share a multiprocessor machine, the system
must supply a scheduling infrastructure to coordinate the multiprogrammed
workload. As Feitelson mentions in his excellent survey [Feitelson 1997], sched-
ulers for these machines can be implemented using two levels: a kernel-level
job scheduler, which allots processors to jobs, and a user-level thread scheduler,
which schedules the threads belonging to a given job onto the allotted proces-
sors. A job scheduler may implement either space-sharing, where jobs occupy
disjoint processor resources, or time-sharing, where different jobs may share the
same processor resources at different times. Either or both the thread sched-
uler and the job scheduler may be adaptive (called “dynamic” in Chiang and
Vernon [1996]), where the number of processors allotted to a job may change
while the job is running, or nonadaptive (called “static” in Chiang and Vernon
[1996]), where a job runs on a fixed number of processors for its lifetime.

Prior work on thread scheduling for multithreaded jobs has tended to focus
on nonadaptive scheduling [Blumofe and Leiserson 1999; Blelloch et al. 1995;
Graham 1969; Brent 1974; Blelloch and Greiner 1996; Narlikar and Blelloch
1999] or adaptive scheduling without parallelism feedback [Arora et al. 1998].
For jobs whose parallelism is unknown in advance and which may change dur-
ing execution, nonadaptive scheduling may waste processor cycles [Squillante
1995], because a job with low parallelism may be allotted more processors than
it can productively use. Moreover, in a multiprogrammed environment, non-
adaptive scheduling may not allow a new job to start, because existing jobs
may already be using most of the processors. Although adaptive scheduling
without parallelism feedback allows jobs to enter the system, the job still may
waste processor cycles if it is alloted more processors than it can use.

The solution we present is an adaptive scheduling strategy where the thread
scheduler provides parallelism feedback to the job scheduler so that when a job
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cannot use many processors, those processors can be reallotted to jobs that need
them. Based on this parallelism feedback, the job scheduler adaptively changes
the allotment of processors according to the availability of processors in the
current system environment and the job scheduler’s administrative policy.

The problem of how the job scheduler should partition the multiprocessor
among the various jobs has been studied extensively [Deng et al. 1996; Deng
and Dymond 1996; Gu 1995; Motwani et al. 1993; McCann et al. 1993; Edmonds
1999; Leutenegger and Vernon 1990; Rosti et al. 1995; Rosti et al. 1994; Yue and
Lilja 2001; Martorell et al. 2000; Edmonds et al. 2003], but the administrative
policy of the job scheduler is not the focus of this article. Instead, we focus on
how the thread scheduler can provide effective parallelism feedback to the job
scheduler without knowing the future progress of the job, the future availability
of processors, or the administrative priorities of the job scheduler.

Various researchers [Deng et al. 1996; Deng and Dymond 1996; Gu 1995; Mc-
Cann et al. 1993; Yue and Lilja 2001] have explored the notion of instantaneous
parallelism,1 the number of processors the job can effectively use at the cur-
rent moment, as the parallelism feedback to the job scheduler. Although using
instantaneous parallelism as parallelism feedback is simple, it can cause gross
misallocation of processor resources [Sen 2004]. For example, the parallelism
of a job may change substantially during a scheduling quantum, alternating
between parallel and serial phases. The sampling of instantaneous parallelism
at a scheduling event between quanta may lead the thread scheduler to request
either too many or too few processors, depending on which phase is currently
active, whereas the desirable request might be something in between. Conse-
quently, the job may waste processor cycles or take too long to complete.

In this article, we present an adaptive thread scheduler, called A-STEAL,
which provides provably good parallelism feedback. A-STEAL guarantees not to
waste many processor cycles while simultaneously ensuring that the job com-
pletes quickly. Instead of using instantaneous parallelism, A-STEAL provides
parallelism feedback to the job scheduler based on a single summary statistic
and the job’s behavior in the previous quantum. Even though A-STEAL provides
parallelism feedback using the past behavior of the job, and we do not assume
that the job’s future parallelism is correlated with its history of parallelism, our
analysis shows that A-STEAL schedules the job well with respect to both waste
and completion time.

As with prior work on scheduling of multithreaded jobs [Blumofe and Leiser-
son 1998, 1999; Blumofe 1995; Blelloch and Greiner 1996; Blelloch et al. 1999;
Fang et al. 1990; Hummel and Schonberg 1991; Narlikar and Blelloch 1999], we
model the execution of a multithreaded job as a dynamically unfolding directed
acyclic graph (dag), where each node in the dag represents a unit-time instruc-
tion, and an edge represents a precedence relationship between nodes. In this
model, a thread is a serial chain of nodes with no branches. A node may spawn
(create) another thread, in which case one directed edge connects the spawning
node to the first node of the spawned thread and a second directed edge connects

1These researchers actually use the general term “parallelism,” but we prefer the more descriptive
term.
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the spawning node to the first node of a continuation thread. When two threads
join, a directed edge connects their last nodes to the first node of a succeeding
thread. A node becomes ready when all its predecessors have been executed,
and a thread becomes ready when its first node becomes ready. The work T1 of
the job corresponds to the total number of nodes in the dag, and the span2 T∞
corresponds to the number of nodes on the longest chain of dependencies. Each
job has its own thread scheduler, which operates in an online manner, oblivious
to the future characteristics of the dynamically unfolding dag.

Our scheduling model is as follows. We assume that time is broken into a
sequence of equal-sized scheduling quanta 1, 2, . . . , each consisting of L time
steps. The job scheduler is free to reallocate processors between quanta. The
quantum length L is a system configuration parameter chosen to be long enough
to amortize the time to reallocate processors among the various jobs, and to per-
form various other bookkeeping for scheduling, including communication be-
tween the thread scheduler and the job scheduler, which typically might involve
a system call. Between quanta q −1 and q, the thread scheduler determines its
job’s desire dq , which is the number of processors the job wants for quantum q.
The thread scheduler provides the desire, dq to the job scheduler as its paral-
lelism feedback. The job scheduler follows some processor allocation policy to
determine the processor availability pq , or the maximum number of processors
to which the job is entitled for the quantum q. We assume that the job sched-
uler decides the availability of processors as an adversary in order to make the
thread scheduler robust to different system environments and administrative
policies. The number of processors the job receives for quantum q is the job’s
allotment aq = min{dq , pq}, which is the smaller of its desire and the processor
availability. Once a job is allotted its processors, the allotment does not change
during the quantum. Consequently, the thread scheduler must do a good job,
before a quantum, of estimating how many processors it will need for all L time
steps of the quantum, besides doing a good job in scheduling the ready threads
on the allotted processors.

In an adaptive setting, where the number of processors allotted to a job
can change during execution, both T1/P̄ and T∞ impose lower bounds on the
running time, where P̄ is the mean of the processor availability during the com-
putation. In the worst case, however, an adversarial job scheduler can prevent
any thread scheduler from providing good speedup with respect to the mean
availability P̄ . For example, if the adversarial job scheduler chooses a large
number of processors for the job’s processor availability just when the job has
little instantaneous parallelism, no adaptive thread scheduler can effectively
utilize the available processors on that quantum.3

We introduce a technique called trim analysis to analyze adaptive thread
schedulers under these adversarial conditions. From the field of statistics, trim

2Also called critical-path length or computation depth in the literature.
3Evaluating the thread scheduler with respect to mean processor allotment, rather than mean
processor availability, produces uninteresting results, because the thread scheduler can perform
optimally by simply refusing to schedule a job’s work in parallel. That is, the thread scheduler
requests exactly 1 processor for each quantum, thereby achieving perfect linear speedup with
respect to the mean processor allotment (1) while wasting 0 processor cycles.
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analysis borrows the idea of ignoring a few outliers. A trimmed mean, for
example, is calculated by discarding a certain number of lowest and highest
values, and then computing the mean of those that remain. For our purposes,
it suffices to trim the availability from just the high side. For a given value R,
we define the R-high-trimmed mean availability as the mean availability after
ignoring the R steps with the highest availability, or just R-trimmed avail-
ability, for short. A good thread scheduler should provide linear speedup with
respect to an R-trimmed availability, where R is as small as possible.

This article proves that A-STEAL guarantees linear speedup with respect
to the O(T∞ + L lg P )-trimmed availability. Specifically, consider a job with
work T1 and span T∞ running on a machine with P processors and a schedul-
ing quantum of length L. A-STEAL completes the job in an expected duration
of O(T1/P̃ + T∞ + L lg P ) time steps, where P̃ denotes the O(T∞ + L lg P )-
trimmed availability. Thus the job achieves linear speedup with respect to the
trimmed availability P̃ when the average parallelism T1/T∞ dominates P̃ . In
addition, we prove that the total number of processor cycles wasted by the job
is O(T1), representing at most a constant factor overhead.

To better understand which constants in our theoretical analysis are due to
analysis and which are inherent in the scheduler, we implemented A-STEAL in
a simulated multiprocessor environment. On a large variety of workloads
running with a variety of availability profiles, our experiments indicate that
A-STEAL provides nearly perfect linear speedup when the jobs have ample par-
allelism. Moreover, A-STEAL typically wastes less than 20% of the allotted pro-
cessor cycles. We compared the performance of A-STEAL with the performance
of ABP, an adaptive scheduler proposed by Arora et al. [1998]. We ran single
jobs using both A-STEAL and ABP with the same availability profiles. We found
that on moderately to heavily loaded machines with large number of proces-
sors, when P̄ � P , A-STEAL completes almost all jobs about twice as quickly
as ABP on average, despite the fact that ABP’s allotment on any quantum is
never less than A-STEAL’s allotment on the same quantum. In most of these job
runs, A-STEAL wastes less than 10% of the processor cycles wasted by ABP.

Portions of this work were previously reported in three conference papers
[Agrawal et al. 2006a; Agrawal et al. 2006b, 2007]. The desire-estimation algo-
rithm and the concept of trim analysis were introduced in Agrawal et al. [2006b]
in the context of a centralized adaptive task scheduler, called A-GREEDY, which
is suitable for scheduling data-parallel jobs. Agrawal et al. [2006b] combined
A-GREEDY’s desire-estimation algorithm with adaptive work-stealing, and intro-
duced the distributed adaptive thread scheduler A-STEAL with its empirical re-
sults. The theoretical results obtained by applying trim analysis to A-STEAL were
first reported in Agrawal et al. [2007]. The present article combines the best
of these three preliminary works with new material, to make an integrated
presentation of work-stealing with parallelism feedback.

The remainder of this article is organized as follows: Section 2 describes the
A-STEAL algorithm and Section 3 provides a trim analysis of its performance
with respect to time and waste. Section 4 describes our empirical evaluation of
A-STEAL in a simulated environment. Section 5 describes work in adaptive and
nonadaptive scheduling. Finally, Section 6 offers some concluding remarks.
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2. ADAPTIVE WORK-STEALING

This section presents the adaptive work-stealing thread scheduler A-STEAL.
Before the start of a quantum, A-STEAL estimates processor desire based on the
job’s history of utilization, to provide parallelism feedback to the job scheduler.
In this section, we describe A-STEAL and its desire-estimation algorithm.

During a quantum, A-STEAL uses work-stealing [Blumofe and Leiserson 1999;
Arora et al. 1998; Mohr et al. 1990] to schedule the job’s threads on the allotted
processors. A-STEAL can use any provably good work-stealing algorithm, such
as that of Blumofe and Leiserson [1999] or the nonblocking one presented by
Arora et al. [1998].4 In these work-stealing thread schedulers, every processor
allotted to the job maintains a double-ended queue, or deque, of ready threads
for the job. When the current thread spawns a new thread, the processor pushes
the continuation of the current thread onto the top of the deque and begins
working on the new thread. When the current thread completes or blocks, the
processor pops the topmost thread off the deque to work on. If the deque of a
processor is empty, however, the processor becomes a thief, randomly picking
a victim processor and stealing work from the bottom of the victim’s deque. If
the victim has no available work, then the steal is unsuccessful, and the thief
continues to steal at random from the other processors until it is successful and
finds work. At all times, every processor is either working or stealing.

2.1 Making Work-Stealing Adaptive

This work-stealing algorithm must be modified to deal with dynamic changes
in processor allotment to the job, between quanta. Two simple modifications
make the work-stealing algorithm adaptive:

Allotment gain. When the allotment increases from quantum q−1 to q, the
job scheduler obtains aq − aq−1 additional processors. Since the deques of these
new processors start out empty, all these processors immediately start stealing
to get work from the other processors.

Allotment loss. When the allotment decreases from quantum q −1 to q, the
job scheduler deallocates aq−1 −aq processors, whose deques may be nonempty.
To deal with these deques, we use the concept of mugging [Blumofe et al. 1998].
When a processor runs out of work, instead of stealing immediately, it looks for
a muggable deque, a nonempty deque that has no associated processor working
on it. Upon finding a muggable deque, the thief mugs the deque by taking over
the entire deque as its own. Thereafter, it works on the deque as if it were its
own. If there are no muggable deques, the thief steals normally. Data structures
can be set up between quanta so that stealing and mugging can be accomplished
in O(1) time [Sen 2004].

At all time steps during the execution of A-STEAL, every processor is either
working, stealing, or mugging. We call the cycles that a processor spends on
working, stealing, and mugging as work-cycles, steal-cycles, and mug-cycles,

4These algorithms impose some additional restrictions on the job, for example, that each node
has an out-degree of at most 2. Whatever restrictions assumed by the underlying work-stealing
algorithm apply to A-STEAL as well.
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respectively. We assume, without loss of generality, that work-cycles, steal-
cycles, and mug-cycles all take single time steps. We bound time and waste
in terms of these elementary processor cycles. Cycles spent stealing and mug-
ging are wasted, and the total waste is the sum of the number of steal-cycles
and mug-cycles during the execution of the job.

2.2 A-STEAL’s Desire-Estimation Heuristic

We now present A-STEAL’s desire-estimation algorithm. To estimate the desire
for the next quantum q + 1, A-STEAL classifies the previous quantum q as ei-
ther satisfied or deprived, and either efficient or inefficient. Of the four possibili-
ties of classification, A-STEAL only uses three: inefficient, efficient-and-satisfied,
and efficient-and-deprived. Using this three-way classification, and the job’s de-
sire for the previous quantum q, it computes the desire for the next quantum
q + 1.

To classify a quantum q as satisfied versus deprived, A-STEAL compares the
job’s allotment aq with its desire dq . The quantum q is satisfied if aq = dq , that
is, the job receives as many processors as A-STEAL requested on its behalf from
the job scheduler. Otherwise, if aq < dq , the quantum is deprived, because the
job did not receive as many processors as A-STEAL requested.

Classifying a quantum as efficient versus inefficient is more complicated,
and is based on using a utilization parameter δ as a threshold to differentiate
between the two cases. We define the nonsteal usage nq as the sum of the number
of work-cycles and mug-cycles. We call a quantum q efficient if nq ≥ δLaq , that is,
the nonsteal usage is at least a δ fraction of the total processor cycles allotted.
A quantum is inefficient otherwise. Inefficient quanta contain at least (1 −
δ)Laq steal-cycles. Although it might seem counterintuitive for the definition of
efficient to include mug-cycles, which, after all, are wasted, the rationale is that
mug-cycles arise as a result of an allotment loss, and do not generally indicate
that the job has a surplus of processors.

A-STEAL calculates the desire dq of the current quantum q, based on the previ-
ous desire dq−1 and the three-way classification of quantum q −1 as inefficient,
efficient-and-satisfied, or efficient-and-deprived. The initial desire is d1 = 1.
A-STEAL uses a responsiveness parameter ρ > 1 to determine how quickly the
scheduler responds to changes in parallelism.

Figure 1 shows the pseudocode of A-STEAL for one quantum. The algorithm
takes as input the quantum q, the utilization parameter δ, and the responsive-
ness parameter ρ. It then operates as follows:
—If quantum q − 1 was inefficient, it contained many steal-cycles, indicat-

ing that most of the processors had insufficient work to do. Therefore,
A-STEAL overestimated the desire for quantum q−1. In this case, A-STEAL does
not care whether quantum q−1 was satisfied or deprived. It simply decreases
the desire (line 4) for quantum q.

—If quantum q − 1 was efficient-and-satisfied, the job effectively utilized the
processors that A-STEAL requested on its behalf. In this case, A-STEAL specu-
lates that the job can use more processors. It increases the desire (line 6) for
quantum q.
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Fig. 1. Pseudocode for the adaptive work-stealing thread scheduler A-STEAL, which provides par-
allelism feedback to a job scheduler in the form of processor desire. Before quantum q, A-STEAL

uses the previous quantum’s desire dq−1, allotment aq−1, and nonsteal usage nq−1 to compute the
current quantum’s desire dq , based on the utilization parameter δ and the responsiveness param-
eter ρ.

—If quantum q −1 was efficient-and-deprived, the job used all the processors it
was allotted, but A-STEAL had requested more processors for the job than the
job actually received from the job scheduler. Since A-STEAL has no evidence as
to whether the job could have used all the processors requested, it maintains
the same desire (line 7) for quantum q.

3. TRIM ANALYSIS OF A-STEAL

This section uses a trim analysis to analyze A-STEAL with respect to both time
and waste. Suppose that A-STEAL schedules a job with work T1 and span T∞
on a machine with P processors. Let ρ denote A-STEAL ’s responsiveness pa-
rameter, δ the utilization parameter, and L the quantum length. We will show
that A-STEAL completes the job in time T = O{T1/P̃ + T∞ + L lg P + L ln(1/ε)}
with probability at least 1 − ε, where P̃ denotes the O(T∞ + L lg P + L ln(1/ε))-
trimmed availability. This bound implies that A-STEAL achieves linear speedup
on all the time steps, excluding at most O(T∞ + L lg P + L ln(1/ε)) time
steps with highest processor availability. Moreover, A-STEAL guarantees that
the total number of processor cycles wasted during the job’s execution is
W = O(T1).

We prove these bounds using a trim analysis. We label each quantum as
either accounted or deductible. Accounted quanta are those with nq ≥ Lδpq ,
where nq denotes the nonsteal usage. That is, the job works or mugs for at least
a δ fraction of the Lpq processor cycles possibly available during the quantum.
Conversely, the deductible quanta are those where nq < Lδpq . Our trim anal-
ysis will show that when we ignore the relatively few deductible quanta, we
obtain linear speedup on the more numerous accounted quanta. We can relate
this labeling to a three-way classification of quanta as inefficient, efficient-and-
satisfied, or efficient-and-deprived:

—Inefficient. In an inefficient quantum q, we have nq < Lδaq ≤ Lδpq ,
since the allotment aq never exceeds the availability pq . Thus we label all
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inefficient quanta as deductible, irrespective of whether they are satisfied or
deprived.

—Efficient-and-satisfied. On an efficient quantum q, we have nq ≥ Lδaq . Since
we have aq = min{pq , dq}, for a satisfied quantum it follows that aq = dq ≤
pq . Despite these two bounds, we may nevertheless have nq < Lδpq . Since
we cannot guarantee that nq ≥ Lδpq , we pessimistically label the quantum
q as deductible.

—Efficient-and-deprived. As before, on an efficient quantum q, we have nq ≥
Lδaq . On a deprived quantum, we have aq < dq by definition. Since aq =
min{pq , dq}, we must have aq = pq . Hence, it follows that nq ≥ Lδaq = Lδpq ,
and we label quantum q as accounted.

3.1 Time Analysis

We now analyze the execution time of A-STEAL by separately bounding the num-
ber of deductible and accounted quanta. Two observations provide intuition for
the proof. First, each inefficient quantum contains a large number of steal-
cycles, which we can expect to reduce the length of the remaining span. This
observation will help us to bound the number of deductible quanta. Second,
most of the processor cycles in an efficient quantum are spent either working
or mugging. We will show that there cannot be too many mug-cycles during the
job’s execution, and thus most of the processor cycles on efficient quanta are
spent doing useful work. This observation will help us to bound the number of
accounted quanta.

The following lemma, proved in Lemma 11 of Blumofe and Leiserson [1999],
shows how steal-cycles reduce the length of the job’s span.

LEMMA 1. If a job has r deques of ready threads, then 3r steal-cycles suffice
to reduce the length of the job’s remaining span by at least 1, with probability
at least 1 − 1/e, where e is the base of the natural logarithm.

The next lemma shows that an inefficient quantum reduces the length of
the job’s span, which we will later use to bound the total number of inefficient
quanta.

LEMMA 2. Let δ denote A-STEAL ’s utilization parameter, and L the quantum
length. With probability greater than 1/4, A-STEAL reduces the length of a job’s
remaining span in an inefficient quantum by at least (1 − δ)L/6.

PROOF. Let q be an inefficient quantum. A processor with an empty deque
steals only when it cannot mug a deque, and hence, all the steal-cycles in
quantum q occur when the number of nonempty deques is at most the allot-
ment aq . Therefore, by Lemma 1, 3aq steal-cycles suffice to reduce the span
by 1, with probability at least 1 − 1/e. Since the quantum q is inefficient, it
contains at least (1 − δ)Laq steal-cycles. Divide the time steps of the quantum
into rounds, such that each round contains 3aq steal-cycles, except for possibly
the last. Thus, there are at least m = (1 − δ)Laq/3aq = (1 − δ)L/3 rounds.5

5Actually, the number of rounds is m = {(1 − δ)L/3}, but we will ignore the roundoff for simplicity.
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We call a round good if it reduces the length of the span by at least 1; other-
wise, the round is bad. For each round i in quantum q, we define the indica-
tor random variable X i to be 1, if round, i is a bad round, and 0 otherwise,
and let X = ∑m

i=1 X i. Since we have {X i = 1} < 1/e, linearity of expecta-
tion dictates that E [X ] < m/e. We now apply Markov’s inequality [Cormen
et al. 2001, p. 1111], which says that for a nonnegative random variable X ,
we have Pr{X ≥ t} ≤ E [X ] /t for all t > 0. Substituting t = m/2, we obtain
Pr{X > m/2} ≤ E [X ] /(m/2) ≤ (m/e)/(m/2) = 2/e < 3/4. Thus, the proba-
bility exceeds 1/4 that quantum q contains at least m/2 good rounds. Since
each good round reduces the span by at least 1, with probability greater than
1/4, the span is reduced during quantum q by at least m/2 = ((1 − δ)L/3)/2 =
(1 − δ)L/6.

LEMMA 3. Suppose that A-STEAL schedules a job with span T∞ on a machine.
Let ρ denote A-STEAL ’s responsiveness parameter, δ the utilization parameter,
and L the quantum length. Then, for any ε > 0, with probability at least 1 − ε,
the schedule produces at most 48T∞/(L(1 − δ)) + 16 ln(1/ε) inefficient quanta.

PROOF. Let I be the set of inefficient quanta. Define an inefficient quantum
q as productive if it reduces the span by at least (1 − δ)L/6, and unproductive
otherwise. For each quantum q ∈ I , define the indicator random variable Yq
to be 1, if q is productive, and 0 otherwise. By Lemma 2, we have Pr{Yq =
1} > 1/4. Let the total number of productive quanta be Y = ∑

q∈I Yq . For
simplicity in notation, let A = 6T∞/((1 − δ)L). If the job’s execution contains
|I | ≥ 48T∞/((1 − δ)L) + 16 ln(1/ε) inefficient quanta, then we have E [Y ] >

|I | /4 ≥ 12T∞/((1 − δ)L) + 4 ln(1/ε) = 2A + 4 ln(1/ε). Using the Chernoff bound
Pr{Y < (1 − λ)E[Y ]} < exp(−λ2 E[Y ]/2) [Motwani and Raghavan 1995, p. 70]
and choosing λ = (A + 4 ln(1/ε))/(2A + 4 ln(1/ε)), we obtain

Pr{Y < A}
= Pr

{
Y <

(
1 − A + 4 ln(1/ε)

2A + 4 ln(1/ε)

)
(2A + 4 ln(1/ε))

}
= Pr{Y < (1 − λ)(2A + 4 ln(1/ε))}
< exp

(
−λ2

2
(2A + 4 ln(1/ε))

)

= exp
(

−1
2

· (A + 4 ln(1/ε))2

2A + 4 ln(1/ε)

)

< exp
(

−1
2

· 4 ln(1/ε) · 1
2

)
= ε .

Therefore, if the number |I | of inefficient quanta is at least 48T∞/((1 − δ)L) +
16 ln(1/ε), the number of productive quanta is at least A = 6T∞/((1−δ)L), with
probability at least 1 − ε. By Lemma 2 each productive quantum reduces the
span by at least (1−δ)L/6, and therefore at most A = 6T∞/((1−δ)L) productive

A more detailed analysis can nevertheless produce the same constants in the bounds for Lemmas
3 and 6.
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quanta occur during the job’s execution. Consequently, with probability at least
1 − ε, the number of inefficient quanta is |I | ≤ 48T∞/((1 − δ)L) + 16 ln(1/ε).

The following technical lemma bounds the maximum value of desire.

LEMMA 4. Suppose that A-STEAL schedules a job on a machine with P pro-
cessors. Let ρ denote A-STEAL’s responsiveness parameter. Before any quantum
q, the desire dq of the job is at most ρP.

PROOF. We use induction on the number of quanta. The base case d1 = 1
holds trivially. If a given quantum q −1 was inefficient, the desire dq decreases,
and thus dq < dq−1 ≤ ρP by induction. If quantum q − 1 was efficient-and-
satisfied, then dq = ρdq−1 = ρaq−1 ≤ ρP . If quantum q − 1 was efficient-and-
deprived, then dq = dq−1 ≤ ρP by induction.

The next lemma reveals a relationship between inefficient quanta and
efficient-and-satisfied quanta.

LEMMA 5. Suppose that A-STEAL schedules a job on a machine with P pro-
cessors. If ρ is A-STEAL ’s responsiveness parameter, and the schedule produces m
inefficient quanta, then it produces at most m+ logρ P +1 efficient-and-satisfied
quanta.

PROOF. Assume for the purpose of contradiction that a job’s execution pro-
duces k > m + logρ P + 1 efficient-and-satisfied quanta. Recall that the desire
increases by ρ after every efficient-and-satisfied quantum, decreases by ρ af-
ter every inefficient quantum, and does not change otherwise. Thus, the total
increase in desire is ρk , and the total decrease in desire is ρm. Since the desire
starts at 1, the desire at the end of the job is ρk−m > ρlogρ P+1 > ρP , contradict-
ing Lemma 4.

The following lemma bounds the number of efficient-and-satisfied quanta.

LEMMA 6. Suppose that A-STEAL schedules a job with span T∞ on a machine
with P processors. Let ρ denote A-STEAL’s responsiveness parameter, δ the utiliza-
tion parameter, and L the quantum length. Then, for any ε > 0, with probability
at least 1−ε, the schedule produces at most 48T∞/((1−δ)L)+ logρ P +16 ln(1/ε)
efficient-and-satisfied quanta.

PROOF. The lemma follows directly from Lemmas 3 and 5.

The next lemma shows that for each inefficient quantum there exists a cor-
responding efficient-and-satisfied quantum.

LEMMA 7. Suppose that A-STEAL schedules a job on a machine. Let I and C
denote the set of inefficient quanta and the set of efficient-and-satisfied quanta
produced by the schedule. If ρ is A-STEAL’s responsiveness parameter, then there
exists an injective mapping f : I → C such that for all q ∈ I , we have f (q) < q
and d f (q) = dq/ρ.

PROOF. For every inefficient quantum q ∈ I , define r = f (q) to be the latest
efficient-and-satisfied quantum such that r < q and dr = dq/ρ. Such a quantum
always exists, because the initial desire is 1 and the desire increases only after
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an efficient-and-satisfied quantum. We must prove that f does not map two
inefficient quanta to the same efficient-and-satisfied quantum. Assume for the
sake of contradiction that there exist two inefficient quanta, q < q′, such that
f (q) = f (q′) = r. By definition of f , the quantum r is efficient-and-satisfied, r <

q < q′, and dq = dq′ = ρdr . After the inefficient quantum q, A-STEAL reduced the
desire to dq/ρ. Since the desire later increased again to dq′ = dq , and the desire
increases only after efficient-and-satisfied quanta, there must be an efficient-
and-satisfied quantum r ′ in the range q < r ′ < q′ such that d (r ′) = d (q′)/ρ. But
then, by the definition of f , we would have f (q′) = r ′. This is a contradiction.

We can now bound the total number of mug-cycles executed by processors.

LEMMA 8. Suppose that A-STEAL schedules a job with work T1 on a machine
with P processors. Let ρ denote A-STEAL’s responsiveness parameter, δ the uti-
lization parameter, and L the quantum length. Then, the schedule produces at
most ((1 + ρ)/(Lδ − 1 − ρ))T1 mug-cycles.

PROOF. When the allotment decreases, some processors are deallocated and
their deques are declared muggable. The total number M of mug-cycles is
at most the number of muggable deques during the job’s execution. Since
the allotment reduces by at most aq − 1 from quantum q to quantum q + 1,
there are M ≤ ∑

q(aq − 1) <
∑

q aq mug-cycles during the execution of the
job.

By Lemma 7, for each inefficient quantum q, there is a distinct corresponding
efficient-and-satisfied quantum r = f (q) that satisfies dq = ρdr . By definition,
each efficient-and-satisfied quantum r has a nonsteal usage nr ≥ Lδar and al-
lotment ar = dr . Thus, we have nr + nq ≥ Lδar = ((Lδ)/(1 + ρ))(ar + ρar ) =
((Lδ)/(1+ρ))(ar +ρdr ) ≥ ((Lδ)/(1+ρ))(ar +aq), since aq ≤ dq and dq = ρdr . Ex-
cept for these inefficient quanta and their corresponding efficient-and-satisfied
quanta, any other quantum q is efficient, and hence nq ≥ Lδaq for these quanta.
Let N = ∑

q nq be the total number of nonsteal-cycles during the job’s execu-
tion. We have N = ∑

q nq ≥ ((Lδ)/(1 + ρ))
∑

q aq ≥ ((Lδ)/(1 + ρ))M . Since
the total number of nonsteal-cycles is the sum of work-cycles, and mug-cycles,
and the total number of work-cycles is T1, we have N = T1 + M , and hence,
T1 = N − M ≥ ((Lδ)/(1 + ρ))M − M = ((Lδ − 1 − ρ)/(1 + ρ))M , which yields
M ≤ ((1 + ρ)(Lδ − 1 − ρ))T1.

LEMMA 9. Suppose that A-STEAL schedules a job with work T1 on a machine
with P processors. Let ρ denote A-STEAL’s responsiveness parameter, δ the uti-
lization parameter, and L the quantum length. Then, the schedule produces at
most (T1/(LδPA))(1 + (1 + ρ)/(Lδ − 1 − ρ)) accounted quanta, where PA is mean
availability on accounted quanta.

PROOF. Let A and D denote the set of accounted and deductible quanta, re-
spectively. The mean availability on accounted quanta is PA = (1/ |A|) ∑

q∈A pq .
Let N be the total number of nonsteal-cycles. By definition of accounted quanta,
the nonsteal usage satisfies nq ≥ Lδaq . Thus, we have N = ∑

q∈A∪D nq ≥∑
q∈A nq ≥ ∑

q∈A δLpq = δL |A| PA, and hence, we obtain

|A| ≤ N/(LδPA) . (1)
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The total number of nonsteal-cycles is the sum of the number of work-cycles
and mug-cycles. Since there are at most T1 work-cycles on accounted quanta
and, by Lemma 8, there are at most M ≤ ((1 +ρ)(Lδ − 1 −ρ))T1 mug-cycles, we
have N ≤ T1 + M < T1(1 + (1 + ρ)/(Lδ − 1 − ρ)). Substituting this bound on N
into Inequality (1) completes the proof.

We are now ready to bound the running time of jobs scheduled with A-STEAL .

THEOREM 10. Suppose that A-STEAL schedules a job with work T1 and span
T∞ on a machine with P processors. Let ρ denote A-STEAL’s responsiveness pa-
rameter, δ the utilization parameter, and L the quantum length. For any ε > 0,
with probability at least 1 − ε, A-STEAL completes the job in

T = T1

δ P̃

(
1 + 1 + ρ

Lδ − 1 − ρ

)
+ O

(
T∞

1 − δ
+ L logρ P + L ln(1/ε)

)
(2)

time steps, where P̃ is the O(T∞/(1 − δ) + L logρ P + L ln(1/ε))-trimmed avail-
ability.

PROOF. The proof is a trim analysis. Let A be the set of accounted quanta,
and let D be the set of deductible quanta. The overall number of time steps is
thus at most L(|A| + |D|). Lemmas 3 and 6 show that there are at most |D| =
O(T∞/((1−δ)L)+logρ P+ln(1/ε)) deductible quanta with high probability, since
efficient-and-satisfied quanta, and inefficient quanta, are deductible. Hence
there are at most L |D| = O(T∞/(1 − δ) + L logρ P + L ln(1/ε)) time steps in
deductible quanta with high probability. We have that PA ≥ P̃ , since the mean
availability on the accounted time steps (we trim the L |D| deductible steps)
must be at least the O(T∞/(1 − δ) + L logρ P + L ln(1/ε))-trimmed availability
(we trim the O(T∞/(1 − δ) + L logρ P + L ln(1/ε)) steps that have the highest
availability). From Lemma 9, the number of accounted quanta is bounded by
|A| = (T1/(LδPA))(1+ (1+ρ)/(Lδ−1−ρ)). Combining the two parts, the desired
time bound follows.

COROLLARY 11. Suppose that A-STEAL schedules a job with work T1 and span
T∞ on a machine with P processors. Let ρ denote A-STEAL’s responsiveness
parameter, δ the utilization parameter, and L the quantum length. Then, A-
STEAL completes the job in expected time E [T ] = O(T1/P̃ + T∞ + L lg P ), where
P̃ is the O(T∞ + L lg P )-trimmed availability.

PROOF. Straightforward conversion of a high-probability bound to expecta-
tion, together with setting δ and ρ to suitable constants.

The analysis leading to Theorem 10 and its corollary makes two assumptions.
First, we assume that the scheduler knows exactly how many steal-cycles have
occurred in the quantum. Second, we assume that the processors can find the
muggable deques instantaneously. We now relax these assumptions and show
that they do not adversely affect the asymptotic running time of A-STEAL.

A scheduling system can implement the counting of steal-cycles in several
ways that impact our theoretical bounds only minimally. For example, if the
number of processors in the machine P is smaller than the quantum length L,
then the system can designate one processor to collect all the information from

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 7, Publication date: September 2008.



7:14 • K. Agrawal et al.

the other processors at the end of each quantum. Collecting this information
increases the time bound by a multiplicative factor of only 1 + P/L. As a prac-
tical matter, one would expect that P � L, since scheduling quanta tend to
be measured in tens of milliseconds and processor cycle times in nanoseconds
or less, and thus the slowdown would be negligible. Alternatively, one might
organize the processors for the job into a tree structure so that it takes O(lg P )
time to collect the total number of steal-cycles at the end of each quantum. The
tree implementation introduces a multiplicative factor of 1 + (lg P )/L to the
job’s execution time, an even less significant overhead.

The second assumption, that it takes constant time to find a muggable deque,
can be relaxed in a similar manner. One option is to mug serially; that is, while
there is a muggable deque, all processors try to mug according to a fixed linear
order. This strategy could increase the number of mug-cycles by a factor of P in
the worst case. If P � L, however, this change again does not affect the running
time bound by much. Alternatively, to obtain a better theoretical bound, we
could use a counting network [Aspnes et al. 1994] with width P to implement the
list of muggable deques, in which case each mugging operation would consume
O(lg2 P ) processor cycles. The number of accounted steps in the time bound from
Lemma 9 would increase slightly to (T1/(δ P̃ ))/(1 + (1 + ρ) lg2 P/(Lδ − 1 − ρ)),
but the number of deductible steps would not change.

3.2 Waste Analysis

The next theorem bounds the waste, which is the total number of mug- and
steal-cycles.

THEOREM 12. Suppose that A-STEAL schedules a job with work T1 on a ma-
chine with P processors. Let ρ denote A-STEAL’s responsiveness parameter, δ the
utilization parameter, and L the quantum length. Then, A-STEAL wastes at most

W ≤
(

1 + ρ − δ

δ
+ (1 + ρ)2

δ(Lδ − 1 − ρ)

)
T1 (3)

processor cycles in the course of computation.

PROOF. Let M be the total number of mug-cycles, and let S be the total
number of steal-cycles. Hence, we have W = S + M . Since Lemma 8 bounds
M , we only need to bound S, which we do using an accounting argument based
on whether a quantum is inefficient or efficient. Let Sineff and Seff, where S =
Sineff + Seff, be the numbers of steal-cycles on innefficient and efficient quanta,
respectively.

Inefficient quanta. Lemma 7 shows that every inefficient quantum q with
desire dq has a distinct corresponding efficient-and-satisfied quantum r = f (q)
with desire dr = dq/ρ. Thus the steal-cycles on quantum q can be amortized
against the nonsteal-cycles on quantum r. Since quantum r is efficient-and-
satisfied, its nonsteal usage satisfies nr ≥ Lδaq/ρ, and its allocation is ar = dr .
Therefore, we have nr ≥ Lδar = Lδdr = Lδdq/ρ ≥ Lδaq/ρ. Let sq be the
number of steal-cycles in quantum q. Since there are Laq processor cycles in
the quantum, we have sq ≤ Laq ≤ ρnr/δ, that is, the number of steal-cycles
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in the inefficient quantum q is at most a ρ/δ fraction of the nonsteal-
cycles in its corresponding efficient-and-satisfied quantum r. Therefore, the to-
tal number of steal-cycles in all inefficient quanta satisfies Sineff ≤ (ρ/δ)(T1+M ).

Efficient quanta. On any efficient quantum q, the job has at least Lδaq
work- and mug-cycles and at most L(1 − δ)aq steal-cycles. Summing over all
efficient quanta, the number of steal-cycles on efficient quanta is Seff ≤ ((1−δ)/δ)
(T1 + M ).

The total waste is therefore W = S + M = Sineff + Seff + M ≤ (T1 + M )(1 +
ρ − δ)/δ + M . Since Lemma 8 provides M < T1(1 + ρ)/(Lδ − 1 − ρ), the theorem
follows.

3.3 Interpretation of the Bounds

If the utilization parameter δ and responsiveness parameter ρ are constants,
the bounds in Equation (2) and Inequality (3) can be simplified somewhat as
follows:

T = T1

δ P̃
(1 + O(1/L)) + O

(
T∞

1 − δ
+ L logρ P + L ln(1/ε)

)
,

W =
(

1 + ρ − δ

δ
+ O(1/L)

)
T1. (4)

This reformulation allows us to more easily see the tradeoffs due to the setting
of the δ and ρ parameters.

In the time bound, as δ increases toward 1, the coefficient of T1/P̃ decreases
toward 1, and the job comes closer to perfect linear speedup on accounted steps.
The number of deductible steps increases at the same time, however. Moreover,
as δ increases and ρ decreases, the completion time increases and the waste
decreases. The utilization parameter δ may lie between 80% and 95%, and
the responsiveness parameter ρ can be set between 1.2 and 2.0. The quantum
length L is a system configuration parameter, which might have values in the
range 103 to 105.

To see how these settings affect the waste bound, consider the waste bound
as comprising two parts, where the waste due to steal-cycles is S ≤ ((1 + ρ −
δ)/δ)T1 and the waste due to mug-cycles is M = O(1/L)T1. We can see that
the waste due to mug-cycles is just a tiny fraction compared to the work T1.
Thus these bounds indicate that adaptive scheduling with parallelism feedback
can be achieved without imposing much overhead when adding to or removing
processors from jobs.

Most of the waste comes from steal-cycles, where S is generally less than 2T1
for typical parameter values. The analysis of Theorem 12 shows, however, that
the number of steal-cycles in efficient steps is bounded by ((1 − δ)/δ)T1, which
is a small fraction of S. Thus, most of the waste comes from the steal-cycles in
inefficient quanta. Our analysis assumes that the job scheduler is an adversary,
creating as many inefficient quanta as possible. Of course, job schedulers are
generally not adversarial. Thus, in practice, we expect the waste to be a much
smaller fraction of T1 than our bounds. exp describes experiments that confirm
this intuition.
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4. EXPERIMENTAL EVALUATION

To evaluate the performance of A-STEAL empirically, we built a discrete-time
simulator using DESMO-J [DESMOJ 1999]. Some of our experiments bench-
marked A-STEAL against ABP [Arora et al. 1998], an adaptive thread scheduler
that does not supply parallelism feedback to the job scheduler. This section
describes our simulation setup and the results of the experiments.

We conducted four sets of experiments on the simulator with synthetic jobs.
Our results are summarized below:

—The time experiments investigated the performance of A-STEAL on over 2300
job runs. A linear-regression analysis of the results provides evidence that the
coefficients on the number of accounted and deductible steps are considerably
smaller than the upper bounds provided by our theoretical bounds. A second
linear-regression analysis indicates that A-STEAL completes jobs on average
for at most twice the optimal number of time steps, which is the same bound
provided by offline greedy scheduling [Graham 1969; Brent 1974].

—The waste experiments are designed to measure the waste incurred by A-
STEAL in practice, and compare the observed waste to the theoretical upper
bounds. Our experiments indicate that the waste is almost insensitive to the
parameter settings and is a tiny fraction (less than 10%) of the work for jobs
with high parallelism.

—The time-waste experiments compare the completion time and waste of A-
STEAL, with ABP [Arora et al. 1998] by running single jobs with prede-
termined availability profiles. These experiments indicate that on large
machines, when the mean availability P̄ is considerably smaller than the
number P of processors in the machine, A-STEAL completes jobs faster than
ABP, while wasting fewer processor cycles than ABP. On medium-sized ma-
chines, when P̄ is of the same order as P , ABP completes jobs slightly
faster than A-STEAL, but it still wastes many more processor cycles than
A-STEAL.

—The utilization experiments compare the utilization of A-STEAL and ABP when
many jobs with varying characteristics are using the same multiprocessor
resource. The experiments provide evidence that on moderately to heavily
loaded large machines, A-STEAL consistently provides a higher utilization
than ABP for a variety of job mixes.

4.1 Simulation Setup

Our Java-based discrete-time simulator, which was implemented using
DESMO-J [DESMOJ 1999], implements four major entities—processors, jobs,
thread schedulers, and job schedulers. The simulator tracks their interactions
in a two-level scheduling environment. We modeled jobs as dags, which are
executed by the thread scheduler. When a job is submitted to the simulated
multiprocessor system, an instance of a thread scheduler is created for the job.
The job scheduler allots processors to the job, and the thread scheduler sim-
ulates the execution of the job using work-stealing. The simulator operates in
discrete time steps: a processor can complete either a work-cycle, steal-cycle, or
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Fig. 2. The parallelism profile (for 2 iterations) of the jobs used in the simulation.

mug-cycle during each time step. We ignored the overheads due to the reallo-
cation of processors in the simulation.

We tested synthetic multithreaded jobs with the parallelism profile shown in
Figure 2. Each job alternates between a serial phase of length w1 and a parallel
phase (with h-way parallelism) of length w2. The average parallelism of the job
is approximately (w1 + hw2)/(w1 + w2). By varying the values of w1, w2, h, and
the number of iterations, we can generate jobs with different work, span, and
frequency of the change of the parallelism.

In the time-waste experiments and the utilization experiments, we compared
the performance of A-STEAL with that of another thread scheduler, ABP [Arora
et al. 1998], an adaptive thread scheduler that does not provide parallelism
feedback to the job scheduler. In these experiments, ABP is always allotted all
the processors available to the job. ABP uses a nonblocking implementation of
work-stealing and always maintains P deques. When the job scheduler allots
aq = pq processors in quantum q, ABP selects aq deques uniformly at random
from the P deques, and the allotted processors start working on them. Arora
et al. [1998] prove that ABP completes a job in expected time

T = O(T1/P̄ + PT∞/P̄ ) , (5)

where P̄ is the average number of processors allotted to the job by the job
scheduler. Although they provide no bounds on waste, one can prove that ABP
may waste �(T1 + PT∞) processor cycles in an adversarial setting.

We implemented three kinds of job schedulers: profile-based, equipartition-
ing [McCann et al. 1993], and dynamic equipartitioning [McCann et al. 1993].
A profile-based job scheduler was used in the first four sets of experiments, and
both equipartitioning and dynamic equipartitioning job schedulers were used
in the utilization experiment. An equipartitioning (EQ) job scheduler simply
allots the same number of processors to all the active jobs in the system. Since
ABP provides no parallelism feedback, EQ is a suitable job scheduler for ABP’s
scheduling model. Dynamic equipartitioning (DEQ) is a dynamic version of the
equipartitioning policy, but it requires parallelism feedback. A DEQ job sched-
uler maintains an equal allotment of processors to all jobs with the constraint
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that no job is allotted more processors than it requests. DEQ is compatible with
A-STEAL’s scheduling model, since it can use the feedback provided by A-STEAL to
decide the allotment.

For the first three experiments—time, waste, and time-waste—we ran a sin-
gle job with a predetermined availability profile: the sequence of processor avail-
abilities pq for all the quanta while the job is executing. For the profile-based job
scheduler, we precomputed the availability profile, and during the simulation,
the job scheduler simply used the precomputed availability for each quantum.
We generated three kinds of profiles:

—Uniform profiles. The processor availabilities in these profiles follow the uni-
form distribution in the range from 1 to the maximum number P of pro-
cessors in the system. These profiles represent near-adversarial conditions
for A-STEAL, because the availability for one quantum is unrelated to the
availability for the previous quantum.

—Smooth profiles. In these profiles, the change of processor availabilities from
one scheduling quantum to the next follows a standard normal distribution.
Thus the processor availability is unlikely to change significantly over two
consecutive quanta. These profiles attempt to model situations where new
arrivals of jobs are rare, and the availability changes significantly only when
a new job arrives.

—Practical profiles. These availability profiles were generated from the work-
load archives [Feitelson 2005] of various computer clusters. We computed the
availability at every quantum by subtracting the number of processors that
were being used at the start of the quantum from the number of processors in
the machine. These profiles are meant to capture the processor availability
in practical systems.

A-STEAL requires certain parameters as input. The responsiveness param-
eter is ρ = 1.5 for all the experiments. For all experiments except the waste
experiments, the utilization parameter is δ = 0.8. We varied δ in the waste
experiments. The quantum length L represents the time between successive
reallocations of processors by the job scheduler, and is selected to amortize the
overheads due to communication between the job scheduler and the thread
scheduler and to the reallocation of processors. In conventional computer sys-
tems, a scheduling quantum is typically between 10 and 20 milliseconds. Our
experience with the Cilk runtime system [Supercomputing Technologies Group
2001] indicates that a steal/mug-cycle takes approximately 0.5 to 5 microsec-
onds, suggesting that the quantum length L should be set to values be-
tween 103 and 105 time steps. Our theoretical bounds indicate that as long
as T∞ � L log P , the length of L should have little effect on our results. Due to
the performance limitations of our simulation environment, however, we were
unable to run very long jobs: most have span in the order of only a few thou-
sand time steps. Therefore, to satisfy the condition that T∞ � L log P , we set
L = 200.
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4.2 Time Experiments

The running-time bounds proved in analysis, though asymptotically strong,
have weak constants. The time experiments were designed to investigate what
constants would occur in practice and how A-STEAL performs compared to an
optimal scheduler. We performed linear-regression analysis on the results of
2331 job runs using many availability profiles as decided earlier to answer
these questions.

Our first time experiment uses the bounds in Equation (2) as a simple model,
as in the study Blumofe et al. [1996]. Assuming that equality holds and disre-
garding smaller terms, the model estimates performance as

T ≈ c1T1/P̃ + c∞T∞, (6)

where c1 > 0 is the work overhead and c∞ > 0 is the span overhead. When
δ = 0.8, ρ = 1.5, and L = 200, the coefficients for the asymptotic bounds in
Equation (2) turn out to be 1.26 < c1 < 1.27 and c∞ = 480, but a direct analysis
of expectation can improve the bound on span overhead to c∞ = 60. Since the
span overhead c∞ is large, the bound indicates that A-STEAL may not provide
linear speedup except when T1/T∞ � 60P̃ . Moreover, on accounted time steps,
A-STEAL might not provide perfect linear speedup, since the work overhead is
1.26 > 1.

In practice, however, we should not expect these large overheads to mate-
rialize. First, our analysis is focused on asymptotic bounds and use bounding
techniques such as Markov’s inequality and Chernoff bounds, which are not
necessarily tight. Second, our analysis assumes that the job completes only the
minimum number of work-cycles in each quantum, specifically, 0 on a deductible
quantum and δLaq on an accounted quantum with allotment aq .

Our first linear-regression analysis fits the running time of the 2331 job runs
to Equation (6). The trimmed mean P̃ of a job run is computed as the average
processor availability of all accounted steps during the execution of the job. The
least-squares fit to the data to minimize relative error, yields c1 = 0.960±0.003
and c∞ = 0.812 ± 0.009, with 95% confidence. The R2 correlation coefficient of
the fit is 99.4%. Since c∞ = 0.812 ± 0.009, on average the jobs achieved linear
speedup when T1/T∞ � P̃ . In addition, since we have c1 = 0.960 ± 0.003,
A-STEAL achieves almost perfect linear speedup on the accounted steps. The
fact that c1 < 1 stems from the fact that jobs performed some work during the
deductible steps.

We performed a second set of regression tests on the same set of jobs to
compare the performance of A-STEAL with an optimal scheduler. We fit the job
data to the curve

T = ĉ1T1/P̄ + ĉ∞T∞. (7)

The analysis yields ĉ1 = 0.992 ± 0.003 and c∞ = 0.911 ± 0.008 with an R2

correlation coefficient of 99.4%. Both T1/P̄ and T∞ are lower bounds on the job’s
running time, and thus an optimal scheduler requires at least max {T1/P̄ , T∞} ≥
(T1/P̄ + T∞)/2 ≥ (ĉ1T1/P̄ + ĉ∞T∞)/2 time steps, since ĉ1 < 1 and ĉ∞ < 1.
Consequently, on average A-STEAL completed the jobs within at most twice the
time of an optimal scheduler.
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Fig. 3. Comparing the (true) mean availability P̄ with the trimmed availability P̃ using three
availability profiles. Each data point represents a job execution for which the mean availability and
trimmed availability were measured. These values were normalized by dividing by the parallelism
T1/T∞ of the job. When the parallelism satisfies T1/T∞ > 5P̄ , the experiments indicate that for
all profiles, the trimmed availability is a good approximation of the mean availability. All these
experiments used δ = 0.8 and ρ = 1.5.

Equations (6) and (7) both predict performance with high accuracy, and yet
P̃ and P̄ can diverge significantly. To resolve this paradox, we compared P̃ and
P̄ on the job runs. Figure 3 shows a graph of the results, where P̃ and P̄ are
each normalized by dividing by the parallelism T1/T∞ of the job. The diagonal
line in the figure is the curve P̃ = P̄ .

If a job has parallelism T1/T∞ > 5P̄ (data points on the left), the experiment
indicates that for all three kinds of availability profiles, we have P̃ ≈ P̄ . In this
case, we have T1/P̃ ≈ T1/P̄ and T1/P̄ � T∞, which implies that the first terms
in Equations (6) and (7) are nearly identical and dominate the running time.
On the other hand, if a job has small parallelism (data points on the right), the
values of P̃ and P̄ diverge and the divergence depends on the availability profile
used. In this region, however, the running time is dominated by the span T∞,
and thus, the divergence of P̃ and P̄ has little influence on the running time.

4.3 Waste Experiments

Our theoretical analysis shows that the waste exhibited by A-STEAL is at most
O(T1). The constant hidden in the O-notation depends on the parameter set-
tings. In our first waste experiment, we varied the value of the utilization pa-
rameter δ to determine the relationship between the waste and the setting of δ.
For our second experiment, we investigated whether the waste incurred by a
job depends on the job’s parallelism.

The proof of Theorem 12 shows that the number of processor cycles wasted by
a job is ((1−δ)/δ)T1 on efficient quanta and approximately (ρ/δ)T1 on inefficient
quanta. Substituting δ = 0.8 and ρ = 1.5, A-STEALcould waste as many as 0.25T1
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Fig. 4. Comparing the theoretical and practical waste (normalized by T1) using A-STEAL for various
values of the utilization parameter δ. The top line shows the total theoretical waste, the next line
shows the theoretical waste on efficient quanta, and the bottom line shows the observed waste. The
observed waste appears to be almost insensitive to the value of δ and is much smaller than the
theoretical waste.

processor cycles on efficient quanta, and as many as 1.875T1 processor cycles
on inefficient quanta. Since this analysis assumes that the job scheduler is an
adversary and that the job completes the minimum number of work-cycles in
each quantum, we did not expect these constants to materialize in practice.

We measured the waste for 300 jobs, most of which had parallelism T1/T∞ >

5P̄ , for δ = 0.5, 0.6, . . . , 1.0. The job runs used many availability profiles drawn
equally from the three kinds. Figure 4 shows the average of waste normalized
by the work T1 of the job. For comparison we plotted the normalized theoretical
bound Inequality (4) for the total waste and the normalized bound ((1 − δ)/δ)T1
for the waste on efficient quanta. As the figure shows (although the curve is
barely distinguishable from the x-axis), the observed waste is less than 10%
of the work T1 for most values of δ, and is considerably less than what the
theoretical bounds predicted. Moreover, the waste seems to be quite insensitive
to the particular value of δ.

We also ran an experiment to determine whether parallelism has an effect
on waste. The bound in Inequality (4) does not depend on the parallelism T1/T∞
of the job, but only on the work T1. For the 2331 job runs used in the time exper-
iments, we measured the waste versus parallelism. Since waste is insensitive
to δ, all jobs used the value δ = 0.8. Figure 5 graphs the results. As can be seen
in the figure, the higher the parallelism, the lower the waste-to-work ratio. The
reason is that when the parallelism is high, the job can usually use most of the
available processors without readjusting its desire. When the parallelism is low,
however, the job’s desire must track its parallelism closely to avoid waste. This
situation is where A-STEAL is most effective, as the job pushes the theoretical
waste bounds to their limit.
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Fig. 5. How waste varies with parallelism. When T1/T∞ > 10P̄ , that is, the job’s parallelism
significantly exceeds the average availability, the observed waste is only a tiny fraction of the
work T1. For jobs with small parallelism, the waste showed a large variance but never exceeded
the work T1 in any of our runs. The utilization parameter was δ = 0.8 for all job runs.

4.4 Time-Waste Experiments

The time-waste experiments were designed to compare A-STEAL with ABP,
an adaptive thread scheduler with no parallelism feedback. For our first experi-
ment, we ran A-STEAL and ABP to execute 756 job-runs on a simulated machine
with P = 512 processors. Each head-to-head run used one of two practical
availability profiles, one with P̄ = 30 and one with P̄ = 60. We measured the
time and waste of A-STEAL and ABP for each run. Our second experiment was
similar, but it used only P = 128 processors in the simulated machine over
330 job runs. Whenever the availability exceeded 128, which was not often, we
chopped the availability to 128.

Figure 6 shows the ratio of ABP to A-STEAL with respect to both time and
waste as a function of the mean availability P̄ , normalized by dividing by
the parallelism T1/T∞. This experiment shows that A-STEAL completed jobs
about twice as fast as ABP, while wasting only about 10% of the processor
cycles wasted by ABP. Not surprisingly, A-STEAL wastes fewer processor cy-
cles than ABP, since A-STEAL uses parallelism feedback to limit possible ex-
cessive allotment. Paradoxically, however, A-STEAL completes jobs faster than
ABP, even though A-STEAL’s allotment in every quantum is at most that of ABP,
which is always allotted all the available processors.

ABP’s slow completion is due to how ABP manages its ready deques. In
particular, ABP has no mechanism for increasing and decreasing the number
r of ready deques, and it maintains r = P deques throughout the execution.
Randomized work-stealing algorithms require �(r) steal-cycles to reduce the
length of the span by 1 in expectation. Consequently, if r is large, each steal-
cycle becomes less effective, and the job’s progress along its span slows. Thus if
the job has small or moderate parallelism (data points on the right), the span
dominates the running time. If the job has large parallelism (data points on the
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Fig. 6. Comparing the time and waste of A-STEAL against ABP when P = 512 and P̄ = 30, 60. In
this experiment, where P exceeds P̄ by a significant margin, A-STEAL completes jobs about twice
as fast as ABP while wasting less than 10% of the processor cycles wasted by ABP.

left), however, the impact is less. In contrast, A-STEAL continues to make good
progress along the span, regardless of parallelism, by reducing the number of
deques according to its allotment.

This paradox can also be understood by using the model from Equation (6)
for A-STEAL, and an analogous model based on Equation (5) for ABP. Let us
consider three cases:

—T1/T∞ < P̄ � P (data points on the right): Whereas A-STEAL completes the
job in �(T∞) time, ABP requires �(PT∞/P̄ ) time.

— P̄ < T1/T∞ � P (data points in the middle): A-STEAL provides linear speedup
since T1/T∞ > P̃ , but ABP does not, since T1/T∞ � P .

— P < T1/T∞ (data points on the left): Both provide linear speedup in this
range.
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Fig. 7. Comparing the time and waste of A-STEAL against ABP when P = 128 and P̄ = 30, 60. In
this experiment, where P and P̄ are closer in magnitude, A-STEAL runs slightly slower than ABP,
but it still tends to waste fewer processor cycles than ABP.

Since ABP performed relatively poorly when P was large compared to P̄ ,
our second experiment investigated the results when P is closer to P̄ . Figure 7
shows the results on 330 job-runs on a simulated machine, with P = 128. In
this case, when the jobs’ parallelism is large compared to P̄ , both ABP and
A-STEAL perform about the same with respect to both time and waste. As the
parallelism gets closer to P̄ , ABP performs slightly better than A-STEAL with
respect to time, and slightly worse with respect to waste. Since P̄ ≈ P , the
two models coincide, and ABP and A-STEAL perform comparably. Therefore, on
small machines, where the disparity between P̄ and P cannot be very great,
the advantage of parallelism feedback is diminished, and ABP may yet be an
effective thread-scheduling algorithm.
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4.5 Utilization Experiments

The utilization experiments compared A-STEALwith ABP on a large server
where many jobs are running simultaneously and jobs arrive and leave dy-
namically. We implemented job schedulers to allocate processors among various
jobs: dynamic equipartitioning [McCann et al. 1993] for A-STEAL, and equipar-
titioning [Tucker and Gupta 1989] for ABP. We simulated a 1000-processor
machine for about 106 time steps, where jobs had a mean interarrival time of
1000 time steps. We compared the utilization provided by A-STEAL and ABP over
time.

It was unclear to us what distribution the parallelism and the span should
follow. Although many workload models for parallel jobs have been stud-
ied [Sevcik 1994; Feitelson 1996; Downey 1998; Cirne and Berman 2001;
Lublin and Feitelson 2003], none appears to apply directly to multithreaded
jobs. Some studies [Leland and Ott 1986; Harchol-Balter and Downey 1997;
Harchol-Balter 1999] claim that the sizes of Unix jobs follow a heavy-tailed
distribution. Lacking a well-recognized guideline, we decided to try various dis-
tributions, and as it turned out, our results were fairly insensitive to which we
chose.

We considered nine sets of jobs using three distributions on each of the par-
allelism and the span. The means of the distributions were chosen so that jobs
arrive faster than they complete and the load on the machine progressively
increases. Thus we were able to measure the utilization of the machine under
various loads. The three distributions we explored were the following:

—Uniform distribution (U). The span is picked uniformly from the range 1,000
to 99,000. The parallelism is generated uniformly in the range [1, 80].

—Heavy-tailed distribution 1 (HT1). We used a Zipf ’s-like [Zipf 1949] heavy-
tailed distribution, where the probability of generating x is proportional
to 1/x. In our experiments, the distribution for parallelism has mean value
36, and the distribution for span has mean value 50,000.

—Heavy-tailed distribution 2 (HT2). In this distribution, the probability of
generating x is proportional to 1/

√
x. In our experiments, the distribution

for parallelism has mean value 36, and the distribution for span has mean
value 50,000.

Of the nine possible sets of jobs, we ran six experiments using parallelism
and span drawn from U/U, U/HT1, HT1/U, HT1/HT1, HT2/U, and HT2/HT2. For
all these experiments, the comparison between A-STEAL+DEQ and ABP+EQ
followed the same qualitative trends. We broke time into intervals of 2000
time steps and measured the utilization—the fraction of processor cycles spent
working—for each interval. Figure 8 shows the utilization as a function of
time (log-scale) for the U/U experiment at the top, and for HT1/HT1 on the
bottom. As can be seen in both figures, ABP+EQ starts out with a higher
utilization, since A-STEAL+DEQ initially requests just one processor. Before
10% of the simulation has elapsed, however, A-STEAL+DEQ overtakes ABP+EQ
with respect to the utilization, and then consistently provides a higher utiliza-
tion. Although the figure does not show it, the mean completion time of jobs
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Fig. 8. Comparing the utilization over time of A-STEAL+DEQ and ABP+EQ. In the top figure, both
the span and the parallelism follow the uniform distribution, and in the bottom figure, they follow
the HT1 distribution.

under ABP+EQ is nearly 50% less than those under A-STEAL+DEQ, for both
these distributions.

5. RELATED WORK

This section discusses related work on adaptive and nonadaptive schedulers
for multithreaded jobs. Work in the area has centered on either job sched-
ulers or on nonadaptive thread schedulers. We start by discussing nonadaptive
work-stealing schedulers. We then discuss empirical and theoretical work on
adaptive thread schedulers. Finally, we give a brief summary of research on
adaptive job schedulers.

Work-stealing has been used as a heuristic since Burton and Sleep’s research
[Burton and Sleep 1981] and Halstead’s implementation of Multilisp [Halstead
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1984]. Many variants have been implemented since then [Mohr et al. 1990;
Halbherr et al. 1994; Finkel and Manber 1987], and it has been analyzed in
the context of load balancing [Rudolph et al. 1991], backtrack search [Karp
and Zhang 1988], and so forth. Blumofe and Leiserson [1999] proved that the
work-stealing algorithm is efficient with respect to time, space, and communica-
tion for the class of fully strict multithreaded computations. Arora et al. [1998]
extended the time bound result to arbitrary multithreaded computations. Var-
ious researchers [Hendler et al. 2006; Hendler and Shavit 2002; Chase and Lev
2005] have since simplified and improved the memory allocation for deques for
ABP. In addition, Acar et al. [2000] showed that work-stealing schedulers are
efficient with respect to cache misses for jobs with nested parallelism. Variants
of work-stealing algorithms have been implemented in many systems [Blumofe
et al. 1995; Frigo et al. 1998; Blumofe and Papadopoulos 1999], and empirical
studies show that work-stealing schedulers are scalable and practical [Frigo
et al. 1998; Blumofe and Papadopoulos 1998].

Adaptive thread scheduling without parallelism feedback has been stud-
ied in the context of multithreading, primarily by Blumofe and his coauthors
[Blumofe and Lisiecki 1997; Blumofe and Park 1994; Arora et al. 1998; Blumofe
and Papadopoulos 1998]. In this work, the thread scheduler uses randomized
work-stealing strategy to schedule threads on available processors, but does not
provide feedback about the job’s parallelism to the job scheduler. The work in
Blumofe and Lisiecki [1997], and Blumofe and Park [1994] addresses networks
of workstations where processors may fail, or join and leave a computation while
the job is running, showing that work-stealing provides a good foundation for
adaptive thread scheduling. In theoretical work, Arora et al. [1998] showed
that the ABP thread scheduler provably completes a job in an expected time of
O(T1/P̄ + PT∞/P̄ ). Blumofe and Papadopoulos [1998] performed an empirical
evaluation of ABP showing that on an eight-processor machine, ABP provides
almost perfect linear speedup for jobs with reasonable parallelism. In all these
experiments, the job parallelism T1/T∞ is much greater than eight.

Adaptive thread scheduling with parallelism feedback has been studied em-
pirically in Timothy B. Brecht [1996], Song [1998], and Sen [2004]. These
researchers use a job’s history of processor utilization to provide feedback to dy-
namic equipartitioning job schedulers. Their studies use different strategies for
parallelism feedback, and all report better system performance with parallelism
feedback than without, but it is not apparent which of their strategies is best.

In contrast to adaptive thread schedulers, adaptive job schedulers have been
studied extensively, both empirically [McCann et al. 1993; Yue and Lilja 2001;
Chiang and Vernon 1996; Parsons and Sevcik 1995; Eager et al. 1989; Ghosal
et al. 1991; Nguyen et al. 1996a, 1996b; Sevcik 1989 and theoretically Gu 1995;
Deng and Dymond 1996; Motwani et al. 1993; Edmonds 1999; Edmonds et al.
2003; Bansal et al. 2004]. McCann et al. [1993] studied many different job
schedulers and evaluated them on a set of benchmarks. They also introduced
the notion of dynamic equipartitioning, which gives each job a fair allotment of
processors, while allowing processors that cannot be used by a job to be real-
located to other jobs. Gu [1995] proved that dynamic equipartitioning with in-
stantaneous parallelism feedback is four-competitive with respect to makespan
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for batched jobs with multiple phases, assuming that the parallelism of the job
remains constant during the phase and that the phases are relatively long
compared with the length of a scheduling quantum. Deng and Dymond [1996]
proved a similar result for mean response time for multiphase jobs, regard-
less of their arrival times. Song [1998] proved that a randomized distributed
strategy can implement dynamic equipartitioning.

6. CONCLUSIONS

This research has used the technique of trim analysis to limit a powerful ad-
versary, enabling us to analyze adaptive schedulers with parallelism feedback.
The idea of ignoring a few outliers while calculating averages is often used
in statistics to ignore anomalous data points. For example, teachers often ig-
nore the lowest score while computing a student’s grade, and in the Olympic
Games, the lowest and the highest scores are sometimes ignored when comput-
ing an athlete’s average. In theoretical computer science, when an adversary
is too powerful, we sometimes make statistical assumptions about the input to
render the analysis tractable, but statistical assumptions may not be valid in
practice. Trim analysis may prove itself of value for analyzing such problems.

A-STEAL, as presented, uses full information about the previous quantum
to estimate the desire of the current quantum. Collecting perfect information
might become difficult as the number of processors becomes larger, especially if
the number of processors exceeds the quantum length. A-STEAL only estimates
the desire, however, and therefore approximate information should be enough
to provide feedback. We are currently studying the possibility of using sampling
techniques to estimate the number of steal-cycles, instead of counting the exact
number.

Our empirical studies provide evidence that A-STEAL performs better than
ABP when the machine has a large number of processors and has many jobs
running on it. The reason is that A-STEAL uses parallelism feedback and the
mugging mechanism to reclaim abandoned deques. One can imagine imple-
menting ABP, which does not use parallelism feedback, but which does use
a mugging mechanism. Although adding a mugging mechanism to ABP may
not improve its performance theoretically, such a modification to ABP might
improve its performance as a matter of practice. We are currently studying
ABP with this modification in order to evaluate the importance of parallelism
feedback itself in adaptive work-stealing.
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