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Abstract
Very recently crowdsourcing has become the de facto platform for distributing and collecting hu-
man computation for a wide range of tasks and applications such as information retrieval, natural
language processing and machine learning. Current crowdsourcing platforms have some limita-
tions in the area of quality control. Most of the effort to ensure good quality has to be done by the
experimenter who has to manage the number of workers needed to reach good results.

We propose a simple model for adaptive quality control in crowdsourced multiple-choice tasks
which we call the bandit survey problem. This model is related to, but technically different from
the well-known multi-armed bandit problem. We present several algorithms for this problem, and
support them with analysis and simulations. Our approach is based in our experience conducting
relevance evaluation for a large commercial search engine.

1. Introduction

In recent years there has been a surge of interest in automated methods for crowdsourcing: a dis-
tributed model for problem-solving and experimentation that involves broadcasting the problem or
parts thereof to multiple independent, relatively inexpensive workers and aggregating their solu-
tions. Automation and optimization of this process at a large scale allows to significantly reduce the
costs associated with setting up, running, and analyzing the experiments. Crowdsourcing is finding
applications across a wide range of domains in information retrieval, natural language processing
and machine learning.

A typical crowdsourcing workload is partitioned into microtasks (also called Human Intelli-
gence Tasks), where each microtask has a specific, simple structure and involves only a small
amount of work. Each worker is presented with multiple microtasks of the same type, to save
time on training. The rigidity and simplicity of the microtasks’ structure ensures consistency across
multiple multitasks and across multiple workers.

An important industrial application of crowdsourcing concerns web search. One specific goal
in this domain is relevance assessment: assessing the relevance of search results. One popular
task design involves presenting a microtask in the form of a query along with the results from the
search engine. The worker has to answer one question about the relevance of the query to the result
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set. Experiments such as these are used to evaluate the performance of a search engine, construct
training sets, and discover queries which require more attention and potential algorithmic tuning.
Stopping / selection issues. The most basic experimental design issue for crowdsourcing is the
stopping issue: determining how many workers the platform should use for a given microtask before
it stops and outputs the aggregate answer. The workers in a crowdsourcing environment are not very
reliable, so multiple workers are usually needed to ensure a sufficient confidence level. There is an
obvious tradeoff here: using more workers naturally increases the confidence of the aggregate result
but it also increases the cost and time associated with the experiment. One fairly common heuristic
is to use less workers if the microtasks seem easy, and more workers if the microtasks seem hard.
However, finding a sweet-spot may be challenging, especially if different microtasks have different
degrees of difficulty.

Whenever one can distinguish between workers, we have a more nuanced selection issue: which
workers to choose for a given microtask? The workers typically come from a large, loosely managed
population. Accordingly, the skill levels vary over the population, and are often hard to predict in
advance. Further, the relative skill levels among workers may depend significantly on a particular
microtask or type of microtasks. Despite this uncertainty, it is essential to choose workers that
are suitable or cost-efficient for the micro-task at hand, to the degree of granularity allowed by
the crowdsourcing platform. For example, while targeting individual workers may be infeasible,
one may be able to select some of the workers’ attributes such as age range, gender, country, or
education level. Also, the crowdsourcing platform may give access to multiple third-party providers
of workers, and allow to select among those.
Our focus. This paper is concerned with a combination of the stopping / selection issues discussed
above. We seek a clean setting so as to understand these issues at a more fundamental level.

We focus on the scenario where several different populations of workers are available and can
be targeted by the algorithm. As explained above, these populations may correspond to different
selections of workers’ attributes, or to multiple available third-party providers. We will refer to such
populations as crowds. We assume that the quality of each crowd depends on a particular microtask,
and is not known in advance.

Each microtask is processed by an online algorithm which can adaptively decide which crowd
to ask next. Informally, the goal is target the crowds that are most suitable for this microtask.
Eventually the algorithm must stop and output the aggregate answer.

This paper focuses on processing a single microtask. This allows us to simplify the setting: we
do not need to model how the latent quantities are correlated across different microtasks, and how
the decisions and feedbacks for different microtasks are interleaved over time. Further, we separate
the issue of learning the latent quality of a crowd for a given microtask from the issue of learning
the (different but correlated) quality parameters of this crowd across multiple microtasks.
Our model: the bandit survey problem. We consider microtasks that are multiple-choice ques-
tions: one is given a set O of possible answers, henceforth called options. We allow more than
two options. (In fact, we find this case to be much more difficult than the case of only two op-
tions.) Informally, the microtask has a unique correct answer x∗ ∈ O, and the high-level goal of the
algorithm is to find it.
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The algorithm has access to several crowds: populations of workers. Each crowd i is represented
by a distribution Di over O, called the response distribution for i. We assume that all crowds agree
on the correct answer:1 some option x∗ ∈ O is the unique most probable option for each Di.

In each round t, the algorithm picks some crowd i = it and receives an independent sample
from the corresponding response distribution Di. Eventually the algorithm must stop and output
its guess for x∗. Each crowd i has a known per-round cost ci. The algorithm has two objectives
to minimize: the total cost

∑
t cit and the error rate: the probability that it makes a mistake, i.e.

outputs an option other than x∗. There are several ways to trade off these two objectives; we discuss
this issue in more detail later in this section.

The independent sample in the above model abstracts the following interaction between the
algorithm and the platform: the platform supplies a worker from the chosen crowd, the algorithm
presents the microtask to this worker, and the worker picks some option.

Alternative interpretation. The crowds can correspond not to different populations of workers
but to different ways of presenting the same microtask. For example, one could vary the instructions,
the order in which the options are presented, the fonts and the styles, and the accompanying images.

The name of the game. Our model is similar to the extensively studied multi-armed bandit prob-
lem (henceforth, MAB) in that in each round an algorithm selects one alternative from a fixed and
known set of available alternatives, and the feedback depends on the chosen alternative. However,
while an MAB algorithm collects rewards, an algorithm in our model collects a survey of workers’
opinions. Hence we name our model the bandit survey problem.
Discussion of the model. The bandit survey problem belongs to a broad class of online decision
problems with explore-exploit tradeoff: that is, the algorithm faces a tradeoff between collecting
information (exploration) and taking advantage of the information gathered so far (exploitation).
The paradigmatic problem in this class is MAB: in each round an algorithm picks one alternative
(arm) from a given set of arms, and receives a randomized, time-dependent reward associated with
this arm; the goal is to maximize the total reward over time. Most papers on explore-exploit tradeoff
concern MAB and its variants.

The bandit survey problem is different from MAB in several key respects. First, the feedback is
different: the feedback in MAB is the reward for the chosen alternative, whereas in our setting the
feedback is the opinion of a worker from the chosen crowd. While the information received by a
bandit survey algorithm can be interpreted as a “reward”, the value of such reward is not revealed
to the algorithm and moreover not explicitly defined. Second, the algorithm’s goal is different: the
goal in MAB is to maximize the total reward over time, whereas the goal in our setting is to output
the correct answer. Third, in our setting there are two types of “alternatives”: crowds and options
in the microtask. Apart from repeatedly selecting between the crowds, a bandit survey algorithm
needs to output one option: the aggregate answer for the microtask.

An interesting feature of the bandit survey problem is that an algorithm for this problem consists
of two components: a crowd-selection algorithm – an online algorithm that decides which crowd
to ask next, and a stopping rule which decides whether to stop in a given round and which option
to output as the aggregate answer. These two components are, to a large extent, independent from
one another: as long as they do not explicitly communicate with one another (or otherwise share a
common communication protocol) any crowd-selection algorithm can be used in conjunction with

1. Otherwise the algorithm’s high-level goal is less clear. We chose to avoid this complication in the current version.
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any stopping rule.2 The conceptual separation of a bandit survey algorithm into the two components
is akin to one in Mechanism Design, where it is very useful to separate a “mechanism” into an
“allocation algorithm” and a “payment rule”, even though the two components are not entirely
independent of one another.
Trading off the total cost and the error rate. In the bandit survey problem, an algorithm needs to
trade off the two objectives: the total cost and the error rate. In a typical application, the customer is
willing to tolerate a certain error rate, and wishes to minimize the total cost as long as the error rate
is below this threshold. However, as the error rate depends on the problem instance, there are several
ways to make this formal. Indeed, one could consider the worst-case error rate (the maximum over
all problem instances), a typical error rate (the expectation over a given “typical” distribution over
problem instance), or a more nuanced notion such as the maximum over a given family of “typical”
distributions. Note that the “worst-case” guarantees may be overly pessimistic, whereas considering
“typical” distributions makes sense only if one knows what these distributions are.

For our theoretical guarantees, we focus on the worst-case error rate, and use the bi-criteria
objective, a standard approach from theoretical computer science literature: we allow some slack on
one objective, and compare on another. In our case, we allow slack on the worst-case error rate, and
compare on the expected total cost. More precisely: we consider a benchmark with some worst-case
error rate δ > 0 and optimal total cost given this δ, allow our algorithm to have worst-case error rate
which is (slightly) larger than δ, and compare its expected total cost to that of the benchmark.

Moreover, we obtain provable guarantees in terms of a different, problem-specific objective:
use the same stopping rule, compare on the expected total cost. We believe that such results are
well-motivated by the structure of the problem, and provide a more informative way to compare
crowd-selection algorithms.

In our experiments, we fix the per-instance error rate, and compare on the expected total cost.
An alternative objective is to assign a monetary penalty to a mistake, and optimize the overall

cost, i.e. the cost of labor minus the penalty. However, it may be exceedingly difficult for a customer
to assign such monetary penalty,3 whereas it is typically feasible to specify tolerable error rates.
While we think this alternative is worth studying, we chose not to follow it in this paper.
Our approach: independent design. Our approach is to design crowd-selection algorithms and
stopping rules independently from one another. We make this design choice in order to make the
overall algorithm design task more tractable. While this is not the only possible design choice, we
find it productive, as it leads to a solid theoretical framework and algorithms that are practical and
theoretically founded.

Given this “independent design” approach, one needs to define the design goals for each of
the two components. These goals are not immediately obvious. Indeed, two stopping rules may
compare differently depending on the problem instance and the crowd-selection algorithms they
are used with. Likewise, two crowd-selection algorithms may compare differently depending on
the problem instance and the stopping rules they are used with. Therefore the notions of optimal
stopping rule and optimal crowd-selection algorithm are not immediately well-defined.

We resolve this conundrum as follows. We design crowd-selection algorithms that work well
across a wide range of stopping rules. For a fair comparison between crowd-selection algorithms,

2. The no-communication choice is quite reasonable: in fact, it can be complicated to design a reasonable bandit survey
algorithm that requires explicit communication between the crowd-selection algorithm and a stopping rule.

3. In particular, this was the case in the authors’ collaboration with a commercial crowdsourcing platform.
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we use them with the same stopping rule (see Section 3 for details), and argue that such comparison
is consistent across different stopping rules.
Our contributions. We introduce the bandit survey problem and present initial results in several
directions: benchmarks, algorithms, theoretical analysis, and experiments.

We are mainly concerned with the design of crowd-selection algorithms. Our crowd-selection
algorithms work with arbitrary stopping rules. While we provide a specific (and quite reasonable)
family of stopping rules for concreteness, third-party stopping rules can be easily plugged in.

For the theoretical analysis of crowd-selection algorithms, we use a standard benchmark: the
best time-invariant policy given all the latent information. The literature on online decision problems
typically studies a deterministic version of this benchmark: the best fixed alternative (in our case, the
best fixed crowd). We call it the deterministic benchmark. We also consider a randomized version,
whereby an alternative (crowd) is selected independently from the same distribution in each round;
we call it the randomized benchmark. The technical definition of the benchmarks, as discussed in
Section 3, roughly corresponds to equalizing the worst-case error rates and comparing costs.

The specific contributions are as follows.
(1) We largely solve the bandit survey problem as far as the deterministic benchmark is con-

cerned. We design two crowd-selection algorithms, obtain strong provable guarantees, and show
that they perform well in experiments.

Our provable guarantees are as follows. If our crowd-selection algorithm uses the same stopping
rule as the benchmark, we match the expected total cost of the deterministic benchmark up to a
small additive factor, assuming that all crowds have the same per-round costs. This result holds,
essentially, for an arbitrary stopping rule. We obtain a similar, but slightly weaker result if crowds
can have different per-round costs. Moreover, we can restate this as a bi-criteria result, in which we
incur a small additive increase in the expected total cost and (1 + k) multiplicative increase in the
worst-case error rate, where k is the number of crowds. The contribution in these results is mostly
conceptual rather than technical: it involves “independent design” as discussed above, and a “virtual
rewards” technique which allows us to take advantage of the MAB machinery.

For comparison, we consider a naive crowd-selection algorithm that tries each crowd in a round-
robin fashion. We prove that this algorithm, and more generally any crowd-selection algorithm that
does not adapt to the observed workers’ responses, performs very badly against the deterministic
benchmark. While one expects this on an intuitive level, the corresponding mathematical statement
is not easy to prove. In experiments, our proposed crowd-selection algorithms perform much better
than the naive approach.

(2) We observe that the randomized benchmark dramatically outperforms the deterministic
benchmark on some problem instances. This is a very unusual property for an online decision
problem.4 (However, the two benchmarks coincide when there are only two possible answers.)

We design an algorithm which significantly improves over the expected total cost of the deter-
ministic benchmark on some problem instances (while not quite reaching the randomized bench-
mark), when both our algorithm and the benchmarks are run with the same stopping rule. This
appears to be the first published result in the literature on online decision problems where an algo-
rithm provably improves over the deterministic benchmark.

4. We are aware of only one published example of an online decision problem with this property, in a very different
context of dynamic pricing (Babaioff et al., 2012). However, the results in (Babaioff et al., 2012) focus on a special
case where the two benchmarks essentially coincide.
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We can aslo restate this result in terms of the bi-criteria objective. Then we suffer a (1 + k)
multiplicative increase in the worst-case error rate.

(3) We provide a specific stopping rule for concreteness; this stopping rule is simple, tunable,
has nearly optimal theoretical guarantees (in a certain formal sense), and works well in experiments.
Preliminaries and notation. There are k crowds and n options (possible answers to the microtask).
O denotes the set of all options. An important special case is uniform costs: all ci are equal; then
the total cost is simply the stopping time.

Fix round t in the execution of a bandit survey algorithm. Let Ni,t be the number of rounds
before t in which crowd i has been chosen by the algorithm. Among these rounds, letNi,t(x) be the
number of times a given option x ∈ O has been chosen by this crowd. The empirical distribution
D̂i,t for crowd i is given by D̂i,t(x) = Ni,t(x)/Ni,t for each option x. We use D̂i,t to approximate
the (latent) response distribution Di.

Define the gap ε(D) of a finite-support probability distribution D as the difference between the
largest and the second-largest probability values in D. If there are only two options (n = 2), the
gap of a distribution over O is simply the bias towards the correct answer. Let εi = ε(Di) and
ε̂i,t = ε(D̂i,t) be, respectively, the gap and the empirical gap of crowd i.

We will use vector notation over crowds: the cost vector ~c = (c1 , . . . , ck), the gap vector
~ε = (ε1 , . . . , εk), and the response vector ~D(x) = (D1(x) , . . . ,Dk(x)) for each option x ∈ O.
Map of the paper. The rest of the paper is organized as follows. As a warm-up and a foundation,
we consider stopping rules for a single crowd (Section 2). Benchmarks are formally defined in
Section 3. Design of crowd-selection algorithms with respect to the deterministic benchmark is
treated in Section 4. We further discuss the randomized benchmark, and design an algorithm for it,
in Section 5. We discuss open questions in Section 6.

Due to space limitations, much of the material is presented in the appendices. Related work is
treated in Appendix A. Our experimental results are presented in Appendix C (for a single crowd),
and Appendix D (for selection over multiple crowds). Our results in terms of the bi-criteria objective
are in Appendix B.

Most proofs are moved to appendices. Out of those, the most significant ones are the lower
bound for non-adaptive crowd-selection (Appendix G), and the analysis of the algorithm that com-
petes against the randomized benchmark (Appendix I).

2. A warm-up: single-crowd stopping rules

Consider a special case with only one crowd to choose from. It is clear that whenever a bandit
survey algorithm decides to stop, it should output the most frequent option in the sample. Therefore
the algorithm reduces to what we call a single-crowd stopping rule: an online algorithm which
in every round inputs an option x ∈ O and decides whether to stop. When multiple crowds are
available, a single-crowd stopping rule can be applied to each crowd separately. This discussion
of the single-crowd stopping rules, together with the notation and tools that we introduce along the
way, forms a foundation for the rest of the paper.

A single-crowd stopping rule is characterized by two quantities that are to be minimized: the
expected stopping time and the error rate: the probability that once the rule decides to stop, the most
frequent option in the sample is not x∗. Note that both quantities depend on the problem instance.
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A simple single-crowd stopping rule. We suggest the following single-crowd stopping rule:

Stop if ε̂i,tNi,t > Cqty

√
Ni,t. (1)

Here i is the crowd the stopping rule is applied to, andCqty is the quality parameter which indirectly
controls the tradeoff between the error rate and the expected stopping time. Specifically, increasing
Cqty decreases the error rate and increases the expected stopping time. If there are only two options,
call them x and y, then the left-hand side of the stopping rule is simply |Ni,t(x)−Ni,t(y)|.

The right-hand side of the stopping rule is a confidence term, which should be large enough to
guarantee the desired confidence level. The

√
Ni,t is there because the standard deviation of the

Binomial distribution with N samples is proportional to
√
N .

In our experiments, we use a “smooth” version of this stopping rule: we randomly round the
confidence term to one of the two nearest integers. In particular, the smooth version is meaningful
even withCqty < 1 (whereas the deterministic version withCqty < 1 always stops after one round).
Analysis. We argue that the proposed single-crowd stopping rule is quite reasonable. To this end, we
obtain a provable guarantee on the tradeoff between the expected stopping time and the worst-case
error rate. Further, we prove that this guarantee is nearly optimal across all single-crowd stopping
rules. Both results above are in terms of the gap of the crowd that the stopping rule interacts with.
We conclude that the gap is a crucial parameter for the bandit survey problem.

Theorem 1 Consider the stopping rule (1) with Cqty = log1/2(nδ N
2
i,t), for some δ > 0. The error

rate of this stopping rule is at mostO(δ), and the expected stopping time is at mostO( ε−2
i log n

δεi
).

The proof of Theorem 1, and other proofs in the paper, rely on the Azuma-Hoeffding inequality.
See Appendix E for details on Azuma-Hoeffding and the proof of Theorem 1.

The following lower bound easily follows from classical results on coin-tossing. Essentially,
one needs at least Ω(ε−2) samples from a crowd with gap ε > 0 to obtain the correct answer.

Theorem 2 Let R0 be any single-crowd stopping rule with worst-case error rate less than δ. When
applied to a crowd with gap ε > 0, the expected stopping time of R0 is at least Ω(ε−2 log 1

δ ).

While the upper bound in Theorem 1 is close to the lower bound in Theorem 2, it is possible
that one can obtain a more efficient version of Theorem 1 using more sophisticated versions of
Azuma-Hoeffding inequality such as, for example, the Empirical Bernstein Inequality.
Stopping rules for multiple crowds. For multiple crowds, we consider stopping rules that are
composed of multiple instances of a given single-crowd stopping rule R0; we call them composite
stopping rules. Specifically, we have one instance of R0 for each crowd (which only inputs answers
from this crowd), and an additional instance of R0 for the total crowd – the entire population of
workers. The composite stopping rule R stops as soon as some R0 instances stops, and outputs the
majority option for this instance.5 Given a crowd-selection algorithm A, let cost(A|R0) denote
the expected total cost (for a given problem instance) if A is run together with the stopping rule R.

5. Each instance ofR0 uses an independent random seed. If multiple instances ofR0 stop at the same time, the aggregate
answer is chosen uniformly at random among the majority options for the stopped instances.
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3. Omniscient benchmarks for crowd selection

We consider two “omniscient” benchmarks for crowd-selection algorithms: informally, the best
fixed crowd i∗ and the best fixed distribution µ∗ over crowds, where i∗ and µ∗ are chosen given the
latent information: the response distributions of the crowds. Both benchmarks treat all their inputs
as a single data source, and are used in conjunction with a given single-crowd stopping ruleR0 (and
hence depend on the R0).
Deterministic benchmark. Let cost(i|R0) be the expected total cost of always choosing crowd i,
with R0 as the stopping rule. We define the deterministic benchmark as the crowd i that minimizes
cost(i|R0) for a given problem instance. In view of the analysis in Section 2, our intuition is that
cost(i|R0) is approximated by ci/ε2i up to a constant factor (where the factor may depend on R0

but not on the response distribution of the crowd). The exact identity of the best crowd may depend
on R0. For the basic special case of uniform costs and two options (assuming that the expected
stopping time of R0 is non-increasing in the gap), the best crowd is the crowd with the largest gap.
In general, we approximate the best crowd by argmini ci/ε

2
i .

Randomized benchmark. Given a distribution µ over crowds, let cost(µ|R0) be the expected
total cost of a crowd-selection algorithm that in each round chooses a crowd independently from µ,
treats all inputs as a single data source – essentially, a single crowd – and uses R0 as a stopping rule
on this data source. The randomized benchmark is defined as the µ that minimizes cost(µ|R0) for
a given problem instance. This benchmark is further discussed in Section 5.
Comparison against the benchmarks. In the analysis, we compare a given crowd-selection algo-
rithmA against these benchmarks as follows: we useA in conjunction with the composite stopping
rule based onR0, and compare the expected total cost cost(A|R0) against those of the benchmarks.

Moreover, we derive corollaries with respect to the bi-criteria objective, where the benchmarks
choose both the best crowd (resp., best distribution over crowds) and the stopping rule. These
corollaries are further discussed in Appendix B.

4. Crowd selection against the deterministic benchmark

This section is on crowd-selection algorithms that compete with the deterministic benchmark.
Throughout the section, let R0 be a fixed single-parameter stopping rule. Recall that the de-

terministic benchmark is defined as min cost(i|R0), where the minimum is over all crowds i. We
consider arbitrary composite stopping rules based on R0, under a mild assumption that the R0 does
not favor one option over another. Formally, we assume that the probability that R0 stops at any
given round, conditional on any fixed history (sequence of observations that R0 inputs before this
round), does not change if the options are permuted. Then R0 and the corresponding composite
stopping rule are called symmetric. For the case of two options (when the expected stopping time of
R0 depends only on the gap of the crowd that R0 interacts with) we sometimes make another mild
assumption: that the expected stopping time decreases in the gap; we call such R0 gap-decreasing.

4.1. Crowd-selection algorithms

Our crowd-selection algorithms are based on the following idea, which we call the virtual reward
heuristic. For a given problem instance, consider an MAB instance where crowds correspond to
arms, and selecting each crowd i results in reward fi = f(ci/ε

2
i ), for some fixed decreasing function
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f . (Given the discussion in Section 2, we use ci/ε2i as an approximation for cost(i|R0); we can
also plug in a better approximation when and if one is available.) Call fi the virtual reward; note
that it is not directly observed by a bandit survey algorithm, since it depends on the gap εi. However,
various off-the-shelf bandit algorithms can be restated in terms of the estimated rewards, rather than
the actual observed rewards. The idea is to use such bandit algorithms and plug in our own estimates
for the rewards.

A bandit algorithm thus applied would implicitly minimize the number of times suboptimal
crowds are chosen. This is a desirable by-product of the design goal in MAB, which is to maximize
the total (virtual) reward. (Note that we are not directly interested in this design goal.)
Algorithm 1: UCB1with virtual rewards. Our first crowd-selection algorithm is based on UCB1 (Auer
et al., 2002a), a standard MAB algorithm. We use virtual rewards fi = εi/

√
ci.

We observe that UCB1 has a property that at each time t, it only requires an estimate of fi and a
confidence term for this estimate. Motivated by Equation (6), we use ε̂i,t/

√
ci as the estimate for fi,

and C/
√
ciNi,t as the confidence term. The resulting crowd-selection algorithm, called VirtUCB,

proceeds as follows. In each round t it chooses the crowd i which maximizes the index

Ii,t = c
−1/2
i

(
ε̂i,t + C/

√
Ni,t

)
. (2)

For the analysis, we use (2) with C =
√

8 log t. In our experiments, C = 1 appears to perform best.
Algorithm 2: Thompson heuristic. Our second crowd-selection algorithm, called VirtThompson,
is an adaptation of Thompson heuristic (Thompson, 1933) for MAB to virtual rewards fi = εi/

√
ci.

The algorithm proceeds as follows. For each round t and each crowd i, let Pi,t be the Bayesian
posterior distribution for gap εi given the observations from crowd i up to round t (starting from the
uniform prior). Sample ζi independently from Pi,t. Pick the crowd with the largest index ζi/

√
ci.

As in UCB1, the index of crowd i is chosen from the confidence interval for the (virtual) reward of
this crowd, but here it is a random sample from this interval, whereas in UCB1 it is the upper bound.

As it may be difficult to compute the posteriors Pi,t exactly, an approximation can be used.
In our simulations we focus on the case of two options, call them x, y. For each crowd i and
round t, we approximate Pi,t by the Beta distribution with shape parameters α = 1 + Ni,t(x) and
β = 1 + Ni,t(y), where Ni,t(x) ≥ Ni,t(y). (Essentially, we ignore the possibility that x is not
the right answer.) It is not clear how the posterior Pi,t in our problem corresponds to the one in
the original MAB problem, so we cannot directly invoke the analyses of Thompson heuristic for
MAB (Chapelle and Li, 2011; Agrawal and Goyal, 2012).
A straw-man approach. In the literature on MAB, more sophisticated algorithms are often com-
pared to the basic approach: first explore, then exploit. In our context this means to first explore
until we can identify the best crowd, then pick this crowd and exploit. So for the sake of comparison
we also develop a crowd-selection algorithm that is directly based on this approach; see Appendix F
for the details. (This algorithm is not based on the virtual rewards.) In our experiments we find it
vastly inferior to VirtUCB and VirtThompson.

4.2. Analysis: upper bounds

We obtain a lemma that captures the intuition behind the virtual reward heuristic, explaining how it
helps to minimize the selection of suboptimal crowds. Then we derive an upper bound for VirtUCB.
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Lemma 3 Let i∗ = argmini ci/ε
2
i be the approximate best crowd. Let R0 be a symmetric single-

crowd stopping rule. Then for any crowd-selection algorithm A, letting Ni be #times crowd i is
chosen, we have cost(A|R0) ≤ cost(i∗|R0) +

∑
i 6=i∗ ci E[Ni].

This is a non-trivial statement because cost(i∗|R0) refers not to the execution of A, but to a
different execution in which crowd i∗ is always chosen. The proof uses a “coupling argument”.
Proof Let A∗ be the crowd-selection algorithm which corresponds to always choosing crowd i∗.

To compare cost(A|R0) and cost(A∗|R0), let us assume w.l.o.g. that the two algorithms are
run on correlated sources of randomness. Specifically, assume that both algorithms are run on the
same realization of answers for crowd i∗: the `-th time they ask this crowd, both algorithms get the
same answer. Moreover, assume that the instance of R0 that works with crowd i∗ uses the same
random seed for both algorithms.

LetN be the realized stopping time forA∗. ThenAmust stop after crowd i∗ is chosenN times.
It follows that the difference in the realized total costs between A and A∗ is at most

∑
i ciNi. The

claim follows by taking expectation over the randomness in the crowds and in the stopping rule.

Theorem 4 (VirtUCB) Let i∗ = argmini ci/ε
2
i be the approximate best crowd. Let R0 be a sym-

metric single-crowd stopping rule. Assume R0 must stop after at most T rounds. Use VirtUCB

with index defined by (2) with C =
√

8 log t, for each round t. Let Λi = (ci(fi∗ − fi))
−2 and

Λ =
∑

i 6=i∗ Λi. Then

cost(VirtUCB|R0) ≤ cost(i∗|R0) +O(Λ log T ).

Proof Sketch Plugging C =
√

8 log t into Equation (6) and dividing by
√
ci, we obtain the confi-

dence bound for |fi − ε̂i,t/
√
ci| that is needed in the the original analysis of UCB1 in (Auer et al.,

2002a). Then, as per that analysis, it follows that for each crowd i 6= i∗ and each round t we have
E[Ni,t] ≤ Λi log t. (This is also not difficult to derive directly.) To complete the proof, note that
t ≤ T and invoke Lemma 3.

Note that the approximate best crowd i∗ may be different from the (actual) best arm, so the
guarantee in Theorem 4 is only as good as the difference cost(i∗|R0)−argmini cost(i|R0). Note
that i∗ is in fact the best crowd for the basic special case of uniform costs and two options (assuming
that R0 is gap-decreasing).

It is not clear whether the constants Λi can be significantly improved. For uniform costs we
have Λi = (εi∗ − εi)−2, which is essentially the best one could hope for. This is because one needs
to try each crowd i 6= i∗ at least Ω(Λi) times to tell it apart from crowd i∗. 6

6. This can be proved using an easy reduction from an instance of the MAB problem where each arm i brings reward
1 with probability (1 + εi)/2, and reward 0 otherwise. Treat this as an instance of the bandit survey problem, where
arms correspond to crowds, and options to rewards. An algorithm that finds the crowd with a larger gap in less than
Ω(Λi) steps would also find an arm with a larger expected reward, which would violate the corresponding lower
bound for the MAB problem (see (Auer et al., 2002b)).

10
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4.3. Lower bound for non-adaptive crowd selection

Consider an obvious naive approach: iterate through each crowd in a round-robin fashion. More
generally, a non-adaptive crowd-selection algorithm is one where in each round the crowd is sam-
pled from a fixed distribution µ over crowds. The most reasonable version, called RandRR (short for
“randomized round-robin”) is to sample each crowd i with probability µi ∼ 1/ci.7

We argue that non-adaptive crowd-selection algorithms performs badly compared to VirtUCB.
We prove that the competitive ratio of any non-adaptive crowd-selection algorithm is bounded from
below by (essentially) the number of crowds. We contrast this with an upper bound on the compet-
itive ratio of VirtUCB, which we derive from Theorem 4.

Here the competitive ratio of algorithm A (with respect to the deterministic benchmark) is de-
fined as max cost(A|R0)

mini cost(i|R0) , where the outer max is over all problem instances in a given family
of problem instances. We focus on a very simple family: problem instances with two options and
uniform costs, in which one crowd has gap ε > 0 and all other crowds have gap 0; we call such
instances ε-simple. Our result holds for a version of a composite stopping rule that does not use the
total crowd. Note that considering the total crowd does not, intuitively, make sense for the ε-simple
problem instances, and we did not use it in the proof of Theorem 4, either.

Theorem 5 LetR0 be a symmetric single-crowd stopping rule with worst-case error rate ρ. Assume
that the composite stopping rule does not use the total crowd. Consider a non-adaptive crowd-
selection algorithm A whose distribution over crowds is µ. Then for each ε > 0, the competitive
ratio over the ε-simple problem instances with k crowds is at least

∑
i ci µi

mini ci µi
(1− 2kρ).

Note that min
∑

i ci µi
mini ci µi

= k, where the min is taken over all distributions µ. The minimizing µ
satisfies µi ∼ 1/ci for each crowd i, i.e. if µ corresponds to RandRR.

The proof of Theorem 5 is in Appendix G. Essentially, we need to compare the stopping time
of the composite stopping rule R with the stopping time of the instance of R0 that works with the
gap-ε crowd. The main technical difficulty is to show that the other crowds are not likely to force
R to stop before this R0 instance does. The (1 − 2kρ) factor could be an artifact of our somewhat
crude method to bound the “contribution” of the gap-0 crowds. We conjecture that this factor is
unnecessary (perhaps under some minor assumptions on R0).
Competitive ratio of VirtUCB. Consider the case of two options and uniform costs. Then (as-
suming R0 is gap-decreasing) the approximate best crowd i∗ in Theorem 4 is the best crowd. The
competitive ratio of VirtUCB is, in the notation of Theorem 4, at most 1 + O(Λ log T )

cost(i∗|R0) . This factor is
close to 1 when R0 is tuned so as to decrease the error rate at the expense of increasing the expected
running time.

5. Crowd selection against the randomized benchmark

In this section we further discuss the randomized benchmark for crowd-selection algorithms, as de-
fined in Section 3. The total crowd under a given µ behaves as a single crowd whose response dis-
tribution Dµ is given by Dµ(x) = Ei∼µ[Di(x)] for all options x. The gap of Dµ will henceforth be
called the induced gap of µ, and denoted f(µ) = ε(Dµ). If the costs are uniform then cost(µ|R0)

7. For uniform costs it is natural to use a uniform distribution for µ. For non-uniform costs our choice is motivated by
Theorem 5, where it (approximately) minimizes the competitive ratio.

11
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is simply the expected stopping time of R0 on Dµ, which we denote τ(Dµ). Informally, τ(Dµ) is
driven by the induced gap of µ.

We show that the induced gap can be much larger than the gap of any crowd.

Lemma 6 Let µ be the uniform distribution over crowds. For any ε > 0 there exists a problem
instance such that the gap of each crowd is ε, and the induced gap of µ is at least 1

10 .

To prove Lemma 6, consider the following problem instance: there are two crowds and three
options, and the response distributions are (2

5 + ε, 2
5 ,

1
5 − ε) and (2

5 + ε, 1
5 − ε,

2
5). This problem

instance the induced distribution is Dµ = (2
5 + ε, 3

10 −
ε
2 ,

3
10 −

ε
2).

We conclude that the randomized benchmark does not reduce to the deterministic benchmark:
in fact, it can be much stronger. Formally, this follows from Lemma 6 under a very mild assumption
on R0: that for any response distribution D with gap 1

10 or more, and any response distribution
D′ whose gap is sufficiently small, it holds that τ(D) � τ(D′). The implication for the design
of crowd-selection algorithms is that algorithms that zoom in on the best crowd may be drastically
suboptimal; for some problem instances the right goal is to optimize over distributions over crowds.

However, the randomized benchmark coincides with the deterministic benchmark for some im-
portant special cases. First, the two benchmarks coincide if the costs are uniform and all crowds
agree on the top two options (andR0 is gap-decreasing). Second, the two benchmarks may coincide
if there are only two options (|O| = 2), see Lemma 7 below. To prove this lemma for non-uniform
costs, one needs to explicitly consider cost(µ|R0) rather than just argue about the induced gaps.
Our proof assumes that the expected stopping time of R0 is a concave function of the gap; it is not
clear whether this assumption is necessary. The proof can be found in Appendix H.

Lemma 7 Consider the bandit survey problem with two options (|O| = 2). Consider a symmetric
single-crowd stopping rule R0. Assume that the expected stopping time of R0 on response dis-
tribution D is a concave function of ε(D). Then the randomized benchmark coincides with the
deterministic benchmark: cost(µ|R0) ≥ mini cost(i|R0) for any distribution µ over crowds.

A crowd-selection algorithm. We design a crowd-selection algorithm with guarantees against the
randomized benchmark. We use (a version of) the single-crowd stopping rule R0 from Section 2.
The stopping rule is parameterized by the “quality parameter” Cqty and the time horizon T . Letting
ε̂∗,t be the empirical gap of the total crowd, R0 stops upon reaching round t if and only if

ε̂∗,t > Cqty/
√
t or t = T. (3)

LetM be the set of all distributions over crowds, and let f∗ = maxµ∈M f(µ) be the maximal
induced gap. The benchmark cost is then at least Ω((f∗)−2).

Theorem 8 Consider the bandit survey problem with uniform costs. There exists a crowd-selection
algorithm A such that cost(A|R0) ≤ O( (f∗)−(k+2)

√
log T ).

We interpret this guarantee as follows: we match the benchmark cost for a distribution over
crowds whose induced gap is (f∗)2/(k+2). By Lemma 6, the gap of the best crowd may be much
smaller, so this is can be a significant improvement over the deterministic benchmark. The algorithm
and the analysis are discussed in detail in Appendix I.
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6. Open questions

The bandit survey problem. The main open questions concern crowd-selection algorithms for
the randomized benchmark. First, we do not know how to handle non-uniform costs. Second,
we conjecture that our algorithm for uniform costs can be significantly improved. Moreover, it is
desirable to combine guarantees against the randomized benchmark with (better) guarantees against
the deterministic benchmark.

Our results prompt several other open questions. First, while we obtain strong provable guaran-
tees for VirtUCB, it is desirable to extend these or similar guarantees to VirtThompson, since this
algorithm performs best in the experiments. Second, is it possible to significantly improve over the
composite stopping rules? Third, is it advantageous to forego our ”independent design” approach
and design the crowd-selection algorithms jointly with the stopping rules?
Extended models. It is tempting to extend our model in several directions listed below. First,
while in our model the gap of each crowd does not change over time, it is natural to study settings
with bounded or “adversarial” change; one could hope to take advantage of the tools developed for
the corresponding versions of MAB. Second, as discussed in the introduction, an alternative model
worth studying is to assign a monetary penalty to a mistake, and optimize the overall cost (i.e., cost
of labor minus penalty). Third, one can combine the bandit survey problem with learning across
multiple related microtasks.
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Appendix A. Related work

For general background on crowdsourcing and human computation, refer to Law and von Ahn
(2011). Most of the work on crowdsourcing is usually done using platforms like Amazon Mechan-
ical Turk or CrowdFlower. Results using those platforms have shown that majority voting is a
good approach to achieve quality (Snow et al., 2008). Get Another Label (Sheng et al., 2008) ex-
plores adaptive schemes for the single-crowd case under Baysian assumptions (while our focus is
on multiple-crowds and regret under non-Bayesian uncertainty). A study on machine translation
quality uses preference voting for combining ranked judgments (Callison-Burch, 2009). Vox Pop-
uli (Dekel and Shamir, 2009) suggests to prune low quality workers, however their approach is not
adaptive and their analysis does not provide regret bounds (while our focus is on adaptively choos-
ing which crowds to exploit and obtaining regret bounds against an optimal algorithm that knows
the quality of each crowd). Budget-Optimal Task Allocation (Karger et al., 2011) focuses on a non-
adaptive solution to the task allocation problem given a prior distribution on both tasks and judges
(while we focus adaptive solutions and do not assume priors on judges or tasks). From a method-
ology perspective, CrowdSynth focuses on addressing consensus tasks by leveraging supervised
learning (Kamar et al., 2012). Adding a crowdsourcing layer as part of a computation engine is a
very recent line of research. An example is CrowdDB, a system for crowdsourcing which includes
human computation for processing queries (Franklin et al., 2011). CrowdDB offers basic quality
control features, but we expect adoption of more advanced techniques as those systems become
more available within the community.

Multi-armed bandits (MAB) have a rich literature in Statistics, Operations Research, Computer
Science and Economics. A proper discussion of this literature is beyond our scope; see (Cesa-
Bianchi and Lugosi, 2006) for background. Most relevant to our setting is the work on prior-free
MAB with stochastic rewards: (Lai and Robbins, 1985; Auer et al., 2002a) and the follow-up work,
and Thompson heuristic (Thompson, 1933). Recent work on Thompson heuristic includes (Graepel
et al., 2010; L.Scott, 2010; Chapelle and Li, 2011; Agrawal and Goyal, 2012).

Our setting is superficially similar to budgeted MAB, a version of MAB where the goal is to find
the best arm after a fixed period of exploration (e.g., (Mannor and Tsitsiklis, 2004; Bubeck et al.,
2011)). Likewise, there is some similarity with the work on budgeted active learning (e.g. (Lizotte
et al., 2003; Madani et al., 2004; Kaplan et al., 2005)), where an algorithm repeatedly chooses
instances and receives correct labels for these instances, with a goal to eventually output the correct
hypothesis. The difference is that in the bandit survey problem, an algorithm repeatedly chooses
among crowds, whereas in the end the goal is to pick the correct option; moreover, the true “reward”
or “label” for each chosen crowd is not revealed to the algorithm and is not even well-defined.

Settings similar to stopping rules for a single crowd (but with somewhat different technical
objectives) were considered in prior work, e.g. Bechhofer et al. (1959), Jr. and Alam (1979),
Bechhofer and Goldsman (1985), Dagum et al. (2000), Mnih et al. (2008).

In a very recent concurrent and independent work, (Ho and Vaughan, 2012; Ho et al., 2013;
Chen et al., 2013; Tran-Thanh et al., 2013) studied related, but technically incomparable settings.
The first three papers consider adaptive task assignment with multiple tasks and a budget constraint
on the total number or total cost of the workers. In (Ho and Vaughan, 2012; Ho et al., 2013) workers
arrive over time, and the algorithm selects which tasks to assign. In (Chen et al., 2013), in each
round the algorithm chooses a worker and a task, and Bayesian priors are available for the difficulty
of each task and the skill level of each worker (whereas our setting is prior-independent). Finally,
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Tran-Thanh et al. (2013) studies a non-adaptive task assignment problem where the algorithm needs
to distribute a given budget across multiple tasks with known per-worker costs.

Appendix B. The bi-criteria objective

In this section we state our results with respect to the bi-criteria objective, for both deterministic and
randomized benchmarks. Recall that our bi-criteria objective focuses on the worst-case error rates.

We only consider the case of uniform costs. Let k ≥ 2 be the number of crowds.
Worst-case error rates. Let R0 be a single-crowd stopping rule. Let error(R0) be the worst-case
error rate of R0, taken over all single-crowd instances (i.e., all values of the gap).

Let R be the composite stopping rule based on R0. Let (A, R0) denote the bandit survey al-
gorithm in which a crowd-selection algorithm A is used together with the stopping rule R. Let
error(A|R0) be the worst-case error rate of (A, R0), over all problem instances. Then

error(A|R0) ≤ (k + 1) error(R0). (4)

Note that the worst-case error rate of benchmark is simply error(R0). (It is achieved on a
problem instance in which all crowds have gap which maximizes the error rate of R0.) Thus, using
the same R0 roughly equalizes the worst-case error rate between A and the benchmarks.
Absolute benchmarks. We consider benchmarks in which both the best crowd (resp., the best
distribution over crowds) and the stopping rule are chosen by the benchmark. Thus, the benchmark
cost is not relative to any particular single-crowd stopping rule. We call such benchmarks absolute.

Let T (ρ) be the smallest time horizon T for which the single-crowd stopping rule in Equation (3)
achieves error(R0) ≤ ρ. Fix error rate ρ > 0 and time horizon T ≥ T (ρ). We focus on symmetric,
gap-decreasing single-crowd stopping rules R0 such that error(R0) ≤ ρ and R0 must stop after T
rounds; letR(ρ, T ) be the family of all such stopping rules.

Fix a problem instance. Let i∗ be the crowd with the largest bias, and let µ∗ be the distribution
over crowds with the largest induced bias. The absolute deterministic benchmark (with error rate ρ
and time horizon T ≥ T (ρ)) is defined as

bench(i∗, ρ, T ) = min
R0∈R(ρ,T )

cost(i∗|R0).

Likewise, the absolute randomized benchmark is defined as

bench(µ∗, ρ, T ) = min
R0∈R(ρ,T )

cost(µ∗|R0).

Theorem 9 (bi-criteria results) Consider the bandit survey problem with k crowds and uniform
costs. Fix error rate ρ > 0 and time horizon T ≥ T (ρ). Then:

(a) Deterministic benchmark. There exists a bandit survey algorithm (A, R0) such that

cost(A|R0) ≤ bench(i∗, ρ, T ) +O(Λ log T ), where Λ =
∑

i 6=i∗ (εi∗ − εi)−2 ,

error(A|R0) ≤ (k + 1) ρ.
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(b) Randomized benchmark. There exists a bandit survey algorithm (A, R0) such that

cost(A|R0) ≤ O(log T log 1
ρ) (bench(µ∗, ρ, T ))1+k/2

error(A|R0) ≤ (k + 1) ρ.

Proof Sketch For part (a), we use the version of VirtUCB as in Theorem 4, with the single-crowd
stopping rule R0 from the absolute deterministic benchmark. The upper bound on cost(A|R0)
follows from Theorem 4. The upper bound on error(A|R0) follows from Equation (4).

For part (b), we use the algorithm from Theorem 8, together with the stopping rule given by
Equation (3). The stopping rule has time horizon T ; the quality parameter Cqty is tuned so that
the worst-case error rate matches that in the absolute randomized benchmark. The upper bound on
cost(A|R0) follows from Theorem 8, and the upper and lower bounds in Section 2. The upper
bound on error(A|R0) follows from Equation (4).

A lower bound on the error rate. Fix a single-crowd stopping ruleR0 with ρ = error(R0), and a
crowd-selection algorithm A. To complement Equation (4), we conjecture that error(A|R0) ≥ ρ.
We prove a slightly weaker result: essentially, if the composite stopping rule does not use the total
crowd, then error(A|R0) ≥ ρ (1− 2kρ).

We will need a mild assumption onA: essentially, that it never commits to stop using any given
crowd. Formally, A is called non-committing if for every problem instance, each time t, and every
crowd i, it will choose crowd i at some time after t with probability one. (Here we consider a run
of A that continues indefinitely, without being stopped by the stopping rule.)

Lemma 10 Let R0 be a symmetric single-crowd stopping rule with worst-case error rate ρ. Let A
be a non-committing crowd-selection algorithm, and let R be the composite stopping rule based on
R0 which does not use the total crowd. IfA is used in conjunction with R, the worst-case error rate
is at least ρ (1− 2kρ), where k is the number of crowds.

Proof Suppose R0 attains the worst-case error rate for a crowd with gap ε. Consider the problem
instance in which one crowd (say, crowd 1) has gap ε and all other crowds have gap 0. Let R(i) be
the instance ofR0 that takes inputs from crowd i, for each i. LetE be the event that eachR(i), i > 1
does not ever stop. Let E′ be the event that R(1) stops and makes a mistake. These two events are
independent, so the error rate of R is at least Pr[E] Pr[E′]. By the choice of the problem instance,
Pr[E′] = ρ. And by Lemma 13, Pr[E] ≥ 1 − 2kρ. It follows that the error rate of R is at least
ρ (1− 2kρ).

Appendix C. Experimental results: single crowd

We conduct two experiments. First, we analyze real-life workloads to find which gaps are typical for
response distributions that arise in practice. Second, to study the performance of the single-crowd
stopping rule suggested in Section 2, using a large-scale simulation with a realistic distribution of
gaps. We are mainly interested in the tradeoff between the error rate and the expected stopping time.
We find that this tradeoff is acceptable in practice.
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Typical gaps in real-life workloads. We analyze several batches of microtasks extracted from
a commercial crowdsourcing platform (approx. 3000 microtasks total). Each batch consists of
microtasks of the same type, with the same instructions for the workers. Most microtasks are related
to relevance assessments for a web search engine. Each microtask was given to at least 50 judges
coming from the same “crowd”.

In every batch, the empirical gaps of the microtasks are very close to being uniformly distributed
over the range. A practical take-away is that assuming a Bayesian prior on the gap would not be
very helpful, which justifies and motivates our modeling choice not to assume Bayesian priors. In
Figure 1, we provide CDF plots for two of the batches; the plots for the other batches are similar.

(a) 0 50 100

0

0.5

1

R2 = 0.9215

(b) 0 200 400 600

0

0.5

1

R2 = 0.9433

Figure 1: CDF for the empirical gap in real-life workloads.
Sub figure (a): 128 microtasks, 2 options each.
Sub figure (b): 604 microtasks, variable #options.

Our single-crowd stopping rule on simulated workloads. We study the performance of the single-
crowd stopping rule suggested in Section 2. Our simulated workload consists of 10,000 microtasks
with two options each. For each microtask, the gap is is chosen independently and uniformly at ran-
dom in the range [0.05, 1]. This distribution of gaps is realistic according to the previous experiment.
(Since there are only two options the gap fully describes the response distribution.)

We vary the parameter Cqty and for each Cqty we measure the average total cost (i.e., the
stopping time averaged over all microtasks) and the error rate. The results are reported in Figure 2.
In particular, for this workload, an error rate of < 5% can be obtained with an average of < 8
workers per microtask.

Our stopping rule adapts to the gap of the microtask: it uses only a few workers for easy mi-
crotasks (ones with a large gap), and more workers for harder microtasks (those with a small gap).
In particular, we find that our stopping rule requires significantly smaller number of workers than
a non-adaptive stopping rule: one that always uses the same number of workers while ensuring a
desired error rate.

Appendix D. Experimental results: crowd-selection algorithms

We study the experimental performance of the various crowd-selection algorithms discussed in Sec-
tion 4. Specifically, we consider algorithms VirtUCB and VirtThompson, and compare them to
our straw-man solutions: ExploreExploitRollback and RandRR.8 Our goal is both to com-

8. In the plots, we use shorter names for the algorithms: respectively, VR UCB, VR Thompson, EER, and RR.
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Figure 2: Our single-crowd stopping rule on the synthetic workload.
Sub figure (a): Average cost vs. error rate.
Sub figure (b): Average cost vs. Cqty.
Sub figure (c): Average error rate vs. Cqty.

pare the different algorithms and to show that the associated costs are practical. We find that
ExploreExploitRollback consistently outperforms RandRR for very small error rates, VirtUCB
significantly outperforms both across all error rates, and VirtThompson significantly outperforms
all three.

We use all crowd-selection algorithms in conjunction with the composite stopping rule based
on the single-crowd stopping rule proposed Section 2. Recall that the stopping rule has a “quality
parameter” Cqty which implicitly controls the tradeoff between the error rate and the expected
stopping time.

We use three simulated workloads. All three workloads consist of microtasks with two options,
three crowds, and unit costs. In the first workload, which we call the easy workload, the crowds have
gaps (0.3, 0, 0). That is, one crowd has gap 0.3 (so it returns the correct answer with probability
0.8), and the remaining two crowds have gap 0 (so they provide no useful information). This is
a relatively easy workload for our crowd-selection algorithms because the best crowd has a much
larger gap than the other crowds, which makes the best crowd easier to identify. In the second
workload, called the medium workload, crowds have gaps (0.3, 0.1, 0.1), and in the third workload,
called the hard workload, the crowds have gaps (0.3, 0.2, 0.2). The third workload is hard(er) for
the crowd-selection algorithms in the sense that the best crowd is hard(er) to identify, because its
gap is not much larger than the gap of the other crowds. The order that the crowds are presented to
the algorithms is randomized for each instance, but is kept the same across the different algorithms.
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The quality of an algorithm is measured by the tradeoff between its average total cost and its
error rate. To study this tradeoff, we vary the quality parameter Cqty to obtain (essentially) any
desired error rate. We compare the different algorithms by reporting the average total cost of each
algorithm (over 20,000 runs with the same quality parameter) for a range of error rates. Specifically,
for each error rate we report the average cost of each algorithm normalized to the average cost of the
naive algorithm RandRR (for the same error rate). See Figure 3 for the main plot: the average cost
vs. error rate plots for all three workloads. Additional results, reported in Figure 4 (see page 22)
show the raw average total costs and error rates for the range of values of the quality parameter
Cqty.
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Figure 3: Crowd-selection algorithms: error rate vs. average total cost (relative to RandRR).
Sub-figure (a): Easy: gaps (.3, 0, 0).
Sub-figure (b): Medium: gaps (.3, .1, .1).
Sub-figure (c): Hard: gaps (.3, .2, .2).

For VirtUCB we tested different parameter values for the parameter C which balances between
exploration and exploitation. We obtained the best results for a range of workloads for C = 1 and
this is the value we use in all the experiments. For VirtThompson we start with a uniform prior on
each crowd.
Results and discussion. For the easy workload the cost of VirtUCB is about 60% to 70% of
the cost of RandRR. VirtThompson is significantly better, with a cost of about 40% the cost of
RandRR. For the medium workload the cost of VirtUCB is about 80% to 90% of the cost of RandRR.
VirtThompson is significantly better, with a cost of about 70% the cost of RandRR. For the hard
workload the cost of VirtUCB is about 90% to 100% of the cost of RandRR. VirtThompson is
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Additional plots for crowd-selection algorithms
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The easy workload: gaps (.3, 0, 0). (a) Average cost vs. Cqty. (b) Error rate vs. Cqty.
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The medium workload: gaps (.3, .1, .1). (c) Average cost vs. Cqty. (d) Error rate vs. Cqty.
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Figure 4: Crowd-selection algorithms: Average cost and error rate vs. Cqty.
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better, with a cost of about 80% to 90% the cost of RandRR. While our analysis predicts that
ExploreExploitRollback should be (somewhat) better than RandRR, our experiments do not
confirm this for every error rate.

As the gap of the other crowds approaches that of the best crowd, choosing the best crowd
becomes less important, and so the advantage of the adaptive algorithms over RandRR diminishes.
In the extreme case where all crowds have the same gap all the algorithms would perform the
same with an error rate that depends on the stopping rule. We conclude that VirtUCB provides an
advantage, and VirtThompson provides a significant advantage, over the naive scheme of RandRR.

Appendix E. Azuma-Hoeffsing and the single-crowd stopping rule

The proof of Theorem 1, and other proofs in the paper, rely on the Azuma-Hoeffding inequality.
Specifically, we use the following corollary: for each C > 0, each round t, and each option x ∈ O

Pr[ |Di(x)− D̂i,t(x)| ≤ C/
√
Ni,t ] ≥ 1− e−Ω(C2). (5)

In particular, taking the Union Bound over all options x ∈ O, we obtain:

Pr[ |ε̂i,t − εi| ≤ C/
√
Ni,t ] ≥ 1− n e−Ω(C2), (6)

where n is the number of options.
Let us use Azuma-Hoeffding to prove Theorem 1. We restate the theorem here for convenience.

Theorem 11 Consider the stopping rule (1) with Cqty = log1/2(nδ N
2
i,t), for some δ > 0. The error

rate of this stopping rule is at mostO(δ), and the expected stopping time is at mostO( ε−2
i log n

δεi
).

Proof Fix a ≥ 1 and let Ct =
√

log(a n
δ N

2
i,t). Let Ex,t be the event in Equation (5) with C = Ct.

Consider the event that Ex,t holds for all options x ∈ O and all rounds t; call it the clean event.
Taking the Union Bound, we see that the clean event holds with probability at least 1−O(δ/a).

First, assuming the clean event we have |εi− ε̂i,t| ≤ 2Ct/
√
Ni,t for all rounds t. Then the stop-

ping rule (1) stops as soon as εi ≥ 3Ct/
√
Ni,t, which happens as soon as Ni,t = O

(
ε−2
i log an

δεi

)
.

Integrating this over all a ≥ 1, we derive that the expected stopping time is as claimed.
Second, take a = 1 and assume the clean event. Suppose the stopping rule stops at some round

t. Let x be the most probable option after this round. Then D̂i,t(x) − D̂i,t(y) ≥ Ct/
√
Ni,t for all

options y 6= x. It follows that Di(x) > Di(y) for all options y 6= x, i.e. x is the correct answer.

Appendix F. Deterministic benchmark: a straw-man approach

In the literature on MAB, more sophisticated algorithms are often compared to the basic approach:
first explore, then exploit. In our context this means to first explore until we can identify the best
crowd, then pick this crowd and exploit. So for the sake of comparison we also develop a crowd-
selection algorithm that is directly based on this approach. (This algorithm is not based on the
virtual rewards.) In our experiments we find it vastly inferior to VirtUCB and VirtThompson.
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The “explore, then exploit” design does not quite work as is: selecting the best crowd with high
probability seems to require a high-probability guarantee that this crowd can produce the correct
answer with the current data, in which case there is no need for a further exploitation phase (and
so we are essentially back to RandRR). Instead, our algorithm explores until it can identify the best
crowd with low confidence, then it exploits with this crowd until it sufficiently boosts the confidence
or until it realizes that it has selected a wrong crowd to exploit. The latter possibility necessitates a
third phase, called rollback, in which the algorithm explores until it finds the right answer with high
confidence.

The algorithm assumes that the single-crowd stopping rule R0 has a quality parameter Cqty

which controls the trade-off between the error rate and the expected running time (as in Section 2).
In the exploration phase, we also use a low-confidence version of R0 that is parameterized with a
lower value C ′qty < Cqty; we run one low-confidence instance of R0 for each crowd.

The algorithm, called ExploreExploitRollback, proceeds in three phases (and stops when-
ever the composite stopping rule decides so). In the exploration phase, it runs RandRR until the
low-confidence version of R0 stops for some crowd i∗. In the exploitation phase, it always chooses
crowd i∗. This phase lasts α times as long as the exploration phase, where the parameter α is chosen
so that crowd i∗ produces a high-confidence answer w.h.p. if it is indeed the best crowd.9 Finally,
in the roll-back phase it runs RandRR.

Appendix G. Lower bound for non-adaptive crowd selection (proof of Theorem 5)

We argue that non-adaptive crowd-selection algorithms performs badly compared to VirtUCB. We
prove that the competitive ratio of any non-adaptive crowd-selection algorithm is bounded from
below by (essentially) the number of crowds. This result is captured as Theorem 5 in Section 4.3,
which we restate here for for convenience.

Theorem 12 (Theorem 5, restated) LetR0 be a symmetric single-crowd stopping rule with worst-
case error rate ρ. Assume that the composite stopping rule does not use the total crowd. Consider a
non-adaptive crowd-selection algorithm A whose distribution over crowds is µ. Then for each ε >
0, the competitive ratio over ε-simple problem instances with k crowds is at least

∑
i ci µi

mini ci µi
(1−2kρ).

To prove Theorem 5, we essentially need to compare the stopping time of the composite stop-
ping rule R with the stopping time of the instance of R0 that works with the gap-ε crowd. The main
technical difficulty is to show that the other crowds are not likely to force R to stop before this R0

instance does. To this end, we use a lemma that R0 is not likely to stop in finite time when applied
to a gap-0 crowd.

Lemma 13 Consider a symmetric single-crowd stopping rule R0 with worst-case error rate ρ.
Suppose R0 is applied to a crowd with gap 0. Then Pr[R0 stops in finite time] ≤ 2ρ.

Proof Intuitively, if R0 stops early if the gap is 0 then it is likely to make a mistake if the gap is
very small but positive. However, connecting the probability in question with the error rate of R0

requires some work.
Suppose R0 is applied to a crowd with gap ε. Let q(ε, t, x) be the probability that R0 stops at

round t and “outputs” option x (in the sense that by the time R0 stops, x is the majority vote).

9. We conjecture that for R0 from Section 2 one can take α = Θ(Cqty/C
′
qty).
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We claim that for all rounds t and each option x we have

lim
ε→0

q(ε, t, x) = q(0, t, x). (7)

Indeed, suppose not. Then for some δ > 0 there exist arbitrarily small gaps ε > 0 such that
|q(ε, t, x) − q(0, t, x)| > δ. Thus it is possible to tell apart a crowd with gap 0 from a crowd with
gap ε by observing Θ(δ−2) independent runs of R0, where each run continues for t steps. In other
words, it is possible to tell apart a fair coin from a gap-ε coin using Θ(t δ−2) “coin tosses”, for fixed
t and δ > 0 and an arbitrarily small ε. Contradiction. Claim proved.

Let x and y be the two options, and let x be the correct answer. Let q(ε, t) be the probability that
R0 stops at round t. Let α(ε|t) = q(ε, t, y)/q(ε, t) be the conditional probability that R0 outputs a
wrong answer given that it stops at round t. Note that by Equation (7) for each round t it holds that
q(ε, t)→ q(0, t) and α(ε|t)→ α(0|t) as ε→ 0. Therefore for each round t0 ∈ N we have:

ρ =
∑

t∈N α(ε|t) q(ε, t) ≥
∑

t≤t0 α(ε|t) q(ε, t)→ε→∞
∑

t≤t0 α(0|t) q(0, t).

Note that α(0|t) = 1
2 by symmetry. It follows that

∑
t≤t0 q(0, t) ≤ 2ρ for each t0 ∈ N. Therefore

the probability that R0 stops in finite time is
∑∞

t=1 q(0, t) ≤ 2ρ.

Proof of Theorem 5 Suppose algorithm A is applied to an ε-simple instance of the bandit survey
problem. To simplify the notation, assume that crowd 1 is the crowd with gap ε (and all other crowds
have gap 0).

Let R(i) be the instance of R0 that corresponds to a given crowd i. Denote the composite
stopping rule by R. Let σR be the stopping time of R: the round in which R stops.

For the following two definitions, let us consider an execution of algorithm A that runs forever
(i.e., it keeps running even after R decides to stop). First, let τi be the “local” stopping time of R(i):
the number of samples from crowd i that R(i) inputs before it decides to stop. Second, let σi be the
“global” stopping time of R(i): the round when R(i) decides to stop. Note that σR = mini σi.

Let us use Lemma 13 to show that R stops essentially when R(1) tells it to stop. Namely:

E[σ1] (1− 2kρ) ≤ E[σR]. (8)

To prove Equation (8), consider the event E , {mini>1 τi = ∞}, and let 1E be the indicator
variable of this event. Note that σR ≥ σ1 1E and that random variables σ1 and 1E are independent.
It follows that E[σR] ≥ Pr[E]E[σ1]. Finally, Lemma 13 implies that Pr[E] ≥ 1 − 2kρ. Claim
proved.

Let it be the option chosen by A in round t. Then by Wald’s identity we have

E[τ1] = E

[
σ1∑
t=1

1{it=1}

]
= E[1{it=1}] E[σ1] = µ1 E[σ1]

E[cost(A|R0)] = E

[
σR∑
t=1

cit

]
= E[cit ]E[σR] = (

∑
i ci µi) E[σR].

Therefore, plugging in Equation (8), we obtain

E[cost(A|R0)]

c1 E[τ1]
≥
∑

i ci µi
c1 µ1

(1− 2kρ).
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It remains to observe that c1 E[τ1] is precisely the expected total cost of the deterministic bench-
mark.

Appendix H. Benchmark comparison: proof of Lemma 7 from Section 5

We prove that the randomized benchmark may coincide with the deterministic benchmark if there
are only two options (|O| = 2). This result is captured as Lemma 7 in Section 5. We restate this
lemma for the sake of convenience.

Lemma 14 (Lemma 7, restated) Consider the bandit survey problem with two options (|O| = 2).
Consider a symmetric single-crowd stopping rule R0. Assume that the expected stopping time of
R0 on response distribution D is a concave function of ε(D). Then the randomized benchmark
coincides with the deterministic benchmark: cost(µ|R0) ≥ mini cost(i|R0) for any distribution
µ over crowds.

Proof Let µ be an arbitrary distribution over crowds. Recall that f(µ) denotes the induced gap of
µ. Note that f(µ) = µ · ~ε. To see this, let O = {x, y}, where x is the correct answer, and write

ε(Dµ) = Dµ(x)−Dµ(y) = µ · ~D(x)− µ · ~D(y) = µ ·
(
~D(x)− ~D(y)

)
= µ · ~ε.

Let A be the non-adaptive crowd-selection algorithm that corresponds to µ. For each round t,
let it be the crowd chosen by A in this round, i.e. an independent sample from µ. Let N be the
realized stopping time of A. Let τ(ε) be the expected stopping time of R0 on response distribution
with gap ε. Note that E[N ] = τ(f(µ)). Therefore:

cost(µ|R0) = E
[∑N

t=1 cit

]
= E[cit ] E[N ] by Wald’s identity

= (~c · µ) τ(~ε · µ) ≥ (~c · µ)
∑

i µi τ(εi) by concavity of τ(·)
≥ min

i
ci τ(εi) = min

i
cost(i|R0).

We have used a general fact that (~x · ~α)(~x · ~β) ≥ mini αiβi for any vectors ~α, ~β ∈ Rk+ and any
k-dimensional distribution ~x. See Claim 15 below.

Claim 15 (~x · ~α)(~x · ~β) ≥ mini αiβi for any ~α, ~β ∈ Rk+ and k-dimensional distribution ~x.

This inequality appears standard, although we have not been able to find a reference. We supply
is a self-contained proof below.
Proof W.l.o.g. assume α1β1 ≤ α2β2 ≤ . . . ≤ αkβk. Let us use induction on k, as follows. Let

f(~x) , (~x · ~α)(~x · ~β) = (x1α1 +A)(x1β1 +B)

where {
A =

∑
i>1 xiαi

B =
∑

i>1 xiβi
.
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Denoting p = x1, we can write the above expression as

f(~x) = p2α1β1 + p(α1B + β1A) +AB. (9)

First, let us invoke the inductive hypothesis to handle theAB term in Equation (9). Let yi = xi
1−p

and note that {yi}i>1 is a distribution. It follows that A
1−p

B
1−p ≥ α2β2. In particular, AB ≥

(1− p)2α1β1.
Next, let us handle the second summand in Equation (9). Let us re-write it:

α1B + β1A = (1− p)
∑
i>1

α1 yi βi + β1 yi αi

= (1− p)α1β1

∑
i>1

yi

(
αi
α1

+
βi
β1

)
. (10)

We handle the term in big brackets using the assumption that α1β1 ≤ αiβi. By this assumption it
follows that αi

α1
≥ β1

βi
and therefore αi

α1
+ βi

β1
≥ β1

βi
+ βi

β1
≥ 2. Plugging this into Equation (10), we

obtain
α1B + β1A ≥ 2(1− p)α1β1.

Using Equation (9) we obtain f(~x) ≥ p2 α1β1 + 2p(p− 1)α1β1 + (1− p)2 α1β1 = α1β1.

Appendix I. Crowd selection against the randomized benchmark

We design a crowd-selection algorithm with guarantees against the randomized benchmark. These
guarantees are captured by Theorem 8 from Section 5, which we restate below for convenience. We
focus on uniform costs, and (a version of) the single-crowd stopping rule from Section 2.

Our single-crowd stopping ruleR0 is as follows. Let ε̂∗,t be the empirical gap of the total crowd.
Then R0 stops upon reaching round t if and only if

ε̂∗,t > Cqty/
√
t or t = T. (11)

Here Cqty is the “quality parameter” and T is a given time horizon.
Throughout this section, letM be the set of all distributions over crowds, and let f∗ = maxµ∈M f(µ)

be the maximal induced gap. The benchmark cost is then at least Ω((f∗)−2).
We design an algorithm A such that cost(A|R0) is upper-bounded by (essentially) a function

of f∗, namely O
(
(f∗)−(k+2)

)
. We interpret this guarantee as follows: we match the benchmark

cost for a distribution over crowds whose induced gap is (f∗)2/(k+2). By Lemma 6, the gap of the
best crowd may be much smaller, so this is can be a significant improvement over the deterministic
benchmark.

Theorem 16 (Theorem 8, restated) Consider the bandit survey problem with uniform costs. Let
R0 be the single-crowd stopping rule given by (11). There exists a crowd-selection algorithm A
such that cost(A|R0) ≤ O

(
(f∗)−(k+2)

√
log T

)
.
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In the rest of this section we prove Theorem 16. The proof relies on some properties of the
induced gap: concavity and Lipschitz-continuity. Concavity is needed for the reduction lemma
(Lemma 18), and Lipschitz-continuity is used to solve the MAB problem that we reduce to.

Claim 17 Consider the induced gap f(µ) as a function on M ⊂ Rk+. First, f(µ) is a concave
function. Second, |f(µ)− f(µ′)| ≤ n ‖µ− µ′‖1 for any two distributions µ1, µ2 ∈M.

Proof Let µ be a distribution over crowds. Then

f(µ) = Dµ(x∗)− max
x∈O\{x∗}

Dµ(x) = min
x∈O\{x∗}

µ ·
(
~D(x∗)− ~D(x)

)
. (12)

Thus, f(µ) is concave as a minimum of concave functions. The second claim follows because
(µ− µ′) ·

(
~D(x∗)− ~D(x)

)
≤ n ‖µ− µ‖1 for each option x.

Virtual rewards. Consider the MAB problem with virtual rewards, where arms correspond to
distributions µ over crowds, and the virtual reward is equal to the induced gap f(µ); call it the
induced MAB problem. The standard definition of regret is with respect to the best fixed arm, i.e.
with respect to f∗. We interpret an algorithmA for the induced MAB problem as a crowd-selection
algorithm: in each round t, the crowd is sampled independently at random from the distribution
µt ∈M chosen by A.

Lemma 18 Consider the bandit survey problem with uniform costs. Let R0 be the single-crowd
stopping rule given by (11). LetA be an MAB algorithm for the induced MAB instance. SupposeA
has regret O(t1−γ log T ) with probability at least 1− 1

T , where γ ∈ (0, 1
2 ]. Then

cost(A|R0) ≤ O
(

(f∗)−1/γ
√

log T
)
.

Proof Let µt ∈ M be the distribution chosen by A is round t. Then the total crowd returns each
option x with probability µt · ~D(x), and this event is conditionally independent of the previous
rounds given µt.

Fix round t. Let Nt(x) be the number times option x is returned up to time t by the total crowd,
and let D̂t(x) = 1

t Nt(x) be the corresponding empirical frequency. Note that

E
[
D̂t(x)

]
= µ̄t · ~D(x), where µ̄t ,

1

t

t∑
s=0

µs.

The time-averaged distribution over crowds µ̄t is a crucial object that we will focus on from
here onwards. By Azuma-Hoeffding inequality, for each C > 0 and each option x ∈ O we have

Pr

[∣∣∣D̂t(x)− µ̄t · ~D(x)
∣∣∣ < C√

t

]
> 1− e−Ω(C2). (13)

Let ε̂t = ε(D̂t) be the empirical gap of the total crowd. Taking the Union Bound in Equation (13)
over all options x ∈ O, we conclude that ε̂t is close to the induced gap of µ̄t:

Pr

[
|ε̂t − f(µ̄t)| <

C√
t

]
> 1− n e−Ω(C2), for each C > 0.
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In particular, R0 stops at round t with probability at least 1− 1
T as long as

f(µ̄t) > t−1/2 (Cqty +O(
√

log T )). (14)

By concavity of f , we have f(µ̄t) ≥ f̄t, where f̄t , 1
t

∑t
s=0 f(µs) is the time-averaged virtual

reward. Now, tf̄t is simply the total virtual reward by time t, which is close to f∗ with high probabil-
ity. Specifically, the regret of A by time t is R(t) = t(f∗− f̄t), and we are given a high-probability
upper bound on R(t).

Putting this all together, f(µ̄t) ≥ f̄t ≥ f∗ − R(t)/t. An easy computation shows that f(µ̄t)
becomes sufficiently large to trigger the stopping condition (14) for t = O

(
(f∗)−1/γ

√
log T

)
.

Solving the induced MAB problem. We derive a (possibly inefficient) algorithm for the induced
MAB instance. We treat M as a subset of Rk, endowed with a metric d(µ, µ′) = n ‖µ − µ′‖1.
By Lemma 17, the induced gap f(µ) is Lipschitz-continuous with respect to this metric. Thus, in
the induced MAB problem arms form a metric space (M, d) such that the (expected) rewards are
Lipschitz-continuous for this metric space. MAB problems with this property are called Lipschitz
MAB (Kleinberg et al., 2008).

We need an algorithm for Lipschitz MAB that works with virtual rewards. We use the following
simple algorithm from (Kleinberg, 2004; Kleinberg et al., 2008). We treatM as a subset of Rk, and
apply this algorithm to Rk. The algorithm runs in phases j = 1, 2, 3, . . . of duration 2j . Each phase
j is as follows. For some fixed parameter δj > 0, discretize Rk uniformly with granularity δj . Let
Sj be the resulting set of arms. Run bandit algorithm UCB1 (Auer et al., 2002a) on the arms in Sj .
(For each arm in Sj \M, assume that the reward is always 0.) This completes the specification of
the algorithm.

Crucially, we can implement UCB1 (and therefore the entire uniform algorithm) with virtual re-
wards, by using ε̂t as an estimate for f(µ). Call the resulting crowd-selection algorithm VirtUniform.

Optimizing the δj using a simple argument from (Kleinberg, 2004), we obtain regretO(t1−1/(k+2) log T )
with probability at least (1 − 1

T ). Therefore, by Lemma 18 cost(VirtUniform|R0) suffices to
prove Theorem 16.

We can also use a more sophisticated zooming algorithm from (Kleinberg et al., 2008), which
obtains the same in the worst case, but achieves better regret for “nice” problem instances. This
algorithm also can be implemented for virtual rewards (in a similar way). However, it is not clear
how to translate the improved regret bound for the zooming algorithm into a better cost bound for
the bandit survey problem.
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