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Abstract: Object-oriented programs [Dahl, Goldberg, Meyer] are notoriously

prone to the following kinds of error, which could lead to increasingly severe

problems in the presence of tasking

1. Following a null pointer

2. Deletion of an accessible object

3. Failure to delete an inaccessible object

4. Interference due to equality of pointers

5. Inhibition of optimisation due to fear of (4)

Type disciplines and object classes are a great help in avoiding these errors.

Stronger protection may be obtainable with the help of assertions, particularly

invariants, which are intended to be true before and after each call of a method

that updates the structure of the heap. This note introduces a mathematical model

and language for the formulation of assertions about objects and pointers, and sug-

gests that a graphical calculus [Curtis, Lowe] may help in reasoning about program

correctness. It deals with both garbage-collected heaps and the other kind. The

theory is based on a trace model of graphs, using ideas from process algebra; and

our development seeks to exploit this analogy as a unifying principle.



1 Introduction: the graph model

Figure 1.0 shows a rooted edge-labelled graph. Its nodes are represented by circles and its edges by

arrows from one node to another. The letter drawn next to each arrow is its label. The set of allowed

labels is called the alphabet of the graph. A double-shafted arrow singles out a particular node as

the root of the graph.

Figure 1.0 (Rooted edge-labelled graph)
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Such a graph can be de�ned less graphically as a tuple

G = (AG; NG; EG; rootG);

where AG is the alphabet of labels

NG is the set of nodes

EG is the set of edges with their labels, i.e., a subset of NG � AG � NG

rootG is the node selected as the root

We use variables G;G0 to stand for graphs, l;m; n to stand for nodes, x; y; z to stand for general labels

and s; t; u to stand for sequences of labels (traces). We write l x
!
G

m to mean (l; x;m) 2 EG. Where

only one graph is in question, we omit the subscript G. The smallest graph (called 0A) with given

alphabet A consists only of the root node, with no edges, i.e. (A; frootg; fg; root). Another small but

interesting graph is 1A =df f(A; frootg; (frootg �A � frootg); root):

Example 1.1 (Tuple from graph) The graph of Figure 1.0 is coded as the mathematical structure

de�ned by the following equations

A = fv; w; a; b; c; dg

N = f0; 1; 2; 3; 4; 5g

E = f(0; v; 2); (0; w; 1); (2; a;2); (2; b;1); (1; d;3); (2; c;4); (3; a;2); (3; d;5)g

root = 0 2

The awkward feature of this encoding is the arbitrary selection of the �rst six natural numbers to

serve as the nodes. Any other six distinct values would have done just as well. We are only interested

in properties of graphs that are preserved by one-one transformations (isomorphisms) of the node-set.

The use of isomorphism in place of mathematical equality is an inconvenience. We aim to avoid it by

constructing a canonical representation for the nodes of a graph. For this, we will have to restrict the

theory to graphs satisfying certain healthiness conditions.

Rooted edge-labelled graphs are useful in the study of many branches of computing science, of

which data diagrams and heap storage are relevant to object-oriented programming.

Example 1.2 (Automata theory)A graph de�nes the behaviour of an automaton. The nodes stand

for states, with the root as the initial state. The labels stand for events, and the presence in E of an

edge l
x
! m means that event x happens as the automaton passes from state l to state m: 2



Example 1.3 (Data diagrams) In a data diagram, a node stands for a set of values, e.g., a type

or a class of objects. The labels stand for functions, and the presence of an edge l
x
! m means that

x maps values of type l to results of type m. The root is somewhat arti�cial: the labels on arrows

leading from the root can be regarded as the names of the types that they point to. 2

Example 1.4 (Control 
ow) In a control 
ow graph, the nodes represent basic blocks, i.e sections

of program code with no internal label. The edge l
x
! m represents the presence in block l of a jump

to a label x which is placed at the beginning of block m. The root is the main block of the program.

The same analysis applies when the jumps are procedure calls and the nodes are procedure bodies. 2

Example 1.5 (Heap storage) A graph can describe the instantaneous content of the entire heap at

a particular point in the execution of an object-oriented program. The nodes stand for the objects,

and the labels are the names for the attributes. An edge l
x
! m means that m is the value of the

x-attribute of the object l: 2

When used to model objects and heaps, the labelled graph is both simple and general, in that it

allows more complex concerns to be treated separately. For example,

1. Simple values (e.g., like 5, which is printable) can be treated in the usual way as sinks of the

graph, i.e. as nodes from which no pointer can ever point. A method local to an object can be

similarly represented as a value of one of its attributes.

2. The labels on pointers from the unique root represent the directly accessible program variables.

There is no restriction on pointing from the heap into declared program workspace; such pointers

are often used in legacy code for cyclic representations of chains, even if their use is deprecated

or forbidden in higher level languages.

3. Absence of a pointer from an object in which space has been allocated for it is often represented

by �lling the space with a nil value. The model allows this; another representation permitted

by our model is to introduce a special nil object, with special properties, e.g. all arrows from it

lead back to itself.

4. The model describes the statics and dynamics of object storage, and is quite independent of the

class declarations and inheritance structure of the source language in which a program has been

written. In fact, the relationship between the run-time heap and a data diagram is a special

case of an invariant assertion, that remains true throughout the execution of the program. The

invariant is elegantly formalised with the aid of graph homomorphisms, as described in De�nition

1.10.

The main operation for updating the value of the heap is written l ! a := m. It causes the a-

labelled arrow whose tail rests at node l to point to node m, instead of what it pointed to before. The

operation changes only the edges of the graph, leaving the nodes, the alphabet, and the root unchanged.

De�nition 1.6 (Pointer swing)

(l ! a := m) :=df (E := (E � flg � fag � N ) [ f(l; a;m)g); where l;m 2 N 2



Example 1.7 (Pointer swing) After execution of 1! d := 4, the graph of Figure 1.0 would appear,

as follows
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Further operations are needed for deleting an edge and for creating a new node. Node creation

introduces an arbitrary new object into the node-set and swings a pointer to point to it. Deletion of

a node is more problematic, and will be treated later.

De�nition 1.8 (Edge deletion, Node creation)

(l ! a := nil) =df E := E � flg � fag � N

(l ! a := new) =df N := N + fmg; l! a := m; where m
�
2 N 2

There are two problems with the above de�nitions of operations on the heap. The �rst is that an

object-oriented program has no means of directly naming the objects l and m. These references have

to be made indirectly by quoting the sequence of labels on a path which leads from the root to the

desired object. Thus the assignment in Example 1.7 might have been written

w ! d := w! d! a! c

The second problem is that, after the assignment, two of the nodes (3 and 5) have become inaccessible:

the program will never again be able to refer to those nodes by any path. In a garbage-collected heap,

such nodes are subject to disappearance at any time. In a non-collected heap they could represent a

storage leak. Our trace model of object-orientation will solve all these problems, with the help of a

canonical representation of the graph.

When a graph is used as a data diagram it speci�es the classes of object to which each variable and

attribute is allowed to point. A compiler can therefore allocate to each object only just enough store

to hold all its permitted attributes. The compiler will also check all the operations of a program to

ensure that all the rules have been observed. As a result, at all times during execution it is possible to

ascribe each object in the heap to a node in the data diagram representing the object class to which it

belongs. This can be pictured by drawing a polygon around all nodes belonging to the same particular

class. Each polygon is then contracted to a single node, dragging the heads and tails of the arrows

with it. The result will be a data diagram, which will match the intended structure of class declarations.



Figure 1.9 (Object classes)
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The informal description of the transformation of a heap structure to a class diagram is formalised

in the mathematical de�nition of a homomorphism. This is a function from the nodes of one graph to

the nodes of another that preserves the root and the labels on the edges.

De�nition 1.10 (Homomorphism) Let G = (A;N;E; root) and G0 = (A0; N 0; E0; root0). Let f be

a total function from N to N 0. The triple f : G! G0 is called a homomorphism if A � A0; and for all

x inA

1. f(root) = root0

2. m
x
!
G

n implies f(m)
x
!
G

0 f(n); for all x inA: 2

Examples 1.11 (Homomorphisms) From every graph G with alphabet A, there is just one homo-

morphism to 1A; from 0A to G, there are as many homomorphisms as nodes in G: 2

Homomorphisms can also be used to de�ne the relationship between a subclass and its parent class in

a class hierarchy [Cardelli, Cook]. For this, we will later introduce a method of reducing the alphabet

of labels to match that of the target of the homomorphism. Multiple inheritance is simply modelled

by asserting the existence of more than one homomorphism from the heap to several di�erent data

diagrams. Di�erent languages enforce di�ering conventions and rules, to ensure that the invariance of

such assertions at run time is checkable by compiler. Our theory is claimed to be su�ciently expressive

to describe all such checkable rules in any language. It can also formulate much more general assertions,

whose truth cannot be checked at compile time, but only at run time or by proof.

Another important role for a homomorphism is to select from a large graph a smaller subgraph for

detailed consideration. The shape of the subgraph is speci�ed by the source of the homomorphism, and

the target speci�es which particular subgraph of that shape is selected. For example, consider the graph

m m m- -a c



A subgraph of this shape occurs just twice in Figure 1.0; there is only one injective homomorphism

from it into the Figure, and one that is non-injective. This kind of subgraph homomorphism has to

be rede�ned to allow for absence of a root.

The remaining role of the homomorphism is to de�ne the concept of an isomorphism of graphs,

and so specify what it means for two graphs with di�erent node sets to be essentially the same.

De�nition 1.12 (Isomorphism) Let f : G! G0 be a homomorphism. This is said to be an isomor-

phism if f is invertible, and f�1 : G0 ! G is also a homomorphism. G and G0 are isomorphic if there

is an isomorphism from one to the other. 2

This rather indirect de�nition represents the very simple intuitive idea of laying one graph on top of

another, and ensuring that it has nodes and edges and labels in all the same places. Like congruent

triangles in geometry, they are just two copies of the same graph!

2 The trace model

The problem of inaccessible objects is the same as that of inaccessible states in automata theory; and

the solution that we adopt is the same: calculate the language of traces that are generated by the

graph. A trace of an automaton is a sequence of consecutive events that can occur during its evolu-

tion. A trace can be read from the graph by starting at node l and following a path of consecutive

edges leading from each node to the next, along a path of directed edges. The trace is extracted as

the sequence of labels encountered on the path up to its last node m. The existence of such a trace s

is denoted l
s
�! m. A formal de�nition uses recursion on the length of the trace.

De�nition 2.0 (Traces)

l
<>
�! m i� l = m

l
<a>
�! m i� (l; a;m) 2 E

l
sb t
�! m i� 9n � l

s
�! n ^ n

t
�! m

l
�
�! m =df fs j l

s
�! mg

traces (l) =df root
�
�! l 2

Example 2.1 (Figure 1.0) From the graph of Figure 1.0 the sets of traces of each of the six nodes

are given by the following six regular expressions

n0 = "

n1 = w + n2 b

n2 = v + n2 a+ n3 a

n3 = n1d

n4 = n2c

n5 = n3d 2

In the canonical trace model of a graph, each node l is represented by the set traces(l), containing

all traces on paths to it from the root. The set of nodes is therefore a family N of sets of traces

(N � PA�). The labelled edges and the root of the graph can be de�ned in terms of this family.

De�nition 2.2 (Canonical representation)

Let G = (A;N;E; r)

bN =df ftraces(n) j n 2 Ng
bE =df fl

x
! m j l;m 2 bN ^ l b< x > � mg

br =df the unique n in bN containing <>.
bG =df (A; bN; bE; br) 2



Theorem 2.3

For all l; m; n 2 bN and X � A�

(1) (l bX) � m i� X � (l
�
�!bG m)

(2) (l
�
�!bG m)b(m �

�!bG n) � (l
�
�!bG n)

(3) (br �
�!bG m) = m

Proof: (1) From the fact that for all s 2 A�

(l b s) � m i� l
s
!bG m

(2) From the associativity of the catenation operator and the Galois connection (1)

(3) X � LHS

� f(1)g br bX � m

) f<>2 brg X � RHS

� flet m = traces(n)g 8s 2 X � (root
s
�!
G

n)

) f8t 2 br � (root
t
�!
G

root)g 8t 2 br; s 2 X � (root
tbs
�!
G

n)

� fdef of tracesg (br bX) � traces(n) = m

� f(1)g X � LHS 2

In the theory of deterministic automata, the language generated by the automaton is just the union

of the set of traces of all its states

language (G) =
S
ftraces(l) j l 2 NGg

The great advantage of this is that an inaccessible state has no traces at all, and so makes no con-

tribution to the language. Two automata are therefore decreed to be identical if they have the same

language.

Example 2.4 (Identical automata)
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For automata, the purpose of this identi�cation is to allow automatic minimisation of the number of

states needed to generate or recognise a speci�ed language. But in object-oriented programming, such

identi�cation of objects would be wholly inappropriate. The reason is that the pointer swinging op-

eration (not considered by automata theory) distinguishes graphs which automata theory says should

be the same.



Example 2.5 (after swing) After the assignment a! a := nil, the two graphs of example 2.4 now

look like
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Even in automata theory, these two graphs are distinct. For this reason, we cannot model a heap

simple as a set of traces, and we have to go up one level in complexity to model it as a set of sets of

traces, as shown in the de�nition of bN .

Nevertheless, there are many interesting analogies between our trace model the process algebra of

non-deterministic automata. For example, as in CSP [Hoare], the entire set of valid traces is pre�x-

closed.

Theorem 2.6 (Pre�x closure)
S bN is non-empty; and if it contains s b t, it also contains s: 2

An important property of the b operator, transforming a graph to its canonical representation, is that

it leaves unchanged an argument that is already canonical.

Theorem 2.7 (Idempotence)

bbG = bG

Proof traces(traces(n))

= fdef of tracesg

traces(root)
*�!bG (traces(n))

= fTheorem 2:3(3)g

traces(n) 2

Note that this is an equality, not just an isomorphism. But the claim that the result is canonical for

all graphs is not justi�ed: there are G such that bG is not even isomorphic to G.

Counterexamples 2.8 (Disappearing nodes)
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In choosing to study the canonical representation, we exclude such counterexamples from considera-

tion. The remainder of this section will de�ne and justify the exclusion.

An important property in object-oriented programming is that each name should uniquely denote

a single object. This is assured if the graph is deterministic.

De�nition 2.9 (Determinism) A graph is deterministic if for each l and x there is at most one

m such that l
x
! m. This is necessary for determinism of the corresponding automaton. In a data

diagram, determinism permits automatic resolution of the polymorphic use of the same label to denote

di�erent functions on di�erent data types. In object-oriented programming, it states the obvious fact

that each attribute of each object can have only one value. 2

If the original graph is deterministic, its canonical node-set bN satis�es an additional property familiar

from process algebra | it is a bisimulation [Milner].

De�nition 2.10 (Bisimulation)A familyN of sets of traces is a bisimulation if it is a partial equiv-

alence which is respected by trace extension. More formally, for all p; q in N

p = q _ p \ q = fg

s; t 2 p ^ t b u 2 q ) s b u 2 q 2

Determinism ensures that any two distinct objects will have distinct trace sets, except in the extreme

case that both have empty trace sets. Such objects can never be accessed by a program, so they might

as well not exist.

De�nition 2.11 (Accessibility) A node n is accessible if traces(n) is non-empty. A graph is acces-

sible if all its nodes are, i.e. fg
�
2 bN . For automata, inaccessible nodes represent unreachable states,

which can and should be ignored in any comparison between them. In a heap, they represent unusable

storage, which can and should be garbage-collected (or otherwise explicitly deleted). 2

At last we can show that we can model all the graphs that we are interested in by simply considering

canonical graphs; furthermore, we can assume that N is always a pre�x-closed bisimulation.

Theorem 2.12 (Representability) If G is deterministic and accessible, it is isomorphic to bG

Proof Letf(n) =df traces(n) for all n 2 N . Because G is deterministic

(n 6= m) ) (traces(n) 6= traces(m))

Futhermore we have

x
f(n) �! f(m)bG

� fdef of bEg
traces(n)b< x >� traces(m)

� ftraces(n) 6= fg and G is deterministicg

x
n ! m

G
2

We can now solve the problems of graph representation left open in the previous section: objects

will be named by traces, and inaccessible objects will disappear. We will assume that the heap G is at

all times held in its canonical representation; and rede�ne each operation of object-oriented program-

ming as an operation on the trace sets N .

Edge deletion t ! x := nil now has to remove not only the single edge x, but also all traces that

include this edge. Every such trace must begin with a trace of the object t itself, i.e. a trace which is



equivalent to t by the equivalence N . The trace to be removed must of course contain an occurrence

of < x >, the edge to be removed. It ends with a trace leading to some other node n in N . The traces

removed from n are therefore exactly de�ned by the set

[t] b< x > b (t b< x >
�
! n)

We use the usual square bracket notation [t]N that contains t to denote the equivalence class (or more

simply just [t]). Of course, x may occur more than once in the trace, either before or after the oc-

currence shown explicitly above. In the following de�nition, the removal of the edge is followed by

removal of any set that becomes empty { a simple mathematical implementation of garbage-collection.

Re-de�nition 2.13 (Edge deletion, Node creation)

(t! x := nil) =df N := fn� [t] b< x > b(t b < x >
�
! n) j n 2 Ng � ffgg

(t! x := new) =df t! x := nil; N := N + f[t] b< x >g 2

Unfortunately, pointer swing is even more complicated than this. We consider �rst the e�ect of

tb< y >:= s, in the case where y is a new label, occurring nowhere else in the graph. The question now

is, what are all the new traces introduced as a result of insertion of this new and freshly labelled edge?

As before, every such trace must start with a trace from [t], followed by the �rst occurrence of y. But

now we must consider explicitly the possibility that the new edge occurs many times in a loop. The

trace that completes the loop from the head of y back to its tail must be a path leading from s to t in

the original graph, i.e. a member of (s
�
! t). After any number of repetitions of ((s

�
! t)b< y >), the

new trace concludes with a path from s to some node n. The traces added to an arbitrary equivalence

class n are exactly de�ned by the set

[t] b < y > b ((s �
! t) b < y >)� b (s �

! n)

Note that in many cases (s
�
! n) will be empty, because there is no path from s to n. Then by

de�nition ofbbetween sets, the whole of the set described above is empty, and no new traces are added

to n.

After inserting these new traces, it is permissible and necessary to remove the original edge x from

the original graph and from the newly added traces too. Finally, the freshly named new edge y can be

safely renamed as x.

Re-de�nition 2.14 (Pointer swing)

(t! x := s) =df let y be a fresh label in

N := fn+ [t] b < y > b ((s �
! t) b < y >)� b (s �

! n) j n 2 Ng;

t! x := nil; rename y to x 2

Note that it is not permissible to delete the edge x before adding the new edge: this could make

inaccessible some of the objects that need to be retained because they are accessible through s. The

problem is clearly revealed in the simplest case: t ! x := t ! x. The necessary complexity of the

pointer swing is a serious, perhaps a crippling disadvantage of the trace model of pointers and objects.

3 Applications

The purpose of our investigations is not just to contribute towards a fully abstract denotational se-

mantics for an object-oriented programming language. We also wish to provide assistance in reasoning

about the correctness of such programs, and to clarify the conditions under which they can be validly

optimised. Both objectives can be met with the aid of assertions, which describe useful properties

of the values of variables at appropriate times in the execution of the program. To formulate clear

assertions (unclear ones do not help), we need an expressive language; and to prove the resulting ver-

i�cation conditions, we need a toolkit of powerful theorems. This section makes a start on satisfying



both these needs.

Two important properties of an individual node are de�ned as follows. It is acyclic if the only path

leading from itself to itself is the empty path.

n is acyclic =df (n
�
�! n) = f<>g

A graph is acyclic if all its nodes are. A node is a sink if there is no node accessible from it except

itself

n is a sink =df 8m � n
�
�! m � f<>g

These de�nitions can be quali�ed by a subset B of the alphabet, e.g.

n is a B-sink =df 8m � (n
�
�! m) \ B� � f<>g

Two important relationships between nodes are connection and dominance. Connection is de�ned

by the existence of a path between the nodes; and this path may be required to use only labels from B

m
B
=) n =df (n

�
�! m) \B� 6= fg

B
=) is clearly a pre-order, i.e., transitive, and re
exive, but it is antisymmetric only in acyclic graphs.

The root is the bottom of any accessible graph. The superscript B is omitted when it is the whole

alphabet of the graph under discussion. The relation of dominance between objects is stronger than

connection. One object l in a graph dominates an object m if every path to m leads through l

l v m =df l b (l �
! m) = m

Deletion of a dominating object makes a dominated object inaccessible. So this relationship is very

important in proving that a graph remains accessible and/or acyclic after a pointer swing. Its proper-

ties are similar to those of the pre�x ordering over simple traces.

Theorem 3.0 (Dominance ordering)v is a partial order with the root as a bottom and the empty

set as its top. The dominators of any node are totally ordered, i.e.

if l v n andm v n then l v m orm v l

Proof see appendix. 2

For non-empty nodes, dominance implies connection. If a node has only one trace, then every node

that connects to it will dominate it. If all nodes have this property, the graph is called a divergent

tree | divergent because all its pointers point away from the root and towards its sinks (i.e. the leaves).

In a language without garbage-collection, there is a grave danger that a pointer swing will leave

an object that has no other pointer pointing to it. Such an object can never again be accessed by the

program, and the storage space that it occupies will never be reused. This phenomenon is known as a

space leak. In order to prevent it, the programmer must accept the obligation to ensure that a certain

precondition is satis�ed before each pointer swing s ! x := t: The relevant precondition is expressed

as non-dominance

:s v s b< x >

In a language without garbage-collection, the only way in which heap storage can be recovered

for reuse is by an explicit command in the program, declaring that a particular object will never be

accessed again. We will treat the simplest form of atomic deletion, as for example the delete com-

mand in PASCAL. This command must be given at the same time that the last pointer to the object



is deleted by s! x := nil. The precondition of such a deletion is the opposite of that for an assignment

s v s b< x >

In fact, a stronger precondition is necessary. All the objects accessible through s b< x > must

be accessible through some other object as well (otherwise their space would leak anyway). The full

precondition for deletion is

8y � (s b< x >v s b< x >b y i� y =<>):

The complexity of these preconditions may explain why control of space leaks is a di�cult problem in

practice.

A heap as represented in the store of a computer must be described as a single variable, even

though its value is of great size and complexity. Any pointer in the heap can at any time be swung

to point to any other object whatsoever. To control this complexity, a programmer usually constrains

the use of a heap in a highly disciplined way. The heap is understood to be split into a number of

component subgraphs, satisfying invariant properties that limit the connections within and between

the components. A component of a graph can readily be selected in two ways: by restricting the

alphabet, or by concentration on a single branch.

De�nition 3.1 (Subgraphs)

N jnB =df fn \B
� j n 2 Ng � ffgg

N jnB is a canonical graph with alphabet B, containing just those objects nameable by chains of labels

drawn wholly from B.

N=n = fn
�
�! m j m 2 Ng � ffgg; where n 2 N

N=n is a canonical graph, isomorphic to the subgraph of all nodes accessible from n. It consists of just

that part of the heap that is seen by a method local to n: 2

These subgraph operations obey laws identical to those found in process algebra

N jnA = N; if A is the alphabet of the graph

(N jnB) jnC = N jn(B \C)

N jnfg = 0fg
N= <> = N

(N=s)=t = N=(sbt)

The purpose of this paper has been to provide a conceptual framework for formalisation of invariant

assertions about data structures represented as objects in a heap. Class and type declarations serve

the same purpose; they are also carefully designed to enjoy the additional advantage that their validity

can be checked by compiler. Assertions have more expressive power, but they can be tested only at

run time, and they can be validated only by proof. In the remainder of this section we explore the

power of the trace model in the formulation of assertions, and suggest that a diagram may be helpful

in visualising them.



De�nition 3.2 (Chain) Consider a pair of labels B = fbase; nextg. This de�nes a chain if C =

(N=base) jnfnextg is invariantly acyclic.
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A variable ind is an index into this chain if invariantly base
next

=) ind . A last-pointer is an index that

always points to a next-sink. A �nal segment of the chain, chopped o� at a given index, is C=ind : 2

A chain is often used to scan a set of objects of interest. A good example is a convergent tree |

convergent because the pointers point away from the leaves towards the root (a sink). Without a chain

through them, the leaves (and indeed the whole tree) would be inaccessible.

Figure 3.3 (Convergent tree)
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The attribute p points from an o�spring to its parent in the tree; the attribute n constructs the leaf

chain starting at a declared base variable b: 2

We wish to formalise the properties shared by all such trees, without restriction on size or shape,

and without de�ning which other attributes besides p and n may be pointing to or from the nodes.

Let us �rst con�ne attention to the subgraph T of interest

T =df (N=b) jnfp; ng

The aim is to formulate the desired invariant properties of T as a conjunction of simple conditions

that can be checked separately, and reused in di�erent combinations for di�erent purposes. The �rst

condition has already been given a formal de�nition

1. T is acyclic

2. Every object on the chain has a parent: ifj
n
�! k then (9l � k

p
! l) ^ (9l � j

p
! l)

3. No parent is an object on the chain: if l
p
�! m then (: k

n
! m) ^ (:m

n
! k)



4. Any two nodes on the tree share a common ancestor: 8j; k 9l � j
p
) l ^ k

p
) l

There is one more property that is usually desired of a leaf-chain: it should visit the leaves in some

reasonable order, for example, close relatives should appear close in the chain. In particular, the fol-

lowing picture should not appear in the graph.
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Note that ch1 and ch2 are more closely related to each other than to rel, which therefore should not

separate them in the chain. The requirement is formalised

5. If ch1
p
) anc ^ ch2

p
) anc ^ ch1

n
) rel ^ rel

n
) ch2 then rel

p
) anc:

These invariants are expressed in the predicate calculus, using variables that have either implicit

quanti�cation over all traces in
S
T , or explicit existential quanti�cation. The invariants can also be

conveniently represented pictorially in the graphical calculus [Curtis and Lowe]. The simpler invariants

directly prohibit occurrence in the heap of any subgraph of a certain shape. For example, condition

(2) prohibits any occurrence of the two shapes
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More formally, there is no homomorphism from either of these graphs into the heap. The acyclic

condition (1) can be pictured by using a single arrow to represent a complete (non-empty) trace drawn

from the speci�ed alphabet; the following is prohibited

��
���


�
fp; ng+

The more complicated invariants take the form of an implication, whose consequent has existentially

quanti�ed variables. These are drawn as dotted lines rather than the solid lines that represent variables

universally quanti�ed over the whole formula. So the condition (2) would be drawn
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The condition (4) combines this convention with the path convention
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The �fth condition is the most elaborate
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The meaning of the dotted line convention illustrated above can be formalised, again in terms of

graph homomorphisms. The picture states that every homomorphism from the graph drawn as solid

lines and nodes can be extended to a homomorphism from the whole picture, including dotted lines

and nodes. The extension must not change the mapping of any of the solid components. Even more

formally, the diagram de�nes an obvious injective homomorphism j : solid ! diagram from its solid

components to the whole diagram. It states that for all h : solid ! T there exists an h0 : diag ! T

such that h = j;h0 (h factors through j). In plainer words, perhaps the programmer's instinct to draw

pictures when manipulating pointers can be justi�ed by appeal to higher mathematics.

4 Conclusion

The ideas reported in this paper have not been pursued to any conclusion. Perhaps, in view of the

di�culties described at the end of section 2, they never will be. Their interest is mainly as an example of

the construction of a generic mathematicalmodel to help in formalisationof assertions about interesting

and useful data structures. Such assertions can be helpful in designing and maintaining complicated

class libraries, and in testing the results of changes, even if they are never used for explicit program

proof.

Other published approaches to reasoning about pointer structures have been much better worked

out. An early de�nition of a tree-structured machine with an equivalence relation for sharing was given

in [Landin]. The closest in spirit to the trace model is described in [Morris] and applied to the proof

of an ingenious graph marking algorithm. A similar approach using nice algebraic laws was taken in

[Nelson]. Another promising approach [M�oller] exploits the proof obligation as a driver for the design



of the algorithm in a functional style. It models each label as a function from addresses to values

or other addresses contained in the addressed location. Other authors too have been deterred by the

complexity of sharing structures introduced by pointer swing [Suzuki].
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Appendix

Proof of Theorem 3.0

First we are going to show that dominance is a partial order.

(re
exive) l

= fsb<> = sg

lbf<>g
� f<>2 (l

�

! l)g

lb(l �

! l)

� fTheorem 2.3.(1)g

l

(antisymmetric) Assume that l vm and m v l. If l = fg then

m = lb(l �

! m) = fgb(l �

! m) = fg = l



Assume that l 6= fg. From the fact that

l = lb(l �

! m)b(m �

! l)

and l 6= fg we conclude that

<>2 (l
�

! m)b(m �

! l)

� fsbt =<> i� s = t =<>g

<>2 (l
�

! m) \ (m
�

! l)

) fl = mb(m �

! l) and m = lb(l �

! m)g

(l � m) ^ (m � l)

� l = m

(transitive) Assume that l vm and m v n.

n

� fTheorem 2.3(1)g

lb(l �

! n)

� fTheorem 2.3(2)g

lb(l �

! m)b(m �

! n)

= fl vm and m v ng

n

Let n be a non-empty node. Assume that

l v n and m v n

For any subset X of A� we de�ne sht(X) as the set of shortest traces of X

sht(X) =df fs 2 X j 8t 2 X � t � s) t = sg

From the fact that n 6= fg we conclude that neither sht(l) nor sht(m) is empty. Consider the following cases:

(1) sht(l) \ sht(m) 6= fg: From the determinacy it follows that

l = m

(2) sht(l) \ sht(m) = fg: From the assumption that l v n and m v n it follows that

8u 2 sht(l)9v 2 sht(m) � (u � v _ v � u)

and

8v 2 sht(m)9u 2 sht(l) � (u � v _ v � u)

(2a) 8u 2 sht(l)9v 2 sht(m) � v � u: From the bisimulation property it follows that

m v l

(2b) 8v 2 sht(m)9u 2 sht(l) � u � v: In this case we have

l v m

(2c) There exist u; û 2 sht(l) and v; v̂ 2 sht(m) such that

u < v and v̂ < û

Let

j =df minflength(s) j s 2 sht(l
�

! n)g

k =df minflength(t) j t 2 sht(m
�

! n)g

From u � v we conclude that j > k, and from v̂ < û we have j < k, which leads to contradiction.

From the above case analysis we conclude that

l vm or m v l 2


