
13

On the Complexity of Partially-Flow-Sensitive
Alias Analysis

N. RINETZKY

Tel Aviv University

G. RAMALINGAM

Microsoft Research India

M. SAGIV

Tel Aviv University

and
E. YAHAV

IBM T. J. Watson Research Center

We introduce the notion of a partially-flow-sensitive analysis based on the number of read and write
operations that are guaranteed to be analyzed in a sequential manner. We study the complexity
of partially-flow-sensitive alias analysis and show that precise alias analysis with a very limited
flow-sensitivity is as hard as precise flow-sensitive alias analysis, both when dynamic memory
allocation is allowed, as well as in the absence of dynamic memory allocation.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
optimization; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Com-
putability theory; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages—
Decision problems

General Terms: Languages, Theory

Additional Key Words and Phrases: Alias analysis, flow-sensitive, flow-insensitive

ACM Reference Format:
Rinetzky, N., Ramalingam, G., Sagiv, M., and Yahav, E. 2008. On the complexity of partially-flow-
sensitive alias analysis. ACM Trans. Prog. Lang. Syst. 30, 3, Article 13 (May 2008), 28 pages. DOI =
10.1145/1353445.1353447 http://doi.acm.org/10.1145/1353445.1353447

N. Rinetzky was supported in part by the IBM Ph.D Fellowship Program and in part by a grant
from the Israeli Academy of Science.
This work was done partly when G. Ramalingam was at IBM Research.
Authors’ addresses: N. Rinetzky and M. Sagiv, Tel Aviv University, Ramat-Aviv, 69978 Tel Aviv,
Israel; email: {maon, msagiv}@post.tau.ac.il; G. Ramalingam, Microsoft Research India, Scien-
tia, 196/36 2nd Main, Sadashivnagar, Bangalore 560 080 India; email: grama@microsoft.com; E.
Yahav, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598; email:
eyahav@us.ibm.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0164-0925/2008/05-ART13 $5.00 DOI 10.1145/1353445.1353447 http://doi.acm.org/
10.1145/1353445.1353447

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:2 • N. Rinetzky et al.

1. INTRODUCTION

Most static analyses for modern programming languages depend significantly
on various forms of pointer analysis, such as alias analysis, to deal with in-
direct data references and modifications. However, precise flow-sensitive alias
analysis is known to be undecidable for single-procedure programs with loops,
recursive data structures, and dynamically allocated storage even under the as-
sumption that all paths in the program are feasible [Landi 1992b; Ramalingam
1994]. The problem remains undecidable even if the program manipulates only
singly linked lists [Chakaravarthy 2003]. This result is shown for flow-sensitive
analysis: that is, the analysis is required to respect the order in which state-
ments execute in a path.

Precise flow-insensitive alias analysis has been shown to be NP-hard for
programs without dynamic allocation, but in which pointers can reference other
variables [Horwitz 1997]. However, this proof assumes that there is no bound
on the number of memory accesses occurring in a single statement.

In this article, we present some new complexity results for alias analysis by
considering analyses that have a very restricted, and precisely defined, form of
flow-sensitivity. Traditionally, the term flow-insensitive analysis has been used
to refer to analyses that ignore constraints on the order in which statements in
a program can execute. However, such analyses typically do take into account
the order in which computations within a single statement occur. For example,
the multiple pointer dereferences occurring in a single statement such as “x =
***p”, must be treated atomically by a precise flow-insensitive analysis. Note
that if this statement is broken into a sequence of statements, the analysis
might produce a different result. (In other words, the choice of the set of the
atomic statements affects the precision of the analysis.) Thus, an analysis
which treats “x = ***p” as an atomic unit, may be viewed as being partially
flow-sensitive.

In this article, we first formalize the notion of partially-flow-sensitive anal-
ysis as follows. We consider programs written in a language with a set of
primitive statements. (Each statement can dereference at most one pointer.)
A block-partitioned program is one that has been partitioned into units of
computation called blocks. Informally, an analysis is said to be block-flow-
sensitive if it analyzes code within any given block in a flow-sensitive fash-
ion, but the analysis may ignore the execution order between blocks. Intu-
itively, the ability to analyze certain adjacent, related, statements as a unit (i.e.,
flow-sensitively) can obviously help improve the precision of flow-insensitive
analyses.

We will particularly consider analyses that are guaranteed to be block-flow-
sensitive for programs where the total number of read and write operations
in a block are less than some given constants. This allows us to measure the
degree of flow-sensitivity of an analysis by considering the maximal number
of read and write operations in a block. We show that the problem of a precise
flow-sensitive alias analysis can be reduced to the problem of a precise partially-
flow-sensitive alias analysis with a very limited degree of flow sensitivity. This,
combined with Landi [1992a, 1992b], Ramalingam [1994], Muth and Debray

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:3

[2000], and Chakaravarthy [2003], leads to our main results: lower bounds on
the complexity of partially-flow-sensitive alias analysis.

From a pragmatic perspective, the key results of this article are a sequence of
reductions that show that certain aspects of flow-sensitive alias analysis are not
critical and can be eliminated via these reductions, allowing analysis designers
to focus on simplified sub-problems.

1.1 Outline

Section 2 formalizes the notion of partially-flow-sensitive alias analysis. Sec-
tion 3 states our main results. Section 4 shows that precise partially-flow-
sensitive may- and must-alias analysis is undecidable for programs that use
dynamic allocation. Section 5 shows that precise partially-flow-sensitive may-
alias analysis is PSPACE-complete for single-procedure programs that do not
use dynamic allocation. Section 6 concludes.

2. PARTIALLY-FLOW-SENSITIVE ALIAS ANALYSIS

In this section, we formalize the notion of partially-flow-sensitive alias analysis.
We define the syntax and the semantics of a language of primitive statements.
In this language, each statement can dereference at most one pointer. We then
define the notion of a block-partitioned program, which allows us to formalize
the concept of a precise partially-flow-sensitive (alias) analysis.

2.1 Language of Primitive Statements: Syntax

A program consists of a set of type definitions, a set of variable declarations and
a single (nonrecursive) procedure.1

The only types allowed are pointers and records, which consist of a set of
pointer fields. As we address only alias analysis, we do not consider other prim-
itive types. The variable declarations declare a finite set of variables, each of a
given record type or pointer type. Records are allowed to have recursive fields.

We assume the syntactic domains x ∈ VarId, f ∈ FieldId, and t ∈ TypeId,
of variable identifiers, field identifiers, and type identifiers, respectively. We
assume that flds(t) ⊂ FieldId denotes the (finite) set of fields comprising a
record type t ∈ TypeId. For simplicity, we assume that field identifiers are
globally unique, that is, for any type identifiers t1, t2 ∈ TypeId, if t1 �= t2,
then flds(t1) ∩ flds(t1) = ∅.

We consider programs written in a language with the set of primitive state-
ments shown in Table I. Note that each statement can dereference at most
one pointer. Without loss of generality, we assume that all branches are non-
deterministic and that only the addresses of record variables may be taken.

We utilize a control-flow graph (CFG) to represent a program P . The control-
flow graph consists of a set of vertices (NP), a set of edges (EP), a designated

1Thus, we do not consider interprocedural analysis in this article; as the primary results of this
article are lower bound results, this is not particularly significant. In particular, our lower bounds
also apply to procedural languages.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:4 • N. Rinetzky et al.

Table I. The Set of Primitive Statements

Statement Intended Meaning

noop A no-operation statement
x = NULL Nullify variable x
x = y Copy the value of variable y to variable x
x = y → f Copy the value of the f -field of the object pointed-to by variable y to variable x
x → f = y Copy the value of variable y to the f -field of the object pointed-to by variable x
x = alloc T Allocate a fresh object of type T and assign its address to variable x
x = &rec Assign the address of record variable rec to pointer variable x

x and y are arbitrary pointer variables and rec is an arbitrary record variable; f is an arbitrary field-identifier
and T is an arbitrary type-identifier.

Fig. 1. Semantic domains.

entry vertex (nP), and a map (MP) that associates every edge with a primitive
statement.

2.2 Language of Primitive Statements: Semantics

Programs in our language are executed using a standard two-level store seman-
tics for pointer languages (see, e.g., Milne and Strachey [1977] and Reynolds
[2002]). We assume that the operational semantics has the following (rather
standard) properties:

� The identifier NULL in our language denotes a special value null different
from the address of any heap-allocated object or variable.

� When a program’s execution starts, the contents of every memory cell is null.
� All fields of a newly allocated object are initialized to null.
� A program halts if it dereferences a null-valued pointer.

2.2.1 A Formal Definition of a Store-Based Semantics. We formalize the
notion of a precise alias analysis using the following (standard) definition of
a two-level store semantics. We note, however, the our results apply to any
definition which satisfies the aforementioned assumptions.

2.2.1.1 Memory States. Figure 1 defines the semantic domains and the
meta-variables ranging over them. We assume Loc to be an unbounded set
of locations. Due to our simplifying assumptions, a value v ∈ Val is either a
memory location or null �∈ Loc. A memory state is a 3-tuple σ = 〈A, lv, rv〉. A
is the set of used (alternatively, active or allocated) locations. These locations
store the contents (r-values [Strachey 1966]) of pointer variables and of fields.
lv is the environment. It maps every pointer variable to the (immutable and
unique) location in which its contents are stored, that is, lv maps a variable

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:5

to its l-value [Strachey 1966]. In C [Kernighan and Ritchie 1988] terminology,
lv(x) denotes &x, the address of variable x, in σ . rv is the store; it maps a location
to its contents.For example, rv(lv(x)) denotes the value of variable x in σ .

The value of every field of every record variable and of every dynamically
allocated object is kept in its own (unique) location in the store. In addition,
we assume that every record variable and every dynamically allocated object
is identified by a unique location in the store. The latter can be, for example,
the address of one of the object’s fields, as in C, or the location of the object’s
header, as in Java.

A common memory layout for objects is placing every field in a fixed offset
from the location which identifies the object. This way is taken, for example,
in Reynolds [2002], where locations are integers and every object is identified
by the location of its first field. The contents of the ith field of an object identified
by location l are stored in location l + i.

To abstract away from issues such as specific memory layouts, we assume
the existence of a layout function lv f : Loc ↪→ Loc for every field identifier
f ∈ FieldId. Given a location l identifying a dynamically allocated object (re-
spectively, a record variable), lv f (l) denotes the location in the store of σ in
which the value of the f -field of l is kept. It is assumed that for every location
l ∈ Loc and for every pair of field identifiers f1, f2 ∈ flds(t), if f1 �= f2 then
lv f1 (l) �= lv f2 (l).

Example 2.1. Assume that P is a program which defines type T as type T
{T* a, T* b}, that is, T is a record which has two (recursive) pointer fields, a
and b. Assume that P declares rec as a record variable of type T and x as a
pointer variable of type pointer to T. Let σ = 〈A, lv, rv〉 be a memory state of P .

lv(rec) denotes the unique memory location identifying rec in memory
state σ . In C terminology, lv(rec) denotes &rec, the address of rec. lva(lv(rec))
denotes the location which stores the value of the a-field of record rec. Similarly,
lvb(lv(rec)) denotes the location which stores the value of the rec’s b-field. In C
terminology, lva(lv(rec)) denotes &(rec.a) and lvb(lv(rec)) denotes &(rec.b).

If x points to record rec in σ then rv(lv(x)) = lv(rec). If x points to a dynam-
ically allocated object identified by location l , then rv(lv(x)) = l . lva(l) denotes
the location that stores the value of the a-field of l . Similarly, lvb(l) denotes the
location that stores the value of the b-field of l . In C terminology, lva(rv(lv(x)))
denotes &(x→a) and lvb(rv(lv(x))) denotes &(x→b).

A memory state σ = 〈A, lv, rv〉 is an admissible initial memory state for a
program P , if the following conditions hold:

(i) Every variable is mapped to a location, that is, for every variable x defined
in P , lv(x) ∈ Loc.

(ii) The locations used to contain the values of different variables are disjoint:
Let base(x) be {lv(x)}, if x is a pointer variable, and {lv(x)} ∪ {lv f (l) | f ∈
flds(T)}, if x is a record variable of type T . If x and y are different variables
defined in P , then base(x) ∩ base(y) = ∅.

(iii) Every memory location in the store is initialized to null, that is, rv = λl ∈
Loc.null.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:6 • N. Rinetzky et al.

Fig. 2. Meaning of statements. σ = 〈A, lv, rv〉. x and y are arbitrary pointer variables and rec is
an arbitrary record variable; f is an arbitrary field-identifier and T is an arbitrary type-identifier.
ρ(y) is a shorthand for the value of y in σ , that is, ρ(y) = rv(lv(y)). Similarly, ρ(x) = rv(lv(x)).
FT = {lv f (l) | f ∈ flds(T)}.

(iv) A, the set of used locations, contains all the locations used to store the
values of the variables declared in P , and only these locations, that is,
let VP be the variables declared in P , then A = ⋃

x∈VP
base(x).

We assume that a program P always starts executing in an admissible initial
memory state.

2.2.1.2 Operational Semantics. Figure 2 defines the meaning of statements
in a standard two-level store semantics for pointer programs. The semantics
is specified for every primitive statement st ∈ stms of the form defined in
Table I. The meaning of every statement st is given as a binary relation over
a set of memory states [[st]] ⊆ � × �. A pair of memory states 〈σ, σ ′〉 ∈ [[st]] iff
the execution of st in memory state σ may lead to memory state σ ′. Figure 2
describes the semantics of a statement st in the form of axioms. The intention
is that 〈σ, σ ′〉 ∈ [[st]] iff 〈st, σ 〉 � σ ′. The #Read column shows the number of
read memory access to the store done by each statement. The #Write column
shows the number of write memory access to the store done by each statement.

The statement noop is a no-operation, that is, it does nothing. The statement
x=NULL nullifies variable x. The statement x=y copies the value of variable y to
variable x.

The statement x=y→f (field-dereference) reads the value of field f of the
object pointed-to by y and writes that value to x. The statement x→f=y
(destructive-update) writes the value of y to the f-field of the object pointed-to
by x. In both statements, a side-condition ensures that the program does not
dereference a null-valued pointer: The execution of the program halts if the
dereferenced variable has a null value.

The statement x=alloc T (dynamic-allocation) allocates an object of type T
and assigns its identifying location to variable x. The identifying location is
guaranteed to be fresh, that is, it is not used in the current memory state.In
addition, the statement reserves a set of fresh locations, FT , to contain the
values of the fields of the new object.

We require that for every type T there be an unbounded number of locations
l ∈ Loc such that lv f (l) is defined for every f ∈ flds(T). This requirement
ensures that it is possible to allocate an unbounded number of objects of type T.
A similar requirement is placed in Reynolds [2002].

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:7

For simplicity, we require that every location is allocated once during the
execution of the program. This requirement is enforced by the side-condition of
the alloc statement, and the maintenance of the set A of all allocated objects,
including ones that are unreachable. Because every execution starts from an
admissible initial memory state, this simplifying assumption also ensures that
the fields of allocated objects are initialized to null.

The statement x=&rec assigns &rec’s identifying location to x.
Note that the lv component of a state is immutable. This immutability, com-

bined with the assumption that a program always starts executing in an ad-
missible initial memory state, ensures that reading or writing the value of a
variable never leads to a null-dereference.

2.2.2 Flow-Sensitive Executions. We now formalize the (standard) notion
of (flow-sensitive) executions.

Definition 2.2. A sequence π over a set S is a total function π ∈ {i ∈ IN |
1 ≤ i ≤ n} → S for some n ∈ IN. The length of a sequence π , denoted by |π |, is
|dom(π)|.

Definition 2.3. A path π of a program P is a sequence over EP , the edges
of the control-flow graph of P . A path π of a program P is realizable if (i) π (1)
originates from P ’s entry vertex, that is, π (1) = 〈nP , n〉 for some n ∈ NP , and
(ii) π forms a chain of edges, that is, for every 1≤ j < |π |, if π (j) = 〈nj , n′

j 〉 and
π (j + 1) = 〈nj+1, n′

j+1〉 then n′
j = nj+1.

Definition 2.4. A trace of a program P is a sequence τ over the set of memory
states of program P . A trace τ is induced by a path π of program P if (i) |τ | =
|π | + 1 and (ii) 〈τ (j), τ (j + 1)〉 ∈ [[M(π (j))]] for every 1≤ j ≤|π |.

Given a trace τ of a program P , we refer to τ (1) as τ ’s initial memory state
and to τ (|τ |) as τ ’s terminal memory state. If a trace τ ′ is induced by a path π ,
we say that τ starts executing in program point n′, where n′ is the source of the
edge π (1) and ends executing in program point n′′, where n′′ is the target of the
edge π (|π |). We refer to the terminal memory state of a trace τ as the memory
state resulting after the execution of π .

Definition 2.5. A trace τ of a program P is a flow-sensitive execution of
program P if (i) τ (1) is an admissible initial memory state and (ii) τ is induced
by a realizable path.

2.3 Flow Sensitive Alias Analysis

An analysis is said to be a sound (respectively, precise) flow-sensitive analysis
for a program P , if (respectively, iff) the information it determines at program
point (CFG node) n, is true at every program state that can result after any
flow-sensitive execution of P ending in n.

Definition 2.6. A flow-sensitive may-alias analysis determines for a pro-
gram P and a program point n ∈ NP , a set S of pairs of program variables such
that if (x, y) �∈ S then x and y never point to the same memory location after
any flow-sensitive execution of P ending in program point n.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:8 • N. Rinetzky et al.

Note that the above definition implies that given two variables, say x and
y, a precise flow-sensitive may-alias analysis also determines whether P has
a flow-sensitive execution after which x and y point to the same memory
location.

Definition 2.7. A flow-sensitive must-alias analysis determines for a pro-
gram P and a program point n ∈ NP , a set S of pairs of program variables such
that if (x, y) ∈ S then after any flow-sensitive execution in P ending in n, either
both x and y have a null value, or both point to the same memory location.

2.4 Block Partitioned Programs

A block-partitioned program is one that has been partitioned into units of com-
putation called blocks. A block consists of a sequence of primitive statements.
Informally, an analysis is said to be block-flow-sensitive if it analyzes code
within any given block in a flow-sensitive fashion, but the analysis may ignore
the execution order between blocks.

We utilize a control-flow graph to represent a block-partitioned program, just
as in Section 2.1. The only difference is that instead of associating edges with
primitive statements, we associate them with blocks.

2.4.1 Block-Flow-Sensitive Executions. Intuitively, a block-flow-sensitive
execution of a block-partitioned program P arbitrarily executes P ’s code blocks,
while respecting the order of statements in every block. We now formalize the
notion of block-flow-sensitive executions.

The semantics defined in Section 2.2.1 induces a (standard) meaning for ev-
ery sequence of statements as the composition of the meanings of the statements
comprising the sequence. We denote the composed meaning of a sequence of
statements block by [[[block]]], that is, [[[block]]] = [[block(1)]]◦· · ·◦[[block(|block|)]].

Definition 2.8. A trace τ of block-partitioned program P is a block trace
induced by a path π of program P if (i) |τ | = |π | + 1 and (ii) for every 1≤ j ≤|π |,
〈τ (j), τ (j + 1)〉 ∈ [[[M(π (j))]]].

Definition 2.9. A trace τ of a program P is a block-flow-sensitive execution
if (i) τ (1) is an admissible initial memory state and (ii) there exists a path π of
program P such that τ is a block trace induced by π .

Note: We define the notion of a flow-sensitive execution of a block-partitioned
program by adapting Definition 2.5 to consider block traces instead of traces.
Note that the modified definition ensures that the information determined
by both flow-sensitive may-alias analysis and must-alias analysis of block-
partitioned programs is oblivious to the intermediate memory states occurring
during the execution of a block.

Example 2.10. Figure 3I shows the control flow graph of a block-partitioned
program P3.I . Program P3.I , defines type N as type N {N* n}, that is, record N
has a single recursive field, n. P3.I defines six variables of type pointer to N: x, y,
p, q, t, and z. The entry vertex of P3.I is n1. Every edge in P3.I is identified by a

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:9

Fig. 3. I. Program P3.I . II. Realizable paths vs. non-realizable paths. III. Flow-sensitive vs. block-
sensitive alias analysis.

label of the form ei, written above the edge. The code block associated with an
edge is written below that edge. We sometimes refer to the code block associated
with edge ei as code block i.

Figure 3II shows three paths of P3.I : π1, π2, and π3. Path π1 is a realizable
path, while paths π2 and π3 are not realizable paths.

Path π1 is the only realizable path ending in n7. Furthermore, every real-
izable path of P3.I is a prefix of π1. In every memory state resulting after a
flow-sensitive execution induced by π1, two objects are allocated. The pointer
variables y, p, z, and t point to one of the objects. The pointer variables x and
q point to the other object. The n-field of each object points to the other object.

Path π2 is not realizable: The first edge in path π2 is e2. This edge does not
have the entry vertex as its source. (A realizable path of P3.I must start with
edge e1.) Furthermore, code block 3 and code block 4 appear twice in π2. This
is not possible in a realizable path of P3.I . At the end of the block-sensitive
execution induced by π2, one object is allocated. It is pointed-to by y and q. All
other variables have a null value.

Path π3 is comprised of edge e1, e3, and e6. Note that an attempt to execute
the program according to π3 leads to a null-dereference: Code block 6 attempts
to traverse the n-field twice, starting from the object pointed-to by p. However,
at the program point in which code block 6 is executed, the n-field of the object
pointed-to by p has a null value. As a result, the execution gets stuck: the second
dereference cannot be executed.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:10 • N. Rinetzky et al.

2.5 Block Flow Sensitive Alias Analysis

An analysis is said to be a sound (respectively, precise) block-flow-sensitive anal-
ysis for a block-partitioned program P , if (respectively, iff) the information it de-
termines is true at every program state that can result after block-flow-sensitive
execution of P .

Definition 2.11. A block-flow-sensitive may-alias analysis determines for a
block-partitioned-program P , a set S of pairs of program variables such that
if (x, y) �∈ S, then x and y never point to the same memory location after any
block-flow-sensitive execution of P .

Note that the above definition implies that given two variables, say x and y,
a precise block-sensitive may-alias analysis also determines whether P has a
block-flow-sensitive execution after which x and y point to the same memory
location.

Definition 2.12. A block-flow-sensitive must-alias analysis determines for
block-partitioned-program P , a set S of pairs of program variables such that if
(x, y) ∈ S then after any block-flow-sensitive execution in P , either both x and
y have a null value, or both point to the same memory location.

Note: Note that the information determined by both block-flow-sensitive
may-alias analysis and must-alias analysis is oblivious to the intermediate
memory states occurring during the execution of a block. Also note that the
exact program point in which the aliasing question is asked is immaterial in
Definitions 2.11 and 2.12.

Example 2.13. Figure 3III-Flow-sensitive shows the precise solutions to
the flow-sensitive may—and must—alias analyses of program P3.I at program
point n7. To avoid clutter, we exploit the symmetry of the aliasing relation and
use {x, y} as shorthand for (x, y) and (y , x). We also omit all pairs of the form
(x, x).

The precise flow-sensitive solution of a may-alias analysis of P3.I at program
point n7 is shown in the row labeled flow-sensitive may: We list every pair of
pointer variables which may be aliased, that is, point to the same location, after
a flow-sensitive execution of program P3.I ending in program point n7 (that is,
an execution induced by path π1). Note that the pair {p, q} is not in the solution
although after the execution of y = p inside code block 4 p and q point to the
same location: The analysis may ignore intermediate memory states occurring
during the execution of a block.

The precise flow-sensitive solution of a must-alias analysis of P3.I at program
point n7 is shown in the row labeled flow-sensitive must. It contains every pair
of pointer variables which must point to the same location or have a null value
after every flow-sensitive execution of program P3.I ending in program point
n7. The solution coincides with the precise solution to the may-alias analysis
because there is only one realizable path of P3.I ending in n7.

Figure 3III-Block-flow-sensitive shows the precise solutions to the block-flow-
sensitive may- and must-alias analyses of program P3.I .

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:11

The precise block-flow-sensitive solution of a may-alias analysis of P3.I , is
shown in the row labeled block-flow-sensitive may: We list every pair of pointer
variables that may be aliased, that is, point to the same location, after a block-
flow-sensitive execution of program P3.I . Note that, by definition, every flow-
sensitive execution is also a block-sensitive execution. Thus, every pair listed
in the solution of the flow-sensitive may-alias analysis is listed here too. In
addition, the precise block-sensitive solution contains four more pairs: The pairs
{p, x}, {q, y} are added by considering, for example, executions induced by the
path e1, e2, e3. The pairs {z, x}, {t, x} are added by considering, for example,
executions induced by the path e1, e2, e3, e5, e6. Again, and for the same reasons
mentioned above, the pair {p, q} is not in the solution.

The precise block-flow-sensitive solution of a must-alias analysis of P3.I is
shown in the row labeled block-sensitive must. Only t and z are determined to
be must-alias: The values of z and t are always set by block 6: Variable z is
assigned the value of p and variable t is assigned, in C notations , the value
of p→n→n. The only block which sets the values of the n-fields is block 5. In
any block-sensitive execution, if block 5 does not cause a null-dereference, then
it sets the n-field of the object pointed-to by p to point to the object pointed-to
by q, and vice-versa. Note that because both destructive updates are in the
same block, they are always executed as a unit. Thus, either the traversal of
the n-fields done in block 6 is successful, and returns to the point of origin, that
is, to the object pointed-to by p, or it leads to a null-dereference that halts the
execution. In the latter case, the analysis also does not continue along the path.

The last point, that is, the analysis not “continuing” along a path after a
null-dereference occurs, will play a key role in our arguments.

2.6 Partially Flow Sensitive Alias Analysis

We measure the degree of flow-sensitivity in block-flow-sensitive analysis of a
program P by measuring the “size” of its blocks.

We can measure the “size” of a block in a number of ways. The simplest
measure is to count the number of statements in a block. Thus, we may say that
a block is a k-block if it has k statements. This measurement has the advantage
of being both intuitive and simple. However, it blurs certain subtle distinctions
between different k-blocks. For example, consider the following statements: x=y
and x=y→f. Each statement is also a 1-block. However, the first block performs
only one read operation while the second block performs two consecutive read
operations. Intuitively, a precise analysis of the second block requires a higher
degree of flow sensitivity.

Thus, we define a finer measurement by separately counting the number
of memory locations read and the number written in a block. The exact book-
keeping method used for this purpose is not critical (it changes our results only
by a constant factor). In this article, we use the following definition to get a
reasonably intuitive measure.

We first introduce the notion of a local variable (or temporary). A local vari-
able is one that is always initialized in a block before it is used. As a re-
sult, local variables cannot be used to communicate values between blocks

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:12 • N. Rinetzky et al.

(or between different executions of the same block). Thus, we may think of local
variables as being “local” to each block. We will typically use variable names
of the form ri for local variables. For any block B, let rd (B) be the number of
non-local read occurrences in block B. Similarly, let wr(B) be the number of
non-local write occurrences in block B. A block B is said to be an (r, w)-block
if rd (B) = r and wr(B) = w. We say that a block-partitioned program P is an
(r, w)-block-partitioned program, if every block B of P is such that rd (B) ≤ r
and wr(B) ≤ w.

Note that any primitive statement can be encoded by a (2, 1)-block. Further-
more, a “high level” statement of the form x = y → f1 → f2 → · · · → fk can be
compiled into a (k + 1, 1)-block of primitive statements. This should illustrate
the motivation behind the above definitions.

An analysis is said to be an (r, w)-partially-flow-sensitive analysis, if it is
a block-flow-sensitive analysis for all (r, w)-block-partitioned programs. As a
special case, an analysis is said to be (∞, w)-partially-flow-sensitive if it is
block-flow-sensitive for all block-partitioned programs with blocks B such that
wr(B) ≤ w.

Definition 2.14. An (r,w)-partially-flow-sensitive may-alias analysis is a
block-flow-sensitive may-alias analysis for all (r, w)-block-partitioned-pro-
grams.

Definition 2.15. An (r, w)-partially-flow-sensitive must-alias analysis is a
block-flow-sensitive must-alias analysis for all (r, w)-block-partitioned-pro-
grams.

Note: As in Definitions 2.11 and 2.12, the exact program point in which the
aliasing question is asked is immaterial in Definitions 2.14 and 2.15.

We can now summarize the Horwitz’s result [Horwitz 1997] as: precise (∞, 1)-
partially-flow-sensitive alias analysis is NP-hard. On the other hand, Ander-
sen’s analysis [Andersen 1994] is a sound (2, 1)-partially-flow-sensitive may-
alias analysis.

In this article, we limit the allowed alias questions to be equality of variables,
that is, we consider only questions of the form are x and y may- (respectively,
must-) alias?

3. MAIN RESULTS

In this article, we show that precise flow-sensitive alias analysis can be reduced
to precise (3,3)-partially-flow-sensitive alias analysis (with dynamic memory al-
location) and to (5,2)-partially-flow-sensitive analysis (without dynamic mem-
ory allocation). This allows us to show that

—Precise (3,3)-partially-flow-sensitive may-alias and must-alias analysis is un-
decidable for programs that use dynamically allocated memory.

—Precise (5,2)-partially-flow-sensitive may-alias is PSPACE-complete for pro-
grams that do not use dynamically allocated memory.

We remind the reader that, in this article, we only consider pointer programs
comprised of a single (nonrecursive) procedure.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:13

Fig. 4. A transformation of an arbitrary program P into a (3,3)-block program Q. For an edge
e = 〈ni , n j 〉 ∈ EP , block(e) is at n j = at n i; at n i = null; TRANS(MP (e), at n j). The function
TRANS is defined in Table II.

4. REDUCING FLOW-SENSITIVE ALIASING TO
PARTIALLY-FLOW- SENSITIVE ALIASING

In this section, we show that alias analysis with a very limited flow-sensitivity is
as hard as flow-sensitive alias analysis. Specifically, we show that any program
P can be transformed into a (3, 3)-block-partitioned program Q such that the
block-flow-sensitive solution for Q yields the flow-sensitive solution for P . Be-
cause precise flow-sensitive alias analysis is undecidable for heap manipulating
programs [Landi 1992b; Ramalingam 1994; Chakaravarthy 2003], this shows
that precise (3, 3)-partially-flow-sensitive alias analysis is also undecidable.

We present the reduction in two stages: Section 4.1 describes a reduction that
uses an unbounded number of fields and Section 4.2 shows how the number of
fields used can be bounded.

4.1 A Reduction with an Unbounded Number of Fields

As explained earlier, a program P is represented by a set of type definitions, a
set of variable declarations, and a labeled CFG, where every edge of the CFG
is annotated with a statement. We assume, without loss of generality, that
all variables are pointers. (Thus, any record will have to be heap allocated. In
particular, we rule out the use of statements which take the address of variables,
e.g., x=&rec.)

Figure 4 illustrates how we transform a given program P into a (3, 3)-block-
partitioned program Q .

The first step in the transformation augments the type definitions in program
P with the definition of a new type PState which contains a field p for every
variable p in P . The idea is to use a single (heap-allocated) record of type PState

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:14 • N. Rinetzky et al.

Table II. TRANS(st, at n)

Statement Transformation Encoding Code Block
noop noop noop

x = NULL at n→x = NULL r1 = at n; r1→x = NULL

x = y at n→x = at n→ y r1 = at n; r2 = r1→ y ; r1→x = r2
x = y → f at n→x = at n→ y → f r1 = at n; r2 = r1→ y ; r3 = r2→ f ; r1→x = r3
x → f = y at n→x → f = at n→ y r1 = at n; r2 = r1→x; r3 = r1→ y ; r2→ f = r3
x = alloc T at n→x = alloc T r1 = at n; r2 = alloc T ; r1→x = r2

Transformation of a primitive statement st which annotates a CFG edge entering node n (which is represented
by the variable at n).

to capture the values of all variables in P . The state of program P is captured
in Q by a PState record plus the part of the heap reachable from that record.

As a result, we would like to replace the set of all variables declared in P
with a single pointer variable of type pointer to PState. For reasons that will
become clear soon, we actually use a pointer variable at n i of type pointer to
PState for every vertex ni in the CFG. These extra variables are used to ensure
flow-sensitivity by converting control-flow information (the “program counter”)
into data, as outlined below.

We add the statement “at n 0 = alloc PState” to program Q to create the
single record that is used to store the value of all variables in P , where n0 is
the entry vertex of the CFG. We then transform every statement in program P
associated with an edge from n i to n j into a block in program Q as follows: we
first add a transition guard that copies at n i to at n j and then sets at n i to
null; we then transform the original statement by replacing references to any
variable x by a reference to at n j→x. The statement produced by this substi-
tution may not be a primitive statement, but can be compiled into a sequence
of primitive statements as shown in Table II. Thus, the execution of the block
associated with edge n i to n j in program Q “passes the baton” to node n j.
Further, this block can execute successfully (without a null dereference) only
after the execution of some other edge (with target n i) passes the baton on to
node n i.

Consider any path α in program P ’s CFG from its entry vertex to some vertex
n, and let σ be the program state in P after execution along path α. Let α′ be
the corresponding path in program Q ’s CFG consisting of the edge e0 from n 0
to n 1 followed by α, and let σ ′ be the program state in Q after execution along
path α′. It should be clear that σ ′ is an equivalent representation of state σ .
Specifically, it should be clear that pointer variables x and y will have the same
value in σ iff at n→x and at n→y have the same value in state σ ′.

The key aspect of the transformation, however, relates to a sequence ξ of
edges in Q ’s CFG that does not constitute a path. Execution along any sequence
ξ of edges in Q ’s CFG will either result in a null-dereference or will produce a
state that is equivalent to the state produced by execution along a path from
Q ’s entry vertex to n, where n is the target vertex of the last edge in sequence ξ .

Specifically, consider how the pointer to the record allocated in the entry
edge is copied to other at n variables. The transition guards that do this ensure
that at most one at n variable points to this object. Further, the sequence of
at n variables that point to this object must form a valid path in the CFG,

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:15

starting from the entry vertex. However, note that in a block-sensitive analysis
it is possible for the entry edge to be executed at any point, creating newer
PState records. (Recall that the code block associated with the entry edge does
not begin with a transition guard, that is, it is comprised only of the statement
“at n 0 = alloc PState”.) In the general case, it is possible for multiple PState
records to exist, and for multiple at n variables to be non-null (i.e., to point to
these records). However, no two at n variables can point to the same record at
the same time. This gives us the desired result, as shown below.

Let ξ = [e1, . . . , eq] be an arbitrary sequence of Q ’s edges and let n be the
target of edge eq . Consider the execution of the code block associated with any
edge ei that is not the entry edge. Let ei = (v, w). If the execution of the code
block does not cause a null-dereference, then at v must be non-null before the
execution of the statements. However, at v can be assigned a non-null value
only by the execution of the block associated with some edge whose target is v.
Let j be the largest integer less than i such that the target of e j is v. (It follows
from the previous argument that such a j exists.) We define j to be the logical
predecessor index of i (in the sequence ξ).

We can identify a sequence of indices [z1, . . . , zq′] such that zq′ = q, and for
1 < i ≤ q′, zi−1 is the logical predecessor index of zi in ξ , and ez1 is the entry edge.
The corresponding sequence γ of edges [ez1 , . . . , ezq′] forms a realizable path
from the entry vertex to vertex n in Q such that the state after the execution
of ξ at n is equivalent to the state after execution of γ at n (where the notion of
equivalence is as explained previously).

A key property that guarantees this result is the following. Let j be the
logical predecessor index of i in ξ . Consider any p such that j < p < i. The
execution of edge ep does not affect the visible state seen during the execution
of ei. Specifically, let the source vertex of edge ep be u. Then, the record that
pointer at u points to before the execution of ep is different from the record
that at v points to before the execution of ei. Further, the heap reachable from
at u is completely disjoint from the heap reachable from at v. The disjoint-
ness is ensured by the following properties: (i) at u and at v point to different
state records, and (ii) the transformation of the statements ensures that ref-
erences to allocated objects are obtained by traversing through the same state
record. Thus, once an object has been allocated and its location assigned to
a field of one state record, it cannot be pointed-to by field of any other state
record.

Thus, execution along an arbitrary sequence ξ ends up simulating parallel
executions along one or more realizable paths in the CFG, without any interfer-
ence between these simulations. The key reason for the correctness of the trans-
formation, whose proof follows immediately from the preceding discussion, is
that executions halt once a null-pointer dereference occurs (see Section 2.2).

THEOREM 4.1. The block-flow-sensitive aliasing solution for Q coincides with
the flow-sensitive aliasing solution for P.

Let us now measure the flow-sensitivity of the program Q . Note that the tran-
sition guard at n j=at n i; at n i = NULL; can be encoded by the following

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:16 • N. Rinetzky et al.

operations consisting of 1 read operation and 2 write operations:

r1 = at n i; at n j = r1; at n i = NULL

Every simple statement can be encoded by at most 4 operations (see Table II)
containing at most 3 reads and 1 write. Note that the first operation in the
code block pertaining to any statement, with the exception of noop, is always to
read the value of the variable pertaining to the “current” CFG node. However,
because every transformed statement is preceded by a transition guard which
stores a value into that variable, we can save this read operation.

The aliasing question at n→x == at n→y can also be encoded using a total
of 4 operations with 3 reads:

r1 = at n; r2 = r1 →x; r3 = r1 → y ; equal = compare(r2, r3)

The following corollary follows immediately from the above results:

COROLLARY 4.2. Precise (3, 3)-partially-flow-sensitive may-alias and must-
alias analyses are undecidable in the presence of dynamic memory allocation.

Note: It is possible to ask an alternative aliasing question, one which only re-
quires determining information regarding aliasing of variables, using a slightly
more complicated transformation: We add to program Q two pointer variables,
say at n x and at n y, of the same types as x and y, respectively. Variables at n x
and at n y can capture the values of at n→x and at n→y, respectively, when-
ever a state record is propagated to at n. The values of at n→x and at n→y are
fetched using the following code block:

r1 = at n; r2 = r1 →x; r3 = r1 →y; at n x = r2; at n y = r3.

This code block is not guarded. Thus, it can be encoded using 3 reads and 2
writes. The modified aliasing question is are at n x and at n y may- (respec-
tively must) alias? Note that at n x and at n y do not participate in the sim-
ulation. They function as “place holders” that can be assigned the values of
at n→x and at n→y whenever at n points to a state record. Because at n x
and at n y are always assigned as a unit, they preserve both may- and must-
aliasing information regarding at n→x and at n→y in program Q , and thus,
also regarding x and y in program P .

4.2 Bounding the Number of Fields

In this section, we show that precise (3,3)-partially-flow-sensitive may-alias and
must-alias analysis is undecidable even when the number of fields is bounded.
This result is not implied by Theorem 4.1 because the number of fields used
by the transformation in Section 4.1 is proportional to the number of variables
in the transformed program P . Specifically, the PState record has a p-field for
every variable p in program P .

The main idea is to simulate a program P , which uses an unbounded num-
ber of variables, using a program B, which uses only a bounded number of
variables. The simulation ensures that the flow-sensitive aliasing solution to
program B yields the flow-sensitive aliasing solution to program P . Applying
the transformation of Section 4.1 to program B achieves the desired result.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:17

Fig. 5. The data types and the variables used in the transformation of an arbitrary program P
into a program B which uses only 6 variables. Program P has v pointer variables.

In this section, we assume that the program has only 1 user defined type,
namely T . This does not limit the generality of our result for two reasons. First,
it is trivial to convert any program that uses k user defined types T1, . . . , Tk into
a program that uses a single type T which contains all of their fields.2 Second, to
obtain a lower bound, it suffices to apply the transformation to programs that
use a single type that has two recursive fields: determining may- and must-
aliasing for these programs is undecidable [Ramalingam 1994].

The crux of the simulation is an encoding of the program variables by a linked
list. The list nodes are of type VarList (see Figure 5). Every node has 2 fields:
n, a successor field, and px, a data field. The value of a variable xi is encoded by
the px-field of the (i−1)-th list element. The transformation produces a program
which uses (only) the 4 variables shown in Figure 5.

We transform the control flow graph of program P into that of B using the
following procedure:

(1) B starts by constructing the list which encodes P ’s variables. This is done
by a code sequence (i.e, a chain of edges labeled by primitive statements)
which repeats the following statements v times:3

t=hd; hd=alloc VarList; hd→n=t;

Note that in the memory state the results after the execution of the above
code sequence hd points to a list with v nodes. The px-field of every list node
has the value null, which is the value a variable should have when the
program starts.

(2) Every edge e is replaced by a code sequence which simulates the statement
st = MP (e). Specifically, for a statement st with a left-hand operand p l and

2Without loss of generality, we can assume that fields have unique names.
3Recall that program P has v variables.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:18 • N. Rinetzky et al.

right-hand operand p r, we generate the following code sequence:

rh = getVarVal(r); Retrieves the current value of p r, as encoded in the
list, into rh .

lh = getVarVal(l); Retrieves the current value of p l, as encoded in the
list, into lh.

st| lh/ p l, rh/ p r Same operation as st, but with lh and rh replacing
the left-hand operand and the right-hand operand,
respectively.

t→px=lh Stores the current value of x in the list of variables
(optional).

We use getVarVal(d), where 1 ≤ d ≤ v, as shorthand for a code sequence
that retrieves the value of variable p d from the variable list, that is,

z = getVarVal(d) : t=hd initializes lookup
t=t→n Repeated d −1 times.
· · ·
z=t→px Stores the encoded value of p d into z.

In case st assigns a value to p l (which is the usual case) we add the last
statement, t→px=lh. Note that prior to its execution, t points to the VarList
node that encodes the value of p l.

(3) The edge echeck = 〈ncheck, n′
check〉, the only edge which originates from the

CFG node in which we ask the aliasing question in P regarding p i and p j
(see Figure 5), is replaced by the following code sequence:

lh = getVarVal(i); Sets p i to its current (i.e., encoded) value.
rh = getVarVal(j); Sets p j to its current (i.e., encoded) value.
// lh == rh ?

This code sequence stores the current values of the variables p i and p j,
as stored in the list, into lh and rh, respectively. The alias question in B is
asked right after this code sequence.

Clearly, program B simulates the execution of program P . Thus, the following
theorem is immediate.

THEOREM 4.3. The flow-sensitive aliasing solution for B coincides with the
flow-sensitive aliasing solution for P.

Applying the above transformation to an arbitrary program P , which has a
single user defined type T that has two recursive fields, results in a program
B which has four variables and four fields (T ’s 2 fields and VarList’s 2 fields.)
Applying the transformation of Section 4.1 to program B results in a program
Q which has eight fields (program B’s 4 fields and one field for every one of
its variables). Recall, however, that Q uses three user defined types: T , which
has two recursive fields; PState, which has two fields of type pointer to VarList
and two fields of type pointer to T ; and VarList, which has one field of type
pointer to T and one recursive field. Obviously, we can replace these three data
types by a single data type which has four recursive fields. Furthermore, the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:19

aliasing solution to (the modified) program Q also yields the aliasing solution
to program P . Thus, the following corollary is immediate.

COROLLARY 4.4. Precise (3, 3)-partially-flow-sensitive may-alias and must-
alias analyses are undecidable in the presence of dynamic memory allocation
for programs with four fields.

5. REDUCTION WITHOUT DYNAMIC ALLOCATION

In this section, we consider programs that do not use dynamic memory allo-
cation. In this case, we present a transformation, similar in spirit to the one
given in Section 4, that does not use dynamic memory allocation. Flow-sensitive
may-alias analysis is PSPACE-complete for pointer programs with records and
recursive fields [Landi 1992a; Muth and Debray 2000]. Our reduction shows
that a (5, 2)-partially-flow-sensitive may-alias analysis is as hard as a flow-
sensitive analysis. Obviously, it cannot be harder. Thus, we can establish that
(5, 2)-partially-flow-sensitive may-alias analysis is PSPACE-complete.

Again, we present the reduction in two stages: Section 5.1 gives a transfor-
mation that uses an unbounded number of fields and Section 5.2 bounds their
number.

5.1 A Reduction with an Unbounded Number of Fields

A program consists of type definitions, variable declarations and a CFG, just
as in Section 4. However, the program does not use a heap or dynamic memory
allocation. Instead, record variables can be declared and have their address
assigned to pointer variables. Specifically, we use the statement p=&rec which
assigns the address of the record variable rec to the pointer variable p.

The main idea behind the transformation of a program P into a block-
partitioned program Q such that the block-flow-sensitive solution for Q yields
the flow-sensitive solution for P is similar to the idea behind the transforma-
tion in Section 4.1. However, instead of using a heap-allocated record to store
the values of P ’s variables, we use P ’s variables. This eliminates the use of
dynamic memory allocation in the transformation. However, this introduces a
few problems in the reduction.

We noted in Section 4.1 that execution along an arbitrary sequence ξ simu-
lates multiple executions along one or more realizable paths in the CFG. There
was no interference between these simulations (in the original transformation)
because they operate on different state records from which disjoint parts of
the heap were reachable. However, since the current transformation uses P ’s
variables, this is no longer true; the executions of blocks in arbitrary order will
have an effect on each other.

We address this problem by ensuring that an execution along any sequence
ξ of edges in Q ’s CFG will result in a null-dereference unless it “corresponds”
to a path in the program P . We noted that with the original transformation, it
was possible to follow a path α in Q , and then start following a new path β, and
to then resume execution along path α. We will avoid this possibility with the
new transformation by simulating the progress of a program counter that may
only point to a single program location. This will ensure that the program never

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:20 • N. Rinetzky et al.

Fig. 6. Illustrating the transformation. (a) A fragment of a CFG. (b) Encoding of edge e2 as the
successor of edge e1. (c) Encoding of edge e3 as the successor of edge e1. (d) Construction of the
action-records. (e) Simulation of statement execution.

resumes an interrupted execution. Again, the precise treatment of null-valued
pointer dereferences will play a key role.

Before we formally define the transformation, we illustrate it using the CFG
fragment shown in Figure 6(a). This CFG fragment consists of an edge e1 whose
target is a branch node with two successor edges e2 and e3, where the edges
are labeled with statements st1, st2, and st3, respectively. The transformation
generates special action-records at1, at2, and at3 for each one of the edges
e1,e2, and e3, respectively. The action records are depicted in Figure 6(c-b). These
records have fields named stmt1, stmt2, stmt3, and next (and possibly other
fields, depending on the rest of the program). The relationship between an
edge ei and its corresponding action-record, ati, is encoded by creating a self
reference at ati using the stmti-field. Lines 1, 4, and 5 in Figure 6(d) show the
code that is generated by the transformation to create these self references.
(Every line of the code comprises a single block.)

The fact that in the CFG fragment (only) edges e2 and e3 can be executed
following edge e1 is encoded by having the next-field of the action-record at1
point to one of the action records corresponding to one of these edges. Lines 2
and 3 in Figure 6(d) show the code that is generated by the transformation to
update the next field of the at1 action-record. Figure 6(b) and Figure 6(c) depict

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:21

the state of the action records at1, at2, and at3 after the execution of lines 1,
4, 5 followed by line 2 or line 3, respectively. (Recall that in a block-sensitive
execution lines can be executed in an arbitrary order.)

Figure 6(e) shows how action records are utilized in the simulation of the
code fragment shown in Figure 6(a). Lines 6, 7, and 8 are used to simulate
statements st1, st2, and st3, respectively. The pointer variable pc acts as the
program counter. It points to the current action-record: the action-record cor-
responding to the edge which is labeled by the next statement to be executed.
Every line of code (i.e., block) begins with a guard which traverses the self
reference and then sets pc to the next-field of the current action-record, effec-
tively advancing the program counter. For example, executing line 6 when the
next-field of action-record at1 points to at2 (respectively, at3), as depicted in
Figure 6(b) (respectively, Figure 6(c)), leads to the execution of st1 followed by
the execution of st2 (respectively, st3). Note, however, that an attempt to execute
either line 7 or line 8 when pc points to the action-record at1 results in a null-
dereference. This demonstrates how the guard ensures the orderly execution of
statements.

The transformation of a program P into program Q is given in Figure 7. In
the following, we assume without loss of generality that the original program
P starts with an initialization section in which all pointer variables and all
fields of all record variables are nullified. In addition, we assume that P ’s CFG
has no sink nodes.4 We also assume that there is a single aliasing query that
we are interested in, at a specific program point, ncheck, which is the source of a
single nop-labeled edge echeck = 〈ncheck, n′

check〉. The node ncheck is not part of the
initialization section.

The transformation encodes the control-flow of the original program P by
representing CFG edges as records, and the connections between edges as point-
ers. We start by introducing an action-record for representing a CFG edge. Every
edge e in P ’s CFG is matched with an action-record variable. The field stmte
encodes this matching. The field stmte has a non-null value only in action record
ate, where it points back to the record ate in which it is contained. The action-
record also uses a pointer field next to point to the next action to be executed.
A precise definition of the action-record is given in Figure 7.

Program Q consists of two main parts. The first part consists of the EB and
EG edges (see Figure 7). The second part is a copy of P ’s CFG. The e0 edge
connects the two parts.

The first part is responsible for setting the stmte and next fields. Note that
the stmte field is always assigned the same value (Specifically, the stmte field
of record variable ate is always assigned the address of ate.) The stmte fields
are assigned by the EB edges. In contrast, the next field of an action-record
matching an edge e can be set to the addresses of any of the action records that
match the edges following e in P ’s CFG. In a block-flow-sensitive execution, the
assignments to the next fields allow to create all the possible executions in P ,
and just these executions. The next fields are assigned by the EG edges.

4The assumption that P ’s CFG has no sink nodes does not limit the generality of out result: Any
sink can be augmented with a self nop-labeled edge without affecting the aliasing solution.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:22 • N. Rinetzky et al.

Fig. 7. A transformation of an arbitrary program P into a (5, 2)-block-partitioned program Q with-
out using dynamic allocation. For an edge e = 〈bi , b′

i〉 , build(e) is pb=&stmt ei ; pb→stmt i=pb. If,
however, e originates from the node in which we ask the aliasing question, build(e) is pb=&stmt ei ;
pb→stmt i=pb; pb→check=pb. For an edge e = 〈b′

i , gi, j 〉, nxt(e) is pb=&stmt ei ; pbn=&stmt e j ;
pb→next=pbn. For edge eh = 〈ni , n j 〉 ∈ EP , block(eh) is pc=pc→stmt h; pc=pc→next; MP (eh).

The e0 edge fires off the simulation of P ’s executions. It sets pc, the “program
counter”, to the address of the first edge in the CFG. Note that in a block-flow-
sensitive execution, this statement can happen at any stage. However, because
a program always starts with an initialization section, all the values that might
have been stored in P ’s variables prior to the execution of the e0 edge have been
nullified.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:23

The second part, that is, the copy of P ’s CFG, is responsible for executing P ’s
statements. Every edge e ∈ EP is mapped to a block comprised of a transition
guard and the e’s original statement in P . The transition guard ensures that
when pc points to an action-record ateh , the only statement that can be executed
is the one labeling eh in P , that is, MP (eh). Specifically, the transition guard
of edge eh ∈ EP is pc = pc→stmt h; pc = pc→next. The guard traverses the
field stmt h before it advances pc. Because the only (possibly) non-null stmt
field in ateh is stmt h, an attempt to execute any statement other than MP (eh)
when pc points to ateh will lead to a null-dereference.

Clearly, every flow-sensitive execution of program P , has a corresponding
block-sensitive execution of program Q . Furthermore, every block-sensitive ex-
ecution of program Q corresponds to a series of flow-sensitive executions of
program P , where each execution starts from a memory state in which all the
pointer variables and all the pointer fields have a null value. Thus, the follow-
ing theorem is immediate:

THEOREM 5.1. The block-flow-sensitive aliasing solution for Q coincides with
the flow-sensitive aliasing solution for P.

Let us now measure the flow-sensitivity of the program Q . Any primitive
statement requires at most two read operations and one write operation. The
transition guard for an edge e can be encoded by the following four operations
consisting of three read operations and one write operation:

r1 = pc; r2 = r1 →stmte; r3 = r2 →next; pc = r3

Every “build” edge and every “nxt” edge can be encoded using a single write
operation. (Recall that getting the address of a record variable does not require
a read memory access to the store.)

The aliasing question pc→stmt c→x == pc→stmt c→y can also be encoded
using a total of 3 read operations and 1 write operation:

r1 = pc; r2 = r1 →stmt c; r3 = r2 →x; r4 = r2 → y ; equal = compare(r3, r4)

The following corollary follows immediately:

COROLLARY 5.2. Precise (5, 2)-partially-flow-sensitive may-alias analysis is
PSPACE-complete for pointer programs that do not use dynamic memory allo-
cation.

Note: It is possible to ask an alternative aliasing question, one which only re-
quires determining information regarding aliasing of variables, using a slightly
more complicated transformation. The new transformation is similar to the one
described at the end of Section 4.1.

We add to program Q two pointer variables, say at c x and at c y, of the same
types as x and y, respectively. Variables at c x and at c y capture the values of
pc→stmt c→x and pc→stmt c→y, respectively, whenever the program counter
“points” to edge echeck. The values of pc→stmt c→x and pc→stmt c→y can be

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:24 • N. Rinetzky et al.

captured using the following code block:

r1 = pc; r2 = r1 →stmt c; r3 = r2 →stmt c;
r4 = x; r5 = y ; at c x = r4; at c y = r5.

This code block does not advance the program counter. Thus, it can be encoded
using 5 reads and 2 writes. The modified aliasing question is are at c x and
at c y may- (resp. must) alias? Note that at c x and at c y do not participate
in the simulation. They function as “place holders” that can be assigned the
values of x and y whenever the program counter “points” to edge echeck. Because
they are always assigned as a unit, they preserve both may- and must-aliasing
information regarding pc→stmt c→x and pc→stmt c→y in program Q , and
thus, regarding x and y in program P .

5.2 Bounding the Number of Fields

In this section, we show that precise (5, 2)-partially-flow-sensitive may-alias
analysis is PSPACE-complete in the absence of dynamic memory allocation
even when the number of fields is bounded. This result is not implied by
Theorem 5.1 because the number of fields used by the transformation in Sec-
tion 5.1 is proportional to the size of the transformed program P . Specifically,
the Action record has a stmt-field for every edge in P ’s CFG.

Examining the reduction in Section 5.1, we notice that having a field for every
CFG edge is, in a sense, redundant. The only role of the guard field stmt i is to
ensure that MP (ei), the statement labeling edge ei = 〈na, nb〉, can be executed
only when the program counter (pc) points to na. (This is achieved by preceding
the execution of MP (ei) with a dereference of stmt i.) However, we can achieve
a similar effect by using a field for every unique statement st ∈ {MP (e) | e ∈ EP }
in P instead of having one for every CFG-edge, e ∈ EP . The guard in the
block code pertaining to a CFG-edge ei will be pc=pc→stmtMP (ei); pc= pc→next.
This makes the number of fields required by the reduction proportional to the
number of different statements in program P .

Unfortunately, the number of different statements in a program is also
unbounded. It depends on the number of variables and the number of
fields in the program. In the rest of this section, we show how to bound
the number of statements in P that need to be guarded in the simulated
program.

We begin by first bounding the number of fields used in P . We can assume
the program has only one user defined type, namely T . This does not limit the
generality of our result (see Section 4.2). Furthermore, we can assume that T
has at most two fields: any type with k fields f1, . . . , fk can be represented by
a list with k elements. Every list element has two recursive pointer fields: a
successor field a data field. The value of pointer field fk is recorded by the data
field of the k−1 list node.

To bound the number of pointer variables, we will use the same idea as
in Section 4.2 and encode the values of these variables in a list comprised of
VarList record variables. Unfortunately, such a transformation will not do for
record variables: taking the address of a variable requires specifying its name.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:25

This means that the number of different statements inherently depends on the
number of record variables.

Before we describe how to overcome the aforementioned obstacle, we make
some simplifying assumptions regarding program P . These assumptions do not
affect the generality of our result. We assume that P has a pointer variable p i
for every record variable rec i. Furthermore, P consists of two parts: P1 fol-
lowed by P2. P1 assigns the address of every record variable to its corresponding
pointer variable. We refer to the pointer variable p that corresponds to record
variable rec as the constant record pointer corresponding to rec. P2, which is the
rest of the program, never uses the address-of operator. Instead, whenever the
address of a record variable is needed, the value of the corresponding constant
record pointer is used. P2 also consists of two parts: Pinit

2 followed by Pprog
2 . P2

starts its execution by a code sequence Pinit
2 which nullifies all the fields of all

the record variables and all the pointer variables, except the constant record
pointers. The latter are never modified by P2. We assume that P has totally v
pointer variables p 1, . . . , p v.

We are now ready to describe the transformation. We encode P ’s variables
by a linked list of VarList nodes in the same way we did in Section 4.2.
This results in a program that utilizes the 4 pointer variables defined in Fig-
ure 5, the same record variables used by program P , and v + 1 new record
variables vl1, . . . , vlv+1 of type VarList. Record variable vli represents the
value of P ’s pointer variable p i. The vlv+1 node is a dummy node.

We transform the control flow graph of program P into that of Program B.
The latter consists of 2 parts: B1 followed by B2. The transformation is done as
follows:

(1) B1 constructs and initializes the list encoding P ’s variables. It consists of a
chain of edges annotated with the following code blocks. First, B1 links the
VarList nodes. The ith node, 1 ≤ i ≤ v, is linked using the following code
block:

r1=&vli; r2=&vli+1; r1→n=r2

Then, for a node vl i which records the value of the constant record pointer
variable corresponding to a record variable rec, B1 assumes the role of P1
and assigns the address of rec into the px-field of vl i using the following
code block:

r1=&vli; r2=&rec; r1→px=r2

Finally, B1 assigns to hd the address of vl1, the first node in the variable
list using the statement hd = &vl1.

Note that in the memory state which results after the execution of B1, the
variable hd points to a list with v + 1 nodes. The px-field of every list node
has the value null, unless that node represents a constant record pointer.
In the latter case, the px-field points to the corresponding record.

(2) We transform P2 into B2 according to stages (2) and (3) of the transformation
described in Section 4.2. Note that B2 also starts in a code sequence Binit

2
that nullifies all the variables and all the pointer fields of all the records;
followed by the rest of the program, Bprog

2 .

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:26 • N. Rinetzky et al.

Clearly, the only difference between program P and program B is that
while program P can find the value of a variable directly, program B has
to do it by traversing the list variables. Thus, the following theorem follows
immediately:

THEOREM 5.3. The flow-sensitive aliasing solution for B coincides with the
flow-sensitive aliasing solution for P.

We now transform program B into a (5, 2)-block-partitioned program Q . The
code sequence in B1 is already partitioned into (0, 1) blocks. Thus, we leave it
intact. We transform the CFG of B2 according to the transformation of
Section 5.1, treating the entry node to B2 as the entry node to the program.

Note that during a block-sensitive execution of program Q , the code blocks
that construct the variable list can be executed any time and any number
of times. However, their effect is always the same. The transformation of
Section 5.1 ensures that the orderly execution of the program statements in
B2 is faithfully simulated. Furthermore, in any execution of Q , the construc-
tion of the variable list has to be completed prior to the simulation of Bprog

2 .
The reason for this is that B2 begins by executing Binit

2 . There, it traverses the
variable list and the px-fields of nodes pertaining to constant record pointers.
A successful traversal ensures that the list construction is completed. Note
that although list-constructing code blocks can be executed later on, they will
not modify either a field or the pc pointer. Thus, the following theorem follows
immediately.

THEOREM 5.4. The flow-sensitive aliasing solution for Q coincides with the
block-flow-sensitive aliasing solution for B.

Let us count the number of fields used in program Q . First, program B
uses four variables and two types: T and VarList. Both have two recursive
fields. Clearly, we can rewrite B to use a single type that has two recursive
fields. Transforming program B into program Q requires at most 13 different
statements that need to be guarded.5 Consequentially, the Action record in
program Q has 14 fields. (Recall that we have one Action record for every CFG
edge of B2. Every record encodes a specific statement using one of the 13 stmt
fields. It also stores its successor using the nextfield.) Clearly, program Q can be
rewritten using a single record type with 13 fields. Thus, the following corollary
follows immediately:

COROLLARY 5.5. Precise (5, 2)-partially-flow-sensitive may-alias analyses
are PSPACE-complete for programs with 14 fields.

5Only the statements of program B2 need to be guarded. According to stages (2) and (3) of the
transformation described in Section 4.2, program B2 is comprised of (a subset of) the following
13 statements: (i) five statements are used to manipulate the VarList: t=hd, t=t→n, rh=t→px,
lh=t→px, t→px=lh; (ii) seven statements are the original statements, with lh and rh replacing
the left-hand and the right-hand operands: noop, x=NULL, x=y, x=y→ f , y→ f =x, where f is one of
the two recursive fields, that is, either px or n; (iii) one statement is needed to stmt c, the edge in
which the aliasing question is asked.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

On the Complexity of Partially-Flow-Sensitive Alias Analysis • 13:27

6. CONCLUSIONS AND OPEN PROBLEMS

In this article, we define a notion of partially-flow-sensitive analysis. We define
a degree of flow-sensitivity based on the maximum number of memory locations
read and the maximum number of memory locations written in a block that is
guaranteed to be analyzed in a sequential manner. We show that precise alias
analysis with a very limited flow-sensitivity is as hard as flow-sensitive alias
analysis.

The numerical bounds we found are not absolute. In particular, alternative
measurements lead to different bounds. For example, measuring a block by the
number of statements it contains shows that precise 5-flow-sensitive may-alias
and must-alias analyses are undecidable in the presence of dynamic memory
allocation.6 We chose a measurement which strikes us as being both simple and
intuitive, yet sensitive enough to make certain seemingly important distinc-
tions between blocks (see Section 2.4 and 2.6) but not too sensitive. Changing
the assumption that every memory cell in the initial store contains a null value
(see Section 2.2.1), may also affect our results by a constant factor.

Several interesting questions regarding partially-flow-sensitive analysis are
left open. An interesting family of analyses for which we do not have lower
bounds are (k, 1)-partially-flow-sensitive alias analyses. These analyses coin-
cide with the standard flow-insensitive analyses as they require analysis of
single assignments involving up to k −1 field dereferences while respecting the
order of field dereferences in every assignment. Another open question is to find
tighter lower bounds on the number of fields that a program can use. Our reduc-
tions use recursive data structures. An interesting question is whether similar
bounds can be shown for programs with multi-level nonrecursive pointers.

The key aspect underlying our reductions is the fact that the analysis is
required to handle “null-pointer dereferences” accurately: If a particular inter-
leaving of blocks leads to a null-pointer dereference, the analysis is not supposed
to continue on with analysis along this path. This argues that an analysis which
ignores possible null-pointer dereferences and keeps on analyzing paths caus-
ing such dereferences may not be subject to the complexity results of this paper.
This is one possible over-approximation of the actual program executions that
may be helpful in analysis design.

While this article focuses only on some theoretical aspects, namely lower
bounds, of analyses for block-partitioned programs, we believe that partially-
flow-sensitive analyses could be a promising approach to striking a balance
between scalability of flow-insensitive analyses and precision of flow-sensitive
analyses. Furthermore, our reduction techniques can help in the design of new
analyses. They can allow the analysis designers to focus on a restricted version
of the problem and develop analyses for the restricted version (i.e., develop
partially-flow-sensitive analyses). Then, using our reductions, they will be able
to apply their analysis to arbitrary programs. (This is similar to the way the

6In Section 4.1, we show this result for (3, 3)-partially-flow-sensitive analyses. Note that in the
number-of-statement measurement, we can gain a better bound by placing two non-local read
operations in 1 statement. Our measurement, on the other hand, is insensitive to this sort of
changes, which we consider to be a merit.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

13:28 • N. Rinetzky et al.

SSA transformation allows one to achieve flow-sensitive analysis using a flow-
insensitive analysis in certain contexts in the absence of pointer indirection.)

REFERENCES

ANDERSEN, L. O. 1994. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, Univ. of Copenhagen. (DIKU report 94/19).

CHAKARAVARTHY, V. 2003. New results on the computability and complexity of points–to analy-
sis. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press, New York, NY, USA, 115–125.

HORWITZ, S. 1997. Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans. Prog.
Lang. Syst. 19, 1(Jan.), 1–6.

KERNIGHAN, B. W. AND RITCHIE, D. M. 1988. The C programming language. Prentice Hall, Upper
Saddle River, NJ.

LANDI, W. 1992a. Interprocedural aliasing in the presence of pointers. Ph.D. dissertation, Rutgers
University.

LANDI, W. 1992b. Undecidability of static analysis. Let. on Prog. Lang. and Syst. 1, 4, 323–337.
MILNE, R. AND STRACHEY, C. 1977. A Theory of Programming Language Semantics. Halsted Press,

New York, NY.
MUTH, R. AND DEBRAY, S. K. 2000. On the complexity of flow-sensitive dataflow analyses. In Pro-

ceedings of the Symposium on Principles of Programming Languages. 67–80.
RAMALINGAM, G. 1994. The undecidability of aliasing. Trans. Prog. Lang. Syst. 16, 5, 1467–1471.
REYNOLDS, J. 2002. Separation logic: A logic for shared mutable data structures. In Logic in

Computer Science. 55–74.
STRACHEY, C. 1966. Towards a formal semantics. In Formal Language Description Languages for

Computer Programming, T. B. Steel, Ed. North Holland, Amsterdam, The Netherlands, 198–220.

Received March 2006; revised December 2006; accepted April 2007

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 3, Article 13, Publication date: May 2008.

