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Abstract—We introduce Zen, a new resource allocation
framework that assigns application components to node
clusters to achieve high availability for partial-fault tolerant
(PFT) applications. These applications have the charac-
teristic that under partial failures, they can still produce
useful output though the output quality may be reduced.
Thus, the primary goal of resource allocation for PFT
applications is to prevent, delay, or minimize the impact
of failures on the application output quality. This paper is
the first to approach this resource allocation problem from
a theoretical perspective, and obtains a series of results
regarding component assignments that provide the highest
service availability under the constraints imposed by the
application data flow graph and the hosting clusters.

We show that (1) even simple versions of this resource
allocation problem are NP-Hard, (2) a 2-approximate
polynomial-time algorithm works for tree topologies, and
(3) a simple greedy component placement performs well in
practice for general application topologies. We implement
a system prototype to study the application availability
achieved by Zen compared to failure-oblivious placement,
replication, and Zen+replication. Our experimental results
show that three PFT applications achieve significant data
output quality and availability benefits using Zen.

I. INTRODUCTION

With increasing scale and complexity of deployed dis-
tributed applications, their utility is increasingly limited
by availability rather than performance [10], [29]. Thus,
masking failures to ensure application availability has
become a key goal in dependable computing. Traditional
approaches to fault-tolerance are based on techniques
such as replication [4], [12], [15] and checkpointing [12],
[13], [18]. Multiple replicas increase the probability that
an application will be able to provide service to end-users
despite individual node failures. Similarly, checkpointing
allows a service to be restarted quickly from a backup
site, thereby limiting the work lost when a failure occurs.

However, these approaches introduce well-known
tradeoffs between cost and availability. For example,
a replicated service may incur significant overheads to
provide strict consistency requirements [12], [30]. Fur-
ther, the monetary cost of implementing highly available
services can double for just a fraction of percentage
of availability [7], and under correlated failures, even
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additional replicas result in a strong diminishing re-
turn in availability improvement for many replication
schemes [19]. Similarly, the overheads of checkpointing
can limit its benefits [31].

In this paper, we investigate an alternative resource
allocation framework whose main philosophy is that
if we can leverage knowledge of failure characteristics
and resource capacity constraints (e.g., CPU, MEM,
I/0, etc.) of node clusters in component placement (i.e.,
to which cluster should each component be assigned),
we can achieve significant gains in availability for an
important class of applications, which we term partial-
fault tolerant (PFT) applications. In contrast to applica-
tions that require the availability of all components to
operate correctly, PFT applications provide a “graceful
degradation” in performance as the number of failures
increases. For example, aggregation systems such as
Sawzall [21], SDIMS [28], and PIER [11] are likely to be
able to tolerate some missing objects while processing a
query (e.g., JOIN, MEDIAN, AVG, etc.) on a distributed
database. Similarly, data mining applications such as
WTTW [26] and FAB [25] (described in Section II-A)
can still classify data objects under failures, though
with less confidence. Further, for many data stream
applications with stringent temporal requirements [2],
[3], it is more important to produce partial results within
a given time bound than full results produced late.
Finally, mission-critical applications (e.g., power control,
telecom, medical systems) deploy multiple sensors [8]
such that at least some of them should be able to trigger
an alert during failures or when operating conditions are
violated (e.g., when a sensor senses a fire.)

Given this system model, we can precisely state the
problem as follows: Given a distributed computing sys-
tem comprising n clusters (11, 75,...,T,) each with a
resource capacity ¢; and a failure probability p; (i €
[1,n]), and a PFT application made up of m components
(C1,Cs,...,Cy) each of which may execute on any
cluster, allocate each of the m modules to one of the
n clusters such that the loss in expected application
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Fig. 1: Data aggregation application.

output value is minimized under failures subject to the
constraints imposed by the application data flow graph,
the resource capacities, and the failure probabilities.

To solve this problem, we introduce the Zen frame-
work that performs failure-aware component assignment
to achieve high availability for PFT applications. Zen
approaches the problem from a theoretical perspective
by reducing the above optimization problem to a variant
of the graph coloring problem. We show that even
simple versions of this graph coloring problem are NP-
Hard. Therefore, Zen provides (1) a 2-approximate (wrt
the optimal algorithm’s output loss) polynomial-time
algorithm for tree topologies and (2) a greedy algorithm
using the underlying principles of the optimal algorithm
for general graph topologies, and shows that it works
well in practice.

We have implemented a prototype of Zen and eval-
uated its effectiveness by deploying across a cluster
testbed three real-world PFT applications: a data ag-
gregation application, WTTW, and FAB. Relative to a
failure-oblivious placement, Zen improves availability
of these applications by 35%-60%. Compared to repli-
cation, (1) Zen provides nearly equal availability as
replication but with less cost and (2) Zen+replication
achieves significantly higher availability from 33%-90%
for the same cost as replication.

By using Zen, we hope that application managers can
significantly improve service availability by making an
application-aware and cluster-aware automated resource
allocation. Our long-term goal is to enable self-adaptive
component placement for achieving high availability in
large-scale, dynamic environments. Towards this goal,
this paper makes three technical contributions:

o We introduce the problem of failure-aware component
assignment for PFT applications and show that even
simple versions of this problem are NP-Hard.

o« We develop the Zen resource allocation framework
that provides a 2-approximate algorithm for tree
topologies and a greedy algorithm for general appli-
cation topologies that works well in practice.

o« We implement a prototype of Zen in a large-scale
stream processing system and evaluate its effect on
availability compared to failure-oblivious placement,

Fig. 2: WTTW data flow graph.
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Fig. 3: FAB data flow graph.

replication, and Zen+replication. Our experimental

results show that three PFT applications achieve sig-

nificant availability benefits using Zen.

The rest of this paper is structured as follows. In Sec-
tion II, we discuss motivating applications and examples.
Section III defines our system model in terms of the class
of failures and applications we target. Section IV gives a
proof of the NP-hardness and describes our approxima-
tion algorithms. Section V describes evaluation of Zen
using our system prototype. Finally, Section VI discusses
related work and Section VII concludes.

II. MOTIVATION

A. Motivating Applications

Our work is motivated by PFT applications. In this
section, we describe three PFT applications that span a
broad range of size, topology, functionality, and fault-
tolerance. For each application, we focus on quantifying
its availability in terms of the application output quality.
Data Aggregation. Our first application is a data aggre-
gation service that is designed to be representative of in-
network query processing systems such as Sawzall [21]
and SDIMS [28]. In our implementation, an aggregation
tree is constructed (Figure 1) that assigns aggregator
components at internal nodes which receive children
inputs and send the aggregate output to their parent.
An aggregator’s data output value is well-expressed as a
summary of its incoming data values. Several standard
aggregation functions such as SUM, AVG, MAX, MIN,
etc. satisfy this application model. Availability in this
application is measured by the percentage of paths from
the leaves to the root that contribute to the global aggre-
gate. E.g., a COUNT query can tolerate some missing
data inputs to count the number of nodes in a network.
WTTW. The Who’s Talking to Whom (WTTW) applica-
tion is a VoIP-based stream-processing application [26].
Its aim is to identify and track conversing parties in
real-time from distributed and noisy/compressed speech
signals. The data flow graph of WTTW (Figure 2)
shows the inputs from various remote sniffers, each
carrying several compressed speech signals, that feed
data to different operators for processing and classifying
conversation pairs. The details of these operators are
beyond the scope of this paper and are described in [26].



In WTTW, all components’ output values are a SUM of
their inputs except JAE that performs a JOIN operation.
WTTW’s quality metric (described in Section V) is
defined in terms of the accuracy in correctly identifying
conversation pairs [26].

FAB. The third PFT application, FAB, monitors process-
ing of silicon wafers in a semiconductor manufacturing
environment [25]. Its goal is to predict wafer yield from
summary vectors input from the tool sensors and detect
any tool anomalies in real-time. FAB does self-learning
as it continuously evaluates its prediction performance
against the ground truth i.e., actual wafer yield. Figure 3
shows data flow graph of FAB; details of FAB operators
are described in [25]. FAB’s quality metric (described
in Section V) is defined as its prediction accuracy that
depends on the path availability from the sensors to the
OTP classifier and the incremental learner ITL.

B. Motivating example

A simple yet subtle example. Consider the PFT appli-
cation in Figure 4: component 1 computes a SUM (say)
over outputs of components 2 and 3. Figure 4 shows
three possible component assignments: «, 3, and . In
(a), we assign root (C) to one cluster (black) and C
and C3 to another cluster (gray). In (3), we assign C
and Cj3 to the gray cluster and C5 to the black cluster,
and in (v), we assign C, Co, and Cj3 to the gray cluster.

Note that allocation 3 is better' than « because if the
black cluster fails, then the application output for o goes
to 0. However, under allocation 3, the system could still
process data flowing from C5 to C. Indeed, if the gray
cluster fails, both allocations give no output. A careful
calculation? shows that the best allocation, however, is
~ that keeps all components on the same cluster. The
main intuition behind this is that only one cluster failure
affects allocation vy while two cluster failures can hinder
the other allocations.

There are several important observations from this
example. First, allocate as many components as pos-
sible to the same cluster (subject to cluster resource
constraints) to maximize expected output value under
failures. Second, assign components on independent
paths to different clusters to avoid dependent failures.
Finally, for heterogeneous clusters with different failure
probabilities, assign “highly important” components to
clusters with the lowest failure probabilities. We use
these observations in designing our component place-
ment algorithms in Section IV.

! Assuming a uniform cluster failure probability p, the failure prob-
abilities (i.e., no output from the root) are F'P(a) = p+ (1 — p)p,
FP(B) = p, and FP(y) = p; FP(B) = FP(v) < FP(a).

The expected output values are E[V], = (V, + V3)(1 — p) and
ElV]s =Vo(1 =p)p+ (Va + V3)(1 = p)*: E[V]y > E[V]s.

Fig. 4: Three possible assignments of components to 2 clusters.
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ITII. SYSTEM MODEL
In this section, we present the failure and application

models based on which we formulate the optimization
problem of failure-aware component allocation.

A. Failure model

While many previous studies assume failures to be
independent, in reality, the assumption of failure inde-
pendence is rarely true. Node failures are often corre-
lated, with multiple nodes in the system failing nearly
simultaneously [9], [19], [22], [23]. E.g., nodes on a
rack connected by a switch or a power supply, network-
attached disks, nodes running the same version of a vul-
nerable software [15], etc. Further, the size of correlated
failures can be quite large and have a dominant affect on
system availability [19]. We therefore use the model pro-
posed by Junqueira et al. [16] which groups all resources
that can fail together into clusters where each cluster
can fail-stop in its entirety, causing all its resources and
hosted application components to be unavailable. Note
that a single cluster failure also affects other components
that depend on the output from its failed components.
Individual cluster failures are considered independent
and identically distributed. Each cluster® T} has a failure
probability p;.

B. Application model

A PFT application topology is modeled as a directed
graph of inter-connected components where vertices are
either data sources, sinks, or processing operators, and
edges represent the data flow between them. We assume
each input source s (e.g., a leaf in a tree) having a
certain importance value v (scalar value) defined as s’s
contribution to the application output. Alternatively, v
is the “loss” incurred in the application’s total output
value if s fails. The importance value of a component
C (output) is expressed as a linear combination* or a
MIN/MAX of its input importance values. Intuitively,
each C' performs “value addition” to its data inputs that
can be modeled as a linear function in many applications.
E.g., for a tree topology, v; of an internal node i is
conceptually a SUM of v; for all leaves [ lying in
the subtree rooted at ¢. Further, this simple model fits
well the real applications described in Section II-A.

3Nodes failing independently can be mapped to clusters of size one.
40161 V1 + ey V2 +. ..+ Qe Vg Where e, is the weight associated
with edge e; receiving input v; from the ¢th child of C.



For more complex applications, we require application
designers to specify the relative importance values of
the components. The importance metric allows us to
rank application components so that highly important
components get assigned to highly reliable clusters.

IV. PROBLEM HARDNESS AND ALGORITHMS
First, we show that even simple cases of the com-

ponent assignment problem (Section I) are NP-Hard.
Second, for applications with tree topologies, we provide
a polynomial-time optimal algorithm assuming an un-
bounded number of homogeneous clusters (c; = ¢, p; =
p Vi), and a 2-approximate (wrt optimal’s output loss)
algorithm under a bounded number of clusters. Third, for
general graph topologies, we present a greedy algorithm
using the underlying principles of the optimal algorithm
and show that it works well in practice in Section V.

A. Optimal Component Allocation is NP-Hard

To prove optimal component allocation is NP-Hard,
consider a simple tree-based PFT application (e.g., Fig-
ure 1) computing an aggregation function. For this
application, we first characterize the effect of cluster
failures on the output value using the following lemma:

Lemma 4.1: Let X : P — N be some fixed place-
ment of components to clusters. For a leaf [, let P(l) be
the set of components on the path from [ to the root, and
let S(I) denote the set of clusters that have at least one
component in P(l) assigned to them. Let v; denote the
importance value of the input entering [. If p; denotes
the probability of failure of cluster j, then the expected
output value of the application is

Y Wesw(t—pp))u

l€leaves

If all the failure probabilities are equal i.e., p; = p Vj,
then the expected output value becomes

>, 1=-p"y

l€leaves

where d(I) = |S(1)| is the number of distinct clusters on
the path P(1).

Proof: Let us consider input data that enters a leaf
[ and follows the unique path P(l) from [ to the root. If
no cluster (and hence component) on this path fails, then
this stream contributes a value v; to the root aggregate
value. Otherwise, if any component fails on P(l), this
input contributes 0. The probability that no component
on the path P(l) fails is exactly the probability that no
cluster in S([) fails, equal to pr(l) = ;g (1 — py)
since cluster failures are independent. Thus the expected
contribution of leaf [ to the root output is pr(l) * v;. By

linearity of expectation, the expected root output value

i D cleaves PT(Dvi. If pj = p V3, then IT;c gy (1 — py)

= (1 —p)l®l = (1 = p)?® by definition of d(l). [ ]

Given Lemma 4.1, we can view the component assign-
ment problem as the following tree coloring problem:
Given a rooted tree T = (V, E) with vertex set V and
edge set F, assigning components optimally to a set of k
clusters of capacity c;(j € [1, k]) is equivalent to color-
ing V' with colors 1,2, ..., k such that color j is used no
more than ¢; times and the term ;1. s (1 =)Dy is
maximized, where d(I) is the number of distinct colors
on the path from leaf [ to the root.

Intuitively, the goal is to color the tree vertices such
that each path has as few colors as possible. Translating
back, we want to minimize the total number of distinct
clusters used on every path from a leaf to the root.
Observe that if no cluster fails, the maximum achievable
output value is ) ;.6 V1 Thus, we can define the
loss of a placement to be the difference between the
maximum achievable value and the value achieved by
the placement i.e., loss = >, 1.0 vi(1 — (1 — p)d®).
Hence, maximizing the expected output value is equiv-
alent to minimizing the loss®. Taking the first order
approximation, our objective function of minimizing the
loss in the output value becomes:

Min Zlelcavcs(]‘ - (]' _p)d(l))vl ~ MinZlelcavcs pd(l)vl
Now, we can define the loss minimization problem as:
Definition 4.2 (Loss minimization problem): Given a

tree T'(V, E)) with input values v; at leaf [, color V from

colors 1,2,...,k such that color ¢ is used at most ¢;
times and the term >, v;d(l) is minimized where d(l) is
the number of distinct colors on the path from [ to root.

Notice that p has been dropped from the loss definition
since it is a fixed constant.

Lemma 4.3: The loss minimization problem is NP-
Hard even for tree instances with maximum degree 3
and all colors (clusters) have equal capacities.

Proof: We sketch the proof by showing a reduction
from the 3-partition problem: Given 3m non-negative
numbers aq, ..., a3y, 1s there a partition of these num-
bers into m sets such that the sum of each set is equal
to S/m where S = 3™ ;? This problem is NP-Hard
even when S is polynomially large in m. The main idea
of the reduction is as follows: Consider a tree with 3m
disjoint paths of length aq, as, ..., asm,, all connected to
a common root, and m clusters each with capacity S/m.
Since our goal is to minimize the number of distinct

SHowever in terms of approximation guarantees, the two quantities
are different. E.g., if an optimal solution achieves 99% of the maximum
achievable value, then a 2-approximate algorithm wrt value will only
guarantee at least 49.5% value, while a 2-approximation wrt loss will
guarantee at least 98% value. Zen provides 2-approximation wrt loss.



clusters on each path, it can be shown that there exists
a placement in which each path lies in a single cluster
iff the 3-Partition problem has a solution [5]. [ |
It is important to note that the reason for NP-hardness
does not directly result from coloring paths with fewest
colors. Rather, it arises due to the limited number of
colors available as we next show a polynomial-time
optimal algorithm assuming an unbounded number of
colors® and adapt this solution to obtain a 2-approximate
algorithm when the number of colors is bounded.

B. Optimal Component Allocation Algorithm

First, we present a simple lemma that provides a
useful structural property for designing the optimal tree
coloring algorithm. Consider an optimum solution OPT.
We can assume that OPT satisfies the following property
without loss of generality.

Lemma 4.4 (Consecutive Vertex Color Property):
Consider a vertex v and another vertex v’ such that
v’ lies in the subtree rooted at v. If v and v’ are both
assigned color @, then every component on the path
between v and v’ must also be assigned the color Q.

Proof: We will show that any solution can be
modified in such a way that this property is satisfied
without worsening the value of the solution. Consider a
solution that does not satisfy this property. Then, there
must exist a vertex v and another vertex v’ in the subtree
rooted at v such that both have color (), but the child
of v does not have color (). Call this vertex v"" and let
its color be Q”. Now, consider the solution obtained by
swapping the colors of v and v”. Note that this swap
can only possibly affect the value d(I) (and hence the
contribution to the overall solution) of the leaves that lie
in the subtree rooted at v”. Let L’ be the set of leaves
that lie in subtree rooted at v’ (and hence also v"") and
let L” denote the leaves that lie in the subtree rooted
at v” but do not lie in the subtree rooted at v’. Note
that for leaves in L/, the colors along the path to root
do not change, hence d(l) remains unchanged for these
leaves. For the leaves in L”, the color Q" is replaced by
@, however since v was already colored (), and as each
leaf to root path for leaves in L” also passes through v,
the quantity d(l) can only decrease for each such leaf.
Thus the result follows. |
Algorithm sketch. Consider a tree 7" under OPT color
assignment. By Lemma 4.4, all nodes colored ¢ form a
connected subgraph. Let 7’ be a node colored ¢ and let 7"
denote the subtree rooted at r’. Consider the trees 7" and
T" = T\T'. Since we want to color paths with the least

%Note that unbounded number of colors doesn’t make the problem
trivial since we still need to color the paths with least number of colors.

number of colors, only color ¢ can be shared” between
T’ and T", and hence the only connection between the
solutions for 77 and T". We use this observation to
compute V(T”,q) starting bottom-up from the leaves
where V(T”,q) denotes the optimum solution for 7"
under the constraint that the color of T”’s root is used
at most ¢ times. Clearly, computing OPT corresponds to
computing V' (T, ¢) where any color can be used at most
c times.

Next, we show how to compute V(7”, q) bottom-up:

Suppose we color the root r by color 0. Let 17, ..., T}
be the subtrees rooted at children of . Using Lemma
4.4, we know that for a subtree T, either its root is also
colored 0, or the color 0 is never used in the subtree 7;.
Case 1: If a subtree T; does not use color 0, we claim
that the loss that 7T; contributes to 7' is loss(T;) +
ZleLi v;. Here L; is the set of leaves in 7} and loss(73)
is the minimum achievable loss for 7. This holds
because the subtree T; does not contain the color 0, but
the parent of the subtree, r, is colored 0. Hence for every
path from a leaf in T; to the root, the value of d(l) (i.e.,
the number of colors from a leaf to the root) increases by
exactly 1. Since the second term (3, L, o) is a constant,
it suffices to find the best solution to 7; subject to the
constraint that it does not contain color 0.
Case 2: If the subtree T; uses color 0, the root of T; must
be colored 0. For every leaf in L;, since each path to the
root of T; already has color 0, the number of distinct
leaf to root colors d(I) in T is equal to the number of
distinct colors from the leaf to the root of 7T;. Thus,
the loss contribution of T; to T is loss(7;). Hence it
suffices to compute the best solution to 7; subject to the
constraint that the root of 7; is colored 0.

We use these observations to design a polynomial-
time dynamic programming based optimal algorithm [5]
for the loss minimization problem. The optimal solution
runs in time O(]V|%¢?) and space O(|V|?%¢).

C. 2-Approximate Algorithm

We next show a 2-approximate algorithm wrt loss to
OPT under a bounded number of resource clusters.

Lemma 4.5: There is a 2-approximation with a
bounded number of colors (clusters.)

Proof: Compute the optimal solution as described
above using unbounded resources. Note that no color is
used more than ¢ times in this solution. Moreover this
solution is clearly a lower bound on the optimum achiev-
able loss assuming bounded resources. Let m; denote
the number of times color ¢ is used in the unbounded

7Having an unbounded number of colors enables this sharing since
we are not constrained by the total capacity.



solution. We have ) .m; = m, where m = |V| and
each m; < ¢; note that m < ¢ * n must hold for
a feasible solution. We line the m;-colored nodes up
together one after another, and form blocks of size c.
Note that since each m; < ¢, any set m;-colored nodes
can lie in at most two blocks. Each block corresponds
to a color in the new solution. In any leaf to root path in
the new solution, the number of distinct colors used is
at most twice the number of colors used in the original
unbounded solution. Thus the result follows. |

D. Greedy Component Allocation Algorithm

Finally, we present a greedy component placement for
general graph topologies under heterogeneous clusters
and components.

Using the importance metric (Section III-B), the loss
minimization term ;... v({)d; (Section IV-A) can
be equivalently expressed as ) I(C)Z(C') where I(C')
is the importance of component C, and Z(C) is 0 if
C and its parent are placed on the same cluster and 1
otherwise [5]. Thus, to minimize loss, set Z(C) = 0 for
as many adjacent components as possible, especially the
ones with the higher values of I(C).

This formulation suggests two guiding principles con-
sistent with our observations in Section II-B: (1) compo-
nents of higher importance should be placed on clusters
with higher capacities (and low failure probabilities) i.e.,
choose cluster j with highest C—J and (2) all components
lying on a path from a source {o the sink should be co-
located on the same cluster (if possible) i.e., minimize
the total number of colors (clusters) on all paths.

Given an application data flow graph G(V, E), Algo-
rithm 1 allocates components in decreasing importance
to clusters ranked by ;—j(j € [1,n]). It defines a con-
nected subgraph SG of components that are co-located
on the same cluster (say 7T') as follows: at each step,
assign the highest importance C}, to T" (if spare capacity)
if (Cx, SG) € E ie., (Cy,Cp) € E for some Cp, € SG.

V. EXPERIMENTAL EVALUATION
In this section, we evaluate Zen’s availability benefits

for three real-world PFT applications (Section II-A)
compared to failure-oblivious placement (FOP), replica-
tion, and replication+Zen. For replication, we create one
replica for the highest importance components of each
application and assign components to clusters randomly.
FOP uses a simplified version of our topology-aware ap-
proach by co-locating components in a path on the same
cluster but without considering failure probabilities.

A. Methodology

The Zen prototype and the hosted PFT applications
run across a cluster testbed on top of the Stream Pro-

Algorithm 1 Greedy Component Placement Algorithm

1: Calculate I(C') for components C = {C1,Ch, ..., Cm(,}f
2: Rank the clusters 11,75, . .., T}, sorted (decreasing) on ;7_
. J
(j €[1,n])
35«1

4: while C # ¢ do

5:  Select the highest importance component C; € C

6:  while 7} has spare capacity do

7: Assign Tj —C; ;C—C \ {CZ}, SG «— {CZ}

8: Select highest importance C, € C s.t.(Cy, SG) € E
9: if 3C), satisfying (8 :) AND T has capacity then
10: T; «— Cr; C — C\{Ci}; SG— SGU{C}
11: else {no such C}, exists OR T} has no capacity left}
12: break;

13: end if

14:  end while

15:  if T} has no spare capacity then
16: je—j+1

17:  end if

18: end while

cessing Core [14]. The cluster testbed is an IBM Blade-

Center comprising 100 nodes with Intel Xeon and AMD

Opteron processors with 2 GB to 4 GB RAM running

Linux kernel 2.6.21 connected by 1 Gbit Ethernet. The

BladeCenter is arranged into networked chasses where

each chassis has up to 13 blades (nodes) and denotes

a dependent failure unit (Section III-A) that can fail

due to switch misconfigurations, power failures, etc.

Failure Model. Based on prior studies, we use two

failure models: (1) FM1 representing a controlled stable

enterprise system and (2) FM2 a dynamic wide-area
network e.g., PlanetLab [1]. Both models classify nodes

into three classes with availabilities of 0.3, 0.8, and 0.99

but differ in the class size i.e., number of nodes per class.

1) FMI is based on a one year failure study of a 400-
node cluster that observed about 4% nodes accounted
for 70% failures, 25% nodes accounted for 20% fail-
ures, and 70% nodes accounted for 1% failures [22].
Correspondingly, we approximate class sizes of 5%,
25% and 70%, respectively.

2) FM2 is based on a three month failure study of
240 PlanetLab nodes that showed about 6% nodes
had less than 30% availability, 50% nodes had about
80% availability, and 37.7% nodes had more than
99% availability [6]. Correspondingly, we approxi-
mate class sizes of 10%, 50%, and 40%, respectively.

We expect a typical computing environment to exhibit

failure properties between FM1 and FM2 and thus, our

results will quantify best and worst-case performance.

B. Data Aggregation Application Results

We implemented an aggregation tree comprising 63
components or processing elements (PEs) [14] on 6
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Fig. 5: Optimal Zen and Greedy Zen placement for the data aggregation tree. Each pattern represents one chassis.

chasses with each PE running on a single host. At
each leaf, a source continuously generates data packets
and each internal node computes the SUM aggregate of
the number of updates in its subtree. We quantify this
application’s quality metric as the ratio of root’s output
value to the total data input through all the leaves.

Figure 5 shows the placement for optimal Zen and
greedy Zen for this application. Note that both optimal
and greedy Zen aim to satisfy the consecutive vertex
color property—the average number of colors per path is
2 in both cases. The difference between their allocations
is because of the most important PEs in the tree (the ones
closest to the root.) Greedy Zen places PEs close to the
root on one failure unit (chassis); all nodes with depth
0, 1, 2 share the same chassis. In contrast, the optimal
algorithm includes paths from two leaves to the root so
that the application can produce output even if all the
clusters but the one marked white fail.

Figures 6(a) and 6(b) show the effect of optimal Zen,
greedy Zen, replication, and optimal Zen+replication
on the quality metric by varying the number of failed
clusters for FM1 and FM2, respectively. For replication,
nodes at levels O (root), 1, and 2 are replicated on dif-
ferent machines. Each bar value represents the expected
quality, and the following results are computed relative
to optimal Zen. For FM1, optimal Zen increases quality
by 10%-17% compared to greedy Zen, and 37%-72%
compared to replication. For FM2, the corresponding
numbers are 7%-11% and 33%-73%, respectively. Since
replication only focuses on important components but
does not optimize global allocation, it does not yield high
benefits under failures that might be a limiting factor
for resource-constrained applications. As the number
of failed clusters increase, both optimal and greedy
Zen show a graceful degradation in the output quality.
Finally, Zen+replication outperforms all allocations.

C. WTITW Results

Figure 7 shows the assignments for 39 WITW PEs
using greedy Zen and FOP on 8 chasses. Note that Zen
assigns the highest importance PEs, DSN, JAE, PCP, and
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Fig. 6: Comparing optimal Zen, optimal Zen+replication,
greedy Zen, and replication for the data aggregation application
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SGD, on the highest reliability chassis A. Since FOP
is failure-oblivious, it assigns them to a less reliable
chassis F. The WTTW’s quality metric Qwrrw is
defined in terms of the accuracy in correctly identifying
conversation pairs [26] as:

(1 — DSN error rate)(No. of pairs reported)
(No. of conversation pairs)

QWTTW =

where DSN is the output PE in Figure 2. We collected
results from 600 input conversation streams.

Figures 8(a) and 8(b) show the effect of Zen,
Zen+replication, replication, FOP, and FOP+replication
on Qwrrw (normalized wrt no-failure quality) for
different number of cluster failures under FM1 and FM2,
respectively. Each bar value is computed as an average
of 8 independent runs, and all numbers below are repre-
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Fig. 7: WTTW PE assignment using Zen (a) and FOP (b) on 8 chasses (A, ..., H) ranked (decreasing) by ;—j (je{A,...,H}).

sented relative to Zen. For FM1, Zen increases quality
by 80% compared to replication, 40%-50% compared to
FOP, and 35%-45% compared to FOP+replication. For
FM2, the corresponding numbers are 90%, 35%-60%,
and 30%-50% respectively. The Zen+replication strategy
outperforms all other strategies, achieving up to 30%
quality increase over Zen.

S R o N

B~ Fer=(a> (BB Fer =8>
S &

Fig. 9: FAB PE Assignment using Zen (a) and FOP (b) on 3
chasses (A, B, C) ranked (decreasing) by ;—](] € {A,B,C}).
J

D. FAB results

The third application, FAB, comprises 12 PEs. Com-
pared to data aggregation and WTTW, FAB is (1) small-
scale and (2) expected to operate primarily in local area
networks that exhibit failure properties closer to the FM1
model. Therefore, we use two FM1-based failure models
for FAB: FMla comprising three failure classes with
availabilities 75%, 90%, and 99%, and FM1b with 90%,
95%, and 99%. Our findings, unavoidably, depend on
the failure models we used. However, we believe these
models are representative for actual deployments of the
application.

Figure 9 shows FAB’s PE assignments using greedy
Zen and FOP on 3 chasses A, B, C ranked (decreasing)
by ;—;(j € {A, B,C}), and having 2, 8,4 nodes, respec-
tively. Note that Zen places the two most important PEs,
OTP and RAN, on the most reliable chassis A. FOP
does topology-aware but failure-oblivious assignment
assigning these PEs to chassis B. For replication, OTP
and RAN replicas are placed together on one cluster. The
FAB quality metric Qr ap at time ¢ is defined in terms
of the accuracy in yield output [25]:

Qran(t) = 30 [Po(t) ~ 0.27¢(0)
where N(t) is the total number of wafers, N(t) the
number of wafers processed by OTP, Pp and Pr are
the probabilities of fault-detection and false positives,
respectively. We ran FAB on real data from 9000 wafers,
and present results averaged across time over 1000 runs.

)

Figures 10(a) and 10(b) show the effect of all the five
component allocations on )y 4 g (normalized wrt quality
under zero failures) for different number of cluster fail-
ures under FM1a and FM2b, respectively. The following
results are computed relative to Zen. For FMla, Zen
increases quality by about 43% compared to replication,
17%-20% compared to FOP, and 3%-13% compared to
FOP+replication. For FM1b, the corresponding numbers
are 37%-45%, 4%-18%, and nearly the same quality
as FOP+replication, respectively. As in previous cases,
Zen+replication outperforms all strategies, and increases
quality by up to 12% over Zen.

In summary, our evaluation shows that for the three
real-world PFT applications we considered, Zen’s com-
ponent allocation can significantly reduce the loss in an
application output quality under failures.
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Fig. 10: Normalized Qrap for Zen, FOP, replication, and
Zen+replication under failure models FM1a (a) and FM1b (b).

VI. RELATED WORK

Several studies [6], [9], [22], [23], [31] (and the
references therein) have aimed at characterizing the
failure properties of real systems. We leverage two
important observations common among these studies in
our failure model: (1) node failures are not uniformly
distributed, and a small fraction of nodes incur most
of the failures [6], [22], [31] and (2) node failures
are often correlated, with multiple nodes in the system
failing nearly simultaneously [9], [19], [22], [23]. Some
of these studies have also used knowledge of failure
characteristics in resource allocation to improve cluster
availability [9], [31].

Similarly, fault-tolerance techniques have been exten-
sively studied for improving availability. E.g., replica-



tion, erasure coding, placing replicas on nodes running
heterogeneous software versions [15], etc. in distributed
storage systems. In task allocation systems, previous
solutions [17] have aimed at maximizing the probability
of running the entire task successfully but not for the
PFT model. To our knowledge, there has not been prior
work on task allocation for PFT applications.

In stream processing systems, component (operator)
placement techniques have generated recent interest pri-
marily for improving performance in resource-limited
sensor networks [24] and wide-area stream systems [20],
[27]. For achieving high availability, research in this
area has focused on replication [4], and storing data and
checkpointing [12] but not on failure-aware component
allocation. These techniques are complementary to Zen
in that it can leverage them to further enhance availability
as shown in Section V.

Finally, two of the design principles in Zen are closely
related to the observations by Yu et al. in analyzing avail-
ability of multi-object operations [29]: (1) concentrate
objects on fewer machines for “strict” operations, and
(2) spread objects across machines for “more tolerant”
operations. A strict operation can be viewed as a path
from a source to a sink requiring availability of all
in-between nodes, and thus we co-locate them on as
few clusters as possible. A more tolerant operation
corresponds to multiple parallel paths that should be
assigned to different clusters for fault-tolerance.

VII. CONCLUSIONS AND FUTURE WORK
We introduced Zen, a new failure-aware resource

allocation framework to achieve high availability for
PFT applications, and show that even simple versions
of the component placement problem are NP-Hard.
Therefore, Zen provides a 2-approximate polynomial-
time algorithm for tree topologies and a greedy algorithm
for general graph topologies. Our evaluation shows that
for three real-world PFT applications, Zen significantly
reduces loss in the application’s output quality under
failures.

Our future work is to enable self-adaptive component
placement to improve availability in large-scale, dynamic
environments. Further, we plan to integrate both failure-
aware and network-aware (proximity) properties in Zen
to achieve optimal component assignment that simulta-
neously provides high availability and high performance.
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