
Formally Certifying the Security of Digital Signature Schemes

Santiago Zanella Béguelin Benjamin Grégoire

INRIA Sophia Antipolis - Méditerranée

Microsoft Research - INRIA Joint Centre

{Santiago.Zanella,Benjamin.Gregoire}@inria.fr

Gilles Barthe Federico Olmedo

IMDEA Software

{Gilles.Barthe,Federico.Olmedo}@imdea.org

Abstract

We present two machine-checked proofs of the exis-

tential unforgeability under adaptive chosen-message

attacks of the Full Domain Hash signature scheme.

These proofs formalize the original argument of Bel-

lare and Rogaway, and an optimal reduction by Coron

that provides a tighter bound on the probability of a

forgery. Both proofs are developed using CertiCrypt,
a general framework to formalize exact security proofs

of cryptographic systems in the computational model.

Since CertiCrypt is implemented on top of the Coq

proof assistant, the proofs are highly trustworthy and

can be verified independently and fully automatically.

1. Introduction

Designing secure cryptographic systems is notori-

ously difficult; many systems that had been thought

secure for a long time were subsequently broken,

generally by attackers acting in a manner that was

unpredicted by its designers. Indeed, there cannot be

any empirical proof of security, and the correctness of

a cryptographic system can only be established through

formal arguments showing that security holds against

all feasible adversaries.

Provable security [1], [2] aims to establish the

correctness of cryptographic systems using rigorous

techniques based on complexity theory. In a typical

provable security argument, security is proved to hold

against any probabilistic polynomial time (PPT) ad-

versary by showing that an efficient way to break a

cryptographic property would imply a way to solve

a difficult mathematical problem with relatively little

extra effort.

The game-playing technique [3]–[5] is a popular

method to develop provable security proofs that is

extremely valuable for structuring and managing the

complexity of cryptographic proofs and has been used

extensively to prove exact security in the standard and

random oracle models. The game-playing technique

advocates describing the interaction between the cryp-

tographic system and the adversary as a probabilistic

program, and organizing the proof as a sequence of

transitions G, A→G′, A′ between pairs of games and

events, such that the probability of event A in game G
is bounded by a function of the probability of event A′

in game G′. Such sequences yield an upper bound on

the success probability of an adversary, provided the

sequence starts with the original attack game and the

event of the adversary breaking the scheme, and that

one can bound the probability of the event in the last

game of the sequence.

Bellare and Rogaway [3] and Halevi [6] suggested

that game-playing is also well-suited for mechanical

verification. Their intuition has been corroborated by

Blanchet’s CryptoVerif [7], an automated prover that

has been used to establish exact security of crypto-

graphic systems in the computational model. In partic-

ular, Blanchet and Pointcheval [8] used CryptoVerif to

prove that Full Domain Hash (FDH), an emblematic

signature scheme, is secure against existential forgery

under an adaptive chosen message attack (EF-CMA),

the strongest notion of security for signature schemes.

The work around CryptoVerif has stirred considerable

interest and shown the benefits of machine-checked

verification. However, it also exposed one major weak-

ness of CryptoVerif: it deviates from the style that is

natural to cryptographers since it is difficult to recover

a reductionist argument from the proof trace that the

prover outputs, and even if one manages to do so, most



likely the reduction will not be optimal. Indeed, only

the original, suboptimal bound of Bellare and Rogaway

has been proved in CryptoVerif.
Our main contribution is to provide the first formal-

ized proof of Coron’s bound for the EF-CMA security

of FDH [9]; in contrast to [8], the bound we prove

is optimal. We use CertiCrypt [10], [11], a general

framework for certifying game-based cryptographic

proofs in the Coq proof assistant. Besides its intrinsic

interest, our proof demonstrates that it is possible

to build fully verified exact security proofs without

sacrificing tightness, and furthermore, that it is feasible

to produce “certificates” for cryptographic proofs, in

the form of proof objects that can be verified indepen-

dently and automatically by third parties. In summary,

our proof provides further evidence to support formal

verification as an effective tool to increase confidence

in cryptographic proofs.

Synopsis. The paper consists of two main sections:

Section 2 provides a user view on CertiCrypt, and

intends to complement the theoretical account given

by Barthe et al. in [10]; Section 3 describes the for-

malizations of Bellare and Rogaway’s security bound

for FDH, and of the optimal bound by Coron. Section 4

provides a broader analysis of the significance of our

results and of the perspectives of our enterprise.

2. A quick guide to CertiCrypt

CertiCrypt is built on top of Coq [12], a general

purpose proof assistant that has been used for over two

decades to formalize results in mathematics and com-

puter science. Coq provides an expressive specification

language based on the Calculus of Inductive Construc-

tions, a higher-order dependently-typed λ-calculus in

which mathematical notions can be formalized conve-

niently. The Coq logic distinguishes between types,

of type Type, which represent sets, and propositions,

of type Prop, which represent formulae: thus, a : A
is interpreted as a is an element of type A if A is a

set, and as a is a proof of A if A is a proposition. In

the latter case, we say that a is a proof object. Types

can either be introduced by standard constructions,

e.g. (generalized) function space and products, or by

inductive definitions. In the remainder, we will use

the inductively defined types of homogeneous and

heterogeneous lists. The latter is defined as

Inductive Lhet : L A→ Type :=
| dnil : Lhet nil

| dcons : ∀ a l, P a→ Lhet l → Lhet (a :: l).

where A : Type, P : A→ Type, and L is the usual

type of (homogeneous) lists. We use A⋆ to denote the

type of A-lists (i.e. L A), and P ⋆
l to denote the type

of heterogeneous P -lists over a list l.
In addition, Coq features tools to construct proofs,

including a predefined set of tactics that support most

common forms of reasoning, and a language for users

to build their own tactics. CertiCrypt heavily relies on

reflection-based tactics, which exploit the computing

abilities of Coq to reduce reasoning to computation:

given a property P : A → Prop over a type A,

one can program a checker f : A → B and prove

its correctness, i.e. prove that ∀x, f x = true → P x.
Then, in order to prove that a value a of type A satisfies

P , i.e. that P a holds, it is sufficient to check that

f a = true, which can be done by evaluating f a.

2.1. Formalization of games

The lower layer of CertiCrypt is a formalization

of a probabilistic extension of a simple imperative

language with procedure calls. The formalization is

carefully crafted to exploit key features of Coq un-

derlying type theory: it uses modules to support an

extensible expression language that can be adapted

according to the cryptographic system being verified,

dependent types to ensure that programs are well-

typed and have a total semantics, and monads to give

semantics to probabilistic programs and capture the

cost of executing them.

The formalization of programs uses a deep embed-

ding, i.e. the syntax of the language is encoded within

the proof assistant. The semantics of programs is given

by an interpretation function that takes a program p—
an element of the type of programs— and an initial

state s, and returns the result of executing p starting

from s. In a deterministic case, this result will be a

state, whereas in the case of CertiCrypt is a prob-

abilistic measure over states. Deep embeddings offer

one tremendous advantage over shallow embeddings,

in which the language used to represent programs is the

same as the underlying language of the proof assistant.

Namely, a deep embedding allows a high level of

automation through reflection-based tactics that imple-

ment syntactic program transformations. Additionally,

deep embeddings allow to formalize complexity issues

neatly and to reason about programs by induction

on the structure of their code. Our language is a

mild generalization of the language of Bellare and

Rogaway [3], in that it allows while loops whereas

they only consider bounded for loops.

2.1.1. Types. CertiCrypt formalizes a typed syntax,

and uses the underlying type system of Coq to ensure

for free that expressions and commands are legal. In



our experience, the typed syntax provides particularly

useful feedback when debugging proofs. The types and

expressions of the language are defined on top of a

module that contains the declaration of user-defined

types and operators. Formally, the set T of types is

defined as:

Inductive T : Type :=
| User : Tuser → T
| Nat : T
| Bool : T
| List : T → T
| Pair : T → T → T .

where Tuser denotes the set of user-defined types. In

the proofs in the next section we will use an extension

of the semantics with used-defined types for bitstrings

of arbitrary length and elements of a cyclic group,

obtained by instantiating Tuser as

Inductive Tuser : Type :=
| Bitstring : Tuser

| Group : Tuser.

2.1.2. Expressions. Expressions are built from a set of

T -indexed variable names V , using operators from the

core language, such as constructors for pairs and lists,

and user-defined operators. All operators are declared

with typing information, as specified by the functions

targs and tres, that return for each operator the list

of types of its arguments, and the type of its result,

respectively. The T -indexed family E of expressions

is then defined as:

Inductive E : T → Type :=
| Enat :> N→ ENat

| Ebool :> B→ EBool

| Evar :> ∀t,Vt → Et
| Eop : ∀op, E⋆

(targs op) → E(tres op)

| Eexists : ∀t,Vt → EBool → E(List t) → EBool

| Eforall : ∀t,Vt → EBool → E(List t) → EBool

| Efind : ∀t,Vt → EBool → E(List t) → Et.

The first three clauses declare constructors as coer-

cions; thanks to this mechanism it is possible to view

an element of their codomain as an element of their

domain, e.g. a natural number as an expression of

type Nat and a variable of type t as an expression of

type t. The fourth clause corresponds to the standard

rule for operators; the rule requires that the types of

the arguments are compatible with the declaration of

the operator, as enforced by the type E⋆
(targs op) of

heterogeneous lists of expressions. Note that op is

universally quantified over a sum type O+Ouser where

O is a fixed set of operators for base types, andOuser is

a set of user-defined operators. In addition, expressions

include useful operators on lists: Eexists, Eforall and

Efind take as parameters a variable x of type t, a

Boolean valued expression e that may depend on x,
and an expression l of type List t and respectively:

• check whether some element a of l verifies e,
when interpreting x by a;

• check whether all elements a of l verify e, when
interpreting x by a;

• return the first element of the list l that verifies e,
when interpreting x by a, or a default element of

type t if no element is found.

Both Eexists and Efind are often used in the code of

oracles, while Eforall is essential to specify invariants.

Thanks to dependent types, the semantics of expres-

sions is total, which considerably simplifies reasoning

about programs.

It is worth noting that dependent types allow for

rich specifications of operators. For instance, one can

define a type for bitstrings of fixed length {0, 1}k, and
a concatenation operator of type

∀m n, {0, 1}m → {0, 1}n → {0, 1}m+n

2.1.3. Commands. Commands are built from a set

of procedure names P indexed by the type of their

arguments and return value. Formally, the sets I of

instructions and C of commands are defined as:

Inductive I : Type :=
| Assign : ∀t, Vt → Et → I
| Rand : ∀t, Vt → Dt → I
| Cond : EBool → C → C → I
| While : EBool → C → I
| Call : ∀l t,P(l,t) → Vt → E

⋆
l → I

where C := I⋆.

where Dt is a set of expressions that evaluate to proba-

bilistic distributions over values of type t. For instance,
{0, 1} is a constant expression in DBool that evaluates

to the uniform distribution on bits, and b $← {0, 1} (a
shorthand for Rand b {0, 1}) is an instruction that sam-

ples a random bit with uniform probability and assigns

it to variable b. As for operators, expressions in D are

either predefined or user-defined. Note that the above

syntax lacks a construct for sequential composition;

instead, we use lists of instructions.

Finally, a program consists of a main command and

an environment, which maps a procedure p : P(l,t) to

a declaration that specifies its formal parameters, its

body, and a return expression (procedures are single-

exit):

Record decl := {params : V⋆
l ; body : C; re : Et}.

We denote games either by G, or by (E, c) when we

need to make explicit the environment and the main



command. In the rest of the paper we revert to the

usual notation to specify games, i.e. we use an explicit

return and rely on standard notation as in [10], [11].

For instance, the code of a random oracle is written

as:

O(x) def
=

if x 6∈ dom(L) then y $← {0, 1}k; L← (x, y) :: L;
return L(x)

where the global variable L is an association list

used to record the calls to the oracle (we follow the

convention of typesetting global variables in bold).

2.1.4. Semantics of programs. The semantics of pro-

grams is defined in a continuation-passing style, using

the measure monad:

Definition M(X : Type) := (X → [0, 1])→ [0, 1].

where [0, 1] is an axiomatization of the unit interval.

The definition of the semantics is intricate, but without

surprise. However, the semantics has two nonstandard

features worth noting: first, it is indexed by a security

parameter k (the semantics of types and operators de-

pend on this parameter, so a program should be really

seen as a family of programs indexed by the security

parameter); second, the semantics is instrumented with

a cost monad to compute the computational cost of

evaluating a command. The instrumented semantics

and the security parameter are used conjointly to

formulate the notion of PPT program (cf. [10]).

This paper does not elaborate on complexity issues,

and views the semantics of programs as a function

JGK : S →M S, where S is the type of deterministic

states (memories) which map variables to values.

Let A
µ
be the characteristic function of the evalu-

ation of the predicate A in memory µ. The measure

monad allows to easily define the probability of an

event A in a game G and an initial memory µ:

PrG,µ[A] def
= JGKµ (λµ′.A

µ′

)

In the remainder, we sometimes omit the initial mem-

ory µ. In this case one may safely suppose that the

memory initially maps variables to default values of

their type.

2.1.5. From programs to games. Probabilistic pro-

grams capture only partially the interaction between

the challenger, the adversary, and the oracles. In addi-

tion to their code, the specification of games must also

prescribe the expected behavior of the adversary. Con-

sider the definition of EF-CMA security for signature

schemes, that could be modeled by the game:

(m, σ)← A(); b← V(m, σ)

where A is the adversary, V the signature verification

algorithm, and the fixed public and secret keys are

modeled as global variables. The definition implicitly

assumes that the adversary has oracle access to the

signing oracle, has read access to the public key, does

not have access to the secret key, and that the message

m the adversary submits is not one of the messages

whose signature it requested before. To make this as-

sumptions explicit, games must specify write and read

policies for the adversary. Constraints on the adversary

are captured by an inductive well-formedness predicate

WFAdv; the adversary is modeled as a procedure

whose body is a variable of type C, and that satisfies

WFAdv for a given policy. It is then possible to reason

by induction on well-formed adversaries. The notion

of well-formed adversary, however, is not sufficient to

guarantee that the message m is fresh. This may be

specified by recording calls to the signing oracle in a

list and stating as postcondition of the above game that

m does not appear in this list.

2.2. Game-based proofs

CertiCrypt provides tactics that support common

patterns of reasoning in game-based proofs. A first

set of tactics implement methods to reason about the

observational equivalence of programs, including cer-

tified program transformations in the style of certified

compilers [13]. A second set of tactics extend these

methods to the more general setting of a relational

Hoare logic, which is typically used to establish invari-

ants or to prove that two programs are observationally

equivalent in a given context specified by means of

pre- and postconditions. A third batch of specialized

tactics implement techniques commonly used in game-

based proofs, including lazy sampling, and reasoning

about failure events.

2.2.1. Probabilistic information flow. Observational

equivalence is captured as a form of probabilistic

non-interference, and is defined relative to a set of

input variables I and a set of output variables O.

Formally, two measurable functions f and g are equiv-

alent w.r.t. a set of variables O, written f =O g, iff
∀µ1 µ2, µ1 =O µ2 ⇒ f µ1 = g µ2. Then, two

programs G1 and G2 are observationally equivalent

w.r.t. input variables I and output variables O, written

|= G1 ≃
I
O G2, iff JG1Kµ1

f = JG2Kµ2
g for all

memories µ1 and µ2 and measurable functions f and

g such that µ1 =I µ2 and f =O g.
One tactic widely used to reason about probabilistic

information flow is eqobs_in, which takes as input

a main command c, two environments E and E′, a



set of output variables O and either fails or produces

a set of variables I such that |= E, c ≃I
O E′, c. The

tactic eqobs_in performs a dependency analysis; to

handle procedure calls, it relies on information flow

specifications for procedures. For each procedure p
with body cp in E and body c′p in E′, its specification

gives sets Ip and Op such that |= E, cp ≃
Ip

Op
E′, c′p.

In order to guarantee soundness, users must provide

the specification of procedures. However, CertiCrypt
provides mechanisms to generate such specifications

under the assumption that the calling relation between

procedures is a well-founded order. The main difficulty

resides in generating the specification of adversaries,

since their bodies are unknown; CertiCrypt can infer

the specification of a well-formed adversary based on

its read/write policy and on the specification of the

oracles it can call.

Variants of eqobs_in include eqobs_tl, that

does not require the two main commands to coincide,

but instead acts only on the greatest common suffix

of the two commands. Formally, eqobs_tl takes as

arguments two games E1, c1 and E2, c2 and sets of

variables I and O, and returns c′1, c
′
2, c and O′ such

that the rule

|= E1, c
′
1 ≃

I
O′ E2, c

′
2 ⇒ |= E1, c1 ≃

I
O E2, c2

is valid. It does so by first computing the longest

common suffix c of c1 and c2 (c1 = c′1; c, c2 = c′2; c),
and then using the tactic eqobs_in to compute O′.

In addition, CertiCrypt provides the converse tactic

eqobs_hd that strips off the longest common prefix

of two programs, and a tactic eqobs_ctxt that

combines both.

Some transitions in game-based proofs consist in

applying a standard program transformation T , which

transforms goals of the form |= E1, c1 ≃
I
O E2, c2

into goals of the form |= E1, T (c1) ≃
I
O E2, T (c2).

In order to automate these transitions, CertiCrypt

provides certified implementations that, in addition to

the two-sided version above, yield one-sided versions

that apply the transformation only to the left (suffix l)

or right-hand side (suffix r) program.

Dead code elimination is one of such transfor-

mations and is automated by the tactic deadcode;

it removes from both programs the instructions that

have no influence on the set of ouput variables O.

Formally, deadcode transforms a goal of the form

|= E1, c1 ≃
I
O E2, c2 into one of the form |= E1, c

′
1 ≃

I
O

E2, c
′
2, where c′1 and c′2 are simplified versions of

the original commands computed by performing and

aggressive form of program slicing; in particular, it re-

moves self or unused assignments and trivial branching

statements, and performs branch coalescing.

The tactic ep implements expression propagation;

it relies on a generic function that performs dataflow

analysis on programs, transforming the code by per-

forming partial evaluation using the result of the anal-

ysis. In order to account for the extensibility of the lan-

guage, the user can also add simplification rules to the

analyzer. For instance, if the language of expressions is

extended with a random permutation operator f and its

inverse f−1, the user can extend the partial evaluator

with the simplification rule f(f−1(e)) = e. The tactic

ep starts the analysis with an empty domain, whereas

the variant ep_eq e v starts the analysis assuming that

e = v initially holds and generates the corresponding

proof obligation.

Local code motion is automated by the tactic swap,

that reorders instructions in programs to generate a

largest common suffix while preserving observational

equivalence. Formally, swap transforms a goal of the

form |= E1, c1 ≃
I
O E2, c2 into one of the form

|= E1, c
′
1; c ≃

I
O E2, c

′
2; c. Typically, an application

of swap is immediately followed by an application

of eqobs_tl to remove the computed suffix. Cer-

tiCrypt automates non-local code motion by providing

support to the lazy sampling technique. This technique

allows to define a random value, which would other-

wise be sampled inside a procedure, at the beginning

of a game.

Finally, CertiCrypt implements a tactic alloc x y
to introduce a copy of variable x in variable y and con-

sistently replace all its uses, and a tactic inline to in-

line procedure calls in programs. The tactic sinline

combines inline, alloc, ep, and deadcode in

one powerful tactic to further simplify the goal after

inlining a procedure call.

2.2.2. Dealing with properties. Program transforma-

tions are seldom justified on their own; rather their

validity relies on program invariants. Consider for

example these two oracles

O1(x) def
= return x× y O2(x) def

= return x× 2

Are they observationally equivalent in the context of

a game y ← 2; d ← A()? The answer depends on

whether variable y can be written by the adversary

A and whether other procedures in the environment

preserve its value. In order to justify such transfor-

mations, one is forced to consider a generalization of

observational equivalence to a full-fledged probabilistic

relational Hoare logic. This logic deals with judgments

of the form |= G1 ∼ G2 : P ⇒ Q where P and Q
are relations over states. The formal meaning of such a

judgment is that for all memories µ1 and µ2 satisfying

P µ1 µ2, we have Q# JG1Kµ1
JG2Kµ2

, where Q# is a



lifting of relation Q to distributions [10]. CertiCrypt
implements a logic that supports reasoning about such

quadruples, and that justifies substituting oracle O2 for

oracle O1. Intuitively, the proof proceeds by showing

that the invariant y = 2 is established after the first

assignment to y, and that it is preserved throughout

execution. This can be achieved, assuming A honors

a read-only policy on y, by proving that the invariant

is preserved by all oracles that can be called by A.
The probabilistic relational Hoare logic is described in

detail in [10], and is supported by proof rules and by

a sound but incomplete weakest precondition calculus.

Since transformations are required to preserve in-

variants and postconditions (as these properties may

be used subsequently in the proof), all the tactics

that have been described in the previous subsection

have been extended to handle them. Concretely, all

tactics have been extended to deal with postcondi-

tions of the form (=O ∧Q), where O is a set of

output variables on which the two games are re-

quired to coincide, and Q is an arbitrary relation over

states. As for observational equivalence the tactics

need additional information about procedures, namely

that they preserve the invariants. CertiCrypt provides

mechanisms to automatically build the information

about adversaries based on the information about the

oracles. The tactics stop when a variable on which

the invariant depends is directly modified (it poses

no problem if it is modified inside the body of a

procedure, since its information ensures the invariant is

preserved). At this point, the user can use the tactic wp

which simultaneously performs a weakest precondition

calculation and a backwards dependency analysis in

the style of eqobs_in. It is worth noting that it is

not possible to deal separately with the two conjuncts

of a postcondition (=O ∧Q) and invoke the tactics

for observational equivalence to handle the first, as the

rule:

|= G1 ∼ G2 : Ψ⇒ Φ |= G1 ∼ G2 : Ψ⇒ Φ′

|= G1 ∼ G2 : Ψ⇒ Φ ∧ Φ′

is unsound, as illustrated by the following example:

c1
def
= x $← {0, 1}; y← x c2

def
= x, y $← {0, 1}

Indeed, we have |= c1 ≃
∅
{x} c2 and |= c1 ≃

∅
{y} c2 but

not |= c1 ≃
∅
{x,y} c2, since an observer with access

to both x and y can trivially distinguish the joint

distribution generated by one program from the one

generated by the other.

The tactic cp_test allows to perform a case

analysis over the guard e of a conditional statement.

The tactic uses the logical rule:

|=G1∼G2 : A∧P ⇒ Q |=G1∼G2 : ¬A∧P ⇒ Q
|= G1 ∼ G2 : P ⇒ Q

and propagates the precondition strengthened with,

respectively, e = true or e = false through the

branches using the tactic ep_eq. Variants of this tactic

perform the propagation on one of G1 and G2 or on

both, provided e evaluates in the same way in both

games.

It is important to note that neither the observational

equivalence nor the relational Hoare logic appear in the

final statements of security. Instead, both relations are

used to reason about the probability of events. For ex-

ample, if the predicate A depends only on a set of vari-

ables O, then to show that PrG1,µ1
[A] = PrG2,µ2

[A]
it is sufficient to show |= G1 ≃

I
O G2 and µ1 =I µ2.

Likewise, if |= G1 ∼ G2 : =I ⇒ =O ∧P 〈2〉 and
µ1 =I µ2, then PrG1,µ1

[A] = PrG2,µ2
[A ∧ P ], where,

given a predicate P over memories we denote by P 〈1〉
(respectively P 〈2〉) the relation over memories which

is true if the left (respectively right) memory satisfies

the predicate P .

2.2.3. Failure events. Game-based proofs often rely

on failure events to justify a transition. Informally,

such transitions involve two games that only differ

after some flag bad has been set to true, signaling

a failure. Therefore for every event A, the probability

of the event A ∧ ¬bad is the same in both games. A

corollary of this result is sometimes referred to as the

Fundamental Lemma of game-playing. It is particularly

amenable to automation since it admits a completely

syntactical formulation; it is completely automated in

CertiCrypt.

2.2.4. Complexity. Assumptions about hard mathe-

matical problems appear all the time in cryptographic

proofs, but only hold for probabilistic polynomial-

time (PPT) adversaries. For programs without loops

or recursive calls, the tactic PPT_tac generates auto-

matically a proof of membership to the class of PPT

programs. This is used in next section to obtain an

asymptotic security result from a proof by reduction.

3. Certifying the Full Domain Hash signa-

ture scheme

In this section we will go through the formalization

in CertiCrypt of two different proofs of security of the

Full Domain Hash (FDH) signature scheme. The FDH

scheme was first proposed by Bellare and Rogaway

[14] as an efficient RSA-based signature scheme, but is



in fact an instance of an earlier construction described

by the same authors in [15]. Here, we will consider

this latter, more general construction, which is based

on a family of trapdoor one-way permutations fk on a

cyclic group Gk, and a hash function H : {0, 1}∗ → Gk

whose range is the full domain of fk. The RSA-

based scheme is obtained by instantiating fk with

the RSA function, and the hash function with some

cryptographic hash function, such as SHA-1 with the

length of its output extended to match that of the RSA

modulus. For a given value k of the security parameter,

fk is the public key of the signature scheme, and the

private key is the trapdoor information allowing to eas-

ily invert fk. The signature of a message m ∈ {0, 1}∗

is f−1
k (H(m)), the preimage of its digest under fk.

To verify a purported signature σ on message m, it

suffices to check whether H(m) and fk(σ) coincide.

The FDH scheme can be proved secure in the

random oracle model against existential forgery under

adaptive chosen-message attacks. This means that if

we regard the hash function H as a truly random

function, then any computationally feasible adversary

with access to the public key and that can ask for the

signature of messages of its choice, succeeds in forging

a signature for a fresh message only with a negligible

probability. This asymptotic security statement is de-

sirable, but of limited practical utility because it does

not give any hint as to how to choose the scheme

parameters to attain a certain degree of security. What

we are really looking for is an exact security statement,

a bound that quantifies the gap between the security of

the scheme and the intractability of inverting the one-

way permutation.

Suppose there exists an adversary against the ex-

istential unforgeability of FDH that makes at most

qH(k) and qS(k) queries to the hash and signing oracles
respectively, and succeeds in forging a FDH signature

for a fresh message with probability ǫ(k) within time

t(k). In a code-based setting, such an adversary is

regarded as black-box procedure A run in the context

of the following attack game:

Game GEF :
L,S ← nil;
(m, σ)← A();
h← H(m)

H(m) def
=

if m 6∈ dom(L) then
h $← G;L← (m, h) ::L

return L(m)

Sign(m) def
=

S ← m :: S; h← H(m);
return f−1(h)

Its success probability is PrGEF
[h = f(σ)]. Note that

in the above game the signing oracle makes a hash

query each time the adversary asks for the signature

of a message, and an additional hash query is made at

the end as part of the verification. Thus the number of

effective hash queries is at most qH + qS + 1. All this
is captured by the following postcondition,

ΦEF
def
= |L| ≤ qH + qS + 1 ∧ |S| ≤ qS ∧ m /∈ S

So, PrGEF
[A] = PrGEF

[A ∧ ΦEF] for any event A.

In the proofs presented in the remainder of this

section we will show two different ways of construct-

ing an inverter I that uses the forger A to invert fk.

These constructions effectively reduce the security of

the signature scheme to the intractability of inverting

the underlying one-way permutation.

3.1. The original proof

The proof appearing in [15] provides a security

bound that depends on the number of queries the

adversary makes to both, the hash and the signing

oracle.

Theorem 1 (Original bound): There exists an in-

verter I that finds the preimage of an element uni-

formly drawn from the range of fk with probability

ǫ′(k) within time t′(k), where

ǫ′(k) ≥ (qH(k) + qS(k) + 1)−1 ǫ(k)

t′(k) ≤ t(k) + (qH(k) + qS(k)) Θ(Tf )

and Tf (k) is a bound on the cost of evaluating fk.

The inverter I shown in game GOW in Fig. 1 does

the job. It simulates an environment for A where it

replaces the hash and signing oracles with versions of

its own. The figure shows the sequence of games that

we use to relate the success of the inverter in GOW to

the success of the forger in the attack game GEF. For

each game the main experiment is shown alongside the

code of procedures in the environment; code pieces

that change with respect to the previous game in the

sequence appear on a grey background.

Let q def
= qS + qH. The inverter first randomly

chooses an index j in {0, . . . , q} and then runs the

forger intercepting its oracle queries. It answers to the

j-th hash query (we index the queries from 0) with his

challenge y, and to the remaining hash queries with

a random element in the range of f with a known

preimage; it stores this preimage in a list P . It answers

a sign query by first making the corresponding hash

query itself and then obtaining the preimage of the

hash value under f from the list P . The simulation

is perfect provided the forger never asks the signature

of the message corresponding to the j-th hash query,

because in this case its preimage will not be in the list.

A sufficient condition for the simulation to be correct

is that m = M(j), since m cannot appear in a sign



Game GEF :
L,S ← nil;
(m,σ)← A();
h← H(m)

H(m) def
=

if m 6∈ dom(L) then
h $← G;L← (m, h) ::L

return L(m)

Sign(m) def
=

S ← m :: S; h← H(m);
return f−1(h)

Game G1 :
i← 0;
M ← nil;
L,S ← nil;
(m,σ)← A();
h← H(m);
j $← {0, . . . , q}

H(m) def
=

if m 6∈ dom(L) then
h $← G;L← (m, h) ::L;
M ← (i, m) :: M ;
i← i + 1

return L(m)

Sign(m) def
= . . .

Game G2 :
y′ $← G;
j $← {0, . . . , q};
i← 0;
M ,L,S ← nil;
(m,σ)← A();
h← H(m)

H(m) def
=

if m 6∈ dom(L) then
if i = j then h← y′;
else h $← G
L← (m,h) :: L;
M ← (i, m) :: M ;
i← i + 1

return L(m)

Sign(m) def
= . . .

Game G3 G4 :
bad← false;
y′ $← G;
j $← {0, . . . , q};
i← 0;
P ← nil;
M ,L,S ← nil;
(m, σ)← A();
h← H(m);
y ← y′;
x← σ

H(m) def
=

if m 6∈ dom(L) then
if i = j then h← y′;
else r $← G; h← f(r)
P ← (m,r) :: P ;
L← (m, h) :: L;
M ← (i, m) :: M ;
i← i + 1

return L(m)

Sign(m) def
=

S ← m :: S; h← H(m);
if m = M (j) then

bad← true;

return f−1(h) P (m)
else return f−1(h)

Game GOW :
y $← G;
x← I(y)

I(y) def
=

y′ ← y;
j $← {0, . . . , q};
i← 0;
P ,L← nil;
(m, σ)← A();
return σ

H(m) def
=

if m 6∈ dom(L) then
if i = j then h← y′;
else r $← G; h← f(r)
P ← (m,r) :: P ;
L← (m, h) :: L;
i← i + 1

return L(m)

Sign(m) def
=

h← H(m);
return P (m)

(q + 1)−1 PrGEF
[h = f(σ)] =

(q + 1)−1 PrG1 [h = f(σ)] ≤
PrG1 [h = f(σ) ∧m = M (j)]

PrG1 [h = f(σ) ∧m = M (j)] =
PrG2 [h = f(σ) ∧m = M (j)]

PrG2

[

h = f(σ) ∧
m = M (j)

]

=

PrG3

[

h = f(σ) ∧
m = M (j)

]

=

PrG3 [h = f(σ) ∧m = M (j)] =
PrG3 [h = f(σ) ∧m = M (j) ∧ ¬bad] =
PrG4 [h = f(σ) ∧m = M (j) ∧ ¬bad] ≤
PrG4 [h = f(σ) ∧m = M (j)] ≤
PrG4

[

f−1(y) = x
]

= PrGOW

[

f−1(y) = x
]

Figure 1. Sequence of games in the original proof of FDH

query (it must be fresh). We will show how to stepwise

transform the attack game into the simulation.

In game G1 we instrument the hash oracle to keep

track of the indices of queries, and we introduce the

guess j at the end of the game. Consider the invariant

I1
def
=
|L| = |M | = i ∧ (∀i′ ∈ dom(M ), i′ < i) ∧
(∀m ∈ dom(L), ∃i′ ∈ dom(M), m = M(i′))

We prove that

|= GEF ∼ G1 : true⇒ ={L,S,m,σ,h} ∧ I1〈2〉

The tactics wp and eqobs_in are enough to construct

the information for the oracles in the environments in

games G1 and G2. The resulting procedure information

ι12 is then extended automatically to the adversary. The

proof script for the above lemma is just

deadcode ι12; eqobs_tl ι12; wp; ...

The tactic deadcode removes the random assignment

to j in G1, eqobs_tl removes the common suffix,

with the exception of the instruction L← nil because

it affects the invariant I1. The resulting goal is

|= L← nil ∼ i← 0; M , L← nil :
true⇒ ={L} ∧ I1〈2〉

The tactic wp computes the weakest precondition of

={L}∧ I1〈2〉; the ellipsis stands for a straightforward

script to prove that this weakest precondition holds.

Games GEF and G1 are thus equivalent on h and σ,
which implies

PrGEF
[h = f(σ)] = PrG1

[h = f(σ)] (1)

Games GEF and G1 are also equivalent on all the free

variables appearing in ΦEF, so ΦEF is a postcondition

of G1 as well. Furthermore, since the game makes a



last hash call for m, m ∈ dom(L). Now we have that

ΦEF ∧ I1 ∧m ∈ dom(L)⇒ ∃i′, i′ ≤ q ∧m = M(i′)

So, there exists at least an index i′ in {0, . . . , q} such
that m = M(i′). (In fact, there exists exactly one,

but we do not need to prove it.) The probability of j

being one of such indices is at least (q + 1)−1 and is

independent of the success of the forgery, thus

PrG1
[h=f(σ)]

q + 1
≤ PrG1

[h=f(σ) ∧m=M(j)] (2)

Game G2 eagerly samples the value y′ that is given

as answer to the j-th hash query, and that will later

become the challenge to the inverter. By the lazy sam-

pling lemma we obtain, |= G1 ≃
∅

{j,M ,L,S,m,σ,h}
G2.

Therefore,

PrG1
[h=f(σ)∧m=M(j)]

= PrG2
[h=f(σ)∧m=M (j)] (3)

In game G3 we modify the way hash queries are

answered. For all but the j-th query we return the

image under f of a uniformly sampled element in its

domain, and we store this element in a list P . This is

a local change that does not change the distribution of

the answers. Indeed, since f is a permutation we have

|= E, h $← G ≃∅
{h} E′, r $← G; h← f(r)

We also introduce a flag bad to signal whether the

simulation failed, i.e. whether the adversary asked the

signature of M(j). We prove the equivalence

|= G2 ∼ G3 : true⇒

{

={j,M ,L,S,m,σ,h} ∧

(M(j) /∈ S ⇒ ¬bad)〈2〉

Hence

PrG2
[h=f(σ)∧m=M(j)]

= PrG3
[h=f(σ)∧m=M (j)] (4)

Games G3 and G4 differ only in a portion of

code that appears after bad is set, therefore they are

syntactically equal up to the failure event bad. The

Fundamental Lemma gives us

PrG3
[h=f(σ)∧m=M(j)∧¬bad]

= PrG4
[h=f(σ)∧m=M (j)∧ ¬bad] (5)

The postcondition ΦEF can be propagated to G3 using

the transitivity property of observational equivalence.

Then, since M(j) /∈ S ⇒ ¬bad is an invariant of G3

and m /∈ S a postcondition,

PrG3
[h=f(σ)∧m=M(j)]

= PrG3
[h=f(σ)∧m=M (j)∧ ¬bad] (6)

Define I4 as

∀m∈dom(L), m 6=M(j)⇒P (m)=f−1(L(m))∧
(j ∈ dom(M)⇒ L(M(j)) = y′)

When answering a sign query for a message m 6=
M (j), we may obtain the preimage of its hash value

from P rather than using f−1. We use I4 to prove

that the signing oracles in games G4 and GOW are

equivalent. To this end we introduce a hybrid game G4′

identical to G4 but with the signature oracle defined as

in GOW, and we show that

|= G4 ∼ G4′ : true⇒ ={x,y,j,M ,L,S,m,σ,h} ∧ I4〈1〉

The invariant I4 implies that h = L(M (j)) = y is a

postcondition of G4, which gives

PrG4
[h=f(σ)∧m=M(j)] ≤ PrG4′

[

f−1(y)=x
]

(7)

Then we prove |= G4′ ≃
∅
{x,y} GOW. Its proof script is

straightforward,

alloc_l y′ y; sinline_r ι I.
eqobs_tl ι; swap; deadcode; eqobs_in.

Using this lemma we derive

PrG4′

[

f−1(y) = x
]

= PrGOW

[

f−1(y) = x
]

(8)

Putting all the above results together, we conclude

PrGEF
[h = f(σ)]

q + 1
≤ PrGOW

[

f−1(y) = x
]

(9)

For the time being, CertiCrypt does not provide au-

tomation to prove exact bounds on the running time

of programs, so we do not certify the bound for

t′(k). A glance at the code of the simulation in GOW

should suffice to convince oneself that the bound holds.

However, a complete proof of asymptotic security

follows trivially from (9). Since fk is a one-way

permutation family, PrGOW

[

f−1(y) = x
]

is negligible

in the security parameter provided I runs in PPT.

This is indeed the case, and is proved automatically

in CertiCrypt using the tactic PPT_tac.

3.2. Improved bound

A tighter security bound for FDH appears in [9]; this

bound is independent of the number of hash queries.

This is of much practical significance since the number

of hash values a real-world forger can compute is only

limited by the time and computational resources it

invests, whereas the number of signatures it gets could

be limited by the owner of the private key.

Theorem 2 (Improved bound): If the permutation

family fk is homomorphic with respect to the group

operation in Gk, i.e. ∀k x y, fk(x×y) = fk(x)×fk(y),



then there exists an inverter I that finds the preimage

of an element uniformly drawn from the range of fk

with probability ǫ′(k) within time t′(k), where

ǫ′(k) ≥
1

qS(k) + 1

(

1−
1

qS(k) + 1

)qS(k)

ǫ(k)

t′(k) ≤ t(k) + (qH(k) + qS(k)) Θ(Tf )

These bounds hold for the inverter shown in Fig. 2. The

inverter first samples q + 1 bits at random, choosing

true with probability p and false with probability

(1 − p), and stores them in a list T . It answers to

the i-th hash query as follows: it picks uniformly

a value r from the domain of f and stores it in a

list P , then replies according to the i-th entry in T :

if it is true, answers with y × f(r) where y is its

challenge, if it is false answers with simply f(r). In
both cases the answers are indistinguishable from those

of a random function. When the adversary asks for

the signature of a message m, the inverter makes the

corresponding hash query itself and then answers with

the m entry in the list P . The simulation is correct

provided the entries in T corresponding to messages

appearing in a sign query are false, because in this case

the corresponding entries in P give the preimage of

their hash value. The aim of the inverter is to make the

challenge appear in as much hash queries as possible,

while at the same time maximizing the probability

of the simulation being correct. The parameter p is

left unspecified through the proof and will be chosen

later to find the best compromise between these two

competing goals.

In game G1 in Fig. 2 we instrument the hash oracle

to keep track of the indices of queries, and we initialize

T at the end of the game. Recall that eµ stands for the

evaluation of e in memory µ; define

Fµ(i, n) def
= if n ≤ i then T (i− n)

µ
else p

Gµ(l, n) def
=

∏

i∈l

if n ≤ i then ¬T (i− n)
µ

else 1− p

Fµ(i, q +1−|T |) equals the probability of T (i) being
true after executing InitT in µ. Gµ(i, q + 1 − |T |) is

a lower bound on the probability of ∀i ∈ l,¬T (i).
We prove the following invariant about the while loop

InitT : for every index i and list of indices l such that

i /∈ l,

Fµ(i, q + 1− |T |) Gµ(l, q + 1− |T |)

≤ PrinitT ,µ[T (i) ∧ ∀i ∈ l,¬T (i)] (10)

Consider game G1 up to the point where T is initial-

ized. Postcondition ΦEF holds for game GEF, and we

can propagate it to G1 up to this point. We prove, in

addition, that ran(I) = [|L| − 1 .. 0] is an invariant of

this piece of code. So, before initializing T in game

G1 the following precondition holds,

|L| ≤ q+1 ∧ |S| ≤ qS ∧m /∈S ∧ ran(I)=[|L|−1 .. 0]

which allows us to infer that I(m) /∈ I[S], and to

apply (10) with i = I(m) and l = I[S], obtaining

p (1−p)qS≤PrinitT [T (I(m)) ∧ ∀m′ ∈ S,¬T (I(m′))]

And therefore

p (1− p)qS PrG1
[h = f(σ)]

≤ PrG1
[h = f(σ) ∧ Success] (11)

Observe that the transformation of G1 into G2 can be

justified by locally reasoning on the code of the hash

oracle, without need to apply the lazy sampling lemma

as before, thanks to the fact that f is a permutation and

f(r) acts as a one-time pad. The proof continues in a

similar fashion as the one presented before. For the

sake of brevity, we only describe the last transition.

We prove the following invariant of G4,

∀(m, h) ∈ L, T (I(m)) ⇒ h = y′ × f(P (m)) ∧
¬T (I(m)) ⇒ h = f(P (m))

This permits to show that the signing oracles in G4

and GOW are equivalent and, using the homomorphic

property of f , to show

PrG4
[h=f(σ)∧Success] ≤ PrG4

[y×f(P (m))=f(σ)]

= PrGOW

[

f−1(y) = x
]

Therefore, we can conclude

p (1− p)qS PrGEF
[h = f(σ)] ≤ PrGOW

[

f−1(y) = x
]

We get the bound in the statement of the theorem by

choosing p = (qS + 1)−1, which maximizes the factor

p (1−p)qS . For this value of p, the factor approximates

exp(−1) q−1
S for large values of qS.

3.3. Practical interpretation

If one accepts that it is reasonable to draw practical

conclusions from a security proof in the random oracle

model, then the results above may be used to choose

the scheme parameters based on an estimate of the time

needed to invert the underlying one-way permutation.

For instance, the best known method to invert the

RSA function is to factorize its modulus; the fastest

factorization algorithm (NFS) could factorize a 1024-

bit number in around 280 operations, and a 2048-bit

number in around 2111 operations. Assume some safe

bounds for qH and qS, qH ≤ 260, qS ≤ 220. To ensure

no forger within these bounds could forge a RSA-FDH

signature within t = 280 operations, one should pick



Game GEF :
L,S ← nil;
(m,σ)← A();
h← H(m)

H(m) def
=

if m 6∈ dom(L) then
h $← G;L← (m, h) ::L

return L(m)

Sign(m) def
=

S ← m :: S; h← H(m);
return f−1(h)

Game G1 :
i← 0;
I ← nil;
L,S ← nil;
(m,σ)← A();
h← H(m);
T ← nil; InitT

H(m) def
=

if m 6∈ dom(L) then
h $← G;L← (m, h) ::L;
I ← (m, i) :: I ;
i← i + 1

return L(m)

Sign(m) def
= . . .

Game G2 :
y′ $← G;
T ← nil; InitT ;
i← 0;
I ,L,S ← nil;
(m,σ)← A();
h← H(m)

H(m) def
=

if m 6∈ dom(L) then
r $← G;
if T (i) thenh←y′×f(r)
else h← f(r)
L← (m,h) :: L;
I ← (m, i) :: I ;
i← i + 1

return L(m)

Sign(m) def
= . . .

Game G3 G4 :
bad← false;
y′ $← G;
T ← nil; InitT ;
i← 0;
P ← nil;
I , L,S ← nil;
(m, σ)← A();
h← H(m);
y ← y′;
x←σ×P (m)−1

H(m) def
=

if m 6∈ dom(L) then
r $← G;
if T (i) then h←y′×f(r)
else h← f(r)
P ← (m,r) :: P ;
L← (m, h) :: L;
I← (m, i) ::I ; i← i+1

return L(m)

Sign(m) def
=

S ← m :: S; h← H(m);
if T (I(m)) then

bad← true;

return f−1(h) P (m)
else return f−1(h)

Game GOW :
y $← G;
x← I(y)

I(y) def
=

y′ ← y;
T ← nil; InitT ;
i← 0;
P ,L← nil;
(m, σ)← A();
h← H(m);
return

σ×P (m)−1

H(m) def
=

if m 6∈ dom(L) then
r $← G;
if T (i) then h←y′×f(r)
else h← f(r)
P ← (m,r) :: P ;
L← (m, h) :: L;
i← i + 1

return L(m)

Sign(m) def
=

h← H(m);
return P (m)

p (1− p)qS PrGEF
[h = f(σ)] =

p (1− p)qS PrG1 [h = f(σ)] ≤
PrG1 [h = f(σ) ∧ Success]

PrG1 [h = f(σ) ∧ Success] =
PrG2 [h = f(σ) ∧ Success]

PrG2

[

h = f(σ)∧
Success

]

=

PrG3

[

h = f(σ)∧
Success

]

PrG3 [h = f(σ) ∧ Success] =
PrG3 [h = f(σ) ∧ Success ∧ ¬bad] =
PrG4 [h = f(σ) ∧ Success ∧ ¬bad] ≤
PrG4 [h = f(σ) ∧ Success] ≤
PrGOW

[

f−1(y) = x
]

InitT
def
= while |T | ≤ q do (b $← 〈true 7→ p, false 7→ 1− p〉; T ← b :: T )

Success def
= T (I(m)) ∧ ∀m′ ∈ S,¬T (I(m′))

Figure 2. Sequence of games in the proof of the improved security bound of FDH

the RSA modulus such that factoring it takes at least

roughly qS(t + (qH + qS)Θ(Tf )) ≈ 2100 operations,

otherwise one can iterate the construction in Theorem 2

qS times to invert the RSA function in less time than

using the NFS algorithm. A 1024-bit modulus would

not be enough, but a 2048-bit modulus would do. In

contrast, if one were to choose the modulus according

to the original security bound, even a 2048-bit modulus

would not be enough. Unfortunately, for FDH there

is no tighter reduction than the one in Theorem 2 as

showed by Coron [16].

4. Discussion

Our machine-checked proofs follow quite closely the

pen-and-paper game-based proofs of FDH (cf. [4]).

There is however one important difference: in order to

justify local transformations, machine-checked proofs

must make invariants explicit and establish formally

their validity. Proving that invariants hold constitutes

a fair amount of work. More generally, machine-

checked proofs must justify all reasoning, including

reasoning about side conditions (e.g. PPT complexity)

and about elementary mathematics (groups, proba-

bilities) in terms of basic definitions. In contrast to

game transformations, for which suitable tactics have

been designed, this form of reasoning is not always

amenable to automation, and thus accounts for a

substantial amount of the effort and of the size of

the proofs. Indeed, we estimate that about a third

of the proof scripts are devoted to basic facts about

probabilities. In spite of this, the size of machine-



checked proofs remains reasonable: the formalizations

of Bellare-Rogaway and Coron proofs are about 3,000

lines each. While the length of our proofs might

look prohibitive in comparison to published proofs,

we expect that machine-checked proofs will shrink

substantially as CertiCrypt (and its underlying li-

braries) mature. However, it must be noted that much

of the proof lies outside of the trusted base: in order

to trust the proofs of FDH, it is sufficient to trust

our formalization of the scheme and of the security

statement, the formalization of probabilistic programs

provided by CertiCrypt, and the proof checker of

Coq. In particular, trusting the proofs of FDH does

not require trusting the sequence of games, nor the

proofs of transitions, nor the proofs of invariants. In

this respect, CertiCrypt provides the highest possible

level of assurance for the security of a cryptographic

scheme, and breaks the symmetry between the effort of

writing and checking a cryptographic proof. Currently,

both require a lot of expertise in cryptography, a lot

of time, and a good understanding of the proof; in

contrast, it is rather immediate and simple for a third

party to check a proof in CertiCrypt.

4.1. Related work

There have been several efforts to verify formally

the correctness of cryptographic schemes using general

purpose proof assistants or domain specific tools. We

briefly examine related work in view of three general

principles which, in our opinion, should be met by an

ideal tool for certifying security proofs1:

• Generality: the tool should be sufficiently general

not to limit the conduct of cryptographic proofs:

its underlying language should be sufficiently

expressive to capture all notions and assumptions

used by cryptographers, and its underlying logic

should be sufficiently powerful so that all forms

of mathematical judgments can be formalized and

checked;

• High assurance: the tool should produce proof

objects that are verifiable independently by small

and trustworthy proof checkers. In particular, the

proof objects should justify all steps in the proof,

and should guarantee that side conditions which

arise in the application of a generic transformation

are verified;

• Automation: the tool should assist the user in

proving transitions between games, or even to find

1. One related issue, not developed here, is the naturalness of the
tool, i.e. how the underlying language of the tool differs from the
language used by cryptographers to write games.

the sequence of games. Ideally the tool should

provide sufficient support to handle automatically

all routine steps so that users can focus on the

creative part of the proof.

There are several works that favor automation. In

particular, CryptoVerif excels in this respect: being

able to generate not only the proofs between transi-

tions, but also the sequence of games itself, it requires

minimal interaction from users. However, CryptoVerif

does not achieve generality, and does not provide high

assurance.

More recently, Courant et al. [17] have developed

a prototype tool to establish security of asymmetric

encryption schemes in the Random Oracle Model.

The tool performs symbolic execution of programs,

and yields proofs of IND-CPA and IND-CCA2 secu-

rity; the tool has been applied successfully to several

schemes. As with CryptoVerif, their tool excels with

automation, but is not general and does not provide

high assurance. One further limitation of their tool is

that it neither gives reductionist arguments nor allows

to compute exact security bounds.

In contrast to the above works, several authors

have focused on developing proofs that provide high

assurance, and formalized game-based proofs in proof

assistants. The main results to date are a proof of

ElGamal semantic security by Nowak [18], and of

the PRP/PRF switching lemma by Affeldt et al. [19].

Although both proofs are conducted in the Coq proof

assistant, they are incomplete (e.g. they do not deal

with complexity, or deal with a weak, non-adaptive,

adversary model), and appear like preliminary experi-

ments that are unlikely to yield a reasonable framework

for cryptographic proofs. Very recently, Backes et

al. [20] have started developing a framework for game-

based proofs in Isabelle. In contrast to our work,

they rely on a λ-calculus with references to express

games. Although the authors aim for generality, their

work is very preliminary: as far as we can judge,

only the semantics of the language has been modeled,

and no proofs have been conducted. In particular, it

remains difficult to assess whether using a higher-

order language yields any benefits, or whether on the

contrary it complicates the development and usage of

the framework significantly.

4.2. Perspectives

In an inspiring paper, Halevi [6] advocates building

and using dedicated formal verification tools to help

cryptographers increase confidence in their proofs. Our

work provides evidence that such tools can indeed be



built. On the other hand, conducting proofs in Cer-
tiCrypt is currently time consuming and requires a sig-

nificant amount of expertise. Further work is required

to make the tool more accessible, so that its use can

become routine and not limited to researchers with a

background in formal methods. One essential element

to increase the usability of CertiCrypt is to increase

automation by interfacing with an external tool, along

the paradigm of proof-producing decision procedures.

In the envisioned setting, the external tool would rely

on (untrusted) heuristics and provide an interface, and

would be used to produce a proof sketch, in the

form of incomplete proof objects, that would need

to be completed interactively using Coq. Typically,

the remaining proof obligations would establish that

transitions were performed respecting side conditions.

Acknowledgments. This work was partially supported

by the French ANR project SCALP. The authors would

like to thank the anonymous reviewers for their sug-

gestions and comments.

References

[1] S. Goldwasser and S. Micali, “Probabilistic encryp-
tion.” J. Comput. Syst. Sci., vol. 28, no. 2, pp. 270–299,
1984.

[2] J. Stern, “Why provable security matters?” in Advances
in Cryptology – EUROCRYPT’03, ser. Lecture Notes in
Computer Science, vol. 2656. Springer-Verlag, 2003,
pp. 449–461.

[3] M. Bellare and P. Rogaway, “The security of triple en-
cryption and a framework for code-based game-playing
proofs,” in Advances in Cryptology – EUROCRYPT’06,
ser. Lecture Notes in Computer Science, vol. 4004.
Springer-Verlag, 2006, pp. 409–426.

[4] D. Catalano, R. Cramer, I. Damgard, G. D. Crescenzo,
D. Pointcheval, and T. Takagi, Contemporary Cryp-
tology (Advanced Courses in Mathematics - CRM
Barcelona). Birkhauser, 2005.

[5] V. Shoup, “Sequences of games: a tool for taming com-
plexity in security proofs,” Cryptology ePrint Archive,
Report 2004/332, 2004.

[6] S. Halevi, “A plausible approach to computer-aided
cryptographic proofs,” Cryptology ePrint Archive, Re-
port 2005/181, 2005.

[7] B. Blanchet, “A computationally sound mechanized
prover for security protocols,” in IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2006,
pp. 140–154.

[8] B. Blanchet and D. Pointcheval, “Automated security
proofs with sequences of games,” in Advances in Cryp-
tology – CRYPTO’06, ser. Lecture Notes in Computer
Science, vol. 4117. Springer-Verlag, 2006, pp. 537–
554.

[9] J.-S. Coron, “On the exact security of Full Domain
Hash,” in Advances in Cryptology, ser. Lecture Notes in
Computer Science, vol. 1880. Springer-Verlag, 2000,
pp. 229–235.

[10] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “For-
mal certification of code-based cryptographic proofs,”
in Proceedings of the 36th ACM Symposium on Princi-
ples of Programming Languages. ACM Press, 2009,
pp. 90–101.

[11] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella
Béguelin, “Formal certification of ElGamal encryption.
A gentle introduction to CertiCrypt,” in 5th Interna-
tional Workshop on Formal Aspects in Security and
Trust, FAST 2008, ser. Lecture Notes in Computer
Science. Springer-Verlag, 2008, in press.

[12] The Coq development team, “The Coq Proof Assistant
Reference Manual v8.2,” 2008, [Online]. Available:
http://coq.inria.fr.

[13] X. Leroy, “Formal certification of a compiler back-end,
or: programming a compiler with a proof assistant,” in
Proceedings of the 33rd ACM Symposium Principles
of Programming Languages. ACM Press, 2006, pp.
42–54.

[14] M. Bellare and P. Rogaway, “The exact security of
digital signatures – How to sign with RSA and Ra-
bin,” in Advances in Cryptology – EUROCRYPT’96,
ser. Lecture Notes in Computer Science, vol. 1070.
Springer-Verlag, 1996, pp. 399–416.

[15] ——, “Random oracles are practical: A paradigm for
designing efficient protocols,” in Proceedings of the 1st
ACM Conference on Computer and Communications
Security. ACM Press, 1993, pp. 62–73.

[16] J.-S. Coron, “Optimal security proofs for PSS and
other signature schemes,” in Advances in Cryptology
– EUROCRYPT’02, ser. Lecture Notes in Computer
Science, vol. 2332. Springer-Verlag, 2002, pp. 272–
287.

[17] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and
Y. Lakhnech, “Towards automated proofs for asymmet-
ric encryption schemes in the random oracle model,” in
Proceedings of the 15th ACM Conference on Computer
and Communications Security. ACM Press, 2008, pp.
371–380.

[18] D. Nowak, “A framework for game-based security
proofs,” in Information and Communications Security,
vol. 4861. Springer-Verlag, 2007, pp. 319–333.



[19] R. Affeldt, M. Tanaka, and N. Marti, “Formal proof of
provable security by game-playing in a proof assistant,”
in Proceedings of International Conference on Provable
Security, ser. Lecture Notes in Computer Science, vol.
4784. Springer-Verlag, 2007, pp. 151–168.

[20] M. Backes, M. Berg, and D. Unruh, “A formal language
for cryptographic pseudocode,” in Proceedings of the
15th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR’08).
Springer-Verlag, 2008, pp. 353–376.


