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ABSTRACT 

Personalized search systems tailor search results to the current user 

intent using historic search interactions. This relies on being able to 

find pertinent information in that user’s search history, which can 

be challenging for unseen queries and for new search scenarios. 

Building richer models of users’ current and historic search tasks 

can help improve the likelihood of finding relevant content and en-

hance the relevance and coverage of personalization methods. The 

task-based approach can be applied to the current user’s search his-

tory, or as we focus on here, all users’ search histories as so-called 

“groupization” (a variant of personalization whereby other users’ 

profiles can be used to personalize the search experience). We de-

scribe a method whereby we mine historic search-engine logs to 

find other users performing similar tasks to the current user and 

leverage their on-task behavior to identify Web pages to promote 

in the current ranking. We investigate the effectiveness of this ap-

proach versus query-based matching and finding related historic ac-

tivity from the current user (i.e., group versus individual). As part 

of our studies we also explore the use of the on-task behavior of 

particular user cohorts, such as people who are expert in the topic 

currently being searched, rather than all other users. Our approach 

yields promising gains in retrieval performance, and has direct im-

plications for improving personalization in search systems. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval –search process, selection process.  

General Terms 

Algorithms, Experimentation, Human Factors 

Keywords 

Task modeling, Task similarity, Personalization, Groupization. 

1. INTRODUCTION 
Search engines record queries and search-result clicks from their 

users and leverage that data to enhance result relevance for others 

issuing the same or similar queries [1,21]. The underlying motiva-

tion behind this query-based matching is to find other users with 

similar information needs, and use their aggregated search behavior 

to estimate the current user’s underlying intent. Historic search in-

teractions from a user over time can be used to personalize search 

results [37,42], but the focus there is either once again on query-

based matching [42] or creating general models of searcher inter-

ests across a variety of topics [37]. However, since queries occur in 

a broader task context, focusing only on query- or topical-interest-

matching may be insufficient for effective search-result ranking. 

 

 

 

 

People have been shown to pursue a wide range of different search 

tasks online [23,31] and inferences about task behavior have been 

shown to have value in areas such as modeling search satisfaction 

[20]. There have also been attempts to leverage the on-task behav-

ior of other users to improve retrieval performance. Research on 

groupization [43] showed that extending personalization to groups 

of users with shared interests could yield relevance gains. However 

this used information that is typically unavailable to search engines 

(e.g., length of members’ relationships) and is on a small scale. Col-

laborative filtering attempts to find others with similar interests 

[13,25], but matches based only on queries [25] or focuses on rec-

ommendations and community connectedness not ranking [13]. 

We believe that by directly modeling task-relevant search behavior 

as part of personalization we can attain improved search result rel-

evance. In this particular study, we are interested in first modeling 

users’ on-task search behavior, then using the generated task model 

to find other users attempting similar tasks, identifying the URLs 

that appear relevant, and then promoting those URLs in the result 

list for the current query. We answer four questions critical in de-

termining the value of this method: (1) Should matching be per-

formed using task models or is finding other instances of the current 

query sufficient? (2) How does task-based groupization perform in 

comparison with task-based personalization? (3) Is in-session task 

segmentation required to attain performance gains or would an es-

timation of tasks via search sessions suffice? (4) What is the effect 

of using specific user cohorts for groupization (e.g., those in a par-

ticular geographic location or those with good topic knowledge)? 

Through empirical analysis we demonstrate that mining and mod-

eling search tasks yields significant gains in retrieval performance. 

The remainder of this paper is structured as follows. Section 2 de-

scribes related work in task modeling, personalization, and mining 

task-relevant search behavior. Sections 3 and 4 describe the identi-

fication of search tasks and the method for the learning to rank 

search results by using evidence from similar tasks. Section 5 de-

scribes the experiments that we performed to evaluate our methods 

and Section 6 describes the results. In Section 7 we discuss these 

findings and their implications, and we conclude in Section 8. 

2. RELATED WORK  
There are three relevant areas of related work: (1) task modeling, 

(2) personalization of search engines based on short- and long-term 

searcher interests, and (3) mining the search behavior of other users 

to complement and enhance search personalization.  

An important part of representing search intent is understanding the 

various types of search tasks and the different motivations that 

searchers may have for pursuing their information goals. Previous 

work has studied the motivation for searching and nature of the 

search tasks that people perform [14,26]. There has also been re-

search on mining and modeling task-related search behavior from 

search logs. Jones and Klinkner [22] proposed to classify the query 

pairs that belong to the same task using, among others, features of 
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query-term overlap and search result similarity. They showed in 

experiments that their approach attained significant (over 90%) ac-

curacy in segmenting and matching search tasks. Such task models 

have also been used to predict search success automatically from 

observed search behavior [18,19,20]. Lucchese et al. [30] identified 

task-based sessions by combining content (query term edit dis-

tance) and semantic (Wikipedia) features. Liao et al. [27] adapt 

both of the methods described in [19,30] to extract tasks from ses-

sions where a query distance function is learned and used to cluster 

queries in sessions into tasks. They studied the potential benefit of 

using tasks for search applications—determining user satisfaction, 

predicting search interests, and query suggestion—and demonstrate 

benefit from tasks over sessions or queries. Others have modeled 

cross-session interests to predict task continuation and resumption 

[24] or have sought to understand multi-session tasks [31].    

Large-scale behavioral data from search engines has been mined 

extensively to improve search result relevance [1,21]. Radlinski 

and Joachims [33] proposed the use of query chains comprising 

connected sequences of queries to learn richer models of relevance 

that can capitalize on session behavior. However, the basis for the 

learning is still individual queries, which may not map well to the 

current user’s task. Moving beyond individual queries, Radlinski et 

al. [34] model intent from queries and clicks in a way that could be 

directly consumed by Web search engines. Similarly, Downey et 

al. [12] studied relationships between queries and goals, estimated 

from the terminal page in the search session. Bilenko and White [7] 

used signals from aggregated post-query navigation trails to learn 

better result rankings using search behavior. 

Research on personalizing retrieval [35,41]  has found that implic-

itly gathered information such as browser history, query history, 

and desktop information, can be used to improve the ranking of 

search results for a given user. Short-term behavior from within the 

current search session has been used for tasks such as search result 

ranking [49] or predicting future search interests [45,46]. Teevan et 

al. [41] found that the performance of the personalization algorithm 

they studied was improved as more data became available about the 

target user’s interests. Long-term behavior has been used for per-

sonalizing search result ranking by building long-terms models of 

search interests [37], including specifically using previous queries 

suggesting a pursuit of similar information needs [40]. Other work 

has focused on personalization based on task-type, including the 

connection between task type and search behavior [29], and using 

those signals for personalization [28], although within the same 

user rather than over many users as we focus on in our method. 

When there are insufficient data about the current user, the search 

behavior of other related users may be beneficial. Teevan et al. [43] 

explored the similarity of queries, desktop information, and explicit 

relevance judgments across a small group of 30 work colleagues 

grouped along two dimensions: (1) the longevity of their relation-

ships, and (2) how explicitly the group is formed. They found that 

some groupings provide insight into what members consider rele-

vant to queries related to the group focus, but that it can be difficult 

to identify valuable groups implicitly. We address this challenge 

directly in this paper, and experiment with different methods for 

identifying groups to enhance personalization performance at scale.  

Collaborative filtering (CF) can be used to find people with similar 

interests and leverage their activities and preferences to help the 

current user. There are examples of CF techniques being applied to 

improve search. Sugiyama et al. [38] addressed sparseness in user 

term-weight profiles by applying collaborative filtering techniques 

to provide term weights based on those of users with similar pro-

files. Similar approaches have used clickthrough data to personal-

ize result rankings and backed off to the clicks of other users [2,39]. 

Almeida and Almeida [2] used Bayesian algorithms to cluster users 

of an online bookstore’s search service into communities based on 

links clicked within the site and found that the popularity of links 

within different communities could be used to customize result 

rankings. Lee [25] used data mining to uncover patterns in users’ 

queries and browsing to generate recommendations for users with 

similar queries. All techniques perform matching with other users 

based on individual queries or URLs, severely limiting their cover-

age. One way to address this is to use clickthrough behavior. Freyne 

and Smyth [13] tried to connect different communities based on the 

degree to which communities’ queries and result clicks overlap.  

Other methods have been proposed that are query independent. 

Smyth [36] suggested that clickthrough data from users in the same 

“search community” (e.g., a group of people who use a special-in-

terest Web portal or who work at the same company) could enhance 

search result lists. Smyth provided evidence for the existence of 

search communities by showing that a group of employees from a 

single company had a higher query similarity threshold than gen-

eral Web users. Mei and Church [32] found that geographic loca-

tion might serve as a reasonable proxy for community, since they 

observed that grouping users based on the similarity of their IP ad-

dresses could improve search results. As part of the research pre-

sented in this paper, we study the utility of location-based cohorts. 

Our research extends previous work in the following ways. First, 

we model users’ tasks and learn from their task-related behavior 

rather than only using what they do for individual queries or general 

topical interests. Second, rather than personalizing using the user’s 

own on-task behavior we have developed methods to leverage task 

models from other users attempting similar tasks. As part of that 

aspect of our study, we compare the retrieval performance of task-

based groupization with task-based personalization. Third, we ad-

dress the scalability challenges of implicitly modeling task similar-

ity and show gains from leveraging groupization at scale. Finally, 

we study the effectiveness of using the activities of different co-

horts based on location, browser / entry point denoting how users 

reach the search engine, and high levels of domain expertise. 

3. IDENTIFYING TASKS 
The first step in applying our method is to identify tasks within 

search sessions. We now describe the task identification process. 

3.1 Log Data 
The primary source of data for this study is a proprietary data set 

comprising anonymized logs of users of the Microsoft Bing search 

engine. The logs contained a unique user identifier, a search session 

identifier, the query, the top-10 URLs returned by the search engine 

for that query, and clicks on the results. We used four weeks of log 

data gathered from July 2011 to generate features, and to train and 

evaluate our different ranking models. Logs were collected during 

A/B tests where other types of personalization support was disa-

bled, so as to not bias our results with other personalization signals. 

Logs were split into search sessions demarcated with a 30-minute 

inactivity timeout, such as that used in previous work [12,33].  

3.2 Building Task Models 

3.2.1 Identifying Tasks in Sessions 
To extract tasks from within search sessions, we use the query clus-

tering method QTC [27], which has the advantage of segmenting 

interleaved tasks within a session. The method works in two steps: 

first, measure the similarities between query pairs; second, cluster 

queries into tasks based on their similarity scores. 



In order to calculate inter-query similarities, QTC takes a super-

vised-learning approach. First, human assessors are asked to assign 

binary labels to a set of randomly-sampled query pairs. A query 

pair has a positive label if assessors think they are related, e.g., re-

peated queries [amazon] � [amazon], one query contains narrow-

ing intent of the other [disney] � [disney movies], etc. Otherwise 

they are assigned a negative label if the queries are unrelated or 

contain different atomic intentions, e.g., [seattle news] � [space 

needle]. A logistic regression classifier is then trained with a set of 

term and temporal features based on the human labels. 

Using the learned query similarity function, QTC then builds an un-

directed graph of queries within each user session, where the verti-

ces of the graph are queries and the edges represent similarities be-

tween queries. By dropping the weak edges where the similarities 

are smaller than a threshold which is determined using cross vali-

dation (0.5 in our case), we can extract all connected components 

of the graph as tasks. See [27] for more on QTC. 

3.2.2 Modeling Search Tasks 
Now that we have a way to identify the search tasks within sessions, 

we need to represent searchers’ tasks in a way that enables compar-

isons between them. The two search behaviors that are readily 

available to us in the logs are queries and search-result clicks. We 

leverage these two sources to build the following four representa-

tions of users’ on-task behavior: queries, clicked-result URLs, the 

Web domains of the clicked results, and topical labels for clicked 

results from the Open Directory Project (ODP, dmoz.org). Using 

these four sources, tasks are represented as both sets (for queries, 

query terms, clicked URLs, clicked URL domains), and as proba-

bility distributions across topical category labels assigned to the 

URLs. For clicked URLs, we only used those with a dwell time 

exceeding 30 seconds, suggesting that the user was satisfied [14]. 

The topical labels from ODP were assigned in an automated man-

ner to all URLs in the Bing index using a content-based classifier, 

described and evaluated in [4]. In turn, this provided us with cate-

gory information for all search-result clicks. The classifier employs 

logistic regression to predict the ODP category for a Web page. To 

lessen the impact of small differences in assigned labels, we use 

only 219 categories at the top two levels of the ODP hierarchy. The 

findings in [4] revealed that, when optimized for the score in each 

category, the content-based classifier has a micro-average F1 of 

0.60, which we believed was sufficient for our purposes. 

The sources chosen were all available to us at scale and allowed us 

to compute task similarity along a number of different dimensions. 

The inter-task similarity features that leverage these representations 

are described later. Before we discuss these features and how we 

learn from similar tasks, we present some brief summary statistics 

on the characteristics of search tasks that we mined from the logs. 

3.3 Task Characteristics 
In the one-week of log data (from July 1, 2012 to July 8, 2012) used 

later for feature generation there were more than three million im-

pressions, 1.4 million search sessions, and 1.9 million search tasks. 

This represented an average of 1.36 tasks per session, 2.52 queries 

per session, and 1.86 queries per task. Figure 1 illustrates the frac-

tion of sessions containing between one and five search tasks. The 

figure shows that around 90% of sessions have one or two tasks; 

73.3% sessions contain a single task and about 16.0% sessions con-

tain two tasks. This shows that although most sessions comprise a 

single task, there are still a sizable number of sessions (over 25%) 

containing multiple tasks. Since using all in-session activity may 

result in a noisier relevance signal, we may need to consider in-

session task boundaries. We explore the effect of using full-session 

search activity versus in-session task activity as part of the ranking 

experiments described later in the paper. 

We now describe the process by which we learn from similar tasks.  

4. LEARNING FROM SIMILAR TASKS  
Given a user attempting a search task, the goal of our method is to 

learn from the on-task search behavior of other users. A key part of 

this process is finding other users attempting the same or similar 

search tasks. In this section we describe the methods that we use to 

compute the similarity between pairs of search tasks, how we mine 

similar tasks, and the features that we generate for ranking. 

4.1 Computing Task Similarity 
There were a number of ways in which we computed the similarity 

between a given pair of tasks. These can be grouped together as two 

similarity features classes: query similarity and result similarity. 

4.1.1 Query Similarity 
These similarity measures are based on comparing the queries that 

users issue in both tasks under consideration. Similarity in this case 

can be based on the exact terminology used in the queries (after 

normalization) and more generally, on the semantic similarity be-

tween the queries. We consider each of these alternatives. 

4.1.1.1 Syntactic Similarity 
Syntactic similarity describes the string match between the queries. 

Similarity can be computed based on the overlap between the tasks 

in terms of: (1) the fraction of queries that are shared between tasks 

(i.e., the intersection divided by the union), and (2) as the fraction 

of unique query terms that are shared between tasks.  

4.1.1.2 Semantic Similarity 
While the queries in two tasks may not have direct term overlap, 

they may be similar semantically. To address this we also compute 

the task similarity by measuring the semantic similarity between 

queries of two tasks. Let � = ��…�� be one query and � = ��…�� 
be another, the semantic similarity between these two queries can 

be measured based on the IBM Model 1 [6,8]. IBM Model 1 was 

originally proposed to model the probability of translating from one 

sequence of words in one language to another. Later, the model was 

applied to various information retrieval (IR) tasks such as query 

expansion [16] and document ranking [15]. Treating � and �	as two 

sequences of words, the IBM Model 1-based semantic similarity 

model is defined as: 


��|�
 =��
�������
������
�

���

�

���
 (1) 

where 
��|�
 is the unigram probability of word � in query �. The 

word translation probabilities 
��|�
 are estimated on the query-

 

Figure 1. Number of search tasks in search sessions. 
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title pairs derived from the clickthrough search logs, assuming that 

the title terms are likely to be the desired alternation of the paired 

query. Our method follows the standard training procedure of IBM 

model 1 as proposed by Brown et al. [8]. Formally, we optimize the 

model parameters θ, i.e., the set of all word translation probabilities 
�
��|�
�, by maximizing the probability of generating document 

titles from queries over the entire training corpus: 

�∗ = argmax 	�
(��|�� , �

"

���
 (2) 

where 
(�|�, �
 takes the form of IBM Model 1:  


(�|�, �
 = #
($ + 1
���
�������

�

���

�

���
 (3) 

where	ε is a constant, ' is the token length of �, and $ is the token 

length of �. The query-title pairs used for model training are sam-

pled from one year of search logs from the Bing search engine, 

without any overlap with the experiments reported in this paper. 

We compute the sematic similarity between two tasks using the av-

erage 
(�|�, �
 across all pairs of queries from the tasks. 

4.1.2 Clicked-Result Similarity 
The result URLs that are clicked (and have an associated long 

dwell) provide a different source of information about users’ search 

intent than is available in queries. We compute similarity in three 

ways: (1) the match between the clicked URLs, (2) the match be-

tween the domains of the clicked URLs, and even more generally, 

(3) the match between the topical categories assigned to the URLs.  

4.1.2.1 URL and Domain Similarity 
Similarity is computed based on the overlap between the tasks in 

terms of the fraction of unique clicked URLs shared between them 

(i.e., the intersection of clicked URLs divided by the union of all 

clicked URLs), or in terms of the URL domains that are shared be-

tween the tasks. Backing off to Web domains provides more oppor-

tunity for a match between clicked results, improving coverage 

while preserving information about the web site of interest. 

4.1.2.2 Topical Similarity 
Rather than relying on exact matches between particular URLs or 

their domains, we can also consider matching based on the topical-

ity of the pages described earlier. Given a categorization for each 

of the clicked URLs for a task (, we can create an ODP category 

distribution )* for that task, with a probability for each topical cat-

egory + (i.e., 
*(+
). Given this representation, we can compare the 

distribution for the current task with the distribution over all other 

tasks from other users �(′�.  We perform this comparison using both 

Kullback-Liebler divergence and the cosine similarity. That is, 

-.((/, (
 = 	�ln 2
*3(+

*(+
 45∈7

*3(+
 (4) 

+8�()*3 , )*
 = 	 )* ∙ )*3‖)*‖	‖)*3‖ (5) 

Using two measures focused on different aspects of the distribu-

tional similarity between tasks: KL computes the information gain 

and is asymmetric, cosine similarity computes the normalized dot 

product between the distributions (as vectors) and is symmetric. 

4.2 Mining Similar Tasks 
Given that we now have a variety of methods for computing the 

similarity between pairs of search tasks, the next objective is using 

that information to mine similar tasks and generate ranking fea-

tures. In this section we describe the procedure that we employ to 

leverage task similarity in re-ranking the top retrieved results, as 

well as the different groups from which we can find similar tasks. 

4.2.1 Procedure 
Recall that the objective of our method is to find other users at-

tempting the same or similar tasks to the current user. During fea-

ture generation, we build a representation of the current search task 

( based on the queries and result clicks of the user in the task so far, 

including the current query � (but not its clicks). Each task is mod-

eled using the sources described earlier in Section 3.2.2.  

Given that we have constructed a model of (, the next objective is 

to find similar tasks from the search histories of other users. For 

each of the tasks (′ in the set of all tasks observed historically from 

other users ;, we can then compute the similarity between the cur-

rent task and those tasks <�(, (′
. For each of the similarity 

measures in Section 4.1 we can compute a score �= for a URL > 

appearing in the top 10 search results for �: 

�=�(, >
 = 	 ��<�(, (/
 ∙ ?�(/, >
�
*3∈	@

 
(6) 

Where ?�(/, >
 is a weight reflecting the importance of the URL in 

a related task. In our case we define ?�(/, >
 as the click frequency 

on that URL for the related task. Other ways of generating this 

weight are possible (e.g., the rank position of > in the result list), 

but we focus on click frequency given its computational simplicity 

and direct relationship with our goal of learning which URLs are 

relevant from historic on-task behavior. Although ; is primarily 

composed of all historic tasks from all users, it can come from dif-

ferent groups, including the user’s long-term history (for personal-

ization rather than groupization), or specific user cohorts such as 

those with high levels of expertise in the domain of interest. 

Once we have �= for each of the similarity features described in the 

previous section, we use those values as additional ranking features 

for each of the results in the top-10 results for �. We then learn to 

re-rank those results to generate a new result ordering, which we 

then evaluate based on user behavior as described later. 

4.2.2 Re-ranking Features 
The specific features that we use for ranking are listed in Table 1. 

The functions map to the similarity functions described in this sec-

tion. The inter-task similarity is computed using	<�(, (′
 which is 

then multiplied against the click count for each URL in the top-10 

(i.e., ?�(/, >
 from Equation 6). The result summed over all tasks 

in the historic data is used to generate the final feature value. 

In addition, we also compute ClickedTasksCount, which is the total 

number of tasks for which a particular URL > is clicked. This 

measures URL popularity independent of task. Note that since Que-

ryTranslation and CategorySimilarityKL are asymmetric, we also 

include reverse variants of these features in our feature set. 

4.2.3 Groups 
The approach we describe in the paper leverages the on-task behav-

ior of groups comprising the following three sets of users: 

• Individual: This group comprises only the search behavior of 

the current user. In this group, the queries and similar search 

tasks are mined only from the current user’s long-term history. 

• Group (Global): In this group, queries and similar tasks are 

mined from everyone’s search histories. 

• Group (Cohorts): This group comprises particular subsets of 

Global created based on location, browser and search entry 

point (i.e., how users reach the engine – more details later), 



and estimates of topic expertise. The first two are based on 

information that is readily available in the logs that we used 

for this study. The latter could be estimated based on patterns 

of activity, interest on a topic, and success within a topic over 

time. Queries and similar search tasks in this case are only 

drawn from the particular cohort (e.g., only from users in the 

same location as the current searcher) rather than all searchers. 

4.2.3.1 Local Cohort 
It has been shown that interests can be location specific, e.g., a user 

querying for [msg] in New York City, NY may be more likely to 

mean Madison Square Garden than monosodium glutamate [3], and 

local experts may have better knowledge about the places to select 

[47]. In this case, we learn our features from users querying from 

the same location. To identify the user location we use the user’s IP 

address to determine the city and state for every user. We could not 

use each {city, state} pair as its own cohort because the population 

of many locations is insufficient. To address this, we use the city 

for the most populated locations and back-off to state for the less 

populated ones. Specifically, the location of a given user is his city 

if they are in one of the largest 200 U.S. cities by population. Oth-

erwise, the location is the state. For example, a user querying from 

Austin, Texas would be in the “Austin” cohort, whereas a user que-

rying from College Station, TX would be in the “Texas” cohort. 

4.2.3.2 Web Browser / Search Entry Point Cohort 
We also created groups of users based on the combination of the 

Web browser(s) that they use (e.g., Internet Explorer, Firefox, 

Chrome, multiple browsers, etc.) and the entry point(s) that they 

use to reach Bing (e.g., Bing homepage, MSN.com, browser search 

box, multiple entry points, etc.). The determination for each user is 

                                                                 

1 http://www-cs-faculty.stanford.edu/~eroberts/cs181/projects/fire-

fox-market-dynamics/present.html 

based on a held out set of log data from before the time period ex-

amined for this paper. Our hypothesis was that users using the same 

Web browser and entry point may have similar search preferences 

or be similar demographically (as a recent report by ComScore sug-

gests1), and demographics can influence search behavior [44]. 

4.2.3.3 Topic Cohort 
Previous work has shown that people with topic knowledge are 

more efficient and effective in completing their search tasks [50].  

We hypothesized that by focusing on the behavior of experts, we 

could help users target better quality content. As such, in defining 

the cohorts we limit the tasks to those from users with significant 

expertise in the topic of interest. This allows us to learn from expert 

users in particular, versus learning from one’s personal history or 

the set of all users, comprising users of all domain expertise levels. 

To identify users with significant expertise in different topics, we 

had to assign topic labels to different queries. We use one of 25 

topics to describe any given query. For each such topic, a set of 

manually-labeled queries are collected from trained judges and a 

proprietary text classifier is trained using the labeled data. The clas-

sifier is then used to assign topics to other queries. We used a set of 

binary classifiers, one for each topic, allowing queries to belong to 

multiple topics. Example topics include: Entertainment, Names, 

Commerce, Navigational, Travel, Technology and Sports. 

We use first week of data described in Section 3.1, corresponding 

to the feature-generation week. A user U is deemed to be an expert 

in topic P if the following three conditions are satisfied: 

1. Activity: The number of queries submitted by U is more than 

the average number of queries per user. 

2. Topic Interest: The percentage of queries ϵ P submitted by U 

exceeds the average percentage of queries ϵ P across all users. 

3. Success: The task success rate of U on tasks ϵ P is greater than 

the average task success rate of all users on tasks ϵ P. Task 

success is predicted using the method in [18]. 

Unlike the location and entry-point cohorts, the expertise cohort 

does not use information about the current user. The intuition here 

is that experts will select better resources and being pointed to those 

resources will help all users irrespective of expertise level. Later we 

show that there is benefit from leveraging particular user cohorts. 

4.3 Summary 
In this section we have defined methods for computing inter-task 

similarity, defined the feature generation procedure and the partic-

ular features that are assigned to the URLs, and defined the groups 

from which similar tasks are drawn. We also described each of the 

cohorts that we investigate. In the next section we describe our ex-

periments to measure the effectiveness of task-based models for 

personalization, including comparisons with personalization meth-

ods and query-based (not task-based) similarity. 

5. EXPERIMENTS 
Our log-based evaluation method focuses on a re-ranking task, as-

sessing the extent to which the models promote clicked results. 

5.1 Baselines 
The original ranking from the Bing search engine is our primary 

baseline. We also setup competitive query-centric baselines: 

1. Query-based Global (QG; same query, all users): This is a 

non-personalized approach that finds clicked URLs by match-

ing the current query against previous queries over all users. 

Table 1. Features used to compute the similarity between two 

tasks, A and A/, in the computation of B�A, A/
. 
Feature name Definition 

FullQueryOverlap The fraction of all queries in the 

union of ( and (’ that the two 

tasks have in common. 

QueryTermOverlap The fraction of all unique query 

terms in the union of ( and (’ that 

the two tasks have in common. 

QueryTranslation Semantic similarity between the 

queries in t and the queries in t’ 

(
�D|�, �
	as defined earlier). 

ClickedURLOverlap The fraction of clicked URLs in 

the union of ( and (’ that the two 

tasks have in common. 

ClickedDomainOverlap The fraction of clicked domains 

in the union of ( and (’ that the 

two tasks have in common. 

CategorySimilarityKL The Kullback-Liebler divergence 

between the ODP category distri-

bution from result clicks in ( ver-

sus the same distribution from (’. 
CategorySimilarityCosine The cosine similarity between the 

ODP category distribution from 

result clicks in ( versus the same 

distribution from (’. 
 



2. Query-based Individual (QI; same query, same user): This 

finds clicked URLs by matching the current query with previ-

ous queries in the current user’s search history. This means 

that if the current query is observed at some point in the user’s 

search history, then the URLs of interest to them then are 

likely to be promoted in the re-ranked list now. This is similar 

to the personalized navigation method in Teevan et al. [42].  

3. Query-based Global and Individual Features (QGI): This 

is a strong baseline model combining both QG and QI features. 

These are very competitive baselines given that they start with the 

ranking provided by Bing (which already uses behavior data aggre-

gated at the query level) and then add other signals based on the 

specific query. We focus on the impact of extracting relevance fea-

tures in similar tasks, rather than exactly matched queries only.  

5.2 Research Questions 
We utilize two forms of matching, query-based and task-based. 

Query-based matches against historic behavioral data based on the 

exact (normalized) query string of the current query. Task-based 

matches against historic behavior using the task models and task 

similarity functions described earlier in the paper.  

To evaluate the benefit of task modeling over query modeling, we 

trained the following nine models using different features, and then 

compared their performance on the same test data that comprised 

over two million queries. The nine models evaluated were the three 

baselines (Models 1-3) plus the following models: 

4. Task-based Global Features (TG): Trained with features 

extracted from all tasks in all search histories; 

5. Task-based Individual Features (TI): Trained with features 

from tasks in the individual user’s search history only; 

6. Task-based Global and Individual Features (TGI): This 

model is trained on both TI and TG features; 

7. Query-based and Task-based Global Features (QTG): 
This model is trained on both QG and TG features; 

8. Query-based and Task-based Individual Features (QTI): 
This model is trained on both QI and TI features;  

9. QTG and QTI Features (QTGI): This model is trained on 

both QTG and QTI features. 

The re-ranking models attempt to promote observed satisfied result 

clicks (SAT clicks) toward higher rank positions in the result list. 

This enables offline evaluation of models performance using judg-

ments personalized to each user. This approach has been used to 

determine the effectiveness of various re-ranking methods [3,5,37]. 

As described earlier, we attempt to answer the following research 

questions with our study (we also include the model comparisons): 

RQ1:  Does matching based on task models outperform matching 

using the current query? (Models 1-3 vs. Models 4-6). 

RQ2:  Does task-based groupization outperform task-based per-

sonalization? (Model 4 vs. Model 5 vs. Model 6). 

RQ3: Is in-session task segmentation required to attain perfor-

mance gains or would an estimation of tasks as search ses-

sions suffice? (Models 6 and 9 vs. session-based variants) 

RQ4:  What is the effect of using specific user cohorts for groupi-

zation (e.g., those in a particular location or those with good 

topic knowledge)? [Model 3 vs. (Model 3 + cohorts)]. 

Answers to these questions help quantify the potential benefits that 

they can bring to search engine users. Models 7 and 8 are not as-

signed to any research questions, but are included for completeness.  

5.3 Relevance Judgments 
Since we were evaluating personalization methods, we needed a 

personalized relevance judgment for each result. Obtaining many 

explicit relevance judgments from real users is impractical, and 

there is no known approach to train expert judges to provide relia-

ble judgments that reflect real user preferences. Hence we obtained 

these judgments using a log-based methodology inspired by [17] 

and similar to that used in [3,5,37]. This method infers relevance 

judgments for query-URL pairs from search-result clicks. We con-

sider three types of clicks in labeling user feedback in the logs: SAT 

clicks, quickback clicks, and no clicks. We define a SAT click in a 

similar way to previous work [14] as either a click followed by no 

further clicks for 30 seconds or more, or the last result click in the 

session. In [14] the authors captured in-situ judgments of satisfac-

tion directly from searchers. This allowed them to determine that a 

30-second dwell time was effective in distinguishing satisfaction 

from dissatisfaction via search behavior alone. 

We define the clicks having less than 30 seconds dwelling time as 

quickbacks. We assign one of the three rating labels to each query-

URL pair in the top-10. In each impression, if a URL received at 

least one SAT click, the URL is labeled with a 2; if a URL received 

only quickback clicks, the URL is labeled with a 1; if a URL was 

not clicked at all, the URL is labeled with a 0. This gives us a three-

level judgment for each top-10 URL for each query. This multi-

level labeling allows the ranker to learn more nuanced differences 

between the results for each query than could be learned with binary 

labels. In particular, it helps differentiate between cases where the 

user explored the page but decided that it was not relevant and cases 

where they did not consider the URL at all. Since our evaluation 

methodology is personalized to each user, the relevance labels in 

impressions (unique instances) under the same query could be dif-

ferent, since the users who issue the query vary. 

5.4 Measures 
We measure ranking quality by mean average precision and mean 

reciprocal rank. In both cases, the mean is calculated over all the 

impressions in our test set. Mean average precision (MAP) for a set 

of queries is the mean of the average precision scores for each 

query. The average precision score is defined as 

EFGHIJG
HG+K�K8L = 	∑ 
HG+K�K8L�<
NGO�<
P=��
∑ NGO�<
P=��

 (7) 

where L is the number of URLs in the impression, usually 10,  

NGO�<
 is an indicator function equaling 1 if the URL at rank < is a 

relevant document, zero otherwise, and 
HG+K�K8L�<
 is the preci-

sion at cut-off < in the ranked list. 

Mean reciprocal rank (MRR) for a query set is the average of the 

reciprocal ranks across all results, which is defined as 

QNN = 	 1R�
1

HIL<�
S

���
 (8) 

where HIL<� is the rank of the first relevant URL in the ranking list, 

and R is the number of impressions in test.  

These measures are complementary in that MRR focuses on the 

rank of the first relevant document in the top 10, whereas MAP tar-

gets the rank of relevant results across the top 10 documents. As 

Table 2. Statistics of the weekly data for learning/evaluation. 

Count Training Validation Test 

SAT Clicks 2,086,335 2,062,554 2,082,145 

Quickback Clicks 417,432 408,196 413,496 

Tasks 1,165,083 1,126,452 1,135,320 

Queries per Task 1.678 1.676 1.666 

 



such, MAP can also measure performance in queries with multiple 

clicks. In test, only the URLs that received SAT clicks are consid-

ered as relevant, and the URLs received only quickback clicks are 

not treated as relevant URLs in evaluation. During testing, we 

wanted to be conservative and only regard results as relevant for 

which we could be most confident that searchers were satisfied. 

In addition to measuring the relevance of the results, we also meas-

ure the coverage of the models in two main ways: the fraction of 

the results at the top-position (rank=1) that are re-ranked by the ap-

proach and the fraction of all impressions covered by relevance fea-

tures. The re-ranking coverage at the most prominent position indi-

cates the extent of the time where the re-ranking signal from the 

model is extremely strong. Feature coverage indicates fraction of 

impressions for which a signal is available (e.g., a similar task can 

be found in all users’ search histories). 

5.5 Method 
We use the four weeks of logs described in Section 3.1 for our ex-

periments. For all of the methods under test, we used the first week 

of logs for feature generation (i.e., computing the scores (�=) for 

the clicked URLs in the first week of data as described earlier in the 

paper), the second week for model training, the third week for 

model validation, and the fourth week for testing. Logs were col-

lected from A/B tests where other personalization support was dis-

abled, so as to not bias our results with other personalization sig-

nals. Table 2 presents summary statistics on the three data sets used. 

Each set contains around 2 million impressions, which is less than 

the 3 million reported earlier since we drop impressions without 

any SAT clicks. We evaluated the significance of observed differ-

ences across all queries in the test week using paired (-tests with 

the significance level (α) set to α=0.05. When performing multiple 

comparisons, Bonferroni corrections are performed to reduce the 

likelihood of Type I errors (i.e., incorrectly rejecting a true null hy-

pothesis) by dividing α by the number of pairs under comparison. 

Using the described dataset, we trained a ranking model using the 

LambdaMART learning algorithm [48] for re-ranking the top ten 

search results. LambdaMART is an extension of LambdaRank [9] 

based on boosted decision trees. LambdaMART has been shown to 

be one of the best algorithms for learning to rank. Indeed, an en-

semble model in which LambdaMART rankers were the key com-

ponent won Track 1 of the 2010 Yahoo! Learning to Rank Chal-

lenge [10]. However, we note the choice of learning algorithm is 

not central to this work, and any reasonable learning to rank algo-

rithm would likely provide similar results. 

6. RESULTS  
We now present the results of our analysis, broken out by each of 

the four research questions described in Section 5.2. Results are 

primarily reported as averages over the 2 million test queries. Re-

call that the goal is to re-rank the results for a given query using the 

on-task behavior of the current searcher or other searchers (every-

one or particular cohorts of similar users). By varying the model 

comparisons as suggested in Section 5.2, we can answer each of 

our research questions. Where appropriate, we analyze the effect of 

various properties on the results, in particular the number of tokens 

in the query and the relative position of the query in the search task, 

supporting the construction of rich interest models. To provide a 

good sense of the overall impact of the models, we report re-rank-

ing performance across the full set of queries, including many of 

the queries that have no change in the ranking. Including these que-

ries drove the mean average change in MAP and MRR toward zero, 

but more fully reflected the overall effect of the models than, say, 

focusing on the average over queries where metrics changed. 

6.1 Task Matching vs. Query Matching 
Table 3 reports the MAP/MRR gains of each model versus the base-

line (production ranker used in Bing at the time the log data was 

captured) ± the standard error of the mean (SEM). All differences 

with that baseline are significant at T < 2.2e-16. As described ear-

lier, the effect of task modeling is measured by comparing the three 

query-based models (QG, QI, and QGI) with the three task-based 

variants that use the same sources (TG, TI, and TGI). To test the 

significance of the observed differences, between models we per-

formed a two-way analysis of variance (ANOVA) with matching 

method and group as factors. We also computed the effect size of 

the observed differences using partial eta squared (ηp2), a com-

monly used measure of effect size in analyses of variance. The main 

effects of matching method and group were significantly different 

at T < 0.001 (XMatching(1,12492864) = 12.94, XGroup(2,12492864) = 

6.76). In addition, the matching-group interactions were significant 

(XMatching×Group(2,12492864) = 4.82, T < 0.01; Tukey post-hoc test-

ing: all T < .001). This was expected given the large sample sizes, 

but the interaction effect was small in magnitude (i.e., ηp
2

 =0.02). 

Table 3 also presents the feature coverage of each of the nine mod-

els, and the win and loss counts in test. The win and loss were de-

termined by the MAP metric. If the re-ranked order results in a pos-

itive MAP gain over the baseline model, we count it as a win; it is 

counted as a loss if the re-ranked order yields negative MAP change 

against the control model. This helps us to understand the trade-offs 

between risk and reward in the different methods (i.e., given equal 

average MAP gains between two models, we would prefer the 

model with the lower cost rate). Global features yield the largest 

feature coverage. QTGI (that combines all signals) performs best 

overall in terms of both MAP and MRR, and the TGI model (com-

bining personalization- and groupization-based task modeling) has 

the best re-ranking performance in terms of cost rate. 

Table 3. MAP/MRR gains on the test data (± SEM). Production ranker is baseline. Query-based baselines highlighted.  

Model ∆∆∆∆ MAP(bcde) ∆∆∆∆ MRR(bcde) Rerank@1 Coverage Win Loss Cost Rate 

QG 0.0888±0.0023 0.1076±0.0024 0.46% 19.10% 28009 27507 98.21% 

QI 0.1425±0.0028 0.1431±0.0029 0.70% 17.87% 26966 23214 86.09% 

QGI 0.1448±0.0028 0.1455±0.0029 0.71% 19.10% 29259 25097 85.78% 

TG 0.1408±0.0029 0.1440±0.0029 0.88% 67.37% 45866 37668 82.13% 

TI 0.1485±0.0028 0.1490±0.0029 0.71% 19.44% 30932 26586 85.95% 

QTI 0.1691±0.0030 0.1695±0.0030 0.79% 20.23% 30193 25180 83.40% 

QTG 0.1905±0.0032 0.1936±0.0032 1.01% 67.55% 33102 23617 71.35% 

TGI 0.2292±0.0035 0.2318±0.0036 1.22% 67.37% 32753 22292 68.06% 

QTGI 0.2516±0.0036 0.2542±0.0037 1.28% 67.55% 35425 24731 69.81% 



In the next experiment we broke out the experimental results by two 

conditions, current query length and sequence number of the query 

in the task. Figure 2 shows that the performance of the two key 

group variants (group and individual) and the two matching vari-

ants (query and task). The figure shows that all models consistently 

outperform the QG at all points in the search task. The comparison 

between TG and QG is particularly relevant in this section because 

it demonstrates the benefit of task-based matching over query-

based matching. The three other models are comparable across the 

range of query positions. The relative drop in MAP over the course 

of the session is of a similar extent across all queries. The decrease 

in gain from personalization approaches has been observed in other 

personalization research [5]; possible explanations include queries 

becoming more specific as the session proceeds, making the re-

trieval task more difficult and reducing the potential benefit from 

personalization, longer tasks being more difficult generally, or that 

the first query in the session found most of the relevant information.  

Figure 3 reports the performance of each of the models as the length 

of the current query varies. The chart shows once again that TI and 

QI are comparable across the range of query lengths. TG outper-

forms QG for queries of length one or two (and the personalized 

methods QI and TI for queries of length one), and has comparable 

performance for longer queries (with individual methods perform-

ing slightly better). One explanation for this is that for shorter que-

ries, searchers provide specific information that they have searched 

for before (in which case QI and TI do well) or only providing par-

tial information meaning that identifying resources accessed by 

others attempting similar tasks might be useful (TG does well). 

6.2 Group vs. Individual 
An important consideration is the value of the task-based groupi-

zation compared to task-based personalization. The next question 

we considered was the differences in performance between these 

two methods (i.e., TG vs. TI). We compare re-ranking results using 

task-based matching against the current user’s history (TI) with 

those of using all history of all users (TG). We also considered how 

well the methods perform in combination (TGI). Table 4 summa-

rizes the findings, which show that task-based groupization and 

task-based personalization perform similarly even though the per-

sonalized variant is tailored to the current user (TI vs. TG, both 

((2082143)	≤ 1.84, both T	 ≥ 0.0656, α = 0.025). Therefore, the 

group-based ranking signal may be a sufficient approximation for 

personalization and as we show in Table 3, and it has the big ad-

vantage of covering many more queries (67% vs. 19%). Interest-

ingly, we also note that the two features cooperate well in the com-

bined model, TGI, leading to significant gains over the baseline. 

6.3 Task vs. Session 
Another important consideration is the value of segmenting the 

tasks into sessions, versus simply using the full session. If we could 

attain similar performance to tasks using temporally-delimited ses-

sions then, for computational simplicity and reduced overhead, we 

may want to simply use sessions as a proxy for task. To evaluate 

the benefit of task-based modeling over session modeling, we used 

the following two comparator models replacing tasks with sessions: 

1. Session-based Global and Individual Features (SGI): This 

model is trained on both SI and GI features, which is compared 

against the TGI model on the same test samples, and;  

2. QGI and SGI Features (QSGI): This model is trained on 

both QGI and SGI features, which is compared against the 

QTGI model on the same test samples. 

Table 6 reports the MAP and MRR differences between the TGI 

model and SGI, directly comparing tasks with sessions. The results 

of that comparison show that the task-based approach significantly 

outperforms the session-based method (both ((2082143) ≥ 6.76, 

both T < 1.4e-11, α = 0.025). When we also consider the query-

based matching features as part of the comparison (QTGI vs. QSGI) 

gain observed from the task representation becomes non-significant 

(both ((2082143) ≤ 1.31, both T > 0.1905, α = 0.025). This sug-

gests that much of the gain from the task modeling over the session 

modeling comes from being able to match based on the same or 

similar queries, which seems reasonable given that the task model-

ing generates focused query clusters by design. When query is fac-

tored into the model directly (as is the case in moving from TGI to 

QTGI) then the benefit from using tasks over sessions diminishes. 

Table 4. Comparison on the test data. ∆MAP and ∆MRR 

denote the MAP and MRR difference from the baseline 

model (TG) respectively (± SEM). 

Models ∆∆∆∆MAP(bcde) ∆∆∆∆MRR(bcde) 

TI vs. TG 0.0077±0.0033 0.0050±0.0025 

TGI vs. TG 0.0884±0.0026 0.0878±0.0031 

Table 5. Test results on the test data. ∆MAP and ∆MRR 

denote the MAP and MRR difference from the baseline 

model (the original ranking) respectively (± SEM). 

Models ∆∆∆∆MAP(bcde) ∆∆∆∆MRR(bcde) Rerank@1 

SGI 0.2134±0.0034 0.2170±0.0035 1.22% 

QSGI 0.2497±0.0037 0.2526±0.0037 1.28% 

Table 6. Comparison on the test data. ∆MAP and ∆MRR 

denote the MAP and MRR difference from the baseline 

models (SGI and QSGI) respectively (± SEM). 

Models ∆∆∆∆MAP(bcde) ∆∆∆∆MRR(bcde) 

TGI vs. SGI 0.0158±0.0022 0.0147±0.0022 

QTGI vs. QSGI 0.0019±0.0021 0.0016±0.0022 

 

 

Figure 2. Segment analysis on MAP for queries issued at  

different points in the task (± SEM). 

 

Figure 3. Segment analysis on MAP performance for  

queries of different lengths (± SEM). 
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6.4 Effect of User Cohorts 
In addition to using the on-task behavior of all users, we also stud-

ied the effect of using the three cohorts described earlier in the pa-

per. Our hypothesis was that using the behavior of users who are 

similar to the current user or who are in some way knowledgeable 

about the topic of interest would boost retrieval performance. Table 

7 summarizes the results when compared against the QGI baseline 

model. This was our strongest baseline and allowed us to examine 

the effect of cohorts without conflating task with cohort. All differ-

ences with baseline are significant at T < 2.2e-16. 

The results show clearly that cohorts improve performance over the 

strong baseline. To directly compare the effect of the different co-

horts we used a one-way ANOVA. The results of this analysis show 

that the differences between the models were significant (X(2, 

6246432) = 15.13, T < 0.001; Tukey post-hoc test: all T < 0.001). 

The best performing cohort model (on average over all queries) was 

the topic expertise model, suggesting that users may benefit from 

focusing on the web sites that experts visit. However, the local-co-

hort model is less risky (lower cost rate) and also covers a larger 

fraction of the queries. More work is needed to understand the cost-

benefit tradeoffs of using cohorts, as well as how cohorts interact. 

6.5 Summary 
The results of our study show that: 

1. Task-based matching to historic data outperforms query-based 

matching, both in terms of relevance and coverage (RQ1). 

2. Task-based groupization has statistically indistinguishable 

performance from task-based personalization, but has dramat-

ically better coverage (over 3 times greater) (RQ2). 

3. Task-based segmentation methods lead to gains in perfor-

mance over sessions, suggesting that there is value in first 

grouping session activity into coherent task clusters (RQ3).  

4. Leveraging the behavior of particular cohorts rather than all 

users leads to better performance than a strong baseline (RQ4). 

7. DISCUSSION AND IMPLICATIONS 
We have presented a study on mining and modeling search tasks to 

improve search personalization. Our novel approach mines similar 

tasks from other users and uses them for re-ranking, improving cov-

erage while attaining similar performance gains to traditional per-

sonalization methods. However, more detailed analysis of the find-

ings is required to understand exactly when the personalization and 

groupization approaches are most successful and when to choose 

between them. Further improvements in performance may well be 

observed given a broader range of task-oriented features than the 

modest set employed in this paper. Our main contribution is as the 

first study to show performance gains via groupization by implic-

itly modeling all users’, and user cohorts’, on-task behavior at scale. 

Although we showed promising gains with cohort modeling over a 

strong query-based method, more work is needed to understand 

how task models can be enhanced using cohort information. Early 

experiments with TGI + cohort revealed no significant gains over 

TGI, and it might be the case that cohorts only help when needs are 

specific. More sophisticated cohort modeling could be employed to 

leverage other information such a social relationships, available via 

social networks (e.g., focus on the on-task behavior of friends), or 

those with similar interests to the current user outside of the current 

query topic (and hence likely to have similar preferences). The 

topic cohort focused on finding experts, irrespective of the current 

user’s expertise; modeling relative expertise may help. 

The success of our approach is dependent on how accurately we 

can model search tasks. The approach described in this paper was 

useful to demonstrate the potential value of this method, but more 

sophisticated models of search tasks could be developed to include 

signals such as task success [18], e.g., so that we focus on tasks 

where the outcome was successful or demote unsuccessful tasks. 

We also focused on behaviors on the search engine (queries and 

result clicks). However, there may be valuable information in con-

sidering search behavior once users click a result and navigate away 

from the engine [46] or those sites that users target directly without 

using a search engine, especially for users with domain expertise. 

The challenge in the latter case is generalizing task modeling to ex-

tend beyond search activity and allow a mapping between search 

tasks and these more general task representations. Richer models 

could also be developed by considering search and usage behaviors 

which may not be logged at server side (e.g., document retention 

events such as printing and bookmarking). In addition, although the 

current approach focused on re-ranking (mainly necessitated by the 

need for personalized relevance judgments), the best results may 

not be available at top positions, and deeper re-ranking or even the 

injection of non-indexed URLs into the list needs to be considered. 

8. CONCLUSIONS 
We have studied methods for modeling users’ on-task search be-

havior and using those models to improve personalization methods. 

We focused on a scenario where by building rich models of the cur-

rent user’s task we can find other users who have performed similar 

tasks historically, and leverage their on-task behavior to improve 

personalization performance. We show though extensive experi-

mentation that our methods outperform query-based personaliza-

tion methods that use the current user’s long-term search history, 

as well as other approaches that match with aggregated behavior of 

many searchers based on the text of the search query. This clearly 

demonstrates the value of considering search tasks rather than just 

search queries during personalization, as well as the benefit of 

groupization. Mining on-task behavior from particular cohorts (ra-

ther than all users) was also shown to be useful, at least for query-

based matching. Future work involves the use of a broader range of 

cohorts and cohort combinations, and the development of more so-

phisticated and generalizable models of task behavior that can mine 

and model task-relevant activity beyond search engine interactions. 
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