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ABSTRACT 

In this paper, we study the problem of online spelling correction 

for query completions. Misspelling is a common phenomenon 

among search engines queries. In order to help users effectively 

express their information needs, mechanisms for automatically 

correcting misspelled queries are required. Online spelling 

correction aims to provide spell corrected completion suggestions 

as a query is incrementally entered. As latency is crucial to the 

utility of the suggestions, such an algorithm needs to be not only 

accurate, but also efficient. 

To tackle this problem, we propose and study a generative model 

for input queries, based on a noisy channel transformation of the 

intended queries. Utilizing spelling correction pairs, we train a 

Markov n-gram transformation model that captures user spelling 

behavior in an unsupervised fashion. To find the top spell-

corrected completion suggestions in real-time, we adapt the A* 

search algorithm with various pruning heuristics to dynamically 

expand the search space efficiently. Evaluation of the proposed 

methods demonstrates a substantial increase in the effectiveness 

of online spelling correction over existing techniques. 
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1. INTRODUCTION 
Misspelling is a common phenomenon in search engine queries. 

According to Cucerzan and Brill [9], more than 10% of search 

engines queries are misspelled. This is even more severe for tail 

queries, of which more than 20% are misspelled [5]. Misspellings 

occur for a variety of reasons. When typing quickly, users may 

add or drop letters unintentionally. Accidentally hitting an 

adjacent key on the keyboard, also known as the fat-finger 

syndrome [1], is also common, especially on mobile devices with 

small virtual keyboards. In addition to typographical errors, some 

errors result from the challenge of spelling itself. With 

inconsistent spelling rules [2], ambiguous word breaking 

boundaries, and constant introduction of new words, spelling 

presents a formidable challenge to foreign and native speakers 

alike. Table 1 summarizes different types of misspellings and 

provides examples of each. 

Table 1. Types of misspellings 

Cause Misspelling Correction 

Typing quickly exxit 

mispell 

exit 

misspell 

Keyboard adjacency importamt important 

Inconsistent rules concieve 

conceirge 

conceive 

concierge 

Ambiguous word breaking silver light silverlight 

New words kinnect kinect 

 

To assist users in expressing their information needs, it is 

important for search engines to automatically generate corrections 

for misspelled queries. Two such mechanisms are in common use. 

The first corrects a query after it is submitted to the search engine. 

For confident corrections, the search engine can search the 

corrected query directly. As the entire query string is given, we 

refer to such an approach as offline spelling correction. The 

second technique provides corrections to the query completion 

suggestions as the query is being entered. Specifically, the search 

engine responds to each keystroke with a list of query suggestions 

that best correct and complete the partial query. Compared with 

offline spelling correction, this task not only needs to address 

incomplete queries, but also requires lower latency to be effective. 

We refer to this task as online spelling correction.  

Online correction has many merits that cannot be achieved by 

offline correction. First, it keeps users informed of potential errors 

as they type. Thus, spelling errors and the resulting ambiguities 

can be eliminated even before issuing the query. Second, it helps 

users express their information needs. As the quality and quantity 

of suggestions from current search engines degrade dramatically 

with misspelled partial queries, the ability to suggest popular 

completions from corrected partial queries can improve the 

effectiveness of the suggestions. Third, it saves users effort in 

inputting queries. With more comprehensive suggestions that 

correct potential errors, users are more likely to find the target 

query in the suggestion list. Selecting a corrected suggestion 

reduces not only the number of keystrokes required to input a 

query, but often also the additional click on the search result page 

to confirm the correction. 

It is worth noting that although many search engines today apply 

online corrections to query completion suggestions, their abilities 
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are fairly limited. For instance, neither of the two major US search 

engines, Google and Bing, suggests any completion for 

“importamt” and “miunderstand” at the time of this submission, 

which are only one letter away from “important” and 

“misunderstand”, respectively. 

In this paper, we model search queries with a generative model, 

where the intended query is transformed through a noisy channel 

into a potentially misspelled query. The distribution from which 

the target query is selected is estimated from the search engine 

query log based on frequency. Thus, we are more likely to suggest 

more popular queries. For the noisy channel, which describes the 

distribution of spelling errors, we follow the joint-sequence 

modeling framework [4] to define the probability of transforming 

the original query into the observed character sequence. 

Specifically, we treat the desired and realized queries as a 

sequence of substring transformation units, or transfemes for 

convenience. Thus, we can decompose the probability of the 

overall transformation sequence as a product of the transfeme 

probabilities, each conditioned on the previous transfemes. By 

applying the Markov assumption and experimenting with the 

length of the transfeme units, we can build transformation models 

of varying complexities. Figure 1 shows an example segmentation 

of the input and output queries into a sequence of transfemes. 

 

Figure 1: Example segmentation into transfemes 

To estimate the conditional probabilities of the transfemes, we 

train a smoothed transfeme n-gram language model from a set of 

correction query pairs. As the query pairs are not co-segmented in 

the training data, we apply the expectation-maximization (EM) 

algorithm to segment the data with the objective of maximizing 

the model probability. Since different users misspell at different 

rates, we further propose a mixture model to address the problem 

of overly-aggressive corrections. 

As suggestion latency is crucial to the usefulness of query 

suggestions from potentially misspelled partial queries, we further 

explore efficient data structures and algorithms to dynamically 

search for the top query completions under the proposed 

transformation model. In particular, we apply the A* search 

algorithm against a trie built from the query log, where each node 

is further annotated with the best score of all descendent queries. 

We also experiment with different pruning heuristics to reduce 

search latency. As all query pairs have a non-zero transformation 

probability under this model, we further investigate probability 

thresholding techniques to reduce irrelevant suggestions. 

The rest of the paper is organized as follows. After surveying the 

related work in Section 2, we introduce the generative model for 

online correction in Section 3. Next, we present the proposed 

transformation model and search algorithm in Sections 4 and 5. 

We follow up with experiment results in Section 6 before 

concluding in Section 7. 

2. RELATED WORK 
Research on spelling correction has a long history [10, 13, 15]. 

Edit distance, initially proposed by Damerau [10] and Levenshtein 

[13], has been widely used in generic spelling correction. More 

recent work on offline spelling correction tends to focus on search 

engine queries [7, 9, 12, 14, 16]. Cucerzan and Brill [9] studied 

spelling correction as an iterative process to exploit the 

information in query logs. Li et al. [14] explored distributional 

similarity of query terms to estimate the error model. Chen et al. 

[7] leveraged web search results to improve the performance of 

spelling correction on rare queries. Sun et al. [16] explored click-

through data to identify user correction pairs, and applied them to 

build a phrase-based error model. Gao et al. [12] proposed the use 

of a general ranker as a generalization of the traditional noisy 

channel model in spelling correction, and implemented it with a 

distributed infrastructure to incorporate large scale data. As 

offline spelling correction is just a special case of online spelling 

correction, we consider the performance of both conditions when 

evaluating our system. 

One of the earliest forms of auto-completion is the tab completion 

feature found in many command prompts. It is later extended by 

Darragh et al. [11] to support the prediction of general text. 

Recently, Chaudhuri and Kaushik [6] proposed a technique to 

further extended auto-completion to tolerate errors. Particularly, 

they made use of a simple edit distance model and performed a 

fuzzy search over database records to find completions. To the 

best of our knowledge, this is the only prior work that addresses 

the problem of online spelling correction.  Unfortunately, with a 

predetermined cap on edit distance and linear lookup time with 

increasing data size, the algorithm is not sufficiently robust and 

scalable for online spelling correction for query completion. 

Our approach to spelling correction is largely inspired by previous 

work in grapheme to phoneme transformation. Chen [8] studied 

conditional and joint maximum entropy models for grapheme to 

phoneme conversion. Taylor [17] used a hidden Markov model, 

where the graphemes are observations of the hidden phoneme 

states. Bisani and Ney [4] proposed a joint-sequence model for 

modeling grapheme to phoneme transformation, where graphemes 

and phonemes are viewed as a joint sequence generated with a 

Markov model. In this work, we adapt the joint sequence 

modeling of Bisani and Ney to model the transformation from the 

intended query to the observed sequence.  However, whereas 

grapheme to phoneme conversions are strongly constrained by 

pronunciation rules, typographical errors do not impose any 

constraint on possible transformations, increasing the difficulty in 

model training.   

3. ONLINE SPELLING CORRECTION 
In offline spelling correction, we want to find the correctly spelled 

query  ̂  with the highest probability of yielding the potentially 

misspelled input query  . By applying Bayes’ rule, we can 

alternatively express the task as: 

 ̂        
 

 ( | )        
 

 ( | ) ( ) (1)  

In this noisy channel model formulation,  ( ) is a query language 

model that describes the prior probability of   as the intended user 

query.  ( | )   (   )  is the transformation model that 

represents the probability of observing the query   when the 

original user intent is to enter the query  . 

For online spelling correction, we are given only the prefix  ̅ of 

the potentially misspelled input query  . Thus, the objective is to 

find the correctly spelled query  ̂ that maximizes the probability 

of yielding any query   that extends the given partial query  ̅ . 

More formally, we want to find: 

 ̂        
        ̅ 

 ( | )        
        ̅ 

 ( | ) ( ) (2)  



where    ̅  denotes that  ̅ is a prefix of  . In this formulation, 

we can view offline spelling correction as just a constrained 

special case of the more generic online spelling correction. 

In this work, as search engines typically only suggest previously 

seen queries as completions, we model the query prior  ( ) using 

the maximum likelihood estimation of the distribution of queries 

from the query log. Consequently, this model can only correct 

misspelled query prefixes to previously observed queries. In 

future work, we plan to extend this approach to the use of an n-

gram language model for the query prior  ( ) to allow corrections 

to previously unseen queries. 

To simplify the transformation model, we segment the conversion 

from   to   as a sequence of substring transformation units, or 

transfemes. For example, the transformation                

               can be segmented into the transfeme 

sequence:       ,        ,       ,         , 

     . By describing the sequence with a transfeme n-gram 

language model, we can decompose the transformation model into 

a set of conditional transfeme probabilities. This allows us to not 

only train the model from segmented correction pairs, but also 

generalize the model to previously unseen transformations. 

Factoring the solution into the query language model and 

transfeme transformation model enables the two models to be 

updated independently. As the query language model needs to 

reflect the constantly changing trends across topics, the query 

histogram and corresponding trie data structure can be updated 

frequently with low cost. On the other hand, the transformation 

model describes the user spelling behavior when entering queries. 

As this behavior does not change rapidly, we do not need to 

retrain the model as often. Instead, as the pattern of spelling errors 

depends heavily on the keyboard layout (English vs. French), 

keyboard size (standard vs. thumb-sized), and interface (physical 

buttons vs. virtual keyboard), we can build a separate 

transformation model for each text entry environment. 

As we can see from Equation (2), by relaxing   to be any query 

that extends the partial query  ̅ , online spelling correction 

significantly increases the theoretical search space. However, with 

appropriate data structures and algorithms, we can actually 

perform this search faster than offline spelling correction, as we 

demonstrate in Section 5. 

4. TRANSFORMATION MODEL 
The transformation model presented in this work, including the 

EM training, pruning, and smoothing algorithms, largely mirrors 

the joint sequence model for grapheme to phoneme conversion in 

speech recognition, as described in Bisani and Ney [4]. In the 

following sections, we define the transformation model as applied 

to spelling correction, summarize the EM training algorithm, and 

present additional considerations specific to spelling correction. 

4.1 Model Definition 
We decompose a transformation from the intended query   to the 

observed query   as a sequence of substring transformation units. 

As this model is inspired by joint sequence modeling in grapheme 

to phoneme conversion [4], we name such substring 

transformation units transfemes. For example, the transformation 

               can be segmented into the transfeme sequence 

*                    +, where only the last transfeme, 

      , involves a correction. 

Given a sequence of transfemes             , we can expand 

the probability of the sequence using the chain rule. As there are 

multiple ways to segment a transformation in general, we further 

model the transformation probability  (   ) as the sum of all 

possible segmentations. Formally, 

 (   )  ∑  ( )

   (   )

                          

                           ∑ ∏  (  |         )

  ,    -   (   )

 

(3)  

where  (   ) is the set of all possible joint segmentations of   

and  . Further applying the Markov assumption that a transfeme 

only depends on the previous     transfemes, similar to an n-

gram language model, we obtain: 

 (   )  ∑ ∏  (  |             )

  ,    -   (   )

 (4)  

We define the length of a transfeme        , as: 

| |      *|  | |  |+ (5)  

In general, a transfeme can be arbitrarily long. To constrain the 

complexity of the transformation model, we limit the maximum 

length of a transfeme to  . With both n-gram approximation and 

transfeme length constraint, we obtain the final model with 

parameters   and  : 

 (   )  ∑ ∏  (  |             )

  ,    -   (   ) 
     | |  

 
(6)  

In the special case of     and    , the transformation model 

degenerates to a model similar to weighted edit distance. With 

   , we assume that the transfemes are generated indepen-

dently of one another. As each transfeme contains substrings of at 

most one letter, we can model the standard Levenshtein edit 

operations [13]: insertions    , deletions    , and 

substitutions    , where   denotes the empty string. However, 

unlike many edit distance models, the weights in the 

transformation model represent normalized probabilities estimated 

from data, not just arbitrary score penalties. Thus, the 

transformation model not only captures the underlying patterns of 

spelling errors, but also allows us to compare the probabilities of 

different completion suggestions in a mathematically principled 

way. Figure 2 contains an example of such a transformation. 

 

Figure 2: Example transformation with     

With    , transpositions are penalized twice, even though it 

occurs as easily as other edit operations. Similarly, phonetic 

spelling errors, such as     , often involve multiple characters. 

Modeling these transfemes as single character edit operations not 

only over-penalizes the transformation, but also pollutes the 

model as it increases the probabilities of edit operations, such as 

   , that would otherwise have very low probabilities. By 

increasing  , we increase the allowable length of the transfemes. 

Thus, the model is able to capture more meaningful trans-

formation units and reduce probability contamination that result 

from decomposing intuitively atomic substring transformations. 

Figure 3 compares an example transformation with     and 

   .  



 

Figure 3: Comparing transformations with     and     

Instead of increasing  , we can also improve the modeling of 

errors spanning multiple characters by increasing  , the number 

of transfemes the model probabilities are conditioned on. 

Consider the example from Figure 3 with    . When    , no 

context is considered in the generation of each transfeme. When 

   , the probability of each transfeme is dependent on its 

previous transfeme. As a result, we are able to capture the fact that 

    has a much higher probability when following the 

transfeme    . As a more interesting example,    is often 

misspelled as   . A unigram model (   ) is not able to express 

such an error. A bigram model (   ) captures this pattern by 

assigning higher probability to the transfeme     when 

following    . A trigram model (   ) can further identify 

exceptions to this pattern when preceded by a  , as     is more 

common than    . As   and   capture similar behavior in our 

transformation model, we study the effect of different 

combinations of   and   in Section 6. 

4.2 Model Estimation 
To learn the patterns of user spelling errors, we use a parallel 

corpus of input and output query pairs, where the input represents 

the intended query with correct spelling and the output 

corresponds to the potentially misspelled transformation of the 

input. If such data is pre-segmented into transfemes, we can 

derive the transformation model directly using maximum 

likelihood estimation (MLE). However, such labeled training data 

is generally too costly to obtain in large scale. Thus, we devise an 

expectation-maximization (EM) algorithm to estimate the 

parameters in the transformation model from partially observed 

data. 

Given a set of observed training pairs   *  +, where    
     , we can write the log likelihood of the training data as: 

    (   )  ∑    (     | )

 

 

                           ∑   ∑  (  | )

    (  ) 

 

(7)  

where   * ( |           )+ is the set of model parameters. 

     
   

       
 , the joint segmentation of each training pair 

      into a sequence of transfemes, is the unobserved 

variable. By applying the EM algorithm [3], we can iteratively 

find the parameter set   that maximizes the log likelihood. 

For     and    , where each transfeme of length up to 1 is 

generated independently, we derive the following update 

formulas: 

 (   )  ∏  (    )

  ,    -

 (8)  

 (   )  ∑ ∑
 (    )

∑  (    )    (  )

 (    )

    (  ) 

 (9)  

 (    )  
 (   )

∑  (    )  
 (10)  

where  (   )  is the count of transfeme   in the segmentation 

sequence  ,  (   ) is the expected partial count of the transfeme   
with respect to the transformation model  , and    is the updated 

model.  (   ), also known as the evidence for  , can be computed 

efficiently using a forward-backward algorithm [4].  

We can extend the EM training algorithm to higher order 

transformation models (   ), where the probability of each 

transfeme now depends on the previous     transfemes. Other 

than having to take into account the transfeme history context 

when accumulating the partial counts, the general EM procedure 

is essentially the same. Specifically, we have: 

 (   )  ∏  (  |      
     )

  ,    -

 (11)  

 (     )  ∑ ∑
 (    )

∑  (    )    (  )

 (      )

    (  ) 

 (12)  

 ( |    )  
 (     )

∑  (      )  
 (13)  

where   is a transfeme sequence representing the history context, 

and  (     ) is the occurrence count of transfeme   following the 

context   in the segmentation sequence  . Though more 

complicated,  (     ), the evidence for   in the context of  , can 

still be computed efficiently using the forward-backward 

algorithm. 

As the number of model parameters increases with  , we 

initialize the model parameters using the converged values from 

the lower order model to achieve faster convergence. Specifically, 

 ( |     )   ( |         ) (14)  

where    is a sequence of     transfemes representing the 

context, and      is    without the oldest context transfeme. 

Extending the training procedure to     further complicates the 

forward-backward computation. But the general form of the EM 

algorithm remains the same. 

4.3 Model Pruning 
One challenge with a direct implementation of the above 

algorithms is that as we increase the model parameters   and  , 

the number of potential parameters in the transformation model 

increases exponentially. Assuming an alphabet size of 50, a 

        model contains (    )  parameters, as each 

component in         can take on any of the 50 symbols or  . 

But a         model may contain up to (       
 )             parameters! Although most parameters are 

never observed in the data, model pruning techniques are still 

beneficial to reduce the overall search space, during both training 

and decoding, and to reduce overfitting, as infrequent transfeme 

n-grams are likely to be noise.  

In this work, we employ two pruning strategies in each iteration of 

the training algorithm. First, we remove transfeme n-grams with 

expected partial counts below a threshold   . Second, we trim out 

transfeme n-grams with estimated conditional probabilities below 

a threshold   . The thresholds    and    are tuned against a held-



out development set. By filtering out transfemes with low 

confidence, we significantly reduce the number of active 

parameters in the model and speed up the running time of training 

and decoding. 

4.4 Model Smoothing 
As with any maximum likelihood estimation techniques, the EM 

algorithm has a tendency to overfit the training data when the 

number of model parameters is large, for example when    . 

The standard technique in n-gram language modeling to address 

this problem is to apply smoothing when computing the 

conditional probabilities. In our work, we study two smoothing 

techniques: Jelinek-Mercer (JM) and absolute discounting (AD). 

In JM smoothing, the probability of a transfeme is given by the 

linear interpolation of its maximum likelihood estimation at order 

  (using partial counts) and its smoothed probability from a 

lower order distribution: 

   ( |  )  (   )
 (    )

∑  (     )  
      ( |    ) (15)  

where   (   ) is the linear interpolation parameter. Note that 

   ( |  )  and    ( |    )  are probabilities from different 

distributions within the same model. That is, in computing the  -

gram model, we also compute the partial counts and probabilities 

for all lower-order  -grams, where    . 

AD smoothing operates by discounting the partial counts of the 

transfemes. The removed probability mass is then redistributed to 

the lower order model: 

   ( |  )  
   ( (    )    )

∑  (     )
  

   (  )   ( |    )  (16)  

where   is the discount and  (  )  is computed such that 

∑    ( |  )   . Note that since the partial count  (    ) can 

be arbitrarily small, it is not possible to choose a value of   such 

that  (    ) will always be larger than  . Consequently, we will 

trim the model if  (    )   . For both smoothing techniques, 

all parameters are tuned on a held-out development set. 

4.5 Mixture Models 
When training from a dataset consisting of only query correction 

pairs, the resulting model is likely to over-correct. To address this 

issue, we prepare another dataset of correctly spelled query pairs 

and propose two ways of using the two datasets for training.  

The first approach simply concatenates the two datasets together 

when estimating the transformation model. We refer to this 

method as data mixture. The second technique trains two 

transformation models from the two datasets individually. It is 

easy to see that the model trained from correctly spelled queries 

will only assign non-zero probabilities to transfemes with 

identical input and output, as all the transformation pairs are 

identical. We linearly interpolate the two models as the final 

model: 

 ( )  (   )  (             )     (            ) (17)  

We label this approach as model mixture, where we can view each 

transfeme as probabilistically generated from one of the two 

distributions, according to the interpolation factor  . As with all 

other modeling parameters,   is tuned on a held-out development 

set. 

4.6 Discussions 
Observant readers may have noticed that the transformation model 

estimates the joint probability of the input and output substrings in 

a transfeme. As the transformation probability is later multiplied 

with the query language model in the generative formulation for 

online and offline spelling corrections, we are essentially double 

counting the input query probability. A solution to this problem is 

to normalize the transformation model for each input substring 

after training, so as to obtain a conditional model. Although this 

solution is theoretically sound, initial experiments have failed to 

improve the performance. As is common in speech recognition, 

where a “fudge factor” is introduced to balance the language 

model score against the acoustic model, we reformulate the 

optimization as: 

 ̂        
 

 ( | ) ( )        
 

 (   ) ( )  (18)  

where  (   ) is still the transformation model probability, and 

  is the fudge factor controlling the additional probability mass of 

the query language model. Empirically, this approach turns out to 

be very effective in our experiments, although it lacks a 

theoretical foundation. We plan to continue exploring this issue in 

future work. 

5. SEARCH 
With a query language model and a transformation model, we are 

able to compute the probability of any query   given an input 

query  . However, our task is to find the input query  ̂  with 

highest probability efficiently, so as to enable offline spelling 

correction. More generally for online spelling correction, we want 

to find the top   completions of an observed query prefix  ̅. To 

achieve this, we propose to apply the A* search algorithm against 

a trie representing the query language model. Below we first 

introduce the modified trie data structure that we use to store the 

queries and their probabilities. We then present the A* search 

algorithm, followed by discussions on the pruning and 

thresholding techniques necessary to improve the efficiency and 

quality of the suggestions. 

5.1 Trie 
As the search algorithm starts from the beginning of a query and 

incrementally traverses potential corrections one letter at a time, 

we use a prefix tree (trie) to represent all queries in the query log. 

Figure 4b shows a trie built over the set of strings in Figure 4a. To 

avoid ambiguity, we end each string with an implicit   character. 

Thus in the trie, all leaf nodes are associated with a complete 

query. Internal nodes do not represent complete strings. For each 

node in the trie, we store the largest probability among all queries 

represented by its descendant leaf nodes. As this represents the 

largest value among all queries starting with the prefix associated 

with the node, we can apply it an admissible heuristic function for 

A* search. 

 

Figure 4: Trie with highest probabilities 



5.2 A* Search 
We use the A* search algorithm to find the top   corrected query 

completions for the prefix  ̅ , given the query trie   and 

transformation model  . We represent each intermediate search 

path as a quadruplet <Pos, Node, Hist, Prob>, corresponding to 

the current position in the query prefix  ̅, the current node in trie 

 , the transformation history so far, and the probability of this 

search path, respectively. The full algorithm is presented Figure 5.  

Input: Query trie  , transformation model  , integer  , query prefix  ̅ 

Output: Top   completion suggestions of  ̅  

A 
B 

C 

D 
E 

F 

G 
H 

I 

J 
K 

 

L 
M 

N 

O 
P 

Q 

R 
S 

T 

U 
V 

W 

X 
Y 

List l = new List() 
PriorityQueue pq = new PriorityQueue() 

pq.Enqueue(new Path(0, T.Root, [], 1)) 

while (!pq.Empty()) 
Path π = pq.Dequeue() 

if (π.Pos < | ̅|) // Transform input query 

foreach (Transfeme t in GetTransformations(π,  ̅, T,  )) 
int i = π.Pos + t.Output.Length 

Node n = π.Node.FindDescendant(t.Input) 

History h = π.Hist + t 
Prob p = π.Prob × (n.Prob / π.Node.Prob) × 

                    (          ) 
pq.Enqueue(new Path(i, n, h, p)) 

else // Extend input query 
if (π.Node.IsLeaf()) 

l.Add(π.Node.Query) 

if (l.Count ≥ k) 
return l 

else 

foreach (Transfeme t in GetExtensions(π, T,  )) 
int i = π.Pos + t.Output.Length 

Node n = π.Node.FindDescendant(t.Input) 
History h = π.Hist + t 

Prob p = π.Prob × (n.Prob / π.Node.Prob) 

pq.Enqueue(new Path(i, n, h, p)) 
return l 

Figure 5: A* search algorithm for online spelling correction 

The algorithm works by maintaining a priority queue of 

intermediate search paths, ranked by decreasing probabilities. We 

initialize the queue with the initial path <0, T.Root, [], 1> (line C). 

While there is still a path on the queue, we dequeue it and check if 

there are still characters unaccounted for in the input prefix  ̅ 

(lines F). If so, we iterate over all transfeme expansions that 

transform substrings starting from the current node in the trie to 

substrings yet unaccounted for in the query prefix (line G). For 

each transfeme expansion, we add a corresponding path to the trie 

(line L). The probability of the path is updated to include 

adjustments to the heuristic future score and the probability of the 

transfeme given the previous history (line K). 

As we expand the search path, we will eventually reach a point 

where all the characters in the input query have been consumed. 

The first path in the search that meets this criterion represents a 

partial correction to the partial input query  ̅. At this point, the 

search transitions from correcting potential errors in the partial 

input to extending the partial correction to complete queries. In 

this scenario (line M), if the path is associated with a leaf node in 

the trie (line N), indicating that we have reached the end of a 

complete query, we add the corresponding query to the suggestion 

list (line O) and return if we have sufficient suggestions (line P). 

Otherwise, we iterate over all transfemes that extend from the 

current node (line S) and add them to the priority queue (line X). 

As the transformation score is not affected by extensions to the 

partial query, we only update the score to reflect the changes in 

the heuristic future score (line W). When we run out of search 

paths to expand, we return the current list of correction 

completions (line Y). 

The heuristic future score we use in the A* algorithm, as applied 

in line K and W, is the probability value stored with each node in 

the trie. As this value represents the largest probability among all 

queries reachable from this path, it is an admissible heuristic that 

guarantees that the algorithm will indeed find the top suggestions. 

One problem with this heuristic function is that it does not 

penalize the untransformed part of the input query. Therefore, we 

can design a better heuristic by taking into consideration the upper 

bound of the transformation probability  (   ). Formally, 

              ( )     
                

 ( ) 

                                 
  

 (    ,      | |-|         ) 
(19)  

where  ,      | |- is the substring of   from position π.Pos to | |. 

For each query, we pre-compute the second maximization in the 

equation for all positions of   using dynamic programming.  

The A* search algorithm can also be configured to perform exact 

match for offline spelling correction by simply substituting the 

probabilities in line W with line K. In effect, we continue to 

penalize transformations involving additional unmatched letters 

even after finding a prefix match. 

It is worth noting that a search path can theoretically grow to 

infinite length, as   is allowed to appear as either the source or 

target of a transfeme. In practice, this does not happen as the 

probability of such transformation sequences will be very low and 

will not be further expanded in the search algorithm.  

A translation model with larger   parameter (  bounds the length 

of transfemes) significantly increases the number of potential 

search paths. As we need to consider all possible transfemes with 

length less or equal to   when expanding each path, models with 

larger   are less efficient.  

5.3 Pruning 
To further improve the efficiency of A* search, we need to limit 

the search space and prune unpromising paths early. In practice, 

carefully designed beam pruning methods can usually achieve 

significant improvement in efficiency without causing much loss 

in accuracy. In our work, we employ two pruning techniques: 

absolute pruning and relative pruning. 

For absolute pruning, we limit the number of paths to be explored 

at each position in the target query  . As mentioned earlier, the 

complexity of our search algorithm is theoretically unbounded due 

to   transfemes. However, by applying absolute pruning, we can 

bound the complexity of the algorithm by  (| |  ), where   is 

the number of paths allowed at each position in  .  

With relative pruning, we only explore the paths that have 

probabilities higher than a certain percentage of the maximum 

probability at each position. The threshold values are carefully 

designed to achieve the best efficiency without causing a 

significant drop in accuracy. In practice we find relative pruning 

to be generally more effective for pruning unpromising paths.  In 

our system, we make use of both absolute pruning and relative 

pruning to improve search efficiency and accuracy. 

5.4 Thresholding 
From the perspective of user interface, it is not always a good idea 

to show a predefined number of suggestions for every query. 



Showing more suggestions incurs a cost, as users spend more time 

looking at them instead of completing their task. Moreover, 

showing irrelevant suggestions risks annoying users. Therefore, 

we need to make a binary decision for each suggestion on whether 

it should be shown to the user. Ideally, we want to measure the 

distance between the target query   and the suggested correction 

 . The larger the distance, the more risk we take to include it in 

the suggestions. One way to approximate the distance is to 

compute the log of the inverse transformation probability, 

averaged over the number of characters in the query: 

    (   )  
 

| |
   

 

 (   )
 (20)  

This risk function is not very effective in practice, as the input 

query   usually consists of several words, of which only one is 

misspelled. It is unintuitive to average the risk over all letters in 

the query. Instead, we can first segment   into words and measure 

the risk at the word level. Specifically, we measure the risk of 

each word separately using the above formula and define the final 

risk function as the fraction of words in   having a risk value 

above a given threshold.  

6. EXPERIMENT 

6.1 Datasets 
Our primary focus in this work is to build a transformation model 

that is able to capture all the misspelling behaviors of users. To 

obtain such behaviors, we make use of the click logs of search 

engine recourse links. Recourse links are provided when the 

offline correction mechanisms of search engines detect a potential 

misspelling. For example, in Google (Figure 6a), a recourse link is 

shown in the sentence “Did you mean: important”. When the user 

clicks on this link, it indicates that the user agrees with the 

correction. Therefore, the search engine will use the suggested 

query to rerun the search. Similarly recourse links are provided in 

Bing as well (Figure 6b). By recording such clicks, we accumulate 

a set of high quality corrections that represent real user spelling 

behaviors.  

It is worth noting that although the recourse links are provided by 

an offline spelling correction system, it does not mean that our 

ability will be limited to that of the offline system. First, our 

model captures the underlying patterns of spelling corrections 

instead of memorizing corrections at the word or query level. For 

instance, in the example from Figure 6, a possible pattern is that 

im tends to be misspelled as in. Second, our logs consist of 

recourse link clicks from multiple sites. As the spellers of 

different search engines behave differently, we can learn from a 

diverse set of correction pairs. 

 

Figure 6. Examples of recourse links 

There are also other ways to obtain records of spelling 

corrections. For example, by analyzing the webpage metadata for 

near-miss spellings, such those between title and anchor text, we 

can extract possible spelling corrections. Similarly, such 

corrections can also be obtained using click-through data from the 

query log, where a query-document mismatch would indicate a 

spelling error. In our work, we view the extraction of correction 

records as a logical step that precedes transformation modeling. 

Our model can be easily extended to incorporate all sources of 

spelling correction pairs. 

Our dataset for training the transformation model contains 1.4 

million recourse link clicks. The statistics of the training data are 

shown in Table 2. Around 80% of all queries and 70% of all 

unique queries are correctly spelled. 1/10 of the training data is 

held out for parameter tuning. 

Table 2. Statistics of training data 

 
Correctly Spelled Misspelled Total 

Unique 101,640 (70%) 44,226 (30%) 145,866 

Total 1,126,524 (80%) 283,854 (20%) 1,410,378 

 

The query log we use for estimating the query popularity model 

consists of 21 million unique queries. Our test set is a human 

annotated set which contains 9,959 unique queries. Table 3 

provides the statistics of the test data. The distribution over 

correctly spelled and misspelled queries is similar to that of the 

training data. 1/10 of the test data is also held out for tuning 

additional parameters, e.g. the coefficient   for the mixture model. 

The remainder of the test queries is referred to as “all queries” in 

our evaluation results. The subset of misspelled queries within all 

queries is referred to as “misspelled queries”. 

Table 3. Statistics of the test data 

 Correctly Spelled Misspelled Total 

Unique 7585 (76%) 2374 (24%) 9959 

 

6.2 Evaluation Metrics 
We evaluate our methods with the following metrics: 

R@N: Recall@N is the number of correct suggestions in the top 

ranked N suggestions generated by the system divided by the total 

number of suggestions in the ground truth. Since in our ground 

truth, each query has exactly one correction, the total number of 

suggestions is the same as the number of queries. Intuitively, 

Recall@N indicates the percentage of queries that the system can 

correct within the top N suggestions. Therefore, it is a very natural 

measurement for performance of correction. We take R@1 as our 

primary evaluation metric in experiment. Recall@N on all queries 

is also referred to as accuracy in other works [12]. 

P@N: Precision@N is the number of correct suggestions in the 

top ranked N suggestions generated by the system divided by the 

smaller value of N or the total number of suggestions generated by 

the system. Precision reveals the quality of suggestions generated 

by the system. Penalty is given to generating more incorrect 

suggestions. Note that this definition is different from another 

widely used definition of P@N, where the denominator is fixed to 

be N. Our definition can be interpreted as the precision of a 

system that limits its number of outputs to N at most. It is also 

worth noting that while the micro average and macro average for 

recall are the same, it is not the case for precision. For precision, 

we take the micro average because for queries where the system 

provides no suggestion, precision is not well defined. 

R@N and P@N are metrics for measuring offline spelling 

correction. We use these metrics to evaluate our system in the 

exact match mode. Next, we introduce two metrics for measuring 

the performance of online spelling correction. 



MKS: Minimal Keystrokes measures the minimal number of key 

presses the user has to make in order to issue the target search 

query. This metric simulates the scenario of users entering queries 

to search engines. Suppose the user’s query is inportan and the 

correct query is important. The user types in each letter in 

inportan sequentially. In the case that no suggestion is available, 

the user types in all the letters in inportan and presses the Enter 

key. Then the user can click on the recourse link provided by the 

offline speller. Therefore, the total number of keystrokes the user 

makes is the length of inportan, plus 1 for the Enter key, and 1 for 

the recourse link click. When suggestions are provided while the 

user is typing, she can use arrow keys to select a query from the 

suggestion list. For example, after typing in inpo, the user sees 

that important appears at the fifth position in the suggestion list.  

Thus, she can select the query by pressing the Down Arrow key 5 

times, followed by the Enter key. In this case, the number of 

keystrokes is the number of letters the user enters (4) plus the 

number of arrow keys the user hits (5), plus 1 for the Enter key. If 

the user continues typing the rest of the query, she may see 

important increase to rank one for the input inpor. In this case, the 

number of keystrokes is 5+1+1=7, which is the minimal number 

of keystrokes (MKS). A good correction mechanism should have 

low MKS. In our experiments, we consider superstrings of the 

target query as positive matches, too. That is, in the case that 

“important people” is suggested instead of “important”, we still 

treat it as a match. 

PMKS: PMKS refers to penalized MKS, which adds a penalty to 

MKS for each suggestion generated by the system, as it takes 

effort for users to examine them for correctness. In this work we 

heuristically assign 0.1 keystrokes as the penalty for showing each 

suggestion. Thus, reading each query suggestion costs one tenth 

the effort of pressing a key. The essential idea of minimizing 

effort in MKS and PMKS is of independent research interest and 

could be applied to a wide range of research studies. 

6.3 Experimental Results 
In this subsection, we study the performance of our proposed 

system. We conduct all experiments on both the all queries and 

misspelled queries test sets to demonstrate the overall 

performance as well as the ability to handle misspelled queries.  

We first compare our system with existing baselines in Table 4.  

The first baseline we include is the edit distance model used by 

Chaudhuri and Kaushik [6]. To the best of our knowledge, this is 

the only existing research study on online spelling correction. Our 

system outperforms the edit distance model in terms of all 

evaluation metrics. Significance test (t-test) shows that the 

improvement of our system is significant (p-value < 0.05) for all 

measurements except R@10. This indicates that most 

misspellings are not very severe; therefore the edit distance model 

is able to rank the best correction among the top 10 suggestions. 

However, the edit distance model is not able to further distinguish 

corrections within the same edit distance. We further observe that 

although we see a big gap in R@1 for misspelled queries, the 

overall performance difference for all queries is less than that of 

the misspelled queries. This is expected as the edit distance model 

will always rank identical transformation on top (if it exists in the 

query log). 

We also include Google’s online query spelling suggestions1 as a 

baseline. As it is unclear how Google’s online spelling suggestion 

can be configured to run in exact match mode, we only measure 

                                                                 
1 Based on results collected on August 4, 2010. 

its performance with respect to the online correction metric, i.e. 

MKS. Not surprisingly, Google outperforms the simple edit-

distance model. On average users save 0.38 keystrokes per query 

using Google’s spelling suggestions over that of the edit distance 

model. For misspelled queries, nearly 1 keystroke is saved. Yet, 

our system further outperforms Google’s suggestion system on 

MKS with a statistically significant 1.1 and 1.5 keystrokes savings 

on all queries and misspelled queries, respectively. It is worth 

noting that a larger search space (query log in our case) may result 

in worse performance. Since the size of Google’s search space is 

unknown, we cannot jump to the conclusion that our system 

outperforms Google’s spelling suggestion system.  

Table 4. Comparison of performance with baseline systems 

 

All Queries Misspelled Queries 

R@1 R@10 MKS R@1 R@10 MKS 

EditDist 0.899 0.973 13.39 0.579 0.887 14.53 

Google N/A N/A 13.01 N/A N/A 13.49 

Proposed 0.918 0.976 11.86 0.677 0.900 11.96 

 

We also see in this experiment that the MKS metric is fairly 

consistent with Recall. Higher recall values always correspond to 

lower MKS. This validates the use of MKS as a performance 

metric. 

 

 

To further understand how the proposed method works, we study 

the performance of the transformation model with different 

configurations of   and  . Figure 7 shows the effect of the 

transfeme Markov order   at     and    . As we increase   

from 1 to 2, we see a consistent increase in performance; but from 

2 to 3, the performance decreased instead. This is contradictory 

with our intuition that higher order models result in better 

performance. We believe that this is because higher order models 

are more likely to suffer from data sparseness. Thus, with more 

training data, we may find higher order models to further improve 

the performance over    . We also observe that for a fixed  , 

increasing   actually decreases the performance. We hypothesize 

that this may be due to overfitting, as increasing   significantly 

increases the number of model parameters. As larger   also 

significantly increases the cost of search, it is impractical for real-

time scenarios. Under the current setting, our best result is 

achieved with        . Thus for all subsequent experiments, 

we fix the configuration to        . 

To confirm the effect of smoothing, we experiment with two 

smoothing methods and compare their performance. In Figure 8 
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we see that absolute discounting (AD) outperforms Jelinek-

Mercer (JM) smoothing over every evaluation metric for both the 

all queries and misspelled queries test sets. This is in line with 

previous language modeling research that found discounting 

based smoothing to outperform simple interpolation techniques. 

This experiment confirms our hypothesis that employing proper 

smoothing methods substantially increases the performance of the 

transformation model. 

 

 

We present the effectiveness of our proposed methods for 

avoiding over correction in Table 5. As we can see, the non-

mixture model, which is trained with misspelled queries only, 

performs well for misspelled queries. However, the overall 

performance is not good because it tends to alter queries that are 

already correctly spelled. Both the data mixture and model 

mixture approaches improve the overall performance by reducing 

such overcorrections. For the all queries set, they perform equally 

well. For misspelled queries, model mixture performs just as well 

as the non-mixture model.  However the performance of the data 

mixture approach drops significantly. From an application 

perspective, it is the misspelled queries for which users need 

suggestions the most. Users are able to enter queries that they can 

spell no matter what our system suggests. In this sense, the model 

mixture approach is more preferable than the data mixture 

approach. Moreover, by estimating the two models separately, the 

model mixture approach can be updated more easily.  

Table 5. Performance study on overcorrection 

 

All Queries Misspelled Queries 

R@1 R@10 MKS R@1 R@10 MKS 

Non-Mix 0.893 0.966 11.94 0.678 0.899 11.98 

Data Mix 0.918 0.971 11.85 0.669 0.879 11.98 

Model Mix 0.918 0.976 11.86 0.677 0.900 11.96 

 

In Table 8, we study the effect of the proposed thresholding 

method for pruning irrelevant suggestions. As we can see, with 

suggestion pruning, the performance of online spelling correction 

substantially increases for both the all queries and misspelled 

queries sets in terms of P@1, P@10 and PMKS. This verifies the 

effectiveness of our proposed thresholding method. But in terms 

of R@1, R@10 and MKS, the performance actually decreased. 

The reason behind this pattern is that the first set of metrics (P@1, 

P@10 and PMKS) assigns penalty for showing irrelevant 

suggestions, while the second set of metrics does not. In fact, any 

pruning of suggestions can only decrease the recall, as some 

correct suggestions may be pruned by mistake. From our 

perspective, showing too many irrelevant corrections has a strong 

negative effect on the query completion user experience, 

increasing the risk of losing users. Given that the recall did not 

significantly decrease, we prune suggestions using risk 

thresholding in the implementation of our system. 

 

 

Finally, we address the efficiency of our approach. From our 

experiments, we observe that although a better heuristic function 

can reduce the running time of the search algorithm, beam 

pruning is still required to achieve practical performance. In 

Figure 9 we plot the performance and running times for different 

relative beam pruning thresholds. Based on our experiments on an 

unoptimized implementation, we observe that as we relax the 

pruning threshold, the running time increases exponentially. 

However, the increase in R@1 is slow and ceases beyond a 

relative threshold of     .  

Table 6. Examples suggestions 

Input Query Top Suggestion 

milk shak milkshake recipes 

hwo to tain ur dra how to train your dragon 

alice on wander land alice in wonderland 

mision inpos mission impossible 

 

In Table 6 we list some example correction pairs identified by our 

system. None of these input queries are in the training corpus. As 

we can see, our method is capable of capturing various kinds of 

spelling errors for multiple word phrases. By updating the query 

language model frequently, we can keep our online spelling 

correction system up-to-date with the latest query language. 

Table 7. Examples of transfeme probabilities 

        

 (   ) 0.0001  (   |   ) 0.0006 

 (   ) 0.0002  (   |   ) 0.2 

 (   ) 0.002  (   |   ) 0.007 

 

To further understand the internal mechanism of our model, we 

list some transfeme probabilities in Table 7. Clearly, for    , 
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Figure 9: R@1/Running time vs. pruning threshold 
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 (     )   (   )   (   ) is much smaller than  (   
  ). But with    ,  (     |   ) is significantly larger 

than  (     |   ). This is desirable as       is a more 

common mistake (e.g. “haul” vs “hual”) than      . 

7. CONCLUSION 
This paper addresses the problem of online spelling correction for 

search queries by adopting a generative model for query 

correction. We first propose a transfeme based transformation 

model that is capable of capturing users’ spelling behavior. We 

estimate the transformation model using clicks on search engine 

recourse links, which represent user confirmed query 

misspellings. Next, we study various techniques to optimize the 

effectiveness of the transformation model. 

To efficiently retrieve the query corrections with the highest 

probability according to the generative model, we propose the use 

of an algorithm based on A* search. The A* search algorithm is 

configured to deal with partial queries, so that online search is 

possible. We study different pruning and thresholding methods to 

improve the efficiency of the A* search.  

Finally, we propose two evaluation metrics for online spelling 

correction, minimal keystrokes and penalized minimal keystrokes, 

based on the idea of minimal effort cost for users. We conduct 

extensive experiments and conclude that the proposed method is 

both effective and efficient for the task of online spelling 

correction. 

For future work, we plan to explore the use of other sources of 

spelling correction pairs to more robustly estimate the 

transformation models. For example, we will consider the use of 

webpage metadata, including title and anchor texts, to extract 

correction pairs. We also plan to extend our model by 

incorporating a large scale language model [18] so that we can 

suggest query corrections that have never been seen before.  
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Table 8. Effect of Pruning 

 

all queries misspelled queries 

R@1 R@10 P@1 P@10 MKS PMKS R@1 R@10 P@1 P@10 MKS PMKS 

w/ pruning 0.916 0.969 0.927 0.304 11.87 19.42 0.669 0.875 0.704 0.241 12.00 19.21 

w/o pruning 0.918 0.976 0.920 0.262 11.86 19.60 0.677 0.900 0.685 0.204 11.96 19.56 

 


