
Online Spelling Correction for Query Completion

Huizhong Duan*

University of Illinois at Urbana-Champaign
201 N Goodwin Ave

Urbana, IL 61801 USA

duan9@illinois.edu

Bo-June (Paul) Hsu

Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA

paulhsu@microsoft.com

ABSTRACT

In this paper, we study the problem of online spelling correction

for query completions. Misspelling is a common phenomenon

among search engines queries. In order to help users effectively

express their information needs, mechanisms for automatically

correcting misspelled queries are required. Online spelling

correction aims to provide spell corrected completion suggestions

as a query is incrementally entered. As latency is crucial to the

utility of the suggestions, such an algorithm needs to be not only

accurate, but also efficient.

To tackle this problem, we propose and study a generative model

for input queries, based on a noisy channel transformation of the

intended queries. Utilizing spelling correction pairs, we train a

Markov n-gram transformation model that captures user spelling

behavior in an unsupervised fashion. To find the top spell-

corrected completion suggestions in real-time, we adapt the A*

search algorithm with various pruning heuristics to dynamically

expand the search space efficiently. Evaluation of the proposed

methods demonstrates a substantial increase in the effectiveness

of online spelling correction over existing techniques.

Categories and Subject Descriptors

H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:

Information Search and Retrieval – query formulation; H.4.m

[Information Systems and Applications]: Miscellaneous

General Terms

Algorithms, Performance, Experimentation

Keywords

Spelling correction, query completion, transformation model, A*

search

1. INTRODUCTION
Misspelling is a common phenomenon in search engine queries.

According to Cucerzan and Brill [9], more than 10% of search

engines queries are misspelled. This is even more severe for tail

queries, of which more than 20% are misspelled [5]. Misspellings

occur for a variety of reasons. When typing quickly, users may

add or drop letters unintentionally. Accidentally hitting an

adjacent key on the keyboard, also known as the fat-finger

syndrome [1], is also common, especially on mobile devices with

small virtual keyboards. In addition to typographical errors, some

errors result from the challenge of spelling itself. With

inconsistent spelling rules [2], ambiguous word breaking

boundaries, and constant introduction of new words, spelling

presents a formidable challenge to foreign and native speakers

alike. Table 1 summarizes different types of misspellings and

provides examples of each.

Table 1. Types of misspellings

Cause Misspelling Correction

Typing quickly exxit

mispell

exit

misspell

Keyboard adjacency importamt important

Inconsistent rules concieve

conceirge

conceive

concierge

Ambiguous word breaking silver light silverlight

New words kinnect kinect

To assist users in expressing their information needs, it is

important for search engines to automatically generate corrections

for misspelled queries. Two such mechanisms are in common use.

The first corrects a query after it is submitted to the search engine.

For confident corrections, the search engine can search the

corrected query directly. As the entire query string is given, we

refer to such an approach as offline spelling correction. The

second technique provides corrections to the query completion

suggestions as the query is being entered. Specifically, the search

engine responds to each keystroke with a list of query suggestions

that best correct and complete the partial query. Compared with

offline spelling correction, this task not only needs to address

incomplete queries, but also requires lower latency to be effective.

We refer to this task as online spelling correction.

Online correction has many merits that cannot be achieved by

offline correction. First, it keeps users informed of potential errors

as they type. Thus, spelling errors and the resulting ambiguities

can be eliminated even before issuing the query. Second, it helps

users express their information needs. As the quality and quantity

of suggestions from current search engines degrade dramatically

with misspelled partial queries, the ability to suggest popular

completions from corrected partial queries can improve the

effectiveness of the suggestions. Third, it saves users effort in

inputting queries. With more comprehensive suggestions that

correct potential errors, users are more likely to find the target

query in the suggestion list. Selecting a corrected suggestion

reduces not only the number of keystrokes required to input a

query, but often also the additional click on the search result page

to confirm the correction.

It is worth noting that although many search engines today apply

online corrections to query completion suggestions, their abilities

* Work performed while author was an intern at Microsoft

Research.

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to classroom
use and personal use by others.

WWW 2011, March 28–April 1, 2011, Hyderabad, India.

ACM 978-1-4503-0632-4/11/03.

are fairly limited. For instance, neither of the two major US search

engines, Google and Bing, suggests any completion for

“importamt” and “miunderstand” at the time of this submission,

which are only one letter away from “important” and

“misunderstand”, respectively.

In this paper, we model search queries with a generative model,

where the intended query is transformed through a noisy channel

into a potentially misspelled query. The distribution from which

the target query is selected is estimated from the search engine

query log based on frequency. Thus, we are more likely to suggest

more popular queries. For the noisy channel, which describes the

distribution of spelling errors, we follow the joint-sequence

modeling framework [4] to define the probability of transforming

the original query into the observed character sequence.

Specifically, we treat the desired and realized queries as a

sequence of substring transformation units, or transfemes for

convenience. Thus, we can decompose the probability of the

overall transformation sequence as a product of the transfeme

probabilities, each conditioned on the previous transfemes. By

applying the Markov assumption and experimenting with the

length of the transfeme units, we can build transformation models

of varying complexities. Figure 1 shows an example segmentation

of the input and output queries into a sequence of transfemes.

Figure 1: Example segmentation into transfemes

To estimate the conditional probabilities of the transfemes, we

train a smoothed transfeme n-gram language model from a set of

correction query pairs. As the query pairs are not co-segmented in

the training data, we apply the expectation-maximization (EM)

algorithm to segment the data with the objective of maximizing

the model probability. Since different users misspell at different

rates, we further propose a mixture model to address the problem

of overly-aggressive corrections.

As suggestion latency is crucial to the usefulness of query

suggestions from potentially misspelled partial queries, we further

explore efficient data structures and algorithms to dynamically

search for the top query completions under the proposed

transformation model. In particular, we apply the A* search

algorithm against a trie built from the query log, where each node

is further annotated with the best score of all descendent queries.

We also experiment with different pruning heuristics to reduce

search latency. As all query pairs have a non-zero transformation

probability under this model, we further investigate probability

thresholding techniques to reduce irrelevant suggestions.

The rest of the paper is organized as follows. After surveying the

related work in Section 2, we introduce the generative model for

online correction in Section 3. Next, we present the proposed

transformation model and search algorithm in Sections 4 and 5.

We follow up with experiment results in Section 6 before

concluding in Section 7.

2. RELATED WORK
Research on spelling correction has a long history [10, 13, 15].

Edit distance, initially proposed by Damerau [10] and Levenshtein

[13], has been widely used in generic spelling correction. More

recent work on offline spelling correction tends to focus on search

engine queries [7, 9, 12, 14, 16]. Cucerzan and Brill [9] studied

spelling correction as an iterative process to exploit the

information in query logs. Li et al. [14] explored distributional

similarity of query terms to estimate the error model. Chen et al.

[7] leveraged web search results to improve the performance of

spelling correction on rare queries. Sun et al. [16] explored click-

through data to identify user correction pairs, and applied them to

build a phrase-based error model. Gao et al. [12] proposed the use

of a general ranker as a generalization of the traditional noisy

channel model in spelling correction, and implemented it with a

distributed infrastructure to incorporate large scale data. As

offline spelling correction is just a special case of online spelling

correction, we consider the performance of both conditions when

evaluating our system.

One of the earliest forms of auto-completion is the tab completion

feature found in many command prompts. It is later extended by

Darragh et al. [11] to support the prediction of general text.

Recently, Chaudhuri and Kaushik [6] proposed a technique to

further extended auto-completion to tolerate errors. Particularly,

they made use of a simple edit distance model and performed a

fuzzy search over database records to find completions. To the

best of our knowledge, this is the only prior work that addresses

the problem of online spelling correction. Unfortunately, with a

predetermined cap on edit distance and linear lookup time with

increasing data size, the algorithm is not sufficiently robust and

scalable for online spelling correction for query completion.

Our approach to spelling correction is largely inspired by previous

work in grapheme to phoneme transformation. Chen [8] studied

conditional and joint maximum entropy models for grapheme to

phoneme conversion. Taylor [17] used a hidden Markov model,

where the graphemes are observations of the hidden phoneme

states. Bisani and Ney [4] proposed a joint-sequence model for

modeling grapheme to phoneme transformation, where graphemes

and phonemes are viewed as a joint sequence generated with a

Markov model. In this work, we adapt the joint sequence

modeling of Bisani and Ney to model the transformation from the

intended query to the observed sequence. However, whereas

grapheme to phoneme conversions are strongly constrained by

pronunciation rules, typographical errors do not impose any

constraint on possible transformations, increasing the difficulty in

model training.

3. ONLINE SPELLING CORRECTION
In offline spelling correction, we want to find the correctly spelled

query ̂ with the highest probability of yielding the potentially

misspelled input query . By applying Bayes’ rule, we can

alternatively express the task as:

 ̂

 (|)

 (|) () (1)

In this noisy channel model formulation, () is a query language

model that describes the prior probability of as the intended user

query. (|) () is the transformation model that

represents the probability of observing the query when the

original user intent is to enter the query .

For online spelling correction, we are given only the prefix ̅ of

the potentially misspelled input query . Thus, the objective is to

find the correctly spelled query ̂ that maximizes the probability

of yielding any query that extends the given partial query ̅ .

More formally, we want to find:

 ̂
 ̅

 (|)
 ̅

 (|) () (2)

where ̅ denotes that ̅ is a prefix of . In this formulation,

we can view offline spelling correction as just a constrained

special case of the more generic online spelling correction.

In this work, as search engines typically only suggest previously

seen queries as completions, we model the query prior () using

the maximum likelihood estimation of the distribution of queries

from the query log. Consequently, this model can only correct

misspelled query prefixes to previously observed queries. In

future work, we plan to extend this approach to the use of an n-

gram language model for the query prior () to allow corrections

to previously unseen queries.

To simplify the transformation model, we segment the conversion

from to as a sequence of substring transformation units, or

transfemes. For example, the transformation

 can be segmented into the transfeme

sequence: , , , ,

 . By describing the sequence with a transfeme n-gram

language model, we can decompose the transformation model into

a set of conditional transfeme probabilities. This allows us to not

only train the model from segmented correction pairs, but also

generalize the model to previously unseen transformations.

Factoring the solution into the query language model and

transfeme transformation model enables the two models to be

updated independently. As the query language model needs to

reflect the constantly changing trends across topics, the query

histogram and corresponding trie data structure can be updated

frequently with low cost. On the other hand, the transformation

model describes the user spelling behavior when entering queries.

As this behavior does not change rapidly, we do not need to

retrain the model as often. Instead, as the pattern of spelling errors

depends heavily on the keyboard layout (English vs. French),

keyboard size (standard vs. thumb-sized), and interface (physical

buttons vs. virtual keyboard), we can build a separate

transformation model for each text entry environment.

As we can see from Equation (2), by relaxing to be any query

that extends the partial query ̅ , online spelling correction

significantly increases the theoretical search space. However, with

appropriate data structures and algorithms, we can actually

perform this search faster than offline spelling correction, as we

demonstrate in Section 5.

4. TRANSFORMATION MODEL
The transformation model presented in this work, including the

EM training, pruning, and smoothing algorithms, largely mirrors

the joint sequence model for grapheme to phoneme conversion in

speech recognition, as described in Bisani and Ney [4]. In the

following sections, we define the transformation model as applied

to spelling correction, summarize the EM training algorithm, and

present additional considerations specific to spelling correction.

4.1 Model Definition
We decompose a transformation from the intended query to the

observed query as a sequence of substring transformation units.

As this model is inspired by joint sequence modeling in grapheme

to phoneme conversion [4], we name such substring

transformation units transfemes. For example, the transformation

 can be segmented into the transfeme sequence

* +, where only the last transfeme,

 , involves a correction.

Given a sequence of transfemes , we can expand

the probability of the sequence using the chain rule. As there are

multiple ways to segment a transformation in general, we further

model the transformation probability () as the sum of all

possible segmentations. Formally,

 () ∑ ()

 ()

 ∑ ∏ (|)

 , - ()

(3)

where () is the set of all possible joint segmentations of

and . Further applying the Markov assumption that a transfeme

only depends on the previous transfemes, similar to an n-

gram language model, we obtain:

 () ∑ ∏ (|)

 , - ()

 (4)

We define the length of a transfeme , as:

| | *| | | |+ (5)

In general, a transfeme can be arbitrarily long. To constrain the

complexity of the transformation model, we limit the maximum

length of a transfeme to . With both n-gram approximation and

transfeme length constraint, we obtain the final model with

parameters and :

 () ∑ ∏ (|)

 , - ()
 | |

(6)

In the special case of and , the transformation model

degenerates to a model similar to weighted edit distance. With

 , we assume that the transfemes are generated indepen-

dently of one another. As each transfeme contains substrings of at

most one letter, we can model the standard Levenshtein edit

operations [13]: insertions , deletions , and

substitutions , where denotes the empty string. However,

unlike many edit distance models, the weights in the

transformation model represent normalized probabilities estimated

from data, not just arbitrary score penalties. Thus, the

transformation model not only captures the underlying patterns of

spelling errors, but also allows us to compare the probabilities of

different completion suggestions in a mathematically principled

way. Figure 2 contains an example of such a transformation.

Figure 2: Example transformation with

With , transpositions are penalized twice, even though it

occurs as easily as other edit operations. Similarly, phonetic

spelling errors, such as , often involve multiple characters.

Modeling these transfemes as single character edit operations not

only over-penalizes the transformation, but also pollutes the

model as it increases the probabilities of edit operations, such as

 , that would otherwise have very low probabilities. By

increasing , we increase the allowable length of the transfemes.

Thus, the model is able to capture more meaningful trans-

formation units and reduce probability contamination that result

from decomposing intuitively atomic substring transformations.

Figure 3 compares an example transformation with and

 .

Figure 3: Comparing transformations with and

Instead of increasing , we can also improve the modeling of

errors spanning multiple characters by increasing , the number

of transfemes the model probabilities are conditioned on.

Consider the example from Figure 3 with . When , no

context is considered in the generation of each transfeme. When

 , the probability of each transfeme is dependent on its

previous transfeme. As a result, we are able to capture the fact that

 has a much higher probability when following the

transfeme . As a more interesting example, is often

misspelled as . A unigram model () is not able to express

such an error. A bigram model () captures this pattern by

assigning higher probability to the transfeme when

following . A trigram model () can further identify

exceptions to this pattern when preceded by a , as is more

common than . As and capture similar behavior in our

transformation model, we study the effect of different

combinations of and in Section 6.

4.2 Model Estimation
To learn the patterns of user spelling errors, we use a parallel

corpus of input and output query pairs, where the input represents

the intended query with correct spelling and the output

corresponds to the potentially misspelled transformation of the

input. If such data is pre-segmented into transfemes, we can

derive the transformation model directly using maximum

likelihood estimation (MLE). However, such labeled training data

is generally too costly to obtain in large scale. Thus, we devise an

expectation-maximization (EM) algorithm to estimate the

parameters in the transformation model from partially observed

data.

Given a set of observed training pairs * +, where
 , we can write the log likelihood of the training data as:

 () ∑ (|)

 ∑ ∑ (|)

 ()

(7)

where * (|)+ is the set of model parameters.

 , the joint segmentation of each training pair

 into a sequence of transfemes, is the unobserved

variable. By applying the EM algorithm [3], we can iteratively

find the parameter set that maximizes the log likelihood.

For and , where each transfeme of length up to 1 is

generated independently, we derive the following update

formulas:

 () ∏ ()

 , -

 (8)

 () ∑ ∑
 ()

∑ () ()

 ()

 ()

 (9)

 ()
 ()

∑ ()
 (10)

where () is the count of transfeme in the segmentation

sequence , () is the expected partial count of the transfeme
with respect to the transformation model , and is the updated

model. (), also known as the evidence for , can be computed

efficiently using a forward-backward algorithm [4].

We can extend the EM training algorithm to higher order

transformation models (), where the probability of each

transfeme now depends on the previous transfemes. Other

than having to take into account the transfeme history context

when accumulating the partial counts, the general EM procedure

is essentially the same. Specifically, we have:

 () ∏ (|
)

 , -

 (11)

 () ∑ ∑
 ()

∑ () ()

 ()

 ()

 (12)

 (|)
 ()

∑ ()
 (13)

where is a transfeme sequence representing the history context,

and () is the occurrence count of transfeme following the

context in the segmentation sequence . Though more

complicated, (), the evidence for in the context of , can

still be computed efficiently using the forward-backward

algorithm.

As the number of model parameters increases with , we

initialize the model parameters using the converged values from

the lower order model to achieve faster convergence. Specifically,

 (|) (|) (14)

where is a sequence of transfemes representing the

context, and is without the oldest context transfeme.

Extending the training procedure to further complicates the

forward-backward computation. But the general form of the EM

algorithm remains the same.

4.3 Model Pruning
One challenge with a direct implementation of the above

algorithms is that as we increase the model parameters and ,

the number of potential parameters in the transformation model

increases exponentially. Assuming an alphabet size of 50, a

 model contains () parameters, as each

component in can take on any of the 50 symbols or .

But a model may contain up to (
) parameters! Although most parameters are

never observed in the data, model pruning techniques are still

beneficial to reduce the overall search space, during both training

and decoding, and to reduce overfitting, as infrequent transfeme

n-grams are likely to be noise.

In this work, we employ two pruning strategies in each iteration of

the training algorithm. First, we remove transfeme n-grams with

expected partial counts below a threshold . Second, we trim out

transfeme n-grams with estimated conditional probabilities below

a threshold . The thresholds and are tuned against a held-

out development set. By filtering out transfemes with low

confidence, we significantly reduce the number of active

parameters in the model and speed up the running time of training

and decoding.

4.4 Model Smoothing
As with any maximum likelihood estimation techniques, the EM

algorithm has a tendency to overfit the training data when the

number of model parameters is large, for example when .

The standard technique in n-gram language modeling to address

this problem is to apply smoothing when computing the

conditional probabilities. In our work, we study two smoothing

techniques: Jelinek-Mercer (JM) and absolute discounting (AD).

In JM smoothing, the probability of a transfeme is given by the

linear interpolation of its maximum likelihood estimation at order

 (using partial counts) and its smoothed probability from a

lower order distribution:

 (|) ()
 ()

∑ ()
 (|) (15)

where () is the linear interpolation parameter. Note that

 (|) and (|) are probabilities from different

distributions within the same model. That is, in computing the -

gram model, we also compute the partial counts and probabilities

for all lower-order -grams, where .

AD smoothing operates by discounting the partial counts of the

transfemes. The removed probability mass is then redistributed to

the lower order model:

 (|)
 (())

∑ ()

 () (|) (16)

where is the discount and () is computed such that

∑ (|) . Note that since the partial count () can

be arbitrarily small, it is not possible to choose a value of such

that () will always be larger than . Consequently, we will

trim the model if () . For both smoothing techniques,

all parameters are tuned on a held-out development set.

4.5 Mixture Models
When training from a dataset consisting of only query correction

pairs, the resulting model is likely to over-correct. To address this

issue, we prepare another dataset of correctly spelled query pairs

and propose two ways of using the two datasets for training.

The first approach simply concatenates the two datasets together

when estimating the transformation model. We refer to this

method as data mixture. The second technique trains two

transformation models from the two datasets individually. It is

easy to see that the model trained from correctly spelled queries

will only assign non-zero probabilities to transfemes with

identical input and output, as all the transformation pairs are

identical. We linearly interpolate the two models as the final

model:

 () () () () (17)

We label this approach as model mixture, where we can view each

transfeme as probabilistically generated from one of the two

distributions, according to the interpolation factor . As with all

other modeling parameters, is tuned on a held-out development

set.

4.6 Discussions
Observant readers may have noticed that the transformation model

estimates the joint probability of the input and output substrings in

a transfeme. As the transformation probability is later multiplied

with the query language model in the generative formulation for

online and offline spelling corrections, we are essentially double

counting the input query probability. A solution to this problem is

to normalize the transformation model for each input substring

after training, so as to obtain a conditional model. Although this

solution is theoretically sound, initial experiments have failed to

improve the performance. As is common in speech recognition,

where a “fudge factor” is introduced to balance the language

model score against the acoustic model, we reformulate the

optimization as:

 ̂

 (|) ()

 () () (18)

where () is still the transformation model probability, and

 is the fudge factor controlling the additional probability mass of

the query language model. Empirically, this approach turns out to

be very effective in our experiments, although it lacks a

theoretical foundation. We plan to continue exploring this issue in

future work.

5. SEARCH
With a query language model and a transformation model, we are

able to compute the probability of any query given an input

query . However, our task is to find the input query ̂ with

highest probability efficiently, so as to enable offline spelling

correction. More generally for online spelling correction, we want

to find the top completions of an observed query prefix ̅. To

achieve this, we propose to apply the A* search algorithm against

a trie representing the query language model. Below we first

introduce the modified trie data structure that we use to store the

queries and their probabilities. We then present the A* search

algorithm, followed by discussions on the pruning and

thresholding techniques necessary to improve the efficiency and

quality of the suggestions.

5.1 Trie
As the search algorithm starts from the beginning of a query and

incrementally traverses potential corrections one letter at a time,

we use a prefix tree (trie) to represent all queries in the query log.

Figure 4b shows a trie built over the set of strings in Figure 4a. To

avoid ambiguity, we end each string with an implicit character.

Thus in the trie, all leaf nodes are associated with a complete

query. Internal nodes do not represent complete strings. For each

node in the trie, we store the largest probability among all queries

represented by its descendant leaf nodes. As this represents the

largest value among all queries starting with the prefix associated

with the node, we can apply it an admissible heuristic function for

A* search.

Figure 4: Trie with highest probabilities

5.2 A* Search
We use the A* search algorithm to find the top corrected query

completions for the prefix ̅ , given the query trie and

transformation model . We represent each intermediate search

path as a quadruplet <Pos, Node, Hist, Prob>, corresponding to

the current position in the query prefix ̅, the current node in trie

 , the transformation history so far, and the probability of this

search path, respectively. The full algorithm is presented Figure 5.

Input: Query trie , transformation model , integer , query prefix ̅

Output: Top completion suggestions of ̅

A
B

C

D
E

F

G
H

I

J
K

L
M

N

O
P

Q

R
S

T

U
V

W

X
Y

List l = new List()
PriorityQueue pq = new PriorityQueue()

pq.Enqueue(new Path(0, T.Root, [], 1))

while (!pq.Empty())
Path π = pq.Dequeue()

if (π.Pos < | ̅|) // Transform input query

foreach (Transfeme t in GetTransformations(π, ̅, T,))
int i = π.Pos + t.Output.Length

Node n = π.Node.FindDescendant(t.Input)

History h = π.Hist + t
Prob p = π.Prob × (n.Prob / π.Node.Prob) ×

 ()
pq.Enqueue(new Path(i, n, h, p))

else // Extend input query
if (π.Node.IsLeaf())

l.Add(π.Node.Query)

if (l.Count ≥ k)
return l

else

foreach (Transfeme t in GetExtensions(π, T,))
int i = π.Pos + t.Output.Length

Node n = π.Node.FindDescendant(t.Input)
History h = π.Hist + t

Prob p = π.Prob × (n.Prob / π.Node.Prob)

pq.Enqueue(new Path(i, n, h, p))
return l

Figure 5: A* search algorithm for online spelling correction

The algorithm works by maintaining a priority queue of

intermediate search paths, ranked by decreasing probabilities. We

initialize the queue with the initial path <0, T.Root, [], 1> (line C).

While there is still a path on the queue, we dequeue it and check if

there are still characters unaccounted for in the input prefix ̅

(lines F). If so, we iterate over all transfeme expansions that

transform substrings starting from the current node in the trie to

substrings yet unaccounted for in the query prefix (line G). For

each transfeme expansion, we add a corresponding path to the trie

(line L). The probability of the path is updated to include

adjustments to the heuristic future score and the probability of the

transfeme given the previous history (line K).

As we expand the search path, we will eventually reach a point

where all the characters in the input query have been consumed.

The first path in the search that meets this criterion represents a

partial correction to the partial input query ̅. At this point, the

search transitions from correcting potential errors in the partial

input to extending the partial correction to complete queries. In

this scenario (line M), if the path is associated with a leaf node in

the trie (line N), indicating that we have reached the end of a

complete query, we add the corresponding query to the suggestion

list (line O) and return if we have sufficient suggestions (line P).

Otherwise, we iterate over all transfemes that extend from the

current node (line S) and add them to the priority queue (line X).

As the transformation score is not affected by extensions to the

partial query, we only update the score to reflect the changes in

the heuristic future score (line W). When we run out of search

paths to expand, we return the current list of correction

completions (line Y).

The heuristic future score we use in the A* algorithm, as applied

in line K and W, is the probability value stored with each node in

the trie. As this value represents the largest probability among all

queries reachable from this path, it is an admissible heuristic that

guarantees that the algorithm will indeed find the top suggestions.

One problem with this heuristic function is that it does not

penalize the untransformed part of the input query. Therefore, we

can design a better heuristic by taking into consideration the upper

bound of the transformation probability (). Formally,

 ()

 ()

 (, | |-|)
(19)

where , | |- is the substring of from position π.Pos to | |.

For each query, we pre-compute the second maximization in the

equation for all positions of using dynamic programming.

The A* search algorithm can also be configured to perform exact

match for offline spelling correction by simply substituting the

probabilities in line W with line K. In effect, we continue to

penalize transformations involving additional unmatched letters

even after finding a prefix match.

It is worth noting that a search path can theoretically grow to

infinite length, as is allowed to appear as either the source or

target of a transfeme. In practice, this does not happen as the

probability of such transformation sequences will be very low and

will not be further expanded in the search algorithm.

A translation model with larger parameter (bounds the length

of transfemes) significantly increases the number of potential

search paths. As we need to consider all possible transfemes with

length less or equal to when expanding each path, models with

larger are less efficient.

5.3 Pruning
To further improve the efficiency of A* search, we need to limit

the search space and prune unpromising paths early. In practice,

carefully designed beam pruning methods can usually achieve

significant improvement in efficiency without causing much loss

in accuracy. In our work, we employ two pruning techniques:

absolute pruning and relative pruning.

For absolute pruning, we limit the number of paths to be explored

at each position in the target query . As mentioned earlier, the

complexity of our search algorithm is theoretically unbounded due

to transfemes. However, by applying absolute pruning, we can

bound the complexity of the algorithm by (| |), where is

the number of paths allowed at each position in .

With relative pruning, we only explore the paths that have

probabilities higher than a certain percentage of the maximum

probability at each position. The threshold values are carefully

designed to achieve the best efficiency without causing a

significant drop in accuracy. In practice we find relative pruning

to be generally more effective for pruning unpromising paths. In

our system, we make use of both absolute pruning and relative

pruning to improve search efficiency and accuracy.

5.4 Thresholding
From the perspective of user interface, it is not always a good idea

to show a predefined number of suggestions for every query.

Showing more suggestions incurs a cost, as users spend more time

looking at them instead of completing their task. Moreover,

showing irrelevant suggestions risks annoying users. Therefore,

we need to make a binary decision for each suggestion on whether

it should be shown to the user. Ideally, we want to measure the

distance between the target query and the suggested correction

 . The larger the distance, the more risk we take to include it in

the suggestions. One way to approximate the distance is to

compute the log of the inverse transformation probability,

averaged over the number of characters in the query:

 ()

| |

 ()
 (20)

This risk function is not very effective in practice, as the input

query usually consists of several words, of which only one is

misspelled. It is unintuitive to average the risk over all letters in

the query. Instead, we can first segment into words and measure

the risk at the word level. Specifically, we measure the risk of

each word separately using the above formula and define the final

risk function as the fraction of words in having a risk value

above a given threshold.

6. EXPERIMENT

6.1 Datasets
Our primary focus in this work is to build a transformation model

that is able to capture all the misspelling behaviors of users. To

obtain such behaviors, we make use of the click logs of search

engine recourse links. Recourse links are provided when the

offline correction mechanisms of search engines detect a potential

misspelling. For example, in Google (Figure 6a), a recourse link is

shown in the sentence “Did you mean: important”. When the user

clicks on this link, it indicates that the user agrees with the

correction. Therefore, the search engine will use the suggested

query to rerun the search. Similarly recourse links are provided in

Bing as well (Figure 6b). By recording such clicks, we accumulate

a set of high quality corrections that represent real user spelling

behaviors.

It is worth noting that although the recourse links are provided by

an offline spelling correction system, it does not mean that our

ability will be limited to that of the offline system. First, our

model captures the underlying patterns of spelling corrections

instead of memorizing corrections at the word or query level. For

instance, in the example from Figure 6, a possible pattern is that

im tends to be misspelled as in. Second, our logs consist of

recourse link clicks from multiple sites. As the spellers of

different search engines behave differently, we can learn from a

diverse set of correction pairs.

Figure 6. Examples of recourse links

There are also other ways to obtain records of spelling

corrections. For example, by analyzing the webpage metadata for

near-miss spellings, such those between title and anchor text, we

can extract possible spelling corrections. Similarly, such

corrections can also be obtained using click-through data from the

query log, where a query-document mismatch would indicate a

spelling error. In our work, we view the extraction of correction

records as a logical step that precedes transformation modeling.

Our model can be easily extended to incorporate all sources of

spelling correction pairs.

Our dataset for training the transformation model contains 1.4

million recourse link clicks. The statistics of the training data are

shown in Table 2. Around 80% of all queries and 70% of all

unique queries are correctly spelled. 1/10 of the training data is

held out for parameter tuning.

Table 2. Statistics of training data

Correctly Spelled Misspelled Total

Unique 101,640 (70%) 44,226 (30%) 145,866

Total 1,126,524 (80%) 283,854 (20%) 1,410,378

The query log we use for estimating the query popularity model

consists of 21 million unique queries. Our test set is a human

annotated set which contains 9,959 unique queries. Table 3

provides the statistics of the test data. The distribution over

correctly spelled and misspelled queries is similar to that of the

training data. 1/10 of the test data is also held out for tuning

additional parameters, e.g. the coefficient for the mixture model.

The remainder of the test queries is referred to as “all queries” in

our evaluation results. The subset of misspelled queries within all

queries is referred to as “misspelled queries”.

Table 3. Statistics of the test data

 Correctly Spelled Misspelled Total

Unique 7585 (76%) 2374 (24%) 9959

6.2 Evaluation Metrics
We evaluate our methods with the following metrics:

R@N: Recall@N is the number of correct suggestions in the top

ranked N suggestions generated by the system divided by the total

number of suggestions in the ground truth. Since in our ground

truth, each query has exactly one correction, the total number of

suggestions is the same as the number of queries. Intuitively,

Recall@N indicates the percentage of queries that the system can

correct within the top N suggestions. Therefore, it is a very natural

measurement for performance of correction. We take R@1 as our

primary evaluation metric in experiment. Recall@N on all queries

is also referred to as accuracy in other works [12].

P@N: Precision@N is the number of correct suggestions in the

top ranked N suggestions generated by the system divided by the

smaller value of N or the total number of suggestions generated by

the system. Precision reveals the quality of suggestions generated

by the system. Penalty is given to generating more incorrect

suggestions. Note that this definition is different from another

widely used definition of P@N, where the denominator is fixed to

be N. Our definition can be interpreted as the precision of a

system that limits its number of outputs to N at most. It is also

worth noting that while the micro average and macro average for

recall are the same, it is not the case for precision. For precision,

we take the micro average because for queries where the system

provides no suggestion, precision is not well defined.

R@N and P@N are metrics for measuring offline spelling

correction. We use these metrics to evaluate our system in the

exact match mode. Next, we introduce two metrics for measuring

the performance of online spelling correction.

MKS: Minimal Keystrokes measures the minimal number of key

presses the user has to make in order to issue the target search

query. This metric simulates the scenario of users entering queries

to search engines. Suppose the user’s query is inportan and the

correct query is important. The user types in each letter in

inportan sequentially. In the case that no suggestion is available,

the user types in all the letters in inportan and presses the Enter

key. Then the user can click on the recourse link provided by the

offline speller. Therefore, the total number of keystrokes the user

makes is the length of inportan, plus 1 for the Enter key, and 1 for

the recourse link click. When suggestions are provided while the

user is typing, she can use arrow keys to select a query from the

suggestion list. For example, after typing in inpo, the user sees

that important appears at the fifth position in the suggestion list.

Thus, she can select the query by pressing the Down Arrow key 5

times, followed by the Enter key. In this case, the number of

keystrokes is the number of letters the user enters (4) plus the

number of arrow keys the user hits (5), plus 1 for the Enter key. If

the user continues typing the rest of the query, she may see

important increase to rank one for the input inpor. In this case, the

number of keystrokes is 5+1+1=7, which is the minimal number

of keystrokes (MKS). A good correction mechanism should have

low MKS. In our experiments, we consider superstrings of the

target query as positive matches, too. That is, in the case that

“important people” is suggested instead of “important”, we still

treat it as a match.

PMKS: PMKS refers to penalized MKS, which adds a penalty to

MKS for each suggestion generated by the system, as it takes

effort for users to examine them for correctness. In this work we

heuristically assign 0.1 keystrokes as the penalty for showing each

suggestion. Thus, reading each query suggestion costs one tenth

the effort of pressing a key. The essential idea of minimizing

effort in MKS and PMKS is of independent research interest and

could be applied to a wide range of research studies.

6.3 Experimental Results
In this subsection, we study the performance of our proposed

system. We conduct all experiments on both the all queries and

misspelled queries test sets to demonstrate the overall

performance as well as the ability to handle misspelled queries.

We first compare our system with existing baselines in Table 4.

The first baseline we include is the edit distance model used by

Chaudhuri and Kaushik [6]. To the best of our knowledge, this is

the only existing research study on online spelling correction. Our

system outperforms the edit distance model in terms of all

evaluation metrics. Significance test (t-test) shows that the

improvement of our system is significant (p-value < 0.05) for all

measurements except R@10. This indicates that most

misspellings are not very severe; therefore the edit distance model

is able to rank the best correction among the top 10 suggestions.

However, the edit distance model is not able to further distinguish

corrections within the same edit distance. We further observe that

although we see a big gap in R@1 for misspelled queries, the

overall performance difference for all queries is less than that of

the misspelled queries. This is expected as the edit distance model

will always rank identical transformation on top (if it exists in the

query log).

We also include Google’s online query spelling suggestions1 as a

baseline. As it is unclear how Google’s online spelling suggestion

can be configured to run in exact match mode, we only measure

1 Based on results collected on August 4, 2010.

its performance with respect to the online correction metric, i.e.

MKS. Not surprisingly, Google outperforms the simple edit-

distance model. On average users save 0.38 keystrokes per query

using Google’s spelling suggestions over that of the edit distance

model. For misspelled queries, nearly 1 keystroke is saved. Yet,

our system further outperforms Google’s suggestion system on

MKS with a statistically significant 1.1 and 1.5 keystrokes savings

on all queries and misspelled queries, respectively. It is worth

noting that a larger search space (query log in our case) may result

in worse performance. Since the size of Google’s search space is

unknown, we cannot jump to the conclusion that our system

outperforms Google’s spelling suggestion system.

Table 4. Comparison of performance with baseline systems

All Queries Misspelled Queries

R@1 R@10 MKS R@1 R@10 MKS

EditDist 0.899 0.973 13.39 0.579 0.887 14.53

Google N/A N/A 13.01 N/A N/A 13.49

Proposed 0.918 0.976 11.86 0.677 0.900 11.96

We also see in this experiment that the MKS metric is fairly

consistent with Recall. Higher recall values always correspond to

lower MKS. This validates the use of MKS as a performance

metric.

To further understand how the proposed method works, we study

the performance of the transformation model with different

configurations of and . Figure 7 shows the effect of the

transfeme Markov order at and . As we increase

from 1 to 2, we see a consistent increase in performance; but from

2 to 3, the performance decreased instead. This is contradictory

with our intuition that higher order models result in better

performance. We believe that this is because higher order models

are more likely to suffer from data sparseness. Thus, with more

training data, we may find higher order models to further improve

the performance over . We also observe that for a fixed ,

increasing actually decreases the performance. We hypothesize

that this may be due to overfitting, as increasing significantly

increases the number of model parameters. As larger also

significantly increases the cost of search, it is impractical for real-

time scenarios. Under the current setting, our best result is

achieved with . Thus for all subsequent experiments,

we fix the configuration to .

To confirm the effect of smoothing, we experiment with two

smoothing methods and compare their performance. In Figure 8

0.9

0.92

0.94

0.96

0.98

M=1 M=2 M=3

L=1

0.7

0.75

0.8

0.85

0.9

M=1 M=2

L=2

R@10

R@1

Figure 7: Performance with varying and

.

we see that absolute discounting (AD) outperforms Jelinek-

Mercer (JM) smoothing over every evaluation metric for both the

all queries and misspelled queries test sets. This is in line with

previous language modeling research that found discounting

based smoothing to outperform simple interpolation techniques.

This experiment confirms our hypothesis that employing proper

smoothing methods substantially increases the performance of the

transformation model.

We present the effectiveness of our proposed methods for

avoiding over correction in Table 5. As we can see, the non-

mixture model, which is trained with misspelled queries only,

performs well for misspelled queries. However, the overall

performance is not good because it tends to alter queries that are

already correctly spelled. Both the data mixture and model

mixture approaches improve the overall performance by reducing

such overcorrections. For the all queries set, they perform equally

well. For misspelled queries, model mixture performs just as well

as the non-mixture model. However the performance of the data

mixture approach drops significantly. From an application

perspective, it is the misspelled queries for which users need

suggestions the most. Users are able to enter queries that they can

spell no matter what our system suggests. In this sense, the model

mixture approach is more preferable than the data mixture

approach. Moreover, by estimating the two models separately, the

model mixture approach can be updated more easily.

Table 5. Performance study on overcorrection

All Queries Misspelled Queries

R@1 R@10 MKS R@1 R@10 MKS

Non-Mix 0.893 0.966 11.94 0.678 0.899 11.98

Data Mix 0.918 0.971 11.85 0.669 0.879 11.98

Model Mix 0.918 0.976 11.86 0.677 0.900 11.96

In Table 8, we study the effect of the proposed thresholding

method for pruning irrelevant suggestions. As we can see, with

suggestion pruning, the performance of online spelling correction

substantially increases for both the all queries and misspelled

queries sets in terms of P@1, P@10 and PMKS. This verifies the

effectiveness of our proposed thresholding method. But in terms

of R@1, R@10 and MKS, the performance actually decreased.

The reason behind this pattern is that the first set of metrics (P@1,

P@10 and PMKS) assigns penalty for showing irrelevant

suggestions, while the second set of metrics does not. In fact, any

pruning of suggestions can only decrease the recall, as some

correct suggestions may be pruned by mistake. From our

perspective, showing too many irrelevant corrections has a strong

negative effect on the query completion user experience,

increasing the risk of losing users. Given that the recall did not

significantly decrease, we prune suggestions using risk

thresholding in the implementation of our system.

Finally, we address the efficiency of our approach. From our

experiments, we observe that although a better heuristic function

can reduce the running time of the search algorithm, beam

pruning is still required to achieve practical performance. In

Figure 9 we plot the performance and running times for different

relative beam pruning thresholds. Based on our experiments on an

unoptimized implementation, we observe that as we relax the

pruning threshold, the running time increases exponentially.

However, the increase in R@1 is slow and ceases beyond a

relative threshold of .

Table 6. Examples suggestions

Input Query Top Suggestion

milk shak milkshake recipes

hwo to tain ur dra how to train your dragon

alice on wander land alice in wonderland

mision inpos mission impossible

In Table 6 we list some example correction pairs identified by our

system. None of these input queries are in the training corpus. As

we can see, our method is capable of capturing various kinds of

spelling errors for multiple word phrases. By updating the query

language model frequently, we can keep our online spelling

correction system up-to-date with the latest query language.

Table 7. Examples of transfeme probabilities

 () 0.0001 (|) 0.0006

 () 0.0002 (|) 0.2

 () 0.002 (|) 0.007

To further understand the internal mechanism of our model, we

list some transfeme probabilities in Table 7. Clearly, for ,

0.9

0.92

0.94

0.96

0.98

JM AD

all queries

0.6

0.7

0.8

0.9

JM AD

misspelled queries

R@10

R@1

0.25

0.5

1

2

4

8

16

32

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

-3 -4 -5 -6 -7 -8

log10(threshold)

R@1 Time (s)

Figure 8: Performance of transformation models with

different smoothing methods

.

Figure 9: R@1/Running time vs. pruning threshold

.

 () () () is much smaller than (
). But with , (|) is significantly larger

than (|). This is desirable as is a more

common mistake (e.g. “haul” vs “hual”) than .

7. CONCLUSION
This paper addresses the problem of online spelling correction for

search queries by adopting a generative model for query

correction. We first propose a transfeme based transformation

model that is capable of capturing users’ spelling behavior. We

estimate the transformation model using clicks on search engine

recourse links, which represent user confirmed query

misspellings. Next, we study various techniques to optimize the

effectiveness of the transformation model.

To efficiently retrieve the query corrections with the highest

probability according to the generative model, we propose the use

of an algorithm based on A* search. The A* search algorithm is

configured to deal with partial queries, so that online search is

possible. We study different pruning and thresholding methods to

improve the efficiency of the A* search.

Finally, we propose two evaluation metrics for online spelling

correction, minimal keystrokes and penalized minimal keystrokes,

based on the idea of minimal effort cost for users. We conduct

extensive experiments and conclude that the proposed method is

both effective and efficient for the task of online spelling

correction.

For future work, we plan to explore the use of other sources of

spelling correction pairs to more robustly estimate the

transformation models. For example, we will consider the use of

webpage metadata, including title and anchor texts, to extract

correction pairs. We also plan to extend our model by

incorporating a large scale language model [18] so that we can

suggest query corrections that have never been seen before.

8. REFERENCES
[1] http://en.wikipedia.org/wiki/Fat-finger

[2] http://en.wikipedia.org/wiki/I_before_E_except_after_C

[3] J. Bilmes. A gentle tutorial on the EM algorithm and its

application to parameter estimation for Gaussian mixture and

hidden Markov models. Technical Report ICSI-TR-97-021.

1997.

[4] M. Bisani and H. Ney. Joint-sequence models for grapheme-

to-phoneme conversion. Speech Communication, Vol. 50.

2008.

[5] A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, D.

Metzler, L. Riedel, J. Yuan. Online expansion of rare queries

for sponsored search. In WWW, 2009.

[6] S. Chaudhuri and R. Kaushik. Extending auto-completion to

tolerate errors. In SIGMOD, 2009.

[7] Q. Chen, M. Li, and M. Zhou. Improving query spelling

correction using web search results. In EMNLP-CoNLL,

2007.

[8] S. F. Chen. Conditional and joint models for grapheme-to-

phoneme conversion. In Eurospeech, 2003.

[9] S. Cucerzan and E. Brill. Spelling correction as an iterative

process that exploits the collective knowledge of web users.

In EMNLP, 2004.

[10] F. J. Damerau. A technique for computer detection and

correction of spelling errors. Communication of ACM. Vol. 7.

1964.

[11] J. Darragh, I. Witten, and M. James. The reactive keyboard: a

predictive typing aid. Computer. Vol. 11. 1990.

[12] J. Gao, X. Li, D. Micol, C. Quirk and X. Sun. A large scale

ranker-based system for search query spelling correction. In

COLING, 2010.

[13] V. I. Levenshtein. Binary codes capable of correcting

deletions, insertions, and reversals. Soviet Physics Doklady.

1966.

[14] M. Li, Y. Zhang , M. Zhu , M. Zhou. Exploring distributional

similarity based models for query spelling correction. In

ACL, 2006.

[15] E.M. Rieseman and A.R. Hanson. A contextual

postprocessing system for error correction using binary n-

grams. IEEE Transactions on Computers. Vol. 23. 1974.

[16] X. Sun, J. Gao, D. Micol and C. Quirk. Learning phrase-

based spelling error models from clickthrough data. In ACL,

2010.

[17] P. Taylor. 2005. Hidden Markov models for grapheme to

phoneme conversion. In Eurospeech, 2005.

[18] K. Wang, X. Li, and J. Gao. Multi-style language model for

web scale information retrieval. In SIGIR, 2010.

Table 8. Effect of Pruning

all queries misspelled queries

R@1 R@10 P@1 P@10 MKS PMKS R@1 R@10 P@1 P@10 MKS PMKS

w/ pruning 0.916 0.969 0.927 0.304 11.87 19.42 0.669 0.875 0.704 0.241 12.00 19.21

w/o pruning 0.918 0.976 0.920 0.262 11.86 19.60 0.677 0.900 0.685 0.204 11.96 19.56

