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ABSTRACT 
Recent advances in click model have positioned it as an attractive 
method for representing user preferences in web search and online 
advertising. Yet, most of the existing works focus on training the 
click model for individual queries, and cannot accurately model 
the tail queries due to the lack of training data. Simultaneously, 
most of the existing works consider the query, url and position, 
neglecting some other important attributes in click log data, such 
as the local time. Obviously, the click through rate is different 
between daytime and midnight. In this paper, we propose a novel 
click model based on Bayesian network, which is capable of 
modeling the tail queries because it builds the click model on 
attribute values, with those values being shared across queries. 
We called our work General Click Model (GCM) as we found that 
most of the existing works can be special cases of GCM by 
assigning different parameters. Experimental results on a large-
scale commercial advertisement dataset show that GCM can 
significantly and consistently lead to better results as compared to 
the state-of-the-art works.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Retrieval Models; 
H.3.5 [Information Storage and Retrieval]: Online Information 
Services; G.3 [Probability and Statistics]. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Attribute, Search engine, Bayesian, Gaussian, Advertisement  

1. INTRODUCTION 
Utilizing implicit feedback is one of the most essential techniques 
for a search engine to better entertain its millions or billions of 
users. Implicit feedback can be regarded as a vector of attribute 
values, including the query text, timestamps, localities, the click-
or-not flag, etc. Given a query, whether user clicks a url is 

strongly correlated with the user’s opinions on the url. Besides, 
implicit feedback is readily available. Terabytes of such data is 
produced every day, with which a search engine can automatically 
adapt to the needs of users by putting the most relevant search 
results and advertisements in the most conspicuous places. 

Following T. Joachims [13] in 2002, implicit feedback such as 
click data has been used in various ways: towards the optimization 
of search engine ranking functions (e.g. [4] [3] [6]), towards the 
evaluation of different ranking functions (e.g. [5] [12] [14]), and 
even towards the display of advertisements or news [1] [19]. Most 
of the works above rely on a core method: to learn a click model. 
Basically, the search engine logs a large number of real-time 
query sessions, along with the user’s click-or-not flags. This data 
is regarded as the training data for the click model, which will be 
used for predicting the click through rate (CTR) of future query 
sessions. The CTR can help improve the normalized discounted 
cumulative gain (NDCG) of the search results (e.g. [6]), and play 
an essential role in search auctions (e.g. [9] [2]).  

However, clicks are biased with respect to presenting order, 
reputation of sites, user-side configuration (e.g. display resolution, 
web browser), etc. The most substantial evidence is given by the 
eye-tracking experiment carried out by T. Joachims [14] [15], in 
which it was observed that users tend to click web documents at 
the top even if the search results are shown in reverse order. All of 
these show that it is desirable to build an unbiased click model. 

Recently, a number of studies [19] [7] [8] [6] [10] have attempted 
to explain the position-biased click data. In 2007, M. Richardson 
et al. [19] suggested that the relevance of a document at position ݅ 
should be further multiplied by a term ݔ௜, and this idea was later 
formalized as the examination hypothesis [7] or the position 
model [6]. In 2008, N. Craswell et al. [7] compared this 
hypothesis to their new cascade model, which describes a user’s 
behavior by assuming she scans from top to bottom. As the 
cascade model takes into account the relevance of urls above the 
clicked one, it outperforms the examination hypothesis [7]. 

In 2008, G. Dupret et al. [8] extended the examination hypothesis 
by considering the dependency on the positional distance to the 
previous click in the same query session. In 2009, F. Guo et al. 
[10] and O. Chapelle et al. [6] proposed two similar Bayesian 
network click models, that generalized the cascade model by  
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Figure 1. The empirical CTR with respect to the local hour. 

 

Figure 2. The empirical CTR with respect to the user agent. 

analyzing user behavior in a chain-style network, within which the 
probability of examining the next result depends on the position 
and the identity of the current document.  

Nevertheless, despite their successes, previous works have some 
limitations. First, they focus on training the click model for each 
individual query, and cannot accurately predict tail queries 
(lowfrequency queries) due to the inadequate training data. 
Second, the aforementioned models only considered the position-
bias, neglecting other bias such as the local time (Figure 1) and 
the user agent (Figure 2), which are parts of the session-specific 
attributes in the log. We remark that the clicks through rate in 
these two graphs are averaged over all the advertisements from 
Jul. 29th to Jul. 31st, 2009 in a commercial search engine. This 
type of phenomenon has also been observed by D. Agarwal et al. 
[1] in predicting clicks for front page news of Yahoo!. 

Based on these observations, it is fairly straightforward to build a 
click model on multiple attribute values shared across queries, 
instead of building models for individual queries. This may bring 
us the generalization to predict tail queries despite the lack of 
training data for a single query. Furthermore, we believe some 
other attributes are very important for click prediction and can be 
further incorporated to improve the accuracy. But how to 
accurately model the impact of different attribute values on the 
final prediction is a challenging problem.  

In this paper, we propose a General Click Model built upon a 
Bayesian network and we employ the Expectation Propagation 
method [16] to perform approximate Bayesian inference. Our 
model assumes that users browse urls from top to bottom, and 
defines the transition probabilities between urls based on a list of 
attribute values, including the traditional ones such as “position” 
and “relevance” and our newly-designed ones such as the “local 
hour” and the “user agent”. In summary, we highlight GCM with 
the following distinguishing features: 

• Multi-bias aware. The transition probabilities between 
variables depend jointly on a list of attributes. This enables 
our model to explain bias terms other than the position-bias.  

• Across-query learning. The model learns queries altogether 
and thus can predict clicks for one query – even a new query 
– using the learned data from other queries. 

• Extensibility: The user may actively add or remove attributes 
applied in our GCM model. In fact, all the prior works 
mentioned above can reduce to our GCM as special cases 
when only one or two attributes are incorporated. 

• One-pass. Our click model is an on-line algorithm. The 
posterior distributions will be regarded as the prior 
knowledge for the next query session. 

• Application to ads. We have demonstrated our click model in 
the CTR prediction of advertisements. Experimental results 
show that our click model outperforms the prior works. 

The rest of the paper is organized as follows: we first introduce 
some definitions and comment on prior works in Section 2, in 
which the discoveries motivate us to establish our General Click 
Model proposed in Section 3. Next in Section 4 we conduct 
experiments upon advertisement data and web search data, and 
compare the results in a number of metrics. We then discuss the 
extensions in Section 5 and conclude in Section 6. 

2. BACKGROUND 
We first clarify some definitions that will be used throughout this 
paper. When a user submits a query to the search engine, a query 
session is initiated. Specially, if a user re-submits the same query, 
a different query session is initiated. In our model, we only 
process the first page on a query session (we will discuss the 
usage of other pages in Section 5). 

In each query session, there is a sequence of urls, denoted by ܷ = ሼݑଵ, …  ெሽ where the smaller subscript represents a higherݑ
rank, i.e. closer to the top. For regular search results, ܯ is usually 
set to 10; while for ads data, ܯ varies for different queries. 

In the query session, each display of a url is called a url 
impression, which is associated with a list of attribute values, 
such as the user’s IP address, the user’s local time and the 
category of the url. 

Now, we will introduce some prior works concerning click 
models, which fall into two categories: examination hypothesis 
and cascade model.  

2.1 Examination Hypothesis 
The examination hypothesis assumes that if a displayed url is 
clicked, it must be both examined and relevant. This is based on 
the eye-tracking studies which testify that users are less likely to 
click urls in lower ranks. In other words, the higher a url is 
ranked, the more likely it will be examined. On the other hand, the 
relevance of a url is a query-document based parameter which 
directly measures the probability that a user intends to click this 
url if she examines it. More precisely, given a query ݍ and the url ݑ  at position ݅ , the examination hypothesis assumes the 
probability of the binary click event ܥ as follows:  ܲ(ܥ = ,ݍ|1 ,ݑ ݅)= ܥ)ܲ = ,ݑ|1 ,ݍ ܧ = 1)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௥ೠ,೜ ∙ ܧ)ܲ = 1|݅)ᇣᇧᇧᇤᇧᇧᇥ௫೔  (1)

Notice that (1) applies a hidden random variable ܧ which denotes 
whether the user has examined this url. 

In general, the examination hypothesis makes the following 
assumptions: if the user clicks it, then the url must have been 

0.03

0.035

0.04

0.045

0.05

0 4 8 12 16 20 24

cl
ic

k 
th

ro
ug

h 
ra

te
 

The local hour 

0 0.01 0.02 0.03 0.04 0.05

Other users, including IE users

non-Linux user with Opera

non-Linux user with FireFox

Linux user

Click through rate 



examined; if the user has examined the url, the click probability 
only depends on the relevance ݎ௨,௤ ; and the examination 
probability ݔ௜ depends solely on the position ݅. 
Based on the examination hypothesis, three simple models 
studying ݎ௨,௤  and ݔ௜  have been introduced: the Clicks Over 
Expected Clicks (COEC) model [20], the Examination model [6], 
and the Logistic model [7]. They have been compared in [6] and 
experimentally proved to be outperformed by the cascade model. 

An important extension of the examination hypothesis is the user 
browsing model (UBM) proposed by G. Dupret et al. [8]. It 
assumes the examination ܧ depends not only on the position ݅ but 
also on the previous clicked position ݈ in the same query session 
(݈ = 0 if not existed).  ܲ(ܥ = ,ݍ|1 ,ݑ ݅, ݈) = ܥ)ܲ = ,ݑ|1 ,ݍ ܧ = 1)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௥ೠ,೜ ∙ ܧ)ܲ = 1|݅, ݈)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ௫೔,೗  (2)

2.2 Cascade Model 
The cascade model [7] differs from the examination hypothesis 
above in that it aggregate the clicks and skips in a single query 
session into a single model. It assumes the user examines urls 
from the first one to the last one, and the click depends on the 
relevance of all the urls shown above. 

Let ܧ௜,  ௜ be the probablistic events indicating whether the ݅th urlܥ
(1 ≤ ݅ ≤  is examined and clicked respectively. The cascade (ܯ
model makes the following assumptions: 

(ଵܧ)ܲ • = 1 
௜ାଵܧ)ܲ • = ௜ܧ|1 = 0) = 0 
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, (௜ܥ = 1 −  ௜ܥ
௜ܥ)ܲ • = ௜ܧ|1 = 1) =   ௜ is the ݅th urlݑ ௨೔,௤ whereݎ

in which the third assumption implies that if a user finds her 
desired url, she immediately closes the session; otherwise she 
always continues the examination. The cascade model assumes 
that there is no more than one click in each query session, and if 
examined, a url is clicked with probability ݎ௨,௤ and skipped with 
probability 1 −  ,௨,௤. Thusݎ

௜ܥ)ܲ = 1) = ௨೔,௤ݎ ෑ ቀ1 − ௨ೕ,௤ቁ௜ିଵ௝ୀଵݎ  (3)

Based on the cascade model, two Bayesian network models have 
been proposed in 2009, both aiming at modifying the third 
assumption ܲ(ܧ௜ାଵ = ௜ܧ|1 = 1, (௜ܥ = 1 − ௜ܥ , and allowing 
multiple clicks in a single session. We will separately introduce 
these two models in the following subsections. 

2.2.1 Click Chain Model (CCM) 
The click chain model is introduced by F. Guo et al. [10]. It 
differs from the original cascade model in defining the transition 
probability from the ݅th url to the (݅ + 1)th. CCM replaces the 
third assumption in cascade model with the following: 

௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 0) =  ଵ (4)ߙ
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 1) = ଶ൫1ߙ − ௨೔,௤൯ݎ +  ௨೔,௤ (5)ݎଷߙ

where ܽଵ, ,ଶߙ ଷߙ  are three global parameters independent of the 
users and the urls. CCM assumes that if the url at position ݅ has 
been examined, the user clicks it according to the relevance ݎ௨೔,௤ 
as usual; if the user chooses not to click, the probability of 
continuing is ߙଵ ; if the user clicks, the probability to continue 
ranges between ߙଶ and ߙଷ, depending on the relevance ݎ௨೔,௤. 

CCM assumes that ܽଵ, ,ଶߙ ଷߙ  are given and fixed, and then 
leverages the Bayesian inference to infer the posterior distribution 
of the document relevance ݎ. Under the infinite-chain assumption 
the authors derived a simple method in computing the posterior, 
which enables CCM to run very efficiently. 

2.2.2 Dynamic Bayesian Network (DBN) 
The DBN model proposed by O. Chapelle and Y. Zhang [6] is 
very similar to CCM, but differs in the transition probability: 

௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 0) =  (6) ߛ
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 1) = ൫1ߛ − ௨೔,௤ݏ is a pre-defined parameter, and ߛ ௨೔,௤൯ (7)ݏ , in place of ݎ௨೔,௤ , is the 

measurement of the user’s satisfaction on the actual content of ݑ௜ 
given query ݍ . It is emphasized in [6] that a click does not 
necessarily imply the user’s satisfaction on the content, instead, 
the user may have been attracted by some misleading abstracts. 
Therefore, the introduction of ݏ௨೔,௤  is to depict the actual 
relevance, rather than the perceived relevance ݎ௨೔,௤ . Both values 
are estimated by applying the expectation-maximization algorithm 
in their paper, while there exists a Bayesian inference version to 
the model that is very similar to DBN on [17]. 

3. GENERAL CLICK MODEL 
We now introduce our General Click Model (GCM). Basically, it 
is a nested structure. The outer model in this nested structure is a 
Bayesian network, in which we assume users scan urls from top to 
bottom. The transition probabilities in this network are controlled 
by our inner model. Specifically, each individual probability is 
defined as summation of parameters, each corresponding to a 
single attribute value. This nested structure enables GCM to 
overcome not only the position-bias, but also other kinds of bias 
in learning the relevance and predicting the clicks. 

3.1 The Outer Model 
The outer Bayesian network of the General Click Model is 
illustrated in Figure 4, and the flow chart of the user behavior is 
given in Figure 3. The subscript goes from 1 to ܯ, where ܯ is the 
total number of urls on this page. As before, we define two binary 
random variables ܥ௜ and ܧ௜ that indicate whether the user clicks or 
examines the url on the ݅th position. In addition, we employ three 
continuous random variables at each position, ޿௜,  ௜ and ܴ௜. The߀
continuous behavior of ޿௜,  ௜ and ܴ௜ will enable GCM to handle߀
not only the position-bias but other kinds of session-specific bias, 
to be explained later. 

We assume the user examines the displayed urls from position ݅ = 1 to ݅ = ௜ܧ) ௜ݑ After examining url .ܯ = 1), the user chooses 
to click it according to the relevance ܴ௜ . The click event will 
occur if and only if ܴ௜ > 0. Either way, the user will continue to 
examine the next url ݑ௜ାଵ  with some probability: if ݑ௜  has been 
clicked (ܥ௜ = 1), the user will examine ݑ௜ାଵ if and only if ܣ௜ > 0; 
if ݑ௜ has not been clicked (ܥ௜ = 0), the user will examine ݑ௜ାଵ if 



and only if ܤ௜ > 0. The following equation sets precisely describe 
the model:  

(ଵܧ)ܲ • = 1 (8) 
௜ାଵܧ)ܲ • = ௜ܧ|1 = 0) = 0 (9) 
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 0, (௜߀ = ॴ(߀௜ > 0) (10) 
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 1, (௜޿ = ॴ(ܣ௜ > 0) (11) 
௜ܥ)ܲ • = ௜ܧ|1 = 1, ܴ௜) = ॴ(ܴ௜ > 0)  (12) 

where ॴ(. )  is the characteristic function, and we define Φ =ሼܣ௜, ,௜ܤ ܴ௜|݅ = 1 …  .ሽܯ

This model differs from DBM or CCM in that the transition 
probability depends on continuous random variables in Φ. Next, 
we will show that those variables are further modeled as the 
summation of a list of parameters, each corresponding to an 
attribute value. 

3.2 The Inner Model 
When a query session is initiated with query ݍ  and urls ܷ =ሼݑଵ, …  ெሽ, the attributes the search engine holds are far beyondݑ
the url and the query themselves. We separate the session-specific 
attributes into two categories: 

• The user-specific attributes: the query, the location, the 
browser type, the local hour, the IP address, the query 
length, etc. We denote their values by ଵ݂௨௦௘௥ , … ௦݂௨௦௘௥ .  

• The url-specific attributes: the url, the displayed position 
(=݅), the classification of the url, the matched keyword, the 
length of the url, etc. For a specific url ݑ௜, we denote these 
attribute values by ௜݂,ଵ௨௥௟, … ௜݂,௧௨௥௟ . 

As an illustration, if we take five attributes into account: the 
query, the browser type, the local hour, the url, and the position, 
we have ݏ = 3, ݐ = 2. For a specific url impression on position 2, 
we may have the following values: 

•  ଵ݂௨௦௘௥=“Microsoft Research”; ଶ݂௨௦௘௥=IE; ଷ݂௨௦௘௥=7pm; 
• ଶ݂,ଵ௨௥௟=“research.microsoft.com”,    ଶ݂,ଶ௨௥௟=2. 

At this point, we assume that attributes are all of discrete values1. 
Furthermore, we assume each value ݂  is associated with three 

                                                                 
1 We will consider the continuous feature values in Section 5. 

parameters ߠ௙஺,  ௙ோ, each of which is a continuous randomߠ ௙஻ andߠ
variable. We define: 

௜޿ = ෍ ௙ೕೠೞ೐ೝ஺௦௝ୀଵߠ + ෍ ௙೔,ೕೠೝ೗஺௧௝ୀଵߠ +  ݎݎ݁

௜߀ = ෍ ௙ೕೠೞ೐ೝ஻௦௝ୀଵߠ + ෍ ௙೔,ೕೠೝ೗஻௧௝ୀଵߠ +  ݎݎ݁

ܴ௜ = ෍ ௙ೕೠೞ೐ೝோ௦௝ୀଵߠ + ෍ ௙೔,ೕೠೝ೗ோ௧௝ୀଵߠ +  ݎݎ݁

(13)

where ݁ݎݎ  is an error term satisfying ܰ(0,1)  distribution. For 
simplicity of explanation, we define Θ = ൛ߠ௙஺, ,௙஻ߠ  ݂ ௙ோห∀݂ൟ whereߠ
enumerates from all distinct attribute values. Besides error terms, 
we treat ޿௜, ௜߀  and ܴ௜  as summations of ݏ + ݐ  parameters in Θ , 
and those parameters satisfy independent Gaussian distributions. 
We emphasize that variables in Φ are defined for a specific query 
session, while parameters in Θ are defined across sessions. We 
will next use the Bayesian inference to learn the distributions for 
those parameters. 

3.3 The Algorithm: On-line Inference 
Our algorithm is built upon the Expectation Propagation method 
[16]. Given the structure of a Bayesian network with hidden 
variables, EP takes the observation values as input, and is capable 
of calculating the inference of any variable. We simply assume an 
EP calculator ܩ exists while the detailed algorithmic design can 
be found in [16] [18]. 

 

Algorithm: The General Click Model 

ܨ = ሼ ଵ݂௨௦௘௥, … ௦݂௨௦௘௥ሽ ∪ ൛ ௜݂,ଵ௨௥௟ , … ௜݂,௧௨௥௟ൟ௜ୀଵெ
 

1. Initiate Θ = ൛ߠ௙஺, ,௙஻ߠ  ௙ோห∀݂ൟ and let each parameter in Θߠ
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2. Construct a Bayesian inference calculator ܩ  using 
Expectation Propagation. 
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 ݏ number of urls in ← ܯ .4
5. Obtain the attribute values 

6. Input ൛ߠ௙஺, ,௙஻ߠ ௙ோห݂ߠ ∈ ൟܨ ⊂ Θ  to ܩ as the prior 
Gaussian distributions. 

7. Input the user’s clicks to ܩ as observations. 
8. Execute ܩ  to measure the posterior distributions for ൛ߠ௙஺, ,௙஻ߠ ௙ோห݂ߠ ∈  ൟ, and update them in Θܨ
9. End For 
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As stated previously, we assign each parameter in Θ a Gaussian 
distribution, and update this distribution in the assumed-density 
filtering mechanism [16]: for each query session, the calculated 
posterior distributions will be used as prior distributions for the 
next query session. 

At the beginning of the algorithm, we assume all parameters in Θ 
satisfy a default prior Gaussian distribution, say ܰ(0,1/(ݏ +  ,((ݐ
for all distinct values ݂. We assume the nested Bayesian network 
(described in section 3.1 and 3.2) has been constructed and the 
Bayesian inference calculator ܩ is properly set. 

We will process the query sessions one by one. For each coming 
session we obtain its attribute value list ܨ = ሼ ଵ݂௨௦௘௥, … ௦݂௨௦௘௥ሽ ∪ ൛ ௜݂,ଵ௨௥௟ , … ௜݂,௧௨௥௟ൟ௜ୀଵெ

 

and retrieve their corresponding parameters in Θ as prior Gaussian 
distributions for ܩ , along with the click-or-not flags. ܩ  will 
calculate the posterior Gaussian distributions of ߠ௙஺, ௙஻ߠ  and ߠ௙ோ for 
each related attribute value ݂ ∈ ܨ . The inferred posterior 
Gaussians are saved for the next iteration. 

Note that if ܯ is fixed, the Bayesian network structure stays fixed 
throughout the algorithm. Though values ௝݂௨௦௘௥  and ௜݂,௝௨௥௟  vary 
from session to session, however, the structure of the Bayesian 
factor graph remains unique. In some other words, for example, ܣ௜ is always the summation of ݏ +  .term ݎݎ݁ Gaussians and an ݐ
This behavior enables us to pre-calculate the Bayesian inference 
formula for ܩ and speed up the on-line inference calculation, for 
example using software Infer.NET [18]. If ܯ varies, such as for 
advertisement data, we may build ܯ different calculators ܩଵ, ,ଶܩ .. 
and classify the query session according to the corresponding 
value ܯ. 

3.4 Reduction from Prior Works 
In this section we will see that all prior models we mentioned in 
Section 2 can be regarded as special cases of GCM, and this is 
why our model is named General Click Model.  

As shown above, prior models give the transition probabilities 
explicitly, such as ݎ௨೔,௤ . Instead, we model them as continuous 
random variables ܣ௜, ௜ܤ  and ܴ௜  and defined each of them as the 
summation of a list of parameters in Eq. (13). The following 
lemma connects prior works to our continuous-random-variable 
definition. 

Lemma: If we define an attribute value ݂ to be the pair of query 
and url ݂ = ,௜ݑ) ௜ܥ)ܲ the traditional transition probability ,(ݍ = ௜ܧ|1 = 1) =  ௨೔,௤ݎ
can reduce to ܲ(ܥ௜ = ௜ܧ|1 = 1, ܴ௜) = ॴ(ܴ௜ > 0) 
if we set ܴ௜ = ௙ோߠ  + ௙ோߠ and ݎݎ݁  is a point mass Gaussian (also 

known as the Dirac delta distribution) centered at ିܨଵ൫ݎ௨೔,௤൯ , 
where ܨ is the cumulative distribution function of ܰ(0,1). 

Proof. Assume the probability density function of ܰ(0,1) is (ݔ)݌, 
we make the following calculation: ܲ(ܥ௜ = ௜ܧ|1 = 1) = න (ݔ)݌ ∙ ॴ൫ݔ + ௨೔,௤൯ݎଵ൫ିܨ > 0൯dݔ= න ஶݔd(ݔ)݌

ିிషభቀ௥ೠ೔,೜ቁ =  ∎௨೔,௤ݎ

Similarly, this lemma can be extended to ޿௜ and ߀௜. We will next 
adopt the lemma and re-write Eq. (13) in the form that prior 
models can reduce to our GCM, with the restriction that all 
Gaussian distributions degenerate to point mass Gaussians. 

3.4.1 Examination hypothesis 
The traditional examination hypothesis assumes that the click 
probability is the multiplication of a position-based examination 
rate ݔ௜ାଵ  and a relevance-based click rate ݎ௨೔,௤  (see Eq.(1)). In 
GCM, if ܲ(ܤ௜ > 0) = ୧޿)ܲ > 0) = ;௜ାଵݔ  ܲ(ܴ௜ > 0) = ௨೔,௤ (14)ݎ

we immediately arrive at the examination hypothesis Eq.(1) 
according to Eq. (8) ~ (12). To achieve this we define two 
attributes ଵ݂ = ݅ + 1  and ଶ݂ = ,௜ݑ) (ݍ . According to the lemma, 
we fix parameters ߠ௙భ஺, ௙భ஻ߠ  and ߠ௙మோ  to the point mass Gaussians 

centered at ିܨଵ(ݔ௜ାଵ) (௜ାଵݔ)ଵିܨ ,  and ିܨଵ൫ݎ௨೔,௤൯  respectively. 
Then, Eq. (14) will be achieved if we define the following in Eq. 
௜ܣ 2 :(13) = ௙భ஺ߠ + ;ݎݎ݁ ௜ܤ = ௙భ஻ߠ + ௜ܴ  ;ݎݎ݁ = ௙మோߠ + (15) ݎݎ݁

Its extension, the user browsing model (UBM) [8] can similarly 
reduce to GCM, by letting ܲ(޿୧ > 0) = ௜ାଵ,௟ݔ  and ܲ(ܴ௜ > 0) ௨೔,௤ݎ= , where ݈  is the distance to the previous click. The only 
modification we need is to set ଵ݂ = (݅ + 1, ݈), and ߠ௙భ஺, ௙భ஻ߠ  be the 

point mass Gaussians centered at ିܨଵ൫ݔ௜ାଵ,௟൯. 

3.4.2 Cascade models 
In the traditional cascade model, it is just a special case of GCM 
where ߀௜ > 0 and ܣ௜ < 0, meaning that the user always examines 
the next url if not clicked, and immediately stops if clicked (see 
Eq. (10) and (11)). This can be approximated if we define a 
dummy attribute ଵ݂ , and let ߠ௙భ஺, ௙భ஻ߠ  be point mass Gaussians at −10 and +10 respectively. Again, we let ଶ݂ = ,௜ݑ)  .and set Eq (ݍ
(13) to ܣ௜ = ௙భ஺ߠ + ;ݎݎ݁ ௜߀ = ௙భ஻ߠ + ௜ܴ  ;ݎݎ݁ = ௙మோߠ + (16) ݎݎ݁

In the click chain model (CCM), ߙଵ, ଶߙ  and ߙଷ  are global 
constants. We define a dummy attribute ଵ݂ and let ߠ௙భ஻  be fixed to 

point mass centered at ିܨଵ(ߙଵ), while ଶ݂ = ,௜ݑ) ௙మோߠ and (ݍ  are as 

before. Then, we add a new parameter ߠ௙మ஺, a point mass Gaussian 
centered at ିܨଵ(ߙଶ(1 − (௨೔,௤ݎ + -௨೔,௤). Under such configuraݎଷߙ
tion, we arrive at Eq. (4) and Eq. (5) with the following: ܣ௜ = ௙మ஺ߠ + ;ݎݎ݁ ௜߀ = ௙భ஻ߠ + ௜ܴ  ;ݎݎ݁ = ௙మோߠ + (17) ݎݎ݁

In the dynamic Bayesian network (DBN) model, ߛ  is a global 
constant. We again define a dummy attribute ଵ݂ and let ߠ௙భ஻  satisfy 

the point mass Gaussian at ିܨଵ(ߛ). Then we define ߠ௙మ஺ to be point 

mass Gaussian at ିܨଵ(1)ߛ − ௨೔,௤)), in which ଶ݂ݏ = ,௜ݑ) ௙మோߠ and (ݍ  
are as before. Now we arrive at Eq. (6) and (7) in changing Eq. 
(13) to Eq. (17). 

 

                                                                 

2 In consistence with Eq. (13), we tacitly assume that ߠ௙భோ = ௙మ஺ߠ ௙మ஻ߠ= = 0, similarly hereinafter. 



  

4. EXPERIMENTS 
In this section, we conduct experiments on the advertisement data 
of a commercial search engine. Four different metrics have been 
employed to verify and compare the accuracy for different click 
models. At the same time, we had an additional test on the web 
search data in the last sub-section. 

4.1 Experimental Setup 
We implemented the Cascade model [7], the Click Chain Model 
[10] and the Dynamic Bayesian Model [6] under the Bayesian 
inference framework Infer.NET 2.3 [18]. The global parameters, ߙଵ, ,ଶߙ  in DBM are automatically studied using ߛ ଷ in CCM andߙ
Bayesian inference, and the details of which can be found in the 
Appendix. For the cascade model, we ignored all the sessions with 
more than one clicks in the training data. Those three algorithms 
are employed as the baseline models and we ignored the 
examination-hypothesis-based ones such as UBM [8], because the 
most recent works have clearly suggested that the examination-
hypothesis-based models are worse than the cascade-based ones 
[10] [6]. All the programs, including our General Click Model, are 
implemented in MS Visual C# 2008, and the experiments are 
carried out on a 64-bit server with 47.8 GB of RAM and eight 
2.40 GHz AMD cores. 

Next, we will introduce two datasets sampled from a commercial 
search engine that will be used in our experiment. 

4.1.1 Advertisement Dataset 
We collect three day’s click through data with ads clicks and url 
impressions and 12,691 queries are sampled. As stated before, we 
restrict ourselves to the results on the first page. If multiple clicks 
exist on a single page, we ignore the click order and assume the 
user clicks from top to bottom. We retrieve 4,530,044 query 
sessions and 16,268,349 url impressions from the log from Jul. 
29th to Jul. 31st. The number of url impressions on a single page 
vary from 1 to 9 on this search engine, with an average of 3.6 url 
impressions in each query session. We use the first 68 hours of 
data to train and predict on the last 4 hours. 

Following [10], we divide the queries according to the query 
frequency – the number of sessions in each query (see Table 1).  
We conduct experiments not only for the whole data set (Set “All” 
in Table 1), but also for individual frequency intervals Set 1 ~ Set 
8. We discard Set 9 because the number of sessions for each query 
is so large that a simple model can predict it accurately. We 
employ 21 different attributes in our GCM for this dataset, 
including the user IP, the user country, the user agent, the local 
hour, the ad id, the ad category, the matched keyword, etc. 

4.1.2 Search Dataset 
Similar to the advertisement data, we retrieve a three-day log of 
web search results from Jun. 28th to Jun. 30th, and sample 7,568 
queries with 959,148 query sessions and 8,813,048 url 
impressions. The first two days of data are used as the training set 
while the third day is used for testing. We classify the queries 
according to their frequency in Table 2. We ignore two 30,000+ 
frequency queries “google” and “facebook”, because nearly all the 
users simply click on the first result and close the session. 

Regarding the lack of data, we have very limited attributes for this 
search dataset. Except for the query, url and position, we employ 
in GCM the following attributes: the user country, the user agent, 
the global hour and the domain of the url. A total of 7 attributes. 

4.2 Evaluation on Log-Likelihood 
A very common measurement of the accuracy for click models is 
the Log-Likelihood (LL), also known as the empirical cross 
entropy. For a single url impression, if the predicted click rate is ܿ, the LL value is log ܿ if this url is clicked, and is log(1 − ܿ) if 
not clicked. The LL of a dataset with a number of query sessions 
is measured as the average LL on individual url impressions. A 
perfect click prediction has an LL of 0 and the larger this number 
indicates the better the prediction. Based on [10], the 
improvement of LL value ℓଵ  over ℓଶ  is computed as ൫݁ℓభିℓమ −1൯ × 100%. 

We demonstrate our LL test result for the advertisement dataset in 
Figure 5. The baseline algorithm equally predicts all url 
impressions with the same probability – the average probability 
over the entire test set. Being aware that the click probability for 
advertisement data is significantly smaller than for web search 
data, one may find that even the baseline algorithm’s LL value is 
very close to 0. 

From Figure 5 we clearly see the superiority of our proposed 
GCM in the click prediction of advertisement data. We emphasize 
that GCM overwhelms the most recent click models CCM and 
DBN especially for tail queries – less frequent queries. This is 
expected because our model trains queries altogether, while prior 
works train the data by query, thus lacking the training data for 
tail queries. Our experiment also confirmed the result in [6] that 
DBN should perform better than the cascade model. On the entire 
dataset our improvement is 1.2% over CCM and DBN, and 1.5% 
over the Cascade model. We remark that this percentage is 
significant because ads data has a rather low click rate. 

Set Query Freq #Queries 
Train set Test set 

#Sessions #Urls #Sessions #Urls 

1 1~10 2,238 10,847 100,144 5,686 50,651 

2 10~30 2,379 43,254 392,736 19,923 175,832 

3 30~100 2,035 106,962 973,685 52,313 466,811 

4 100~300 587 97,984 868,812 49,355 425,080 

5 300~1000 219 111,431 960,250 57,902 488,684 

6 1,000~3,000 79 128,270 1,114,753 64,696 549,797 

7 3,000~10,000 24 115,082 1,045,407 51,827 459,584 

8 10,000~30,000 5 101,584 943,057 53,805 493,313 

All All of above 7,566 715,414 6,398,844 355,507 3,109,752 

 

Table 2. Search dataset 

Set Query Freq #Queries 
Train set Test set 

#Sessions #Urls #Sessions #Urls 

1 1~10 141 866 5,698 177 1,057 

2 10~30 1,211 24,928 1,664,403 2,122 13,664 

3 30~100 5,058 308,203 1,810,009 18,629 105,716 

4 100~300 3,988 674,654 3,148,826 40,304 180,532 

5 300~1000 1,651 847,722 3,011,482 54,098 184,606 

6 1,000~3,000 481 792,422 2,470,665 48,449 147,561 

7 3,000~10,000 132 660,645 1,508,985 42,067 92,122 

8 10,000~30,000 22 315,832 769,786 19,338 48,808 

9 30,000+ 7 642,835 1,046,948 37,796 64,236 

All All of above 12,691 4,267,241 15,431,104 262,803 837,245 

Table 1. Advertisement dataset 



 

Figure 5. The log-likelihood of different models on the 
advertisement dataset, for different query frequencies. 

 

Figure 6. The perplexity of different models on the 
advertisement dataset, for different query frequencies. 

 

Figure 7. Actual vs predicted CTR for GCM and DBN 

 

Figure 8. Actual vs predicted CTR for Cascade and CCM 
 

4.3 Evaluation on Perplexity 
We also incorporate click perplexity [11] [10] as the evaluation 
metric for our model. This value measures the accuracy for 
individual positions separately and will penalize a model that 
performs poorly even in a single position. For a given position ݅, 
and a set of query sessions ݏଵ, …  ே. We assume that all sessionsݏ
have more than ݅ url impressions, and use ܿଵ, … ܿே to denote the 
binary click events of the ݅ th url for ݏଵ, … ேݏ  respectively. Let ݍଵ, … ேݍ  indicate the corresponding predicted click rates. The 
click perplexity at position ݅ is: ݌௜ = 2ଵே ∑ ௖೔೔ಿసభ ୪୭୥మ ௤೔ା(ଵି௖೔) ୪୭୥మ(ଵି௤೔) 
The perplexity of the entire dataset is the average of ݌௜ over all 
positions. A perfect click prediction will have a perplexity of 1 
and the smaller this number indicates better prediction accuracy. 
The improvement of perplexity value ݌ଵ over ݌ଶ is calculated as (݌ଶ − ଶ݌)/(ଵ݌ − 1) × 100% [10]. 

In Figure 6 we have compared the perplexity for different models. 
Our proposed CCM outperforms the cascade model with a 17.4% 
improvement, CCM with 12.9% and DBN with 12.1%. Again, 
the superiority is highlighted when the query frequency is low. 
We will illustrate the positional perplexity in the Section 4.5. 

4.4 Evaluation on R2 
In this experiment, we sort url impressions according to their 
predicted CTR, and then divide them into blocks of 1,000 url 
impressions each. In block ݅, we define ݔ௜ the predicted CTR that 
is averaged over 1,000 individual impressions, and define ݕ௜ the 
actual CTR that is the number of empirical clicks divided by 

1,000. We then draw the ݕ-ݔ scatter graph for all the four models 
in Figure 7 and Figure 8. One may see that the points (ݔ௜,  ௜) ofݕ
GCM are the closest to ݕ =  and thus it has the highest click ,ݔ
prediction accuracy. More precisely, we use the ܴଶ  value to 
measure the prediction. 

The coefficient of determination, also known as ܴଶ , has been 
widely used in statistics to measure the linear relationship 
between two sets of data. For ሼݔ௜ሽ௜ୀଵே  and ሼݕ௜ሽ௜ୀଵே , ܴଶ is calculated 
as the following (assuming ܽ = 1, ܾ = 0 in our case): ܴଶ = 1 − ∑ ௜ݕ) − ௜ݔܽ − ܾ)ଶே௜ୀଵ∑ ௜ݕ) − ത)ଶே௜ୀଵݕ  

The larger ܴଶ indicates the more correlated ሼݕ௜ሽ௜ୀଵே  to ሼݔ௜ሽ௜ୀଵே , and 
thus the better performance of the model. An optimal value of ܴଶ 

is 1. Among the four models GCM does the most outstanding job, 
with an ܴଶ  of 0.993, while Cascade, CCM and DBN receive 
0.956, 0.939 and 0.958 respectively. 

4.5 Evaluation on Bias 
To distinguish between models on how well the position-bias is 
explained, we separately compare the prediction accuracies for 
different positions, on the basis of click probability (Figure 9) and 
position perplexity (Figure 10). 

In Figure 9, we averaged the click rates for all 9 positions, and 
compare them with the actual click rates. Results show that all the 
models accurately predict the click rate on the first two positions, 
while GCM is undoubtedly the best model to explain the click rate 
for the last four url impressions. Something worth noting is that   
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Figure 9. Positional CTR for the advertisement data 

 

Figure 10. Positional perplexity for the advertisement data.

 

Figure 11. The log-likelihood of different models on 
the search dataset, for different query frequencies. 

 

Figure 12. The perplexity of different models on 
the search dataset, for different query frequencies. 

 

Figure 13. Comparisons of the estimated and actual click rates 
for different local hours on the advertisement dataset. 

those global constants, ߙଵ, ,ଶߙ  in DBN, are not ߛ ଷ in CCM andߙ
associated with the position ݅. These variables force the click rate 
to decrease exponentially with ݅, while for advertisement data, this 
assumption is not necessarily true. 

In Figure 10, we can also see that GCM is the best among the five. 
It has an improvement of 5.6% on the first position, and around 30% on the last position over CCM and DBN. 

To work in concert with our discovery in Figure 1, we examined 
how well our GCM predicts the query sessions for different local 
hours. Though the test set we employ has a span of  only 4 hours 
in the server time, the local hour of global users varies from 13:00 
to 24:00. The results in Figure 13 show that our GCM 
successfully explained the local hour bias, while in contrast, DBN 
and CCM fail to explain the CTR drop for the midnight users. 

At last, we compare the influences of all attributes incorporated in 
GCM and see which of them are the most important. Fix an 
attribute, we enumerate from all of its discrete values and retrieve 
a set of Gaussian distributions. Then, the standard deviation of 
those Gaussians’ mean values are calculated. According to our 
model, the larger this deviation, the more influential this attribute 
is. Results show that the three most influential attributes are the 
position, the match type (strongly related to the relevance) and the 
user agent (recall Figure 2). 

4.6 Additional Test on Search Data 
We have shown the overwhelming performance of our proposed 
GCM on ads data. As an addition to this paper, we hope to know 
how well it predicts the clicks in web search results. 

In Figure 11 and Figure 12, we compared our proposed GCM with 
the most recent model CCM and DBN on the search data. The 
log-likelihood result and the perplexity result both illustrate that 
GCM does comparably well with the state-of-the-art models, and 
with a slight improvement on the low frequency query set, as 
expected. One thing worth noting is that DBN and CCM 
separately show their competence on high and low frequency data 
sets respectively, while GCM does well on all kinds of 
frequencies.  

We regard the reasons for the insignificant improvement for 
search data as the follows, and we will do more investigation for 
this additional work in the future: 

• Prior works focused on the search data and reasonably 
simplified the model. This enables the model to do well on 
the search data, but may fail in explaining the ads. 
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• Based on the search data available to us, most of the 
important attributes we employed for the ads data are 
missing. We incorporate in GCM only 7 attributes for the 
web search data, in comparison with the 21 attributes for 
the advertisement data.  

As mentioned by an anonymous reviewer, the problem of click 
mode in advertising is considered significantly harder than in web 
search. This is because the volume of the low amount of data 
available as well as the low CTR rates. So it is not surprising that 
a more complex model such as GCM does better than competitors 
on ad data and does not show improvements on search data. 

5. DISCUSSIONS & FURTHER WORKS 
We have seen that the prior works can theoretically reduce to our 
GCM, and at the same time, our model outperforms prior works in 
advertisement data. In this section we discuss some pros and cons 
and potential extensions. 

To learn CTR@1. One of the most important by-products of the 
cascade click model is an unbiased CTR measurement assuming 
the url is placed at position 1. This value can be further used to 
improve NDCG [6], or build the auction for ads [9]. In our GCM, 
we can predict CTR@1 in this way. 

CTR@1 can be learned in a similar way in our model. For a given 
url impression, assuming its position to be 1, some of the user-
specific attributes are missing during the prediction, such as the 
local hour and user location. Under these circumstances, we may 
calculate the expected distributions ॱሾܣ௜ሿ, ॱሾܤ௜ሿ  and ॱሾܴ௜ሿ  over 
the distributions of all missing attributes. Practically, these 
distributions can be approximated by the empirical data. At last, ܲ(ܴଵ > 0) is the probability of clicks if this url is put at position 1. 

Using the variance. One important feature of GCM is that each 
attribute value is associated with a variance, attached to its 
Gaussian distribution. This value measures the significance of this 
attribute so we no longer need an extra confidence calculation 
such as the Appendix of [6]. If GCM is applied to the real-time 
search engine, this variance could be enlarged periodically, maybe 
once a day, because the web data keeps changing as time goes by. 

Continuous attribute values. Our model assumes the attribute 
values to be discrete, however, there might exist some continuous 
attributes, e.g. the widely used BM25 score in ranking. One way 
to incorporate such an attribute is to divide continuous values into 
discrete bins, such as 1,000 equal-width intervals. A more 
straight-forward way is to modify Eq. (13) by adding 
multiplication terms such as ߠ஻ெଶହோ ∙  is the BM25 value ݔ where ,ݔ
and ߠ஻ெଶହோ  is a global parameter that is independent of the value ߠ .ݔ஻ெଶହோ  behaves as a dynamic weight associated to this attribute 
and can be learned by Bayesian inference. 

Make use of the page structure. As stated in [6], we can make 
use of the pagination links on the search page in designing a more 
accurate Bayesian network. More importantly, in the ads 
distribution of our commercial search engine, url impressions are 
allocated in two different areas – the main line and the side bar. In 
our experiment, the actual CTR of the former is significantly 
larger than the latter. We will in our further work separate our 
Bayesian network into two parts which might better explain the 
area-bias of the CTR estimation in the advertisement data. 

Running time. Our GCM achieved the result on the entire ads 
dataset in 10.3 hours and the entire search dataset in 2.7 hours. 
Under our implementation, CCM needs 2.1h/1.6h and DBN needs 
1.2h/0.8h. We will investigate if any approximate Bayesian 
inference calculation exists that can help improve GCM’s 
efficiency. Meanwhile, the search engine can classify the queries 
and initiate a bunch of GCMs that work in parallel for different 
query sets, and thus makes GCM capable of handling billion-scale 
real-time data. 

6. CONCLUSION 
In this paper, we proposed a novel click model called General 
Click Model (GCM) to learn and predict user click behavior 
towards display urls on a search engine.  The contribution of this 
paper is three-fold. Firstly, different from previous approaches 
that learn the model based on each individual query, GCM learns 
the click model based on multiple attributes and the influence of 
different attribute values can be measured by Bayesian inference. 
This advantage in learning helps GCM to achieve a better 
generalization and can lead to better results, especially for the tail 
queries. Secondly, most of the existing works only consider the 
position and the identity of url when learning the model. GCM 
considers more session-specific attributes and we demonstrate the 
importance of these attributes to the final prediction. Finally, we 
found most of the existing click models can be reduced to GCM 
by assigning different parameters.  

We conducted extensive experiments on a large-scale commercial 
advertisement dataset to compare the performance between GCM 
and three state-of-the-art works. Experimental results show that 
GCM can consistently outperform all the baseline models on four 
metrics. 
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9. APPENDIX 

9.1 Our Implementation to Prior Work 
For better comparisons between models, we equally employ the 
Infer.NET framework for all baseline programs. Inspired by the 
code to a very similar model of DBN [17], we implemented 
Cascade, CCM and DBN in the way that the probabilities are 
assumed to obey Beta distributions. At the beginning of the 
program, all those distributions are set to a uniform (1,1)ܽݐ݁ܤ, 
and they will be updated according to Bayesian inference [16]. 

We first look at the Cascade model, we draw the factor graph of 
the Bayesian network assuming ܯ = 3. 

In Figure 14 we see that the relevance r଴, rଵ, rଶ  obey the given 
Beta distributions beta0, beta1 and beta2 respectively, and the 
binary events ܴ଴, . . ܴଶ  are defined according to the Bernoulli 
distribution ܲ(ܴ௜ = 1) = r୧ . Based on Expectation Propagation, 
posterior distributions of r଴, rଵ, rଶ  can be approximated by new 
Beta distributions using Infer.NET, and will be used as the prior 
distribution for the next query session. 

For the sake of simplicity, we ignore the factor graph for CCM 
and DBN here. The basic ideas are the same: the transition 
probability, for example ܲ(ܧ௜ାଵ = ௜ܧ|1 = 1, ௜ܥ = 1) = ൫1ߛ −  ௨೔,௤൯ݏ

can be written in the language of Infer.NET, through two Boolean 
variables Γ and ܵ, satisfying ܲ(Γ = 1) = ܵ)ܲ and ߛ = 1) =  ,௨೔,௤ݏ
where ߛ  and ݏ௨೔,௤  follow some Beta distributions of their own.  
Under the conditions of ܧ௜ = 1 and ܥ௜ = ௜ାଵܧ ,1  will happen if Γ = 1 and ܵ = 0. 

In our implementation, we not only require the relevance ݎ௨೔,௤ and 
the satisfaction rate ݏ௨೔,௤ to follow Beta distributions, at the same 
time, we let ߙଵ, ,ଶߙ ଷߙ  in CCM and ߛ  in DBN satisfy their 
corresponding Beta distributions. They will be inferred by the 
Expectation Propagation process and automatically adjusted 
during the experiment. 

Notice that our implementation of CCM discards the infinite-
chain assumption, and thus runs slower than it has been reported 
in [10]. For DBN, we have not followed the EM steps according 
to [6], and used Bayesian inference instead. This is because we 
want to compare the models rather than the optimization methods. 
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Figure 14. The factor graph of Cascade model under 
Infer.NET when ࡹ = ૜ . Circles are hidden variables and 
beta0..beta2, C0..C2 are observed values 


