
A Novel Click Model and Its Applications to Online
Advertising

Zeyuan Allen Zhu 1,2,*, Weizhu Chen 2, Tom Minka 3, Chenguang Zhu 2,4, Zheng Chen 2

1Fundamental Science Class,
Department of Physics,

Tsinghua University
Beijing, China, 100084

zhuzeyuan@hotmail.com

2Microsoft Research Asia
Beijing, China, 100080

{v-zezhu, wzchen,
v-chezhu, zhengc}
@microsoft.com

3Microsoft Research
Cambridge

Cambridge, CB3 0FB, UK

minka@microsoft.com

4Department of Computer
Science and Technology,

Tsinghua University
Beijing, China, 100084

zcg.cs60@gmail.com

ABSTRACT
Recent advances in click model have positioned it as an attractive
method for representing user preferences in web search and online
advertising. Yet, most of the existing works focus on training the
click model for individual queries, and cannot accurately model
the tail queries due to the lack of training data. Simultaneously,
most of the existing works consider the query, url and position,
neglecting some other important attributes in click log data, such
as the local time. Obviously, the click through rate is different
between daytime and midnight. In this paper, we propose a novel
click model based on Bayesian network, which is capable of
modeling the tail queries because it builds the click model on
attribute values, with those values being shared across queries.
We called our work General Click Model (GCM) as we found that
most of the existing works can be special cases of GCM by
assigning different parameters. Experimental results on a large-
scale commercial advertisement dataset show that GCM can
significantly and consistently lead to better results as compared to
the state-of-the-art works.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models;
H.3.5 [Information Storage and Retrieval]: Online Information
Services; G.3 [Probability and Statistics].

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Attribute, Search engine, Bayesian, Gaussian, Advertisement

1. INTRODUCTION
Utilizing implicit feedback is one of the most essential techniques
for a search engine to better entertain its millions or billions of
users. Implicit feedback can be regarded as a vector of attribute
values, including the query text, timestamps, localities, the click-
or-not flag, etc. Given a query, whether user clicks a url is

strongly correlated with the user’s opinions on the url. Besides,
implicit feedback is readily available. Terabytes of such data is
produced every day, with which a search engine can automatically
adapt to the needs of users by putting the most relevant search
results and advertisements in the most conspicuous places.

Following T. Joachims [13] in 2002, implicit feedback such as
click data has been used in various ways: towards the optimization
of search engine ranking functions (e.g. [4] [3] [6]), towards the
evaluation of different ranking functions (e.g. [5] [12] [14]), and
even towards the display of advertisements or news [1] [19]. Most
of the works above rely on a core method: to learn a click model.
Basically, the search engine logs a large number of real-time
query sessions, along with the user’s click-or-not flags. This data
is regarded as the training data for the click model, which will be
used for predicting the click through rate (CTR) of future query
sessions. The CTR can help improve the normalized discounted
cumulative gain (NDCG) of the search results (e.g. [6]), and play
an essential role in search auctions (e.g. [9] [2]).

However, clicks are biased with respect to presenting order,
reputation of sites, user-side configuration (e.g. display resolution,
web browser), etc. The most substantial evidence is given by the
eye-tracking experiment carried out by T. Joachims [14] [15], in
which it was observed that users tend to click web documents at
the top even if the search results are shown in reverse order. All of
these show that it is desirable to build an unbiased click model.

Recently, a number of studies [19] [7] [8] [6] [10] have attempted
to explain the position-biased click data. In 2007, M. Richardson
et al. [19] suggested that the relevance of a document at position ݅
should be further multiplied by a term ݔ௜, and this idea was later
formalized as the examination hypothesis [7] or the position
model [6]. In 2008, N. Craswell et al. [7] compared this
hypothesis to their new cascade model, which describes a user’s
behavior by assuming she scans from top to bottom. As the
cascade model takes into account the relevance of urls above the
clicked one, it outperforms the examination hypothesis [7].

In 2008, G. Dupret et al. [8] extended the examination hypothesis
by considering the dependency on the positional distance to the
previous click in the same query session. In 2009, F. Guo et al.
[10] and O. Chapelle et al. [6] proposed two similar Bayesian
network click models, that generalized the cascade model by

 * This work was done when the first author was visiting Microsoft
Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02...$10.00.

Figure 1. The empirical CTR with respect to the local hour.

Figure 2. The empirical CTR with respect to the user agent.

analyzing user behavior in a chain-style network, within which the
probability of examining the next result depends on the position
and the identity of the current document.

Nevertheless, despite their successes, previous works have some
limitations. First, they focus on training the click model for each
individual query, and cannot accurately predict tail queries
(lowfrequency queries) due to the inadequate training data.
Second, the aforementioned models only considered the position-
bias, neglecting other bias such as the local time (Figure 1) and
the user agent (Figure 2), which are parts of the session-specific
attributes in the log. We remark that the clicks through rate in
these two graphs are averaged over all the advertisements from
Jul. 29th to Jul. 31st, 2009 in a commercial search engine. This
type of phenomenon has also been observed by D. Agarwal et al.
[1] in predicting clicks for front page news of Yahoo!.

Based on these observations, it is fairly straightforward to build a
click model on multiple attribute values shared across queries,
instead of building models for individual queries. This may bring
us the generalization to predict tail queries despite the lack of
training data for a single query. Furthermore, we believe some
other attributes are very important for click prediction and can be
further incorporated to improve the accuracy. But how to
accurately model the impact of different attribute values on the
final prediction is a challenging problem.

In this paper, we propose a General Click Model built upon a
Bayesian network and we employ the Expectation Propagation
method [16] to perform approximate Bayesian inference. Our
model assumes that users browse urls from top to bottom, and
defines the transition probabilities between urls based on a list of
attribute values, including the traditional ones such as “position”
and “relevance” and our newly-designed ones such as the “local
hour” and the “user agent”. In summary, we highlight GCM with
the following distinguishing features:

• Multi-bias aware. The transition probabilities between
variables depend jointly on a list of attributes. This enables
our model to explain bias terms other than the position-bias.

• Across-query learning. The model learns queries altogether
and thus can predict clicks for one query – even a new query
– using the learned data from other queries.

• Extensibility: The user may actively add or remove attributes
applied in our GCM model. In fact, all the prior works
mentioned above can reduce to our GCM as special cases
when only one or two attributes are incorporated.

• One-pass. Our click model is an on-line algorithm. The
posterior distributions will be regarded as the prior
knowledge for the next query session.

• Application to ads. We have demonstrated our click model in
the CTR prediction of advertisements. Experimental results
show that our click model outperforms the prior works.

The rest of the paper is organized as follows: we first introduce
some definitions and comment on prior works in Section 2, in
which the discoveries motivate us to establish our General Click
Model proposed in Section 3. Next in Section 4 we conduct
experiments upon advertisement data and web search data, and
compare the results in a number of metrics. We then discuss the
extensions in Section 5 and conclude in Section 6.

2. BACKGROUND
We first clarify some definitions that will be used throughout this
paper. When a user submits a query to the search engine, a query
session is initiated. Specially, if a user re-submits the same query,
a different query session is initiated. In our model, we only
process the first page on a query session (we will discuss the
usage of other pages in Section 5).

In each query session, there is a sequence of urls, denoted by ܷ = ሼݑଵ, … ெሽ where the smaller subscript represents a higherݑ
rank, i.e. closer to the top. For regular search results, ܯ is usually
set to 10; while for ads data, ܯ varies for different queries.

In the query session, each display of a url is called a url
impression, which is associated with a list of attribute values,
such as the user’s IP address, the user’s local time and the
category of the url.

Now, we will introduce some prior works concerning click
models, which fall into two categories: examination hypothesis
and cascade model.

2.1 Examination Hypothesis
The examination hypothesis assumes that if a displayed url is
clicked, it must be both examined and relevant. This is based on
the eye-tracking studies which testify that users are less likely to
click urls in lower ranks. In other words, the higher a url is
ranked, the more likely it will be examined. On the other hand, the
relevance of a url is a query-document based parameter which
directly measures the probability that a user intends to click this
url if she examines it. More precisely, given a query ݍ and the url ݑ at position ݅ , the examination hypothesis assumes the
probability of the binary click event ܥ as follows: ܲ(ܥ = ,ݍ|1 ,ݑ ݅)= ܥ)ܲ = ,ݑ|1 ,ݍ ܧ = 1)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௥ೠ,೜ ∙ ܧ)ܲ = 1|݅)ᇣᇧᇧᇤᇧᇧᇥ௫೔ (1)

Notice that (1) applies a hidden random variable ܧ which denotes
whether the user has examined this url.

In general, the examination hypothesis makes the following
assumptions: if the user clicks it, then the url must have been

0.03

0.035

0.04

0.045

0.05

0 4 8 12 16 20 24

cl
ic

k
th

ro
ug

h
ra

te

The local hour

0 0.01 0.02 0.03 0.04 0.05

Other users, including IE users

non-Linux user with Opera

non-Linux user with FireFox

Linux user

Click through rate

examined; if the user has examined the url, the click probability
only depends on the relevance ݎ௨,௤ ; and the examination
probability ݔ௜ depends solely on the position ݅.
Based on the examination hypothesis, three simple models
studying ݎ௨,௤ and ݔ௜ have been introduced: the Clicks Over
Expected Clicks (COEC) model [20], the Examination model [6],
and the Logistic model [7]. They have been compared in [6] and
experimentally proved to be outperformed by the cascade model.

An important extension of the examination hypothesis is the user
browsing model (UBM) proposed by G. Dupret et al. [8]. It
assumes the examination ܧ depends not only on the position ݅ but
also on the previous clicked position ݈ in the same query session
(݈ = 0 if not existed). ܲ(ܥ = ,ݍ|1 ,ݑ ݅, ݈) = ܥ)ܲ = ,ݑ|1 ,ݍ ܧ = 1)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௥ೠ,೜ ∙ ܧ)ܲ = 1|݅, ݈)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ௫೔,೗ (2)

2.2 Cascade Model
The cascade model [7] differs from the examination hypothesis
above in that it aggregate the clicks and skips in a single query
session into a single model. It assumes the user examines urls
from the first one to the last one, and the click depends on the
relevance of all the urls shown above.

Let ܧ௜, ௜ be the probablistic events indicating whether the ݅th urlܥ
(1 ≤ ݅ ≤ is examined and clicked respectively. The cascade (ܯ
model makes the following assumptions:

(ଵܧ)ܲ • = 1
௜ାଵܧ)ܲ • = ௜ܧ|1 = 0) = 0
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, (௜ܥ = 1 − ௜ܥ
௜ܥ)ܲ • = ௜ܧ|1 = 1) = ௜ is the ݅th urlݑ ௨೔,௤ whereݎ

in which the third assumption implies that if a user finds her
desired url, she immediately closes the session; otherwise she
always continues the examination. The cascade model assumes
that there is no more than one click in each query session, and if
examined, a url is clicked with probability ݎ௨,௤ and skipped with
probability 1 − ,௨,௤. Thusݎ

௜ܥ)ܲ = 1) = ௨೔,௤ݎ ෑ ቀ1 − ௨ೕ,௤ቁ௜ିଵ௝ୀଵݎ (3)

Based on the cascade model, two Bayesian network models have
been proposed in 2009, both aiming at modifying the third
assumption ܲ(ܧ௜ାଵ = ௜ܧ|1 = 1, (௜ܥ = 1 − ௜ܥ , and allowing
multiple clicks in a single session. We will separately introduce
these two models in the following subsections.

2.2.1 Click Chain Model (CCM)
The click chain model is introduced by F. Guo et al. [10]. It
differs from the original cascade model in defining the transition
probability from the ݅th url to the (݅ + 1)th. CCM replaces the
third assumption in cascade model with the following:

௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 0) = ଵ (4)ߙ
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 1) = ଶ൫1ߙ − ௨೔,௤൯ݎ + ௨೔,௤ (5)ݎଷߙ

where ܽଵ, ,ଶߙ ଷߙ are three global parameters independent of the
users and the urls. CCM assumes that if the url at position ݅ has
been examined, the user clicks it according to the relevance ݎ௨೔,௤
as usual; if the user chooses not to click, the probability of
continuing is ߙଵ ; if the user clicks, the probability to continue
ranges between ߙଶ and ߙଷ, depending on the relevance ݎ௨೔,௤.

CCM assumes that ܽଵ, ,ଶߙ ଷߙ are given and fixed, and then
leverages the Bayesian inference to infer the posterior distribution
of the document relevance ݎ. Under the infinite-chain assumption
the authors derived a simple method in computing the posterior,
which enables CCM to run very efficiently.

2.2.2 Dynamic Bayesian Network (DBN)
The DBN model proposed by O. Chapelle and Y. Zhang [6] is
very similar to CCM, but differs in the transition probability:

௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 0) = (6) ߛ
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 1) = ൫1ߛ − ௨೔,௤ݏ is a pre-defined parameter, and ߛ ௨೔,௤൯ (7)ݏ , in place of ݎ௨೔,௤ , is the

measurement of the user’s satisfaction on the actual content of ݑ௜
given query ݍ . It is emphasized in [6] that a click does not
necessarily imply the user’s satisfaction on the content, instead,
the user may have been attracted by some misleading abstracts.
Therefore, the introduction of ݏ௨೔,௤ is to depict the actual
relevance, rather than the perceived relevance ݎ௨೔,௤ . Both values
are estimated by applying the expectation-maximization algorithm
in their paper, while there exists a Bayesian inference version to
the model that is very similar to DBN on [17].

3. GENERAL CLICK MODEL
We now introduce our General Click Model (GCM). Basically, it
is a nested structure. The outer model in this nested structure is a
Bayesian network, in which we assume users scan urls from top to
bottom. The transition probabilities in this network are controlled
by our inner model. Specifically, each individual probability is
defined as summation of parameters, each corresponding to a
single attribute value. This nested structure enables GCM to
overcome not only the position-bias, but also other kinds of bias
in learning the relevance and predicting the clicks.

3.1 The Outer Model
The outer Bayesian network of the General Click Model is
illustrated in Figure 4, and the flow chart of the user behavior is
given in Figure 3. The subscript goes from 1 to ܯ, where ܯ is the
total number of urls on this page. As before, we define two binary
random variables ܥ௜ and ܧ௜ that indicate whether the user clicks or
examines the url on the ݅th position. In addition, we employ three
continuous random variables at each position, ޿௜, ௜ and ܴ௜. The߀
continuous behavior of ޿௜, ௜ and ܴ௜ will enable GCM to handle߀
not only the position-bias but other kinds of session-specific bias,
to be explained later.

We assume the user examines the displayed urls from position ݅ = 1 to ݅ = ௜ܧ) ௜ݑ After examining url .ܯ = 1), the user chooses
to click it according to the relevance ܴ௜ . The click event will
occur if and only if ܴ௜ > 0. Either way, the user will continue to
examine the next url ݑ௜ାଵ with some probability: if ݑ௜ has been
clicked (ܥ௜ = 1), the user will examine ݑ௜ାଵ if and only if ܣ௜ > 0;
if ݑ௜ has not been clicked (ܥ௜ = 0), the user will examine ݑ௜ାଵ if

and only if ܤ௜ > 0. The following equation sets precisely describe
the model:

(ଵܧ)ܲ • = 1 (8)
௜ାଵܧ)ܲ • = ௜ܧ|1 = 0) = 0 (9)
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 0, (௜߀ = ॴ(߀௜ > 0) (10)
௜ାଵܧ)ܲ • = ௜ܧ|1 = 1, ௜ܥ = 1, (௜޿ = ॴ(ܣ௜ > 0) (11)
௜ܥ)ܲ • = ௜ܧ|1 = 1, ܴ௜) = ॴ(ܴ௜ > 0) (12)

where ॴ(.) is the characteristic function, and we define Φ =ሼܣ௜, ,௜ܤ ܴ௜|݅ = 1 … .ሽܯ

This model differs from DBM or CCM in that the transition
probability depends on continuous random variables in Φ. Next,
we will show that those variables are further modeled as the
summation of a list of parameters, each corresponding to an
attribute value.

3.2 The Inner Model
When a query session is initiated with query ݍ and urls ܷ =ሼݑଵ, … ெሽ, the attributes the search engine holds are far beyondݑ
the url and the query themselves. We separate the session-specific
attributes into two categories:

• The user-specific attributes: the query, the location, the
browser type, the local hour, the IP address, the query
length, etc. We denote their values by ଵ݂௨௦௘௥ , … ௦݂௨௦௘௥ .

• The url-specific attributes: the url, the displayed position
(=݅), the classification of the url, the matched keyword, the
length of the url, etc. For a specific url ݑ௜, we denote these
attribute values by ௜݂,ଵ௨௥௟, … ௜݂,௧௨௥௟ .

As an illustration, if we take five attributes into account: the
query, the browser type, the local hour, the url, and the position,
we have ݏ = 3, ݐ = 2. For a specific url impression on position 2,
we may have the following values:

• ଵ݂௨௦௘௥=“Microsoft Research”; ଶ݂௨௦௘௥=IE; ଷ݂௨௦௘௥=7pm;
• ଶ݂,ଵ௨௥௟=“research.microsoft.com”, ଶ݂,ଶ௨௥௟=2.

At this point, we assume that attributes are all of discrete values1.
Furthermore, we assume each value ݂ is associated with three

1 We will consider the continuous feature values in Section 5.

parameters ߠ௙஺, ௙ோ, each of which is a continuous randomߠ ௙஻ andߠ
variable. We define:

௜޿ = ෍ ௙ೕೠೞ೐ೝ஺௦௝ୀଵߠ + ෍ ௙೔,ೕೠೝ೗஺௧௝ୀଵߠ + ݎݎ݁

௜߀ = ෍ ௙ೕೠೞ೐ೝ஻௦௝ୀଵߠ + ෍ ௙೔,ೕೠೝ೗஻௧௝ୀଵߠ + ݎݎ݁

ܴ௜ = ෍ ௙ೕೠೞ೐ೝோ௦௝ୀଵߠ + ෍ ௙೔,ೕೠೝ೗ோ௧௝ୀଵߠ + ݎݎ݁

(13)

where ݁ݎݎ is an error term satisfying ܰ(0,1) distribution. For
simplicity of explanation, we define Θ = ൛ߠ௙஺, ,௙஻ߠ ݂ ௙ோห∀݂ൟ whereߠ
enumerates from all distinct attribute values. Besides error terms,
we treat ޿௜, ௜߀ and ܴ௜ as summations of ݏ + ݐ parameters in Θ ,
and those parameters satisfy independent Gaussian distributions.
We emphasize that variables in Φ are defined for a specific query
session, while parameters in Θ are defined across sessions. We
will next use the Bayesian inference to learn the distributions for
those parameters.

3.3 The Algorithm: On-line Inference
Our algorithm is built upon the Expectation Propagation method
[16]. Given the structure of a Bayesian network with hidden
variables, EP takes the observation values as input, and is capable
of calculating the inference of any variable. We simply assume an
EP calculator ܩ exists while the detailed algorithmic design can
be found in [16] [18].

Algorithm: The General Click Model

ܨ = ሼ ଵ݂௨௦௘௥, … ௦݂௨௦௘௥ሽ ∪ ൛ ௜݂,ଵ௨௥௟ , … ௜݂,௧௨௥௟ൟ௜ୀଵெ

1. Initiate Θ = ൛ߠ௙஺, ,௙஻ߠ ௙ோห∀݂ൟ and let each parameter in Θߠ
satisfy a prior ܰ(0, 1 ݏ) + ⁄(ݐ).

2. Construct a Bayesian inference calculator ܩ using
Expectation Propagation.

3. For each session ݏ
 ݏ number of urls in ← ܯ .4
5. Obtain the attribute values

6. Input ൛ߠ௙஺, ,௙஻ߠ ௙ோห݂ߠ ∈ ൟܨ ⊂ Θ to ܩ as the prior
Gaussian distributions.

7. Input the user’s clicks to ܩ as observations.
8. Execute ܩ to measure the posterior distributions for ൛ߠ௙஺, ,௙஻ߠ ௙ோห݂ߠ ∈ ൟ, and update them in Θܨ
9. End For

Examine
 ݅th document

Click ݅th
document

See more
results?

See more
results?

Examine
 (݅ + 1)th document

Yes ܴ௜ > 0

ܴ௜ < 0 No

No

Done

௜޿ < 0

Yes

No

Done

௜߀ < 0

௜޿ > 0

Yes ߀௜ > 0

Figure 3. The user graph of GCM with continuous random
variables ࢏ࡾ, ,࢏ࢡ .࢏ࢢ

Figure 4. The Bayesian network of GCM. ࢏ࢡ, ,࢏ࢢ ,࢏ࡱ are ࢏ࡾ
hidden variables, while ࢏࡯ is the observed clicks. ૚ ≤ ࢏ ≤ ࡹ

ଵܧ ଶܧ

ܴଵ ܴଶ

ଵܥ ଶܥ

ଵ޿ ଶ޿

ଵ߀ ଶ߀

 ଷܧ

ܴଷ

 ଷܥ

 ଷ޿

 ଷ߀

ସܧ

ܴସ
ସܥ

ସ޿
ସ߀

…

…

…

…

…

Examine next
if clicked

Examine next
if not clicked

Examined

Clicked

Relevant

As stated previously, we assign each parameter in Θ a Gaussian
distribution, and update this distribution in the assumed-density
filtering mechanism [16]: for each query session, the calculated
posterior distributions will be used as prior distributions for the
next query session.

At the beginning of the algorithm, we assume all parameters in Θ
satisfy a default prior Gaussian distribution, say ܰ(0,1/(ݏ + ,((ݐ
for all distinct values ݂. We assume the nested Bayesian network
(described in section 3.1 and 3.2) has been constructed and the
Bayesian inference calculator ܩ is properly set.

We will process the query sessions one by one. For each coming
session we obtain its attribute value list ܨ = ሼ ଵ݂௨௦௘௥, … ௦݂௨௦௘௥ሽ ∪ ൛ ௜݂,ଵ௨௥௟ , … ௜݂,௧௨௥௟ൟ௜ୀଵெ

and retrieve their corresponding parameters in Θ as prior Gaussian
distributions for ܩ , along with the click-or-not flags. ܩ will
calculate the posterior Gaussian distributions of ߠ௙஺, ௙஻ߠ and ߠ௙ோ for
each related attribute value ݂ ∈ ܨ . The inferred posterior
Gaussians are saved for the next iteration.

Note that if ܯ is fixed, the Bayesian network structure stays fixed
throughout the algorithm. Though values ௝݂௨௦௘௥ and ௜݂,௝௨௥௟ vary
from session to session, however, the structure of the Bayesian
factor graph remains unique. In some other words, for example, ܣ௜ is always the summation of ݏ + .term ݎݎ݁ Gaussians and an ݐ
This behavior enables us to pre-calculate the Bayesian inference
formula for ܩ and speed up the on-line inference calculation, for
example using software Infer.NET [18]. If ܯ varies, such as for
advertisement data, we may build ܯ different calculators ܩଵ, ,ଶܩ ..
and classify the query session according to the corresponding
value ܯ.

3.4 Reduction from Prior Works
In this section we will see that all prior models we mentioned in
Section 2 can be regarded as special cases of GCM, and this is
why our model is named General Click Model.

As shown above, prior models give the transition probabilities
explicitly, such as ݎ௨೔,௤ . Instead, we model them as continuous
random variables ܣ௜, ௜ܤ and ܴ௜ and defined each of them as the
summation of a list of parameters in Eq. (13). The following
lemma connects prior works to our continuous-random-variable
definition.

Lemma: If we define an attribute value ݂ to be the pair of query
and url ݂ = ,௜ݑ) ௜ܥ)ܲ the traditional transition probability ,(ݍ = ௜ܧ|1 = 1) = ௨೔,௤ݎ
can reduce to ܲ(ܥ௜ = ௜ܧ|1 = 1, ܴ௜) = ॴ(ܴ௜ > 0)
if we set ܴ௜ = ௙ோߠ + ௙ோߠ and ݎݎ݁ is a point mass Gaussian (also

known as the Dirac delta distribution) centered at ିܨଵ൫ݎ௨೔,௤൯ ,
where ܨ is the cumulative distribution function of ܰ(0,1).

Proof. Assume the probability density function of ܰ(0,1) is (ݔ)݌,
we make the following calculation: ܲ(ܥ௜ = ௜ܧ|1 = 1) = න (ݔ)݌ ∙ ॴ൫ݔ + ௨೔,௤൯ݎଵ൫ିܨ > 0൯dݔ= න ஶݔd(ݔ)݌

ିிషభቀ௥ೠ೔,೜ቁ = ∎௨೔,௤ݎ

Similarly, this lemma can be extended to ޿௜ and ߀௜. We will next
adopt the lemma and re-write Eq. (13) in the form that prior
models can reduce to our GCM, with the restriction that all
Gaussian distributions degenerate to point mass Gaussians.

3.4.1 Examination hypothesis
The traditional examination hypothesis assumes that the click
probability is the multiplication of a position-based examination
rate ݔ௜ାଵ and a relevance-based click rate ݎ௨೔,௤ (see Eq.(1)). In
GCM, if ܲ(ܤ௜ > 0) = ୧޿)ܲ > 0) = ;௜ାଵݔ ܲ(ܴ௜ > 0) = ௨೔,௤ (14)ݎ

we immediately arrive at the examination hypothesis Eq.(1)
according to Eq. (8) ~ (12). To achieve this we define two
attributes ଵ݂ = ݅ + 1 and ଶ݂ = ,௜ݑ) (ݍ . According to the lemma,
we fix parameters ߠ௙భ஺, ௙భ஻ߠ and ߠ௙మோ to the point mass Gaussians

centered at ିܨଵ(ݔ௜ାଵ) (௜ାଵݔ)ଵିܨ , and ିܨଵ൫ݎ௨೔,௤൯ respectively.
Then, Eq. (14) will be achieved if we define the following in Eq.
௜ܣ 2 :(13) = ௙భ஺ߠ + ;ݎݎ݁ ௜ܤ = ௙భ஻ߠ + ௜ܴ ;ݎݎ݁ = ௙మோߠ + (15) ݎݎ݁

Its extension, the user browsing model (UBM) [8] can similarly
reduce to GCM, by letting ܲ(޿୧ > 0) = ௜ାଵ,௟ݔ and ܲ(ܴ௜ > 0) ௨೔,௤ݎ= , where ݈ is the distance to the previous click. The only
modification we need is to set ଵ݂ = (݅ + 1, ݈), and ߠ௙భ஺, ௙భ஻ߠ be the

point mass Gaussians centered at ିܨଵ൫ݔ௜ାଵ,௟൯.

3.4.2 Cascade models
In the traditional cascade model, it is just a special case of GCM
where ߀௜ > 0 and ܣ௜ < 0, meaning that the user always examines
the next url if not clicked, and immediately stops if clicked (see
Eq. (10) and (11)). This can be approximated if we define a
dummy attribute ଵ݂ , and let ߠ௙భ஺, ௙భ஻ߠ be point mass Gaussians at −10 and +10 respectively. Again, we let ଶ݂ = ,௜ݑ) .and set Eq (ݍ
(13) to ܣ௜ = ௙భ஺ߠ + ;ݎݎ݁ ௜߀ = ௙భ஻ߠ + ௜ܴ ;ݎݎ݁ = ௙మோߠ + (16) ݎݎ݁

In the click chain model (CCM), ߙଵ, ଶߙ and ߙଷ are global
constants. We define a dummy attribute ଵ݂ and let ߠ௙భ஻ be fixed to

point mass centered at ିܨଵ(ߙଵ), while ଶ݂ = ,௜ݑ) ௙మோߠ and (ݍ are as

before. Then, we add a new parameter ߠ௙మ஺, a point mass Gaussian
centered at ିܨଵ(ߙଶ(1 − (௨೔,௤ݎ + -௨೔,௤). Under such configuraݎଷߙ
tion, we arrive at Eq. (4) and Eq. (5) with the following: ܣ௜ = ௙మ஺ߠ + ;ݎݎ݁ ௜߀ = ௙భ஻ߠ + ௜ܴ ;ݎݎ݁ = ௙మோߠ + (17) ݎݎ݁

In the dynamic Bayesian network (DBN) model, ߛ is a global
constant. We again define a dummy attribute ଵ݂ and let ߠ௙భ஻ satisfy

the point mass Gaussian at ିܨଵ(ߛ). Then we define ߠ௙మ஺ to be point

mass Gaussian at ିܨଵ(1)ߛ − ௨೔,௤)), in which ଶ݂ݏ = ,௜ݑ) ௙మோߠ and (ݍ
are as before. Now we arrive at Eq. (6) and (7) in changing Eq.
(13) to Eq. (17).

2 In consistence with Eq. (13), we tacitly assume that ߠ௙భோ = ௙మ஺ߠ ௙మ஻ߠ= = 0, similarly hereinafter.

4. EXPERIMENTS
In this section, we conduct experiments on the advertisement data
of a commercial search engine. Four different metrics have been
employed to verify and compare the accuracy for different click
models. At the same time, we had an additional test on the web
search data in the last sub-section.

4.1 Experimental Setup
We implemented the Cascade model [7], the Click Chain Model
[10] and the Dynamic Bayesian Model [6] under the Bayesian
inference framework Infer.NET 2.3 [18]. The global parameters, ߙଵ, ,ଶߙ in DBM are automatically studied using ߛ ଷ in CCM andߙ
Bayesian inference, and the details of which can be found in the
Appendix. For the cascade model, we ignored all the sessions with
more than one clicks in the training data. Those three algorithms
are employed as the baseline models and we ignored the
examination-hypothesis-based ones such as UBM [8], because the
most recent works have clearly suggested that the examination-
hypothesis-based models are worse than the cascade-based ones
[10] [6]. All the programs, including our General Click Model, are
implemented in MS Visual C# 2008, and the experiments are
carried out on a 64-bit server with 47.8 GB of RAM and eight
2.40 GHz AMD cores.

Next, we will introduce two datasets sampled from a commercial
search engine that will be used in our experiment.

4.1.1 Advertisement Dataset
We collect three day’s click through data with ads clicks and url
impressions and 12,691 queries are sampled. As stated before, we
restrict ourselves to the results on the first page. If multiple clicks
exist on a single page, we ignore the click order and assume the
user clicks from top to bottom. We retrieve 4,530,044 query
sessions and 16,268,349 url impressions from the log from Jul.
29th to Jul. 31st. The number of url impressions on a single page
vary from 1 to 9 on this search engine, with an average of 3.6 url
impressions in each query session. We use the first 68 hours of
data to train and predict on the last 4 hours.

Following [10], we divide the queries according to the query
frequency – the number of sessions in each query (see Table 1).
We conduct experiments not only for the whole data set (Set “All”
in Table 1), but also for individual frequency intervals Set 1 ~ Set
8. We discard Set 9 because the number of sessions for each query
is so large that a simple model can predict it accurately. We
employ 21 different attributes in our GCM for this dataset,
including the user IP, the user country, the user agent, the local
hour, the ad id, the ad category, the matched keyword, etc.

4.1.2 Search Dataset
Similar to the advertisement data, we retrieve a three-day log of
web search results from Jun. 28th to Jun. 30th, and sample 7,568
queries with 959,148 query sessions and 8,813,048 url
impressions. The first two days of data are used as the training set
while the third day is used for testing. We classify the queries
according to their frequency in Table 2. We ignore two 30,000+
frequency queries “google” and “facebook”, because nearly all the
users simply click on the first result and close the session.

Regarding the lack of data, we have very limited attributes for this
search dataset. Except for the query, url and position, we employ
in GCM the following attributes: the user country, the user agent,
the global hour and the domain of the url. A total of 7 attributes.

4.2 Evaluation on Log-Likelihood
A very common measurement of the accuracy for click models is
the Log-Likelihood (LL), also known as the empirical cross
entropy. For a single url impression, if the predicted click rate is ܿ, the LL value is log ܿ if this url is clicked, and is log(1 − ܿ) if
not clicked. The LL of a dataset with a number of query sessions
is measured as the average LL on individual url impressions. A
perfect click prediction has an LL of 0 and the larger this number
indicates the better the prediction. Based on [10], the
improvement of LL value ℓଵ over ℓଶ is computed as ൫݁ℓభିℓమ −1൯ × 100%.

We demonstrate our LL test result for the advertisement dataset in
Figure 5. The baseline algorithm equally predicts all url
impressions with the same probability – the average probability
over the entire test set. Being aware that the click probability for
advertisement data is significantly smaller than for web search
data, one may find that even the baseline algorithm’s LL value is
very close to 0.

From Figure 5 we clearly see the superiority of our proposed
GCM in the click prediction of advertisement data. We emphasize
that GCM overwhelms the most recent click models CCM and
DBN especially for tail queries – less frequent queries. This is
expected because our model trains queries altogether, while prior
works train the data by query, thus lacking the training data for
tail queries. Our experiment also confirmed the result in [6] that
DBN should perform better than the cascade model. On the entire
dataset our improvement is 1.2% over CCM and DBN, and 1.5%
over the Cascade model. We remark that this percentage is
significant because ads data has a rather low click rate.

Set Query Freq #Queries
Train set Test set

#Sessions #Urls #Sessions #Urls

1 1~10 2,238 10,847 100,144 5,686 50,651

2 10~30 2,379 43,254 392,736 19,923 175,832

3 30~100 2,035 106,962 973,685 52,313 466,811

4 100~300 587 97,984 868,812 49,355 425,080

5 300~1000 219 111,431 960,250 57,902 488,684

6 1,000~3,000 79 128,270 1,114,753 64,696 549,797

7 3,000~10,000 24 115,082 1,045,407 51,827 459,584

8 10,000~30,000 5 101,584 943,057 53,805 493,313

All All of above 7,566 715,414 6,398,844 355,507 3,109,752

Table 2. Search dataset

Set Query Freq #Queries
Train set Test set

#Sessions #Urls #Sessions #Urls

1 1~10 141 866 5,698 177 1,057

2 10~30 1,211 24,928 1,664,403 2,122 13,664

3 30~100 5,058 308,203 1,810,009 18,629 105,716

4 100~300 3,988 674,654 3,148,826 40,304 180,532

5 300~1000 1,651 847,722 3,011,482 54,098 184,606

6 1,000~3,000 481 792,422 2,470,665 48,449 147,561

7 3,000~10,000 132 660,645 1,508,985 42,067 92,122

8 10,000~30,000 22 315,832 769,786 19,338 48,808

9 30,000+ 7 642,835 1,046,948 37,796 64,236

All All of above 12,691 4,267,241 15,431,104 262,803 837,245

Table 1. Advertisement dataset

Figure 5. The log-likelihood of different models on the
advertisement dataset, for different query frequencies.

Figure 6. The perplexity of different models on the
advertisement dataset, for different query frequencies.

Figure 7. Actual vs predicted CTR for GCM and DBN

Figure 8. Actual vs predicted CTR for Cascade and CCM

4.3 Evaluation on Perplexity
We also incorporate click perplexity [11] [10] as the evaluation
metric for our model. This value measures the accuracy for
individual positions separately and will penalize a model that
performs poorly even in a single position. For a given position ݅,
and a set of query sessions ݏଵ, … ே. We assume that all sessionsݏ
have more than ݅ url impressions, and use ܿଵ, … ܿே to denote the
binary click events of the ݅ th url for ݏଵ, … ேݏ respectively. Let ݍଵ, … ேݍ indicate the corresponding predicted click rates. The
click perplexity at position ݅ is: ݌௜ = 2ଵே ∑ ௖೔೔ಿసభ ୪୭୥మ ௤೔ା(ଵି௖೔) ୪୭୥మ(ଵି௤೔)
The perplexity of the entire dataset is the average of ݌௜ over all
positions. A perfect click prediction will have a perplexity of 1
and the smaller this number indicates better prediction accuracy.
The improvement of perplexity value ݌ଵ over ݌ଶ is calculated as (݌ଶ − ଶ݌)/(ଵ݌ − 1) × 100% [10].

In Figure 6 we have compared the perplexity for different models.
Our proposed CCM outperforms the cascade model with a 17.4%
improvement, CCM with 12.9% and DBN with 12.1%. Again,
the superiority is highlighted when the query frequency is low.
We will illustrate the positional perplexity in the Section 4.5.

4.4 Evaluation on R2
In this experiment, we sort url impressions according to their
predicted CTR, and then divide them into blocks of 1,000 url
impressions each. In block ݅, we define ݔ௜ the predicted CTR that
is averaged over 1,000 individual impressions, and define ݕ௜ the
actual CTR that is the number of empirical clicks divided by

1,000. We then draw the ݕ-ݔ scatter graph for all the four models
in Figure 7 and Figure 8. One may see that the points (ݔ௜, ௜) ofݕ
GCM are the closest to ݕ = and thus it has the highest click ,ݔ
prediction accuracy. More precisely, we use the ܴଶ value to
measure the prediction.

The coefficient of determination, also known as ܴଶ , has been
widely used in statistics to measure the linear relationship
between two sets of data. For ሼݔ௜ሽ௜ୀଵே and ሼݕ௜ሽ௜ୀଵே , ܴଶ is calculated
as the following (assuming ܽ = 1, ܾ = 0 in our case): ܴଶ = 1 − ∑ ௜ݕ) − ௜ݔܽ − ܾ)ଶே௜ୀଵ∑ ௜ݕ) − ത)ଶே௜ୀଵݕ

The larger ܴଶ indicates the more correlated ሼݕ௜ሽ௜ୀଵே to ሼݔ௜ሽ௜ୀଵே , and
thus the better performance of the model. An optimal value of ܴଶ

is 1. Among the four models GCM does the most outstanding job,
with an ܴଶ of 0.993, while Cascade, CCM and DBN receive
0.956, 0.939 and 0.958 respectively.

4.5 Evaluation on Bias
To distinguish between models on how well the position-bias is
explained, we separately compare the prediction accuracies for
different positions, on the basis of click probability (Figure 9) and
position perplexity (Figure 10).

In Figure 9, we averaged the click rates for all 9 positions, and
compare them with the actual click rates. Results show that all the
models accurately predict the click rate on the first two positions,
while GCM is undoubtedly the best model to explain the click rate
for the last four url impressions. Something worth noting is that

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 All

Lo
g-

Li
ke

lih
oo

d
Baseline
Cascade
CCM
DBN
GCM

1

1.05

1.1

1.15

1.2

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 All

Pe
rp

le
xi

ty

Baseline
Cascade
CCM
DBN
GCM

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Ac
tu

al
 C

TR

Predicted CTR

GCM

DBN

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Ac
tu

al
 C

TR

Predicted CTR

Cascade

CCM

Figure 9. Positional CTR for the advertisement data

Figure 10. Positional perplexity for the advertisement data.

Figure 11. The log-likelihood of different models on
the search dataset, for different query frequencies.

Figure 12. The perplexity of different models on
the search dataset, for different query frequencies.

Figure 13. Comparisons of the estimated and actual click rates
for different local hours on the advertisement dataset.

those global constants, ߙଵ, ,ଶߙ in DBN, are not ߛ ଷ in CCM andߙ
associated with the position ݅. These variables force the click rate
to decrease exponentially with ݅, while for advertisement data, this
assumption is not necessarily true.

In Figure 10, we can also see that GCM is the best among the five.
It has an improvement of 5.6% on the first position, and around 30% on the last position over CCM and DBN.

To work in concert with our discovery in Figure 1, we examined
how well our GCM predicts the query sessions for different local
hours. Though the test set we employ has a span of only 4 hours
in the server time, the local hour of global users varies from 13:00
to 24:00. The results in Figure 13 show that our GCM
successfully explained the local hour bias, while in contrast, DBN
and CCM fail to explain the CTR drop for the midnight users.

At last, we compare the influences of all attributes incorporated in
GCM and see which of them are the most important. Fix an
attribute, we enumerate from all of its discrete values and retrieve
a set of Gaussian distributions. Then, the standard deviation of
those Gaussians’ mean values are calculated. According to our
model, the larger this deviation, the more influential this attribute
is. Results show that the three most influential attributes are the
position, the match type (strongly related to the relevance) and the
user agent (recall Figure 2).

4.6 Additional Test on Search Data
We have shown the overwhelming performance of our proposed
GCM on ads data. As an addition to this paper, we hope to know
how well it predicts the clicks in web search results.

In Figure 11 and Figure 12, we compared our proposed GCM with
the most recent model CCM and DBN on the search data. The
log-likelihood result and the perplexity result both illustrate that
GCM does comparably well with the state-of-the-art models, and
with a slight improvement on the low frequency query set, as
expected. One thing worth noting is that DBN and CCM
separately show their competence on high and low frequency data
sets respectively, while GCM does well on all kinds of
frequencies.

We regard the reasons for the insignificant improvement for
search data as the follows, and we will do more investigation for
this additional work in the future:

• Prior works focused on the search data and reasonably
simplified the model. This enables the model to do well on
the search data, but may fail in explaining the ads.

0.00001

0.0001

0.001

0.01

0.1

1

1 3 5 7 9

CT
R

Position

Actual
DBN
CCM
Cascade
GCM

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1.5

1 3 5 7 9

Pe
rp

le
xi

ty

Position

Baseline
DBN
CCM
Cascade
GCM

-0.4
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

0
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 All

Lo
g-

Li
ke

lih
oo

d

CCM
DBN
GCM

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 All
Pe

rp
le

xi
ty

CCM
DBN
GCM

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

0.06
0.065

13 15 17 19 21 23

Cl
ic

k
Ra

te

Local hour

Actual
GCM
DBN
CCM

• Based on the search data available to us, most of the
important attributes we employed for the ads data are
missing. We incorporate in GCM only 7 attributes for the
web search data, in comparison with the 21 attributes for
the advertisement data.

As mentioned by an anonymous reviewer, the problem of click
mode in advertising is considered significantly harder than in web
search. This is because the volume of the low amount of data
available as well as the low CTR rates. So it is not surprising that
a more complex model such as GCM does better than competitors
on ad data and does not show improvements on search data.

5. DISCUSSIONS & FURTHER WORKS
We have seen that the prior works can theoretically reduce to our
GCM, and at the same time, our model outperforms prior works in
advertisement data. In this section we discuss some pros and cons
and potential extensions.

To learn CTR@1. One of the most important by-products of the
cascade click model is an unbiased CTR measurement assuming
the url is placed at position 1. This value can be further used to
improve NDCG [6], or build the auction for ads [9]. In our GCM,
we can predict CTR@1 in this way.

CTR@1 can be learned in a similar way in our model. For a given
url impression, assuming its position to be 1, some of the user-
specific attributes are missing during the prediction, such as the
local hour and user location. Under these circumstances, we may
calculate the expected distributions ॱሾܣ௜ሿ, ॱሾܤ௜ሿ and ॱሾܴ௜ሿ over
the distributions of all missing attributes. Practically, these
distributions can be approximated by the empirical data. At last, ܲ(ܴଵ > 0) is the probability of clicks if this url is put at position 1.

Using the variance. One important feature of GCM is that each
attribute value is associated with a variance, attached to its
Gaussian distribution. This value measures the significance of this
attribute so we no longer need an extra confidence calculation
such as the Appendix of [6]. If GCM is applied to the real-time
search engine, this variance could be enlarged periodically, maybe
once a day, because the web data keeps changing as time goes by.

Continuous attribute values. Our model assumes the attribute
values to be discrete, however, there might exist some continuous
attributes, e.g. the widely used BM25 score in ranking. One way
to incorporate such an attribute is to divide continuous values into
discrete bins, such as 1,000 equal-width intervals. A more
straight-forward way is to modify Eq. (13) by adding
multiplication terms such as ߠ஻ெଶହோ ∙ is the BM25 value ݔ where ,ݔ
and ߠ஻ெଶହோ is a global parameter that is independent of the value ߠ .ݔ஻ெଶହோ behaves as a dynamic weight associated to this attribute
and can be learned by Bayesian inference.

Make use of the page structure. As stated in [6], we can make
use of the pagination links on the search page in designing a more
accurate Bayesian network. More importantly, in the ads
distribution of our commercial search engine, url impressions are
allocated in two different areas – the main line and the side bar. In
our experiment, the actual CTR of the former is significantly
larger than the latter. We will in our further work separate our
Bayesian network into two parts which might better explain the
area-bias of the CTR estimation in the advertisement data.

Running time. Our GCM achieved the result on the entire ads
dataset in 10.3 hours and the entire search dataset in 2.7 hours.
Under our implementation, CCM needs 2.1h/1.6h and DBN needs
1.2h/0.8h. We will investigate if any approximate Bayesian
inference calculation exists that can help improve GCM’s
efficiency. Meanwhile, the search engine can classify the queries
and initiate a bunch of GCMs that work in parallel for different
query sets, and thus makes GCM capable of handling billion-scale
real-time data.

6. CONCLUSION
In this paper, we proposed a novel click model called General
Click Model (GCM) to learn and predict user click behavior
towards display urls on a search engine. The contribution of this
paper is three-fold. Firstly, different from previous approaches
that learn the model based on each individual query, GCM learns
the click model based on multiple attributes and the influence of
different attribute values can be measured by Bayesian inference.
This advantage in learning helps GCM to achieve a better
generalization and can lead to better results, especially for the tail
queries. Secondly, most of the existing works only consider the
position and the identity of url when learning the model. GCM
considers more session-specific attributes and we demonstrate the
importance of these attributes to the final prediction. Finally, we
found most of the existing click models can be reduced to GCM
by assigning different parameters.

We conducted extensive experiments on a large-scale commercial
advertisement dataset to compare the performance between GCM
and three state-of-the-art works. Experimental results show that
GCM can consistently outperform all the baseline models on four
metrics.

7. ACKNOWLEDGMENTS
The authors want to thank Haixun Wang, Gang Wang and Dakan
Wang from MSRA for useful discussions, and acknowledge Matt
Callcut and all three anonymous reviewers for their comments.

Zeyuan Allen Zhu thanks Fan Guo from CMU for his suggestions
on this topic. Zeyuan is also partially supported by the National
Innovation Research Project for Undergraduates (NIRPU).

8. REFERENCES
[1] Agarwal, D., Chen, B-C., and Elango, P. Spatio-Temporal

Models for Estimating Click-through Rate. In WWW 2009.

[2] Aggarwal, G., Muthukrishnan, S., Pál, D., and Pál, M.
General Auction Mechanism for Search Advertising. In
WWW 2009.

[3] Agichtein, E., Brill, E., and Dumais, S. Improving web
search ranking by incorporating user behavior information.
In SIGIR 2006.

[4] Agichtein, E., Brill, E., Dumais, S., and Ragno, R. Learning
User Interaction Models for Predicting Web Search Result
Preferences. In SIGIR 2006.

[5] Carterette, B. and Jones, R. Evaluating search engines by
modeling the relationship between relevance and clicks. In
NIPS 2008.

[6] Chapelle, O. and Zhang, Y. A Dynamic Bayesian Network
Click Model for Web Search Ranking. In WWW 2009.

[7] Craswell, N., Zoeter, O., Taylor, M., and Ramsey, B. An
experimental comparison of click position-bias models. In
WSDM 2008.

[8] Dupret, G. and Piwowarski, B. A User Browsing Model to
Predict Search Engine Click Data from Past Observations. In
SIGIR 2008.

[9] Goel, A. and Munagala, K. Hybrid Keyword Search
Auctions. In WWW 2009.

[10] Guo, F., Liu, C., Kannan, A., Minka, T., Taylor, M., and
Wang, Y-M. Click Chain Model in Web Search. In WWW
2009.

[11] Guo, F., Liu, C., and Wang, Y-M. Efficient Multiple-Click
Models in Web Search. In WSDM 2009.

[12] Joachims, T. Evaluating retrieval performance using
clickthrough data. In SIGIR Workshop on
Mathematical/Formal Methods in Information Retrieval
2002.

[13] Joachims, T. Optimizing search engines using clickthrough
data. In SIGKDD 2002.

[14] Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay,
G. Accurately Interpreting Clickthrough Data as Implicit
Feedback. In SIGIR 2005.

[15] Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski,
F., and Gay, G. Evaluating the accuracy of implicit feedback
from clicks and query reformulations in Web search. In ACM
Transactions on Information Systems 2007.

[16] Minka, T. A family of algorithms for approximate Bayesian
inference. MIT, 2001. PhD thesis.

[17] Minka, T., Winn, J., Guiver, J., and Kannan, A. Click
through model - sample code. Microsoft Research
Cambridge, 2009. http://research.microsoft.com/en-
us/um/cambridge/projects/infernet/docs/Click%20through%
20model%20sample.aspx.

[18] Minka, T., Winn, J., Guiver, J., and Kannan, A. Infer.NET
2.3. Microsoft Research Cambridge.
http://research.microsoft.com/infernet, 2009.

[19] Richardson, M., Dominowska, E., and Ragno, R. Predicting
clicks: estimating the click-through rate for new ads. In
WWW 2007.

[20] Zhang, W. V. and Jones, R. Comparing Click Logs and
Editorial Labels for Training Query Rewriting. In WWW
2007.

9. APPENDIX

9.1 Our Implementation to Prior Work
For better comparisons between models, we equally employ the
Infer.NET framework for all baseline programs. Inspired by the
code to a very similar model of DBN [17], we implemented
Cascade, CCM and DBN in the way that the probabilities are
assumed to obey Beta distributions. At the beginning of the
program, all those distributions are set to a uniform (1,1)ܽݐ݁ܤ,
and they will be updated according to Bayesian inference [16].

We first look at the Cascade model, we draw the factor graph of
the Bayesian network assuming ܯ = 3.

In Figure 14 we see that the relevance r଴, rଵ, rଶ obey the given
Beta distributions beta0, beta1 and beta2 respectively, and the
binary events ܴ଴, . . ܴଶ are defined according to the Bernoulli
distribution ܲ(ܴ௜ = 1) = r୧ . Based on Expectation Propagation,
posterior distributions of r଴, rଵ, rଶ can be approximated by new
Beta distributions using Infer.NET, and will be used as the prior
distribution for the next query session.

For the sake of simplicity, we ignore the factor graph for CCM
and DBN here. The basic ideas are the same: the transition
probability, for example ܲ(ܧ௜ାଵ = ௜ܧ|1 = 1, ௜ܥ = 1) = ൫1ߛ − ௨೔,௤൯ݏ

can be written in the language of Infer.NET, through two Boolean
variables Γ and ܵ, satisfying ܲ(Γ = 1) = ܵ)ܲ and ߛ = 1) = ,௨೔,௤ݏ
where ߛ and ݏ௨೔,௤ follow some Beta distributions of their own.
Under the conditions of ܧ௜ = 1 and ܥ௜ = ௜ାଵܧ ,1 will happen if Γ = 1 and ܵ = 0.

In our implementation, we not only require the relevance ݎ௨೔,௤ and
the satisfaction rate ݏ௨೔,௤ to follow Beta distributions, at the same
time, we let ߙଵ, ,ଶߙ ଷߙ in CCM and ߛ in DBN satisfy their
corresponding Beta distributions. They will be inferred by the
Expectation Propagation process and automatically adjusted
during the experiment.

Notice that our implementation of CCM discards the infinite-
chain assumption, and thus runs slower than it has been reported
in [10]. For DBN, we have not followed the EM steps according
to [6], and used Bayesian inference instead. This is because we
want to compare the models rather than the optimization methods.

beta0

Random

r0

Bernoulli

probTrue

dist

R0=C0

beta1

Random

r1

Bernoulli

probTrue

dist

R1

beta2

Random

r2

Bernoulli

probTrue

dist

R2

Not

And

C1

Not

And

C2
Figure 14. The factor graph of Cascade model under
Infer.NET when ࡹ = ૜ . Circles are hidden variables and
beta0..beta2, C0..C2 are observed values

