
Challenge and Creativity: Using .NET Gadgeteer In
Schools

Sue Sentance
Anglia Ruskin University

Chelmsford, UK
sue.sentance@anglia.ac.uk

Scarlet Schwiderski-Grosche
Microsoft Research Cambridge

Cambridge, UK
scarlets@microsoft.com

ABSTRACT
This paper reports on a study carried out in secondary
schools in the UK with students learning to use .NET Gad-
geteer, a rapid prototyping platform for building small elec-
tronic devices [32]. A case study methodology has been
used. Some of the students involved in this four-month-
long project had some prior background in computer pro-
gramming whereas for others this was completely new. The
teaching materials provided a two-phase model of learning:
an instruction phase followed by a creative phase, the latter
utilising a bricolage approach to learning programming [30].
The aim of the pilot was to generate an interest in building
devices and stimulate creativity. The research found that
the tangible nature of the .NET Gadgeteer modules helped
to engage the students in becoming creative, and that stu-
dents valued challenges with which they were not usually
presented within the curriculum.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education,Curriculum

Keywords
Secondary education, .NET Gadgeteer, high schools, com-
puter programming, creativity, bricolage

1. INTRODUCTION
Microsoft .NET Gadgeteer1 is a platform that enables

rapid prototyping of small electronic gadgets and embedded
hardware devices. It combines the advantages of object-
oriented programming, solderless assembly of electronics us-
ing a kit of hardware modules, and the quick fabrication of
physical enclosures using computer-aided design. The fact
that .NET Gadgeteer covers a variety of sophisticated com-
puter science and engineering skills, but requires minimal

1http://netmf.com/gadgeteer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM . This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version will be published in WIPSCE 2012 ...$15.00.

prior knowledge, makes it especially suitable for education.
.NET Gadgeteer has great potential in schools as it can be
used to teach students simple electronics and computer pro-
gramming as well as computer-aided design. Moreover, it is
very motivating for young people to be able to build their
own gadgets.

A research project was initiated to investigate whether
.NET Gadgeteer has the potential to be used in schools.
This was designed to elicit students’ and teachers’ percep-
tions of the platform, and suggest directions for further re-
search and development. A case study methodology was
used, as defined by Stake [26], whereby different sources were
drawn together to give an accurate description of how the
pilot use of this platform was perceived by both teachers,
students and researchers.

This paper reports on the findings of this first study. In
the paper, we will give an outline of the current situation
with regard to Computer Science (CS) education in schools
in the UK which provides some motivation for the current
project. A brief description of .NET Gadgeteer will help to
set the scene and the next section of the paper will focus on
the methodology and findings of the research. The findings
will be discussed and then further work suggested.

2. COMPUTER SCIENCE EDUCATION IN
SCHOOLS

2.1 Background
A recent report by the Royal Society, an influential aca-

demic body in the UK, begins with the statement “The cur-
rent delivery of Computing education in many UK schools
is highly unsatisfactory” [29, p.1]. Prior to this report, there
had been an increasing awareness of the need for more Com-
puter Science in schools in England and Wales. The Com-
puting At School group2 (CAS) has been very active since
2008 in advocating the need for more Computer Science in
the curriculum and supporting teachers on the ground [6].

Since the publication of the Royal Society report, the gov-
ernment has started to implement change in the curricu-
lum; more qualifications are being launched to feed the need
of schools and pupils to study this subject within the cur-
riculum. The Royal Society states that “Computer Science
is sufficiently important and foundational that it should be
recognised as a high status subject in schools, like mathe-
matics, physics or history” [29, p.34]. These developments
in the UK mirror those that have been happening elsewhere

2http://www.computingatschool.org.uk

in the world, for example, as described by Wilson et al. in
the USA’s Running on Empty report produced by the CSTA
[33], and as implemented in Israel [10].

It is apparent that there are many schools keen to of-
fer Computing-related content to students aged 11-14 and
also school qualifications in Computing/Computer Science
to students aged 14-18. Within this climate, providing en-
gaging resources and vehicles for learning Computer Science
is very timely.

As the emphasis grows on secondary Computing educa-
tion, more research in this area is needed. It is important
to look at the pedagogical approaches to bridge the gap be-
tween computer literacy and Computer Science as well as
what should be taught within the curriculum [3]. Con-
structivist learning theories applied to Computer Science
emphasise the active, subjective and constructive character
of knowledge, placing students at the centre of the learning
process [13]. Specifically, constructivist learning is based on
students’ active participation in problem-solving and criti-
cal thinking regarding a learning activity which they found
relevant and engaging [11]. As a learning theory, it has pro-
foundly influenced the teaching of programming [2]. Expe-
riential learning stems from constructivism and is a term
which can be used to describe the design of activities which
engage learners in a very direct way. It describes the pro-
cess of engaging learners in an authentic experience in which
they can make discoveries and experiment with knowledge
at first hand. Through reflection, students construct new
knowledge and ways of thinking about themselves, leading
to deeper learning.

Research to date in secondary computing education has
investigated a range of approaches to structuring the cur-
riculum [27, 10, 1], whilst other research has focused on
tools and environments that may motivate and engage young
people in the classroom such as Scratch[17], Alice[5], Green-
foot[15], and Kodu[16]. It is important, however, to address
the approach to learning that underlies these tools or envi-
ronments. Scratch, for example, builds on work in Logo and
on the constructionist ideas of Papert [17]. Papert used the
term constructionism which is a combination of ‘construc-
tivism’ and ‘construction’ [21]. This is particularly relevant
for .NET Gadgeteer which involves physically constructing
devices in an exploratory way.

2.2 Engaging students
There have been many discussions in the literature about

how to engage students with Computer Science and sug-
gestions for reasons why students do not have a positive
attitude to the subject, for example [25, 9, 34, 4]. Downes
and Looker suggest that the more IT students use at school,
the more they are likely to take up computing-related sub-
jects when they are given a choice [8]. Brinda, Puhlmann
and Schulte discuss how to introduce Computer Science by
working from what students already know from their ICT
education and making Computer Science relevant to their
own experience [3]. Pollock and Harvey integrated a range of
pedagogical approaches in order to engage students more ef-
fectively and demonstrated the effectiveness of collaborative
work and reflection on learning [22]. Collaborative working
is especially important in our .NET Gadgeteer trials. Cutts,
Esper and Simon discuss how to offer all students Comput-
ing education in relation to “what a computer can do and
how one can interact with it” [7] by giving students an un-

derstanding that computers are deterministic, precise and
comprehensible. This understanding can be gained without
necessarily learning to program. With .NET Gadgeteer, we
hope that we can engage all students in terms of a better
understanding of how the devices and technology all around
us works.

Schulte and Knobelsdorf look at attitudes towards Com-
puter Science using a biographical approach, and note the
differences between those that regard themselves as insiders
and outsiders [25]. They recommend that teachers “should
intertwine introduction to CS (e.g. learning programming
- a design activity) with learning professional use . . . a ma-
jor problem is to teach another world-image of CS” [p.37].
The interest of students in real devices and current technol-
ogy makes .NET Gadgeteer quite engaging in this regard,
as users can relate it to the professional world of developing
devices.

2.3 Using tangible environments
Besides .NET Gadgeteer, other tangible devices are avail-

able which enable students to write programs using actual
hardware components. These include Lego Mindstorms3,
the Scratch Pico Board4, Open University‘s SenseBoard [23]
and Arduino5. All these hardware kits have different fea-
tures but offer the same experience of hardware in addition
to software, thus broadening the exposure to the way that
technology works. The Raspberry Pi6 is now available which
also has the appeal of being tactile and exposed; this has gen-
erated a lot of enthusiasm, although it is a computer rather
than a means to build devices such as the other devices de-
scribed here.

Marshall [18] and Horn et al. [12] both describe how tan-
gible environments can have a very positive effect on col-
laborative and active learning, as they enable students to
share work together in a very visible way. They also utilise
concrete physical manipulation which can facilitate more ef-
fective or natural learning. Working with physical devices
can encourage an exploratory or bricolage approach, as dis-
cussed next.

2.4 The bricolage approach
The concept of bricolage was introduced by Levi-Strauss

in The Savage Mind [14]. It refers to a science of concrete
development as an alternative to abstract planning, and was
applied to the area of computer programming by Turkle and
Papert [30]. It represents a mode of learning based on ‘try-
it-and-see-what-happens’ [2], of which Ben-Ari is rather crit-
ical claiming that “A student who exclusively uses such tech-
niques is ultimately not qualified to work on the software of
embedded and operating system, which requires the ability to
create and test abstract hypotheses” [2]. However, Stiller [28]
successfully used a bricolage approach when teaching pro-
gramming by encouraging students to build on previous pro-
grams, based on a pedagogy of incremental problem-solving.
The intention of this project was to use a bricolage approach
when introducing .NET Gadgeteer to students.

3http://mindstorms.lego.com
4http://wiki.scratch.mit.edu/wiki/PicoBoard
5http://www.arduino.cc/
6http://www.raspberrypi.org/

file=example.eps, height=1.3in, width=2.5in

Figure 1: .NET Gadgeteer modules

Figure 2: Designer view of a .NET Gadgeteer device

3. .NET GADGETEER
.NET Gadgeteer is a platform for creating your own elec-

tronic devices using a wide variety of hardware and a power-
ful programming environment [32]. .NET Gadgeteer hard-
ware consists of an ever increasing range of mainboards and
modules. The environment is open source and therefore,
new modules can be developed by any enthusiast. Students
with little or no Computing background can build robot-like
devices made up of components that sense and react to their
environment using switches, displays, motor controllers, and
more. Components are plugged into a mainboard and subse-
quently programmed to make them work together (see Fig-
ure 1).

.NET Gadgeteer originated at Microsoft Research Cam-
bridge, UK. It was designed as a tool for researchers to make
it faster and easier to prototype new kinds of devices. For
example, a digital camera can be built in about half an hour.
One of the motivations for the Gadgeteer project has been
to provide “both a low threshold for entry – allowing non
expert developers and designers to quickly sketch and con-
struct functional devices – together with a high ceiling that
allows experienced users to create sophisticated and capa-
ble devices that can be used in practice” [31]. This is ideal
for education where there is a need to stretch and chal-
lenge youngsters to achieve their highest potential. Since
then, the platform has proven to be of interest to hobby-
ists and for secondary and tertiary education. Microsoft
Research has launched .NET Gadgeteer as open source soft-
ware/hardware, and .NET Gadgeteer kits are now available
from a variety of hardware vendors.

A starter .NET Gadgeteer kit consists of a mainboard,
and various modules including a camera, joystick, buttons,
LEDs, potentiometer, Ethernet port, and touch-sensitive
display. In this study, the FEZ Spider Starter Kit from
GHI Electronics7 was used. In addition, there are many
other sensors and other modules that can be added sepa-
rately. Devices can be constructed by connecting modules
with cables and then programming it with respect to the
events triggered when using the device (for example, a But-

tonPressed or PictureCaptured event in case of a digital
camera). The programming language used is Visual C#
with support for Visual Basic .NET coming soon. Fig-
ure 1 shows the .NET Gadgeteer hardware with a range of

7http://www.ghielectronics.com/

Figure 3: Example Visual C# code

Figure 4: Aspects of learning with .NET Gadgeteer

modules connected together. Figure 2 shows the graphi-
cal Gadgeteer Designer that is used to generate code for
each module being used. Figure 3 shows the programming
environment in Visual C#.

Programming a .NET Gadgeteer device involves learning
to program in Visual C#, but there are other skills involved
in designing and implementing a gadget. Connecting the
input and output modules to the mainboard will give stu-
dents more of an understanding of hardware, and there is
the option to teach students the underlying electronics of
the board. A so-called extender board can be used to attach
third-party hardware. In addition, the design of the case
and the interaction of the user with the device will involve
an understanding of user-interface design and physical form
factor. Being able to program the screen will also teach
students an understanding of graphics objects. Overall, the
experience of using .NET Gadgeteer will cover a variety of
aspects of the CS school curriculum, as shown in Figure 4.

4. CASE STUDY
The case study was designed as an observation of how

students and teachers used .NET Gadgeteer and their expe-
riences.

4.1 Aims and objectives
The aims of the case study were to investigate the poten-

tial of .NET Gadgeteer to consider which age group, which
type of lessons, and which type of activities would be suit-
able for learning with the use of this tool. Specifically, the
following research questions were addressed:

1. Does .NET Gadgeteer yield an engaging and motivat-
ing environment to work with in schools?

2. Are the initial teaching materials sufficient for students
in lower and upper secondary schools to build .NET
Gadgeteer devices?

3. Could .NET Gadgeteer be used to support student
learning in Computer Science in school?

4. Is .NET Gadgeteer most suitable in schools as an extra-
curricular activity or could it have a place in the main
curriculum (in England and Wales)?

4.2 Participants
In this study, .NET Gadgeteer was used for the first time

with secondary school students. Eight local schools in Cam-
bridgeshire (UK) volunteered to be involved. The schools
were a mixture of age 11-16 and age 11-18 schools, state
schools (seven) and private schools (one), mixed schools
(six), girls’ schools (one) and boys’ schools (one). The teach-
ers were initially trained in the use of .NET Gadgeteer and
provided with lesson plans and example projects. Munson
et al. [20] point out that in order to engage students, it is
also necessary to support teachers. We devised this pilot
project with an initial learning session for teachers at Mi-
crosoft Research Cambridge, for them to cascade to pupils.
Teachers introduced .NET Gadgeteer to their schools in the
form of after-school or lunchtime clubs. The ages of the stu-
dents attending the club ranged from 11 to 15 year, with one
school choosing to use .NET Gadgeteer with an older group
of 17 year olds. The students worked in groups of three to
four with one .NET Gadgeteer kit per group. There was
no requirement, given the existing ICT curriculum, for the
schools to have taught programming before and it was ac-
knowledged that it would not be possible to teach significant
amounts of C# programming in the course of the pilot.

The materials developed consisted of eight lesson plans
with approximately one hour’s teaching material in each.
The materials included learning objectives, aims of the ses-
sion, a starter session as well as the main session in several
steps, and extension material. The lesson plan contained all
the instructions for carrying out the tasks. The session plans
had aims and outcomes, in terms of programming skills to be
learned, but the approach taken was actually to get devices
working by following through instructions.

The students were loaned .NET Gadgeteer kits for four
months. Teachers planned to run either one after-school
club or one lunchtime club each school week. The plan was
for them to run around ten hours of activity.

4.3 Methodology
The students’ progress with .NET Gadgeteer was moni-

tored by observation visits and their experiences evaluated
at the end of the project. A case study methodology was
used [24], taking the form of a collective case study,
whereby a variety of sources were used to give an overall
picture of how .NET Gadgeteer could be used in schools.
An online questionnaire was designed to give teachers the
opportunity to give feedback in their own time. This was
available via a web link and had a mixture of open and closed
questions. Teachers were also interviewed informally about
their experiences of the project. An extract of the teachers’
questionnaire is shown in Figure 5.

To collect verbal responses from students about their ex-
periences, short interviews were held with students who at-
tended at an event associated with the pilot. This repre-
sented a sample of 16 out of 84 students who took part in
the pilot. The students volunteered to be interviewed, and
had the option of speaking to the researcher individually or

Figure 5: Extract from teachers’ questionnaire

in pairs. This made it less stressful for the participants, al-
though the sampling was therefore not of a representative
group of the participating students. The interviewer asked
each of the students the following four questions:

1. What sort of things have you worked on in your .NET
Gadgeteer sessions?

2. What has been your favourite part of working with
.NET Gadgeteer and why?

3. Would you continue to use .NET Gadgeteer if you had
a kit at school or home?

4. Has working with .NET Gadgeteer increased your un-
derstanding of how computers and electronic devices
work?

The researcher filmed a demonstration of their gadget if
they had made one. These interviews were transcribed and
coded and key themes drawn out of the resultant data. The
questions were designed to generate a range of data about
engagement with the project.

The short interviews were followed by an in-depth focus
group at one of the pilot schools. Two girls and two boys
were invited to participate in the focus group which was
conducted by the first author with a teacher present at all
times. A focus group has many advantages when seeking
to find out attitudes as the one-to-many dialogue, perhaps
including a difference of opinion, may allow other issues to
be raised which may not arise in an interview where there
is no opposing view. The focus group was planned such
that a teacher was present and the students all knew each
other. It included more in-depth questions about the stu-
dents’ engagement with technology and computer program-
ming more generally, with the intention of providing an elab-
oration of the points made in the short interviews and in the
teacher questionnaires. The questions were based around
the following themes: experiences of the .NET Gadgeteer
project, learning new technologies, and aptitudes and diffi-
culties with learning to program. The focus group discussion

Figure 6: Pedagogical model

was carried out by the first author, and recorded, transcribed
and then coded using TAMS analyser8.

4.4 Pedagogical approach
The pedagogical approach taken with the teaching ma-

terials was based on a two-phase model whereby the first
phase involved instruction and the second phase involved
presenting students with a challenge. The students needed
some instruction on how to use .NET Gadgeteer and the
instructions led them through the implementation of three
devices. Teachers utilised the materials differently, some set-
ting student tasks based on the materials, and others letting
the students work through the materials at their own pace.
Each teacher had their own different style of teaching and
this was noted in observations made by the first author at
visits to each of the schools. Despite the teacher-differences,
there was a common approach to teaching which led into the
challenge phase of the project. Students were encouraged to
create their own device for the end of the project. In order
to investigate how students were able to learn with the ‘try-
it-and-see’ bricolage approach, students were encouraged to
be as inventive as they could in coming up with their own
ideas for devices. Figure 6 shows the rationale behind the
simple two-phase pedagogical model adopted.

5. RESULTS
Table 1 shows the schools, numbers of students attending

sessions, and the number of session plans they managed to
complete, although some schools ran more sessions and some
students used some of their own time to complete projects.

After completing the session plans, students then worked
on their own projects in Phase 2 of the pilot, applying what
they had learned to their own ideas. Students worked in
teams of between two and five students and developed a
range of small devices. Students also enjoyed building the
housing for the gadgets, which in some cases was quite so-
phisticated using moulded plastic, and for other gadgets,
just as effective, using polystyrene or cardboard. Examples
of the gadgets developed by students are shown in Figure 7.

Several schools ran more than ten sessions although en-
gagement between the eight schools varied. The number of
students attending at each school varied from three to 24
students. None of the schools completed all of the eight ses-
sion plans provided, indicating that the material took longer
to cover and that the difficulty level may have been under-
estimated. We originally aimed the project at Y9 students
(aged 13-14) but gave teachers the freedom to select appro-

8http://tamsys.sourceforge.net/

Figure 7: Examples of devices created by students
with .NET Gadgeteer: “Robber Gadget” takes a pic-
ture of a burglar when a precious item is taken off
the sensor platform; “Rainbow Press” is a reaction
game; “Alien Invasion” is a shooting game; “Gadge-
a-sketch” is a drawing device.

Table 1: Participants in the project

School Number Number Sessions Lowest Highest
sessions students (out of 8) year year

group group
A 10 8 5 Y9 Y10
B 4 6 4 Y7 Y13
C 4 24 3 Y7 Y8
D 5 6 6 Y11 Y13
E >10 10 6 Y8 Y11
F >10 3 7 Y9 Y10
G >10 10 6 Y7 Y11
H 7 18 4 Y9 Y9

(Y7 = age 11/12 (equivalent to 6 in USA);
Y13 = age 17/18 (equivalent to 12 in USA)

priate students as school environments differ. This had the
benefit of giving us some examples of projects from students
from Y7 to Y13, demonstrating the wide potential of .NET
Gadgeteer.

Teachers were asked to rate how they thought that the stu-
dents had mastered key programming concepts. It was not
expected that novice programmers would be able to achieve
a thorough understanding of Visual C# programming in just
10 hours of sessions, and we had no prior hypothesis about
how much students in such a mixed age group at different
schools with different teaching styles would learn. However,
it was encouraging to see that most schools felt that their
students had an understanding of assignment, data types,
variables and selection as a result of the pilot. Figure 8
shows the relative acquisition of programming concepts as
rated by their teachers.

Teachers were broadly positive about the achievements
of their pupils and the motivation provided by .NET Gad-
geteer. One teacher commented that “It was fun and really
nice to have things to touch and build. Some students were
very engaged in the whole thing” (School H, teacher).

Figure 8: Acquisition of programming concepts (av-
erage across 8 schools)

There were a few technical problems experienced by teach-
ers as the platform had never been tested before on school
networks. These are discussed in Section 5.4.

5.1 Interviews with students
Approximately 85 students used .NET Gadgeteer in school

as part of this pilot and 50 attended the end-of-school pi-
lot event. Of these, 16 were interviewed during the day (14
boys, two girls). The comments from the student interviews
and the focus group clearly identified four emerging themes.
These were around the following features of the programme:

• Challenge and difficulty

• Creativity and freedom

• The tactile nature of .NET Gadgeteer

• The concept of “real programming”

These will be discussed in turn.

5.1.1 Challenge and difficulty
Without being prompted, students commented on the fact

that they had found working with .NET Gadgeteer quite
challenging at times. For example, one student said “I en-
joyed it but it was hard. And it was a challenge”(School C,
male), and another found it “. . . a big learning curve really”
(School G, male). One student tried to explain why some
other students from his school found the programming diffi-
cult: “. . . but it took a great deal of effort, and not everyone’s
ready to . . . you know, actually step up to the challenge”
(School B, male). However, the level of challenge seemed
to be popular with several students: “. . . on Gadgeteer it’s
so much better because it’s harder, but that’s the good of it
you know” (School B, male). One young student with some
programming experience commented that it was “. . . not too
simple, so that you’re not really not learning that much, but
it’s not too complex, that you‘re not getting any help with
debugging” (School G, male).

There were fewer comments to the extent that it was not
too difficult, and these were from two students who had had
extensive programming experience from working on projects
at home and self-teaching. There was recognition from sev-
eral students that they had learned a lot from their expe-
rience: “. . . we never learnt code before at all, so it most of

the things, well everything we learnt for Gadgeteer was stuff
that was new” (School A, male).

5.1.2 Creativity and freedom
The pilot was designed with a second phase whereby stu-

dents were to design a gadget or device of their choice, with
freedom limited only by the modules that were available in
the particular .NET Gadgeteer kit they were working with.
Students referred to the fact that they liked the freedom
to be creative and that they liked the tactile nature of the
modules: “You’re in control you can take an idea anywhere
and use the hardware that’s available to make it and without
limited . . . so the key it’s versatile” (School A, male). An-
other student particularly liked the camera project, which
could be extended in many ways: “What I enjoyed most
about .NET Gadgeteer is the creativity you can have and the
challenge it poses . . . especially with the camera, I really en-
joyed that. Also trying to build your own sort of gadgets, and
that was, you could really use your imagination” (School G,
male). Another student commented on the freedom given to
use .NET Gadgeteer as they wanted: “You’re allowed to be
sort of creative and sort of like make anything so you weren’t
really limited to what you can make” (School A, male). An
older student, with experience of programming and the Ar-
duino platform, was very impressed by the flexibility it gave
him: “. . . you just plug it together and it works, you don’t
have to figure out the circuits for yourself . . . , but it’s bril-
liant, really fun” (School D, male).

5.1.3 The tactile nature of .NET Gadgeteer
Six students made comments to the extent that the tan-

gible nature of the modules made it exciting to build and
program devices. For example, one of the boys commented
that “. . . you don’t just like have it all as pictures on the
screen, you actually have the stuff that you can put together
. . . ” (School C, male). During the event, the students were
proud to be able to demonstrate the devices that they had
made to other students, and their achievement was more
visible in its physical form. Another student commented
that developing a physical gadget meant that they could
build something that had a purpose: “You actually have
something you could hold and manipulate, that’s, it’s sort
of feeling a practical use for your programs, instead of just
doing it for the sake of it” (School G, male). Having both
aspects of development, with the hardware and the software,
also appealed to another student: “You need to program it,
you need to put it together, and it just makes it a whole lot
better” (School B, male).

5.1.4 Doing “real programming”
Students made reference to the fact that they knew that

Visual C# was a programming language used in industry by
professionals, and that they were using a tool that felt very
‘adult’. For example, one student commented that “This
was much better because it was more professional and, you
could do a lot more with it” (School G, male). The comment
made was in comparison to Scratch, which is the environ-
ment with which many of the students were already famil-
iar. Another student compared .NET Gadgeteer to his ex-
perience with Scratch also: “.NET Gadgeteer . . . sort of like
got proper programming if you know what I mean, . . . with
Scratch you’ve got words already set out for you and you can
sort of like make building blocks . . . but with .NET Gadgeteer

you’ve definitely got to have that more adult aspect of it and
the programming . . . ” (School G, male).

The pilot had encouraged students to consider doing more
programming in the future. Some students reflected that
their views on Computer Science as a subject had changed
as a result of the engagement with .NET Gadgeteer: “ . . . I
definitely want to take Computing and I’m looking to take
a job inside Computing as well when I’m older” (School G,
male). A young student mused about the possibilities that
might open for him if he pursued a career in Computer Sci-
ence: “It would be a nice career to take on . . . and so I’d
really like to be working at a place like Silicon Valley, it
would be a really nice opportunity” (School G, male).

Overall, the interviews elicited mostly positive comments
about .NET Gadgeteer. The results of the focus group dis-
cussion will be reported next.

5.2 Focus group findings
This group of students included three from Y10 and one

from Y9 (this translates to the beginning upper secondary
school in Europe and the beginning of high school in the
USA). The focus group was held in School A with two boys
and two girls who had participated in the project. They were
asked similar questions to the short interviews initially and
similar themes emerged, for example, relating to freedom
and creativity: “I liked designing for the competition, the
fact that we got to design our own product”(School A, male).
The students also reported that they liked the tactile nature
of the kits, and that the first project was quite accessible:
“ . . . like the ease of it, it was quite easy to integrate the bits,
for instance making the camera was quite simple” (School
A, male). Other comments were made that mirrored the
content of the short interviews already reported on. They
commented that .NET Gadgeteer made the concept of the
technologies they use more accessible “because essentially we
had many of the bits of an iPod Touch, a camera and a touch
screen, and you can get the audio jack and stuff, to give you
an idea that you could perhaps make something like that and
that these technologies weren’t far away” (School A, male).
Students also discussed some of the key aspects that they
felt appealed about Computer Science to young people, what
helped them to learn, what qualities were useful in learning
programming and why other students might not succeed.
The first quality to be suggested was to be open-minded:
“Open-minded . . . because it’s like some people if they don’t
want to learn something then they most probably won’t listen
to it” (School A, female). The student went on to explain
that the stereotype of being “weird and nerds” could put
people off doing Computer Science if they were not open-
minded.

The students agreed between them a set of qualities that
might make students good at programming, or working with
.NET Gadgeteer, as follows:

• Open-mindedness

• Common sense

• Problem-solving skills

• Patience

• Imagination

• Intuition

Common sense was defined by the student as “just being
able to look at something, and then work out, kind of maybe
use your brain to go through what the computer is doing, the
way the computer is looking at it. There’s a lot of people
can’t do that. I think they find it a lot more difficult to
program” (School A, male). From the student’s point of
view (this student had taught himself some programming
already) this was common sense, whereas another might see
this as logical thinking. This was an interesting example of a
student with experience perhaps underestimating what was
difficult to a non-programmer [25]. The two girls were more
able to empathise with the issues that other students might
have in learning to program.

The notion of patience being a key to success in program-
ming was mentioned at other times in the focus group and
in one of the short interviews: “Problem-solving skills and
patience, because when you’re learning it, you have to have
a lot of patience in you because it might take some time to
learn everything, you can’t exactly rush through it otherwise
you won’t learn it properly” (School A, male).

Students also reported on the sources that they used to
assist them when they had problems and needed help with
their work in computing programming. They demonstrated
that they knew where they could look for help on the Inter-
net: “Looking at other people’s code” (School A, male), and
also: “I read tutorials and find the answer on the Internet”
(School A, male). The two girls were more reliant on teach-
ers and friends to help them with their coding: “Mainly the
teachers who help me try and learn and help me go through it
so it sticks in my head a bit more” (School A, female) and:
“Just having people explain it to you and if you go wrong
having people explaining exactly where you went wrong and
how you’re supposed to do it right, and things like that would
be quite helpful. Having someone that can really explain it
to you” (School A, female).

This illustrates some of the gender differences, as dis-
cussed briefly below.

5.3 Girls and .NET Gadgeteer
In this study, we had not particularly focused on compar-

ing the responses from different gender groups in our design,
and we had a much smaller number of girls in the project
than boys. However, the comments from girls (two in the
short interviews and two more in the focus group) suggested
some surprise that they had managed to be successful with
.NET Gadgeteer. Girls reported that prior to using .NET
Gadgteer “I really thought I wouldn’t be able to do anything”
(School G, female). Another girl admitted that it hadn’t re-
ally appealed to her: “. . . just thought it was all a bit, sort of
hard, just like why would I need to know” (School E, female).
The focus group girls were more confident: “Well, maybe a
little bit overwhelming at first but once you understand what
it all means it’s not that difficult once you know what you’re
doing” (School A, female).

The girls reported more confidence after they had finished
creating their gadgets with .NET Gadgeteer: “Yeah, it’s def-
initely opened up more about what I know about program-
ming” (School E, female). Another of the girls said that she
was more confident since building her (highly innovative)
gadget: “I’ve really surprised myself, and I’d have to say,
I’ve grown in confidence as well” (School G, female).

One of the teachers (School C), in an interview, com-
mented on what girls enjoyed about the programme: “The

girls, I think they were just more interested in getting the
camera working, and they all wanted to be able to take pic-
tures of themselves, which kind of gives them that sense of
ownership”.

With such a small number of girls, we can only note these
gender differences; intuitively, though, it seems as if working
with this platform could appeal widely to both genders, as
gadgets with a socially useful function could be developed
over time that are more appealing to girls. The next section
addresses some of the limitations and problems we found
with .NET Gadgeteer on this first use in UK schools.

5.4 Problems with .NET Gadgeteer
In terms of their dissatisfaction with the project the main

complaint from students was about lack of time to complete
their projects: “ . . . we had after-school clubs every Wednes-
day, but towards the end we ended up doing it at lunchtimes
as well” (School G, male). Another student reported spend-
ing much time on his .NET Gadgeteer trying to complete a
project: “ . . . mainly just in lunchtimes, then Thursday and
Wednesday I’ve been going after school, and every opportu-
nity possible really . . . I’ve been trying to get things finished”
(School E, male).

Teachers also would have liked more time to complete
projects, indicating that working with .NET Gadgeteer can
encourage longer-lasting project work than we had originally
envisaged: “I would have loved to take it further if we had
had more time, and to see the possibilities and how far our
students would be able to take it. What could our students
create if they had another term? How advanced could our
students take it? What new systems, concepts could they in-
terpret and understand to produce bigger and better systems?
Just more time for students to play and to see the real po-
tential of the gadgets they create” (School A, teacher).

An issue for teachers was some of the technical difficulties
they had had at the outset when the pilot started. These
schools were some of the first public users ever of .NET
Gadgeteer, so some locked-down school networks posed a
challenge initially. This links to the fact that the students
felt that they did not have enough time to build what they
wanted to. For our research project, we had set these time
constraints. For future work with .NET Gadgeteer it is likely
that a full academic year would be needed to really bene-
fit and learn, as with any new skill. .NET Gadgeteer was
very new when the project started, as the teachers received
some of the first kits that were shipped over to the UK. The
students were using the .NET Gadgeteer environment before
the schools had had time to test it properly on their systems:
“I still have not been able to load the required software onto
the school system, and have had to work using a teacher
laptop that I had to battle 8 weeks for to get admin rights
to load the programs onto it” (School C, teacher). These
teething problems have now been eradicated as indicated
by this teacher: “ . . . there were some minor glitches with a
mismatch of software and hardware at the start” (School G,
teacher).

The teachers also wanted more materials, as identified
here: “Some form of ‘student book’ to allow them to track
and take notes might help” (School H, teacher). Another
teacher wanted more model projects to inspire students: “I
would have quite liked a very advanced gadget to have been
created and code provided, not for students to see code, but so
we could easily show some of the high potential that could be

achieved using Gadgeteer systems” (School A, teacher). Fi-
nally, one teacher felt that their Y7 students were too young
and that the older students got more out of the experience:
“Great ideas and all the students were enthusiastic despite
often making very little progress. Our mistake - we opened
it to all age groups and while the younger students were very
keen, they lacked the concentration and basic programming
experience to get as much from it as the older students did”
(School G, teacher).

6. DISCUSSION
The results of this study of .NET Gadgeteer in secondary

schools demonstrate that students were engaged by .NET
Gadgeteer, although they did find it difficult. This is backed
up by their teachers’ comments. Challenge is seen as a pos-
itive feature as reported by the students in the short inter-
views; many students referred to this although it was not
specifically elicited. There were some very able students
within the pilot groups for whom the opportunity to use
.NET Gadgeteer provided them with a stimulating resource
that they very much enjoyed. However, these students had
volunteered to be part of the pilot groups, and more inves-
tigation is needed to see how less motivated students expe-
rience the platform.

Students automatically seemed to compare .NET Gad-
geteer with the Scratch programming environment, although
again this was not mentioned by the interviewer, presumably
because that is the experience that students had had so far
and as such the only experience with which they were able
to compare .NET Gadgeteer. Their comments implied that,
after using Scratch, they felt that .NET Gadgeteer allowed
them to write their own functions and have more freedom to
customise their own programs. What .NET Gadgeteer of-
fers after having learned Scratch is an introduction to a real
programming language and this was popular with students.
The introduction to programming provided by Scratch, if
incorporated in a teaching programme at school, will help
them prior to moving forward with .NET Gadgeteer.

Although a challenge, students seem to have enjoyed work-
ing together in groups and creating something of their own.
The production of a physical device to demonstrate was
a motivating factor. Observations of students working re-
vealed that they worked well in groups in the main, with
teachers being flexible about sizes and make-up of groups.
Within groups, students assigned themselves different roles,
with some having more responsibility for the design of the
case or user-interface, with others writing more of the code.
This is one of the outcomes of the project that we had not
expected. To develop their own gadget, students were nec-
essarily involved in both problem-solving and some inde-
pendent research. They had to experiment with different
modules to find out exactly how they worked. The wider
skills they gain through engagement in these activities have
a positive effect on developing their personal, learning and
thinking skills.

The pedagogical model that we used encouraged a brico-
lage approach. We wanted to provide some instruction, but
then to inspire children to experiment with modules and de-
vices on their own and come up with their own devices. For
some of the children, though, the gap between our Phase 1
and Phase 2 was too great and the teachers did not obviously
have the background or sufficient training in the platform to
support them. We need to build on the incremental prob-

Figure 9: Wider skills development with .NET Gad-
geteer

lem solving as used successfully by Stiller [28] and provide
smaller gaps in future materials, to maintain both teacher
and student confidence.

We have not specifically tested the students’ understand-
ing of programming principles in this project. Meerbaum-
Salant carried out a study whereby she measured the un-
derstanding of key programming concepts of students who
had participated in a course using the Scratch programming
environment [19]. She reports that “the bottom-up program-
ming habit is clearly encouraged by the characteristics of the
Scratch environment and is in line with Papert’s philoso-
phy of constructionism . . . and with bricolage” [p.171] and
concludes that“. . . we are disturbed by the habits of program-
ming that we uncovered. These habits are not at all what one
expects as the outcome of learning computer science” [p.172].
It is not clear whether she is blaming the Scratch environ-
ment in being too“easy”or the constructionist and bricolage
approach in her concerns about long-term effects of an ex-
ploratory approach to programming. We would hope to be
able to show that an exploratory, and bricolage-centred, ped-
agogical approach can be both motivating and teach good
programming habits, in the context of a real programming
language that works behind a motivating hardware environ-
ment.

As the platform is still new and materials are still under
development, we have not yet been able to replicate this
level of analysis of learning for .NET Gadgeteer. However,
although a bricolage approach seems implicit in ‘gadget-
building’, it may not be as bottom-up as the Scratch pro-
gramming that Meerbaum-Salant describes. Where students
assemble their gadget before programming, they have put
together all the modules they need for the project and then
can break down the programming into events. This pro-
vides more of a top-down, but also very concrete experi-
ence of program development. More research is obviously
needed to discover if this is effective in the long-term acqui-
sition of key concepts. This will involve the development
of a suitable research instrument to measure learning with
.NET Gadgeteer.

Figure 9 adds the development of the wider personal,
learning and thinking skills to that shown in Figure 4. This
illustrates some of the potential wider skills that can be
gained by students working on .NET Gadgeteer in groups
on their own projects.

7. CONCLUSIONS AND FURTHER WORK
In this paper, we have presented our experiences of us-

ing .NET Gadgeteer in schools with students of various ages
and backgrounds over a four-month period. Our findings
have revealed that students are very engaged by it, and are
inspired to build devices for which they can see a real pur-
pose. Through analysis of data from students and teachers,
we have uncovered some key features of .NET Gadgeteer
that provide motivation and interest: challenge, freedom to
explore, tangibility and exposure to the real world of Com-
puting.

We are partway towards answering our research questions:

1. Is .NET Gadgeteer an engaging and motivating envi-
ronment to work with in schools? We have found that
students reported positively about using .NET Gad-
geteer for a range of reasons, as described in this pa-
per.

2. Can students in lower and upper secondary schools use
.NET Gadgeteer to build devices with the initial teach-
ing materials developed? Students have been success-
ful in building devices; however, the teachers indicated
that the materials need to be developed further.

3. Could .NET Gadgeteer be used to support student learn-
ing in Computer Science in school? With the changes
in the curriculum in the UK, involving the introduction
of more Computer Science in secondary schools, .NET
Gadgeteer provides an environment that is both en-
gaging and encourages experiential learning. Working
with .NET Gadgeteer has the potential to develop stu-
dents’ ability to work collaboratively. Programming
skills can be developed through a mixture of instruc-
tion and an exploratory approach to learning.

4. Is .NET Gadgeteer most suitable in schools as an extra-
curricular activity or could it have a place in the cur-
riculum (in England and Wales)? The research re-
vealed that working through the materials and creating
the devices was quite intensive and required more time
than available in an after-school club. Further work is
needed to write longer courses that would work with
curricular in UK schools and within examined courses.

The .NET Gadgeteer platform is still in its infancy as it
was only launched in August 2011. At the time of writing,
more modules are being developed by an increasing number
of manufacturers.

The pilot project was successful in its aims and objectives
which were to establish that .NET Gadgeteer can be a useful
tool for teachers and students in the classroom. Its tangi-
ble nature engenders curiosity and creativity, and motivates
students to explore, bricolage-fashion, how to program their
device. The physical nature of the platform encourages a
learning-by-doing experiential approach to learning and in
addition lends itself to collaborative working, whereby stu-
dents with a range of skills and abilities can support and
learn from each other.

As an initial pilot project with a new platform, this re-
search has highlighted particular areas of further work. In
future studies using .NET Gadgeteer, we would like to inves-
tigate how students’ perception of the importance of chal-
lenge and creativity links to the development of secure and
robust programming understanding. It is thus proposed that

further studies with .NET Gadgeteer focus on the facilita-
tion of the acquisition of certain programming concepts. The
two-phase pedagogical model utilised in the pilot project will
be developed further to provide more staged support, whilst
retaining an exploratory and experiential approach.

8. ACKNOWLEDGMENTS
With thanks to Steve Hodges, Steven Johnston, James

Scott and Nicolas Villar of Microsoft Research, and to all
the participating teachers and students for their assistance
and enthusiasm during the pilot project. The first author
would like to thank Microsoft Research for supporting her
work.

9. REFERENCES
[1] O. Astrachan, J. Cuny, C. Stephenson, and C. Wilson.

The CS10K Project: Mobilizing the Community to
Transform High School Computing. In Proceedings of
the 42nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, pages 85–86, New
York, NY, USA, 2011. ACM.

[2] M. Ben-Ari. Constructivism in Computer Science
Education. In Proceedings of the 29th SIGCSE
Technical Symposium on Computer Science Education,
pages 257–261. ACM, 1998.

[3] T. Brinda, H. Puhlmann, and C. Schulte. Bridging
ICT and CS - Educational Standards for Computer
Science in Lower Secondary Education. Proceedings of
ITICSE’09, Paris, France, July 6-9 2009.

[4] L. Carter. Why Students with an Apparent Aptitude
for Computer Science Don’t Choose to Major in
Computer Science. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education,
pages 27–31. ACM, 2006.

[5] S. Cooper, W. Dann, and R. Pausch. Alice: a 3-D
Tool for Introductory Programming Concepts.
J.Comput.Sci.Coll., 15(5):107–116, Apr. 2000.

[6] T. Crick and S. Sentance. Computing at School:
Stimulating Computing Education in the UK. In
Proceedings of the 11th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’11, pages 122–123, New York, USA, 2011.
ACM.

[7] Q. Cutts, S. Esper, and B. Simon. Computing as the
4th R: a General Education Approach to Computing
Education. In Proceedings of the 7th International
Workshop on Computing Education Research, ICER
’11, pages 133–138, New York, NY, USA, 2011. ACM.

[8] T. Downes and D. Looker. Factors that Influence
Students’ Plans to Take Computing and Information
Technology Subjects in Senior Secondary School.
Computer Science Education, 21(2):175–199, 2011.

[9] A. Fisher and J. Margolis. Unlocking the Clubhouse:
the Carnegie Mellon Experience. SIGCSE Bulletin,
34(2):79–83, June 2002.

[10] O. Hazzan, J. Gal-Ezer, and L. Blum. A Model for
High School Computer Science Education: the Four
Key Elements that Make It! In Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science
Education, pages 281–285. ACM, 2008.

[11] F. T. Hofstetter. Multimedia Literacy.
Irwin/McGraw-Hill, Boston, 2nd edition, 1997.

[12] M. S. Horn, R. J. Crouser, and M. U. Bers. Tangible
Interaction and Learning: the Case for a Hybrid
Approach. Personal Ubiquitous Computing,
16(4):379–389, Apr. 2012.

[13] M. Kordaki, M. Miatidis, and G. Kapsampelis. A
Computer Environment for Beginners’ Learning of
Sorting Algorithms: Design and Pilot Evaluation.
Computers and Education, 51:708–723, 2008.

[14] C. Lévi-Strauss, J. Weightman, and D. Weightman.
The Savage Mind. University of Chicago Press, 1966.

[15] M. Kolling. The Greenfoot Programming
Environment. Transactions on Computing Education,
10(4):14:1–14:21, Nov. 2010.

[16] M. MacLaurin. Kodu: End-User Programming and
Design for Games. In Proceedings of the 4th
International Conference on Foundations of Digital
Games, FDG ’09, New York, USA, 2009. ACM.

[17] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The Scratch Programming Language
and Environment. Transactions on Computing
Education, 10(4):16:1–16:15, Nov. 2010.

[18] P. Marshall. Do Tangible Interfaces Enhance
Learning? In Proceedings of the 1st International
Conference on Tangible and Embedded Interaction,
TEI ’07, pages 163–170, New York, NY, USA, 2007.
ACM.

[19] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of Programming in Scratch. In Proceedings of
the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’11, pages 168–172, New York, NY, USA, 2011. ACM.

[20] A. Munson, B. Moskal, A. Harriger,
T. Lauriski-Karriker, and D. Heersink. Computing at
the High School Level: Changing What Teachers and
Students Know and Believe. Computing Education,
57(2):1836–1849, Sept. 2011.

[21] S. Papert. Mindstorms: Children, Computers, And
Powerful Ideas. Basic Books, 1993. 92053249.

[22] L. Pollock and T. Harvey. Combining Multiple
Pedagogies to Boost Learning and Enthusiasm. In
Proceedings of the 16th Annual Joint Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’11, pages 258–262, New York,
NY, USA, 2011. ACM.

[23] M. Richards, M. Petre, and A. K. Bandara. Starting
with Ubicomp: Using the Senseboard to Introduce
Computing. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, SIGCSE
’12, pages 583–588, New York, NY, USA, 2012. ACM.

[24] R.Stake. The Art of Case Study Research. London,
Sage, 1995.

[25] C. Schulte and M. Knobelsdorf. Attitudes Towards
Computer Science-Computing Experiences as a
Starting Point and Barrier to Computer Science. In
Proceedings of the 3rd International Workshop on
Computing Education Research, ICER ’07, pages
27–38, New York, NY, USA, 2007. ACM.

[26] R. E. Stake. The Art of Case Study Research. Sage
Publications, 1995. 95004979.

[27] C. W. Starr, D. Bergman, and P. Zaubi. The
Development and Implementation of a Context-Based
Curricular Framework for Computer Science

Education in High Schools. In Proceedings of the 14th
Annual ACM SIGCSE Conference on Innovation and
Technology in Computer Science Education, pages
283–287. ACM, 2009.

[28] E. Stiller. Teaching Programming Using Bricolage.
J.Comput.Sci.Coll., 24(6):35–42, June 2009.

[29] The Royal Society. Shut Down or Restart? The Way
Forward for Computing in UK Schools. Technical
Report January 2012 DES2448, The Royal Society,
2012.

[30] S. Turkle and S. Paper. Epistemological Pluralism and
the Revaluation of the Concrete. Journal of
Mathematical Behaviour, 11(1):pp 3 – 33, 1992.

[31] N. Villar, J. Scott, and S. Hodges. Prototyping with
Microsoft .NET Gadgeteer. In Proceedings of the 5th
International Conference on Tangible, Embedded, and
Embodied Interaction, TEI ’11, pages 377–380, New
York, NY, USA, 2011. ACM.

[32] N. Villar, J. Scott, S. Hodges, K. Hammill, and
C. Miller. .NET Gadgeteer: A Platform for Custom
Devices. Proceedings of Pervasive 2012, Lecture Notes
in Computer Science, 2012.

[33] C. Wilson, L. A. Sudol, C. Stephenson, and
M. Stehlik. Running on Empty: The Failure to Teach
K–12 Computer Science in the Digital Age. Technical
report, CSTA, 2010.

[34] S. Yarosh and M. Guzdial. Narrating Data Structures:
the Role of Context in CS2. J.Educ.Resour.Comput.,
7(4):6:1–6:20, Jan. 2008.

