
WIPDash: Work Item and People Dashboard for

Software Development Teams

Mikkel R. Jakobsen1, Roland Fernandez2, Mary Czerwinski2, Kori Inkpen2,
Olga Kulyk3, and George G. Robertson2

1 Department of Computer Science, University of Copenhagen, Denmark

mikkelrj@diku.dk
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{rfernand, marycz, kori, ggr}@microsoft.com
3 Human Media Interaction, University of Twente, 7500 AE, Enschede, The Netherlands

okulyk@utwente.nl

Abstract. We present WIPDash, a visualization for software development
teams designed to increase group awareness of work items and code base
activity. WIPDash was iteratively designed by working with two development
teams, using interviews, observations, and focus groups, as well as sketches of
the prototype. Based on those observations and feedback, we prototyped
WIPDash and deployed it with two software teams for a one week field study.
We summarize the lessons learned, and include suggestions for a future version.

Keywords: Information visualization, software development, large display,
cooperative work, CSCW, situational awareness, field study.

1 Introduction

Team collaboration and coordination in software development is difficult [14]. First,
it may require frequent coordination to plan and review progress of a team. Second,
completing a task often involves team collaboration because knowledge is divided
between team members who have different roles or own different parts of the system.
Team members may work on multiple task items at a time, or belong to more than one
team, adding to the challenge of coordination. Thus, team members need to be aware
of what others on the team are doing [10,14].

In this paper, we present WIPDash (Work Item and People Dashboard), a
visualization of work items in a team’s software repository. Our goal is to help
software teams be aware of the overall status of a project, and understand ongoing
activities related to the team. Initially, we conducted interviews and field observations
within a software development organization in order to understand the needs of
collocated software teams. We then discussed these results in a series of focus group
to iteratively design WIPDash. Finally, we deployed WIPDash with two software
teams in an attempt to observe which features and functions the team actually used,
and how they used those features. Our findings led us to a number of design lessons,
and yet another design iteration, which we introduce at the end of the paper.

The main contributions of this work include (1) detailed findings about how
developers maintain team awareness using existing techniques and tools, (2) a novel
awareness visualization based on developers’ needs, and (3) lessons learned from a
deployment with two teams along with a conceptual overview of new design ideas
based on that deployment.

2 Supporting Software Team Awareness

Many organizations adopt Agile Software Development methodologies that promote
shorter iterations and daily stand-up meetings to improve coordination [15]. Also,
collocation of a team in a shared team space may improve productivity [19]. Yet,
software teams are still challenged with maintaining awareness of ongoing activity
[10], and find collaborative tools that support their development work useful [14].

Software teams typically store information about work items (e.g., tasks and bugs)
in software repositories, such as Microsoft Team Foundation Server (TFS), to support
team coordination. However, such repository systems are not designed to give an
overview of the state of a project or to keep team members aware of the team’s
current activities. In addition, it is not easy to see changes to work items in a software
repository. Developers may not feel that they get a proper return on the time they
invest on updating work items and often the status of work items is not up to date.

One way to improve team awareness is to show data from a team’s repository on a
large display in a shared workspace [e.g., 1,8]. FASTDash [1] showed developers’
current activities in a code base. A field study showed that FASTDash increased
communication within the team by 200%, and helped participants know who had
which files checked out, who was blocked and needed assistance, and helped resolve
conflicts with checked out code. Improvements were suggested based on the study,
such as using metrics other than file size to allocate screen space, and to add support
for people to track work items that are assigned to them. Still, it was not clear which
types of information were most useful or how visualizations could be best designed to
get awareness information at a glance. O’Reilly et al. [12] visualized checked-in code
changes on a multi-monitor display. The authors concluded that the visualization
helped to inform developers about progress and overall effort of the team. However, it
is not clear how participants used the display. De Souza, Froelich and Dourish [16]
have shown that source code could be mined to visualize both social and technical
relationships of projects. We were inspired by these findings and focused our
visualization on support for work item awareness.

Fitzpatrick et al. [6] described a long-term study of a software team using a
tickertape tool where messages from CVS, a revision control system, were displayed.
The authors found that the tickertape tool stimulated more focused discussion about
source code changes, reduced the number of empty check-in messages, and helped
coordinate and negotiate work within the team. The authors mentioned the modest
screen real estate requirements of the tickertape tool as an important benefit.

Hill and Holland [9] describe the concept of showing the history of a user’s
interactions with files as part of the representation of the files. Recent research has
empirically studied use of interaction history to help software development teams

[3,7]. TeamTracks [3] directs the attention of a programmer to important parts of the
source code based on the history of programmers’ interactions with the code. Augur
[7] combines information about code activity with a line-oriented source code
visualization similar to SeeSoft [4]. Froehlich and Dourish [7] present case studies of
four developers who used Augur to gain insight into their code and their development
activities. Their findings support the idea of combining information about activity and
code in one view that is based on spatial organization of the code. However, Augur’s
potential usefulness as an awareness tool for a collocated team remains unknown.

The research efforts mentioned so far involved representations of source code,
check-ins, and the use of code files. In contrast, Ellis et al. [5] aimed at helping large
distributed software teams to coordinate their work on change requests by visualizing
bugs. They presented SHO, a visualization with bugs shown as circles ordered,
colored, and sized by different importance metrics. Participants in an experiment were
more successful at completing tasks using SHO than using Bugzilla. Another recent
study by Sarma et al. [14] presented a desktop awareness system based on code
activity and check-ins. Their Palantír tool addressed mainly artifact changes in order
to prevent potential conflicts. The visualizations were useful for exploring databases
of bugs to identify areas of concern. However, it is not clear how useful these types of
visualizations are for maintaining awareness of work items activity and project
progress in collocated software teams, which is the focus of this paper.

3 User-Centered Design

The research presented in this paper follows a user-center design approach. We began
by gathering observations and conducting semi-structured interviews with software
developers to gain insight into their work practices and needs in collocated team
workspaces. Our goal was to understand how collocated teams coordinate their work
and to get input on what visualization features and views would be most useful for
them. We then sketched an initial design of a visualization to support team awareness,
which we presented to a focus group for feedback.

3.1 Interviews and Field Observations

In situ observations were performed with two Agile teams (see Figure 1). The teams
were observed for five hours during one week. Observations were carried out at
different times of the day and included morning stand-up meetings and iteration
planning meetings. One team typically had five to ten members present, while the
other team typically had eight to fifteen members present. We also carried out semi-
structured interviews with ten individuals from these teams (eight males). Each
interview lasted 35-40 minutes and was audio recorded with the participants’
permission. Interviewees received a free lunch coupon as gratuity for their
participation. Each interviewee had two to fifteen years of experience in software
development and ranged in age from 20 to 46. Based on questions from related
studies [10,17] and questions motivated by our in situ observations, the interviews
focused on the following aspects:

Fig. 1. Shared team rooms for the two software teams we observed.

• experiences working in a collocated team workspace;

• what tools and alerts are currently used to keep track of what other team
members are working on and what is missing in existing tools;

• how work items and tasks are currently managed;

• types of meetings and the use of a projector in the team room;

• how progress and project health in general is monitored;

• wishes on what to display on the large shared screen and how to support work
flow.

3.2 Interview and Field Observation Results

The interviews and observations showed that the teams work in iterations, which are
blocks of time typically one to two weeks long. Daily stand-up meetings in the
morning help the team to keep track of who works on what, and they are considered
an important time for team bonding. Work items are created in a repository.

The teams used many software tools to coordinate their activities including Team
Foundation Server (TFS), email, instant messaging, Live Meeting, and SharePoint.
The teams varied in work style, size, and physical workspace arrangement. Both
teams adopted a seating arrangement that corresponded to individual roles on the
team: developers, testers, writers, and support (including program managers).

In addition to regular stand-up meetings, iteration planning, and bug triages (where
resolved bugs are discussed and new bugs are assigned to team members), ad-hoc
conversations frequently occurred in the team rooms. Some team members used chat
or email, but often team members just shouted out a question or rolled their chairs
over to talk to each other. Moreover, other people came in and out of the team spaces.

Although shared team rooms can be noisy and distracting, and offer less privacy
than private offices, most team members felt that the team room was more effective
for team work. An exception to this is documentation writers (two out of ten
interviewees) who said that they preferred to work in a private office or from home;
they needed to concentrate and only came to the team room for meetings or when they
needed to speak to a team member. Since they were frequently absent from the team
room they tended to be less aware of activities that were going on within the team.

Both teams used shared whiteboards and sticky notes on the walls. Team members
defined, categorized, and prioritized work items during iteration planning meetings
and used sticky notes to represent tasks or work items. The teams also used a
projector on the wall to display information for various tasks such as work items
during iteration planning, when assigning new tasks, or for code reviews.

The dynamic nature of stand-up meetings requires a quick, glanceable overview of
recent activity. Teams currently do not have a suitable tool for displaying important
information. TFS gives no overview of unassigned tasks, and does not allow more
than one person to be assigned to a task. Also, team members have to make a burn
down chart or a task list for each meeting, which is time consuming. It is possible to
export charts and work items from TFS, but this often results in a long Excel table
with no way of synchronizing changes back with work items in TFS.

3.3 Focus Group Feedback

Based on what we learned from the interviews and observations, we sketched an
initial design for a team awareness visualization. This initial design sketch, based on
the current iteration of one of the team’s work items repository, was presented to a
focus group on a large projection screen in a meeting room to help participants
imagine how the visualization would look when deployed in their own team room.
Eight participants from two Agile development teams took part, including an
architect, program managers, developers, lead developers and testers ranging in age
from 30-48. The focus group session was video recorded with the teams’ permissions.

Participants found that the awareness display presented information in a new
perspective they had not seen before and they liked being able to see an overview of
the whole project in one view. Team members expressed the need for different filters
and view modes, since some work items might be irrelevant for their role.

We derived three key requirements for our design based on this feedback. The
awareness visualization should (1) give an overview of iteration progress, with the
ability to summarize over the last day, week, month, or version, (2) give details on
individual work items and the people these are assigned to, and (3) list current and
recent activities, either of people or on work items.

4 Work Item and People Visualization

Based on all of these results, we developed WIPDash, a visualization suitable for a
large shared display in a collocated software team space. The visualization was
implemented as a Windows application that reads data about work items from TFS.
Our intention was that team members could glance at the shared display to see the
overall status of the project and the recent changes made (especially from the past 24
hours). We also wanted team members to be able to use WIPDash on their individual
machines, where they could switch between different views and filters, and get details
on demand.

The WIPDash window consists of two parts (see Figure 2). The left part of the
window contains a spatial representation of areas of the project and the work items in

those areas. For instance,
documentation. The right part of the window consists of a list of view modes, a team
panel, and drop-down lists of iterations, work item states and types. These lists can be
used to filter and highlight work items in the

Fig. 2. WIPDash showing the iteration overview

4.1 Work Item Treemap

WIPDash uses a squarified treemap for laying out project areas as rectangles [
treemap is a scalable approach to spatially organizing hierarchically structured data
such as a hierarchy of project areas. Each rectangle is sized proportionally to the
number of open work items in the area. A minimum threshold is used to
areas that do not contain any open items
with the name of the project area

We wanted to preserve the spatial layout of project areas and work i
easier for users to remember where areas are located in the visualization. However,
treemap algorithms can cause the spatial layout to change considerably when the data
changes. Since WIPDash would be shown on both a large display and
team members’ displays (which may have different screen dimensions), the layout
had to vary across instances of WIPDash.
the purpose of the field study
of WIPDash. This layout could be explicitly updated and the treemap would render
again. Since the relative size of
number of open work items, we color a rectangle darker as more open work items are
associated with the area.

those areas. For instance, the area labeled ‘Docs’ contains items related to
documentation. The right part of the window consists of a list of view modes, a team

down lists of iterations, work item states and types. These lists can be
used to filter and highlight work items in the left view.

WIPDash showing the iteration overview for the current iteration of a project.

reemap

WIPDash uses a squarified treemap for laying out project areas as rectangles [
treemap is a scalable approach to spatially organizing hierarchically structured data
such as a hierarchy of project areas. Each rectangle is sized proportionally to the

work items in the area. A minimum threshold is used to ensure that
do not contain any open items are shown in the map. Rectangles are labeled

with the name of the project area.
We wanted to preserve the spatial layout of project areas and work items to make it

easier for users to remember where areas are located in the visualization. However,
treemap algorithms can cause the spatial layout to change considerably when the data
changes. Since WIPDash would be shown on both a large display and on in
team members’ displays (which may have different screen dimensions), the layout

vary across instances of WIPDash. In order to keep the layout consistent
the purpose of the field study, the treemap was fixed and then shared by all instan

This layout could be explicitly updated and the treemap would render
Since the relative size of an area does not change dynamically to reflect the

number of open work items, we color a rectangle darker as more open work items are
the area.

related to project
documentation. The right part of the window consists of a list of view modes, a team

down lists of iterations, work item states and types. These lists can be

for the current iteration of a project.

WIPDash uses a squarified treemap for laying out project areas as rectangles [2]. The
treemap is a scalable approach to spatially organizing hierarchically structured data
such as a hierarchy of project areas. Each rectangle is sized proportionally to the

ensure that
. Rectangles are labeled

tems to make it
easier for users to remember where areas are located in the visualization. However,
treemap algorithms can cause the spatial layout to change considerably when the data

individual
team members’ displays (which may have different screen dimensions), the layout

the layout consistent for
, the treemap was fixed and then shared by all instances

This layout could be explicitly updated and the treemap would render
area does not change dynamically to reflect the

number of open work items, we color a rectangle darker as more open work items are

Each rectangle in the treemap contain
associated with that area. The icons
in the order they were created starting from the top
reduced to fit all icons within the rectangle, and if there is enough space between
icons, the ID number of the item is shown below the icon.
indicates the state of the work item (e.g., proposed, active, resolved, o
the shape of an icon indicates the type of the work item (e.g., feature, bug, or task).
Icon size represents either priority level or estimated hours of the work item, with
larger sized icons representing items of higher priority or higher
hours, as designated by the user or team

Moving the mouse cursor over
the item. Clicking on an icon
item. An ‘Add note’ section in the
to the work item. A small yellow sticky note symbol is displayed on the work item to
indicate that it has a note attached.

4.2 Iteration Filtering

Selecting an iteration in the
that iteration and highlights them on the treemap. Since teams are
interested in closed items for the current iteration, we removed closed items that were
not assigned to the selected iteration

4.3 Team Panel

The team panel (see Figure
Clicking on a team member shows the icons for all work items assigned to or closed
by the selected team member. The team panel contains two options in addition to the
team members: (1) “all” w
assigned to, and (2) “unassigned”

Fig. 3. (a) Team panel showing
representation of the amount of work each member has assigned, completed and remaining.

rectangle in the treemap contains icons that represent the work items
area. The icons in a rectangle are evenly spaced in a grid, placed

in the order they were created starting from the top-left corner. Space between icons is
reduced to fit all icons within the rectangle, and if there is enough space between
icons, the ID number of the item is shown below the icon. The color of an icon
indicates the state of the work item (e.g., proposed, active, resolved, or closed) and

shape of an icon indicates the type of the work item (e.g., feature, bug, or task).
ize represents either priority level or estimated hours of the work item, with

larger sized icons representing items of higher priority or higher estimate of work
, as designated by the user or team.

Moving the mouse cursor over a work item icon shows a tooltip with details about
the item. Clicking on an icon shows a popup window with details about the work

n ‘Add note’ section in the detail window can be expand to add a sticky note
to the work item. A small yellow sticky note symbol is displayed on the work item to
indicate that it has a note attached.

iltering and Highlighting

Selecting an iteration in the “iteration list” shows all work items that are assigned to
that iteration and highlights them on the treemap. Since teams are usually
interested in closed items for the current iteration, we removed closed items that were
not assigned to the selected iteration in order to avoid clutter.

Figure 3a) contains the names and pictures of the team members.
Clicking on a team member shows the icons for all work items assigned to or closed
by the selected team member. The team panel contains two options in addition to the
team members: (1) “all” which is used to select all items regardless of whom they are

and (2) “unassigned”, which is used to select all unassigned work items.

(a) (b)

(a) Team panel showing names and pictures of team members, and (b) a graphical
representation of the amount of work each member has assigned, completed and remaining.

work items
a rectangle are evenly spaced in a grid, placed

ce between icons is
reduced to fit all icons within the rectangle, and if there is enough space between

olor of an icon
r closed) and

shape of an icon indicates the type of the work item (e.g., feature, bug, or task).
ize represents either priority level or estimated hours of the work item, with

estimate of work

icon shows a tooltip with details about
details about the work

expand to add a sticky note
to the work item. A small yellow sticky note symbol is displayed on the work item to

shows all work items that are assigned to
usually only

interested in closed items for the current iteration, we removed closed items that were

team members.
Clicking on a team member shows the icons for all work items assigned to or closed
by the selected team member. The team panel contains two options in addition to the

hich is used to select all items regardless of whom they are
which is used to select all unassigned work items.

, and (b) a graphical
representation of the amount of work each member has assigned, completed and remaining.

For each person, WIPDash shows horizontal lines that represent the total amount
of work, the amount of completed work, and the work remaining in the iteration that
is assigned to that person (Figure 3b). The x-axis measures work hours and a dotted
vertical line represents the end of the iteration, corresponding to the total number of
work hours in the iteration. The remaining work line is colored red if the estimated
hours of remaining work exceeds the time left in the iteration.

4.4 View Modes

One goal of our design was to make the information on the display glanceable. Thus,
to avoid cluttering the display by showing too much information in one view, users
can choose between four different view modes.

The Iteration overview mode highlights all work items in the current iteration. This
view aims to provide an overview of the iteration status. Team members can see how
much work has been done and how many work items remain in the iteration. Details
are automatically displayed for work items that are currently being working on,
including who is working on the item. More details about an item can be shown by
clicking on ‘More’ (see Figure 2).

The Opened in last 24 hours view is designed to keep the team aware of incoming
tasks and issues. Work items opened within the last 24 hours are highlighted with a
yellow border and background. The opacity of the border and background varies to
distinguish recently opened items from items that were opened less recently. Also,
similar to the iteration overview, details are shown for recently opened items,
including when an item was opened and by whom.

The Changed in last 24 hours view aims to keep the team aware of recent changes
to work items. Similar to the Opened view mode, a yellow border and background is
shown around icons of work items that changed within the last 24 hours. Again,
details are automatically displayed for recently changed work items, including the
change made and who made the change. For simplicity, the same color coding is used
for both Opened and Changed view modes in order to draw users' attention to work
items with any recent activity.

The Notes view calls up the sticky notes for all work items with a note attached.
The Notes view allows users to spot work items that need attention, for example if a
team member makes a request to pair up on a specific task.

In order to provide continuous awareness and to allow passive use, WIPDash
allows cycling through view modes and through team members within each view
mode. A person remains selected for ten seconds before the next person on the team
panel is selected. The next view mode is selected after cycling through all team panel
selections. We were interested to see if this cycling behavior was useful or distracting
to the teams we studied. The visualization updates with new or changed work items
by querying Team Foundation Server (TFS) once per minute. All of the information
used in our visualization came from the teams’ data entries in TFS.

5 In Situ Deployment

We deployed WIPDash with two collocated Agile software teams and observed its
use for one week. Our aim was to understand the usefulness of the WIPDash and the
effect it had on team members’ situational awareness and on group processes. Team
A had eight members (seven male), with an age range of 22-46. Team B had 16
members (14 male), with an age range of 27-48. Individual roles on both teams
included lead developer, developer, tester, test lead, program manager, writer and
group manager. WIPDash was installed on a large display in the team rooms and on
team members’ individual workstations. Data were automatically collected in
WIPDash in order to describe how participants interacted with the visualization
throughout the study. WIPDash was installed on a Thursday and an orientation
session was given the following day. We observed the teams the following week
(Monday through Friday). Afterwards, we met with each team for post-usage
discussions. Each participant received a $50 gratuity coupon for their participation. In
the Team A room, the awareness visualization ran on a projected wall display on the
most accessible wall to the whole team. In the Team B room, the awareness display
was installed on a 52-inch plasma touch screen toward the front and right side of the
team room. Some members of Team B had their backs to this display.

5.1 Supporting Daily Stand-Up Meetings

Team A used WIPDash daily on their large display during stand-up meetings to
coordinate meetings. Specifically, they found the Iteration overview useful, both in
terms of status and also to jog their memories about work items from the previous
day. During stand-up meetings, one of the team members selected each person from
the team panel to display his information, and that person then talked about his work.
The team considered details about the active items assigned to a person especially
useful. Team members said they would have found it beneficial to have team
members displayed in a random order during stand-up meetings—just to make it more
fun. They also referred to the display to view the status of a remote team member
when she called in for the standup meeting. This suggests that WIPDash could be
useful for supporting collaboration with distant team members. Some team members
commented that they liked to look at the awareness display first thing in the morning
to see what team members in Argentina had been doing for the last ten hours. Some
team members who were on vacation for most of the time during our study also said
that they used the awareness visualization when they got back to get a sense of what
the team had been doing for the past week and “Where are we now?” in the iteration.

We observed that the available information in WIPDash was not completely
sufficient for reviewing what had been worked on during the previous day.
Specifically, if a developer had completed his work on a work item and then
reassigned the item to somebody else for testing, that item no longer showed in the
Changed view for that developer. This was discussed during a stand-up meeting, and
the team suggested a view where all work items that a person had worked on would
be highlighted, even if they had been reassigned. The team further elaborated on an
idea of one, concise overview containing all the information they would need for their

standup meetings, including recently resolved items that were reassigned to other
members and items that members had worked on yesterday. Finally, the team
expressed a wish for extending the shared wall display with an additional projector to
show project information like spreadsheets or code next to WIPDash.

5.2 Automatic Cycling

The automatic cycling between views was found to be problematic. WIPDash cycled
between all members in the team panel, including people with no items assigned or
without any recent activity. Thus, nothing of interest is shown in parts of the cycle.
Members of Team A suggested that cycling would make sense if done only between
views that contain recent changes. Team B had only one work item assigned per
person at a time and therefore cycling through each view for each team member was
not useful.

Team members commented that notifications needed to be more assertive when a
change or an update happened, such as an audio herald combined with a fisheye
notification message about the change on the awareness display. Also, team members
wanted to configure which views were displayed on their personal displays and when
notifications should appear. An RSS-style feed would probably be a useful option for
the personal workstations. We are pursuing that idea in the next iteration.

5.3 Use on Large Display and Individual Displays

We analyzed data logged by WIPDash to see how the two teams used WIPDash on
the large display and on their individual machines. In all, we collected log data from
ten personal machines, five members on Team B and five members on Team A, in
addition to the two machines running the large shared displays. When a user started
interacting with WIPDash, the default cycling between views was suspended. The log
data showed that Team A used the large display (showing the iteration overview)
during their stand-up meeting every morning around 9:30 am. Apart from the stand-
up meetings, Team A physically interacted with the large display only twice during
the study. In contrast, Team B interacted with the large display on average five times
per day. In Team B some of the participants did not have WIPDash installed on their
own machines. For this team WIPDash was running on a new touch screen display,
which had a lot of appeal. One possible reason why Team A did not interact much
with the large display was that it was projected high up on one of the walls, making
personal display interaction more reasonable than going to the laptop in the corner of
the room that controlled the view in order to interact with the group view.

5.4 Types of Interaction

In all, 596 selections were made in the right panel of WIPDash. Selections were
primarily made in the team panel (66%). The view mode panel (17%), and iteration
panel (15%) were also used to change the view. Iteration overview was the most

frequently selected view mode, selected more than 50% of the time. The Changes
view and the Opened view were each selected between three and eight times, whereas
the Notes view was only selected once.

Participants from Team A clicked on items to call up details 21 times while
participants from Team B brought up additional details 22 times. Only two sticky
notes were created in WIPDash, both by a lead developer on Team A. Follow-up
discussions related to sticky notes revealed that users would rather use the existing
‘comments’ data structure in TFS to view and add notes to work items in WIPDash.

5.5 Questionnaires

Satisfaction with WIPDash was assessed using a questionnaire administered to team
members at the post-usage meeting. The questionnaire contained nine questions from
[13] and eight questions to address distraction and awareness, using five-point Likert-
scale with lower scores reflecting negative responses. We balanced the valence of our
satisfaction questions. For negatively phrased questions (marked with an asterisk in
Table 1), we reversed the rating so that higher was always positive.

Ratings on usefulness and satisfaction with the system were mostly neutral to
positive (see Table 1) and there were no significant differences between the two teams
(paired t-test). Team members said that they had confidence that the information was
displayed correctly and on time. From the ratings, it was clear that the notifications of
changes were not grabbing attention well enough, and that WIPDash was seen as less
reliable than we would have liked. However, the teams were not embarrassed to show
their personal work item information and they leaned towards using a future version
of WIPDash.

Table 1. User Satisfaction

Question Average Rating (SD)

1. I have difficulty understanding WIPDash.* 4.10 (0.7)
2. WIPDash is easy to use. 3.63 (0.8)
3. WIPDash is reliable. 2.63 (1.1)
4. I have confidence in the information provided by WIPDash. 3.90 (0.7)
5. I need more training to understand WIPDash.* 4.05 (0.9)
6. WIPDash is informative. 3.32 (0.9)
7. WIPDash is comprehensible. 3.37 (0.8)
8. Overall, I am satisfied with WIPDash. 3.00 (1.1)
9. I would be happy to use WIPDash in the future. 3.11 (1.1)
10. I find WIPDash distracting.* 3.95 (0.9)
11. WIPDash grabs my attention at the right time. 2.84 (0.9)
12. It’s worth giving up the screen space to run WIPDash on my PC. 2.74 (0.9)
13. WIPDash helps me stay aware of information that’s critical. 2.72 (1.0)
14. I like being notified when a work item gets reassigned. 3.22 (1.2)
15. WIPDash’s notifications often distract me.* 3.83 (0.8)
16. Having WIPDash displayed in front of the team is embarrassing.* 4.17 (1.0)
17. I would rather have WIPDash displayed only privately.* 4.18 (1.1)

A questionnaire on situational awareness and group satisfaction was administered to
team members before in situ deployment and at the post-usage meeting. The
questionnaire included questions from [11,18] and used five-point Likert-scale with
lower scores reflecting negative responses. Paired t-tests showed no significant
differences between the Before and After conditions. The results could be affected by
a particular iteration stage or the day of the week the questionnaire was completed.

6 Discussion, Lessons Learned and Conceptual Redesign

Several factors may have affected the use and adoption of WIPDash. First, size and
location of the shared display affected how team members made use of the display by
glancing at it or physically interacting with it. During observations of Team A, we
saw that team members often looked at the display when entering or leaving the room.
This was not the case in the Team B room. One reason may be that the Team A room
had a large display, projected high up on a wall, that was visible to everyone in the
room. In contrast, Team B’s shared display was smaller, located in a corner of the
room, and was not directly visible to all team members.

Second, the two teams in our study organized their work differently. Team A
assigned work items to team members during an iteration planning meeting, and had
daily stand-up meetings to follow up on progress of the team. Using the shared
display during stand-up meetings may have influenced Team A’s familiarity with the
display, and consequently increased their use of the display. In contrast, Team B did
not have daily stand-up meetings; instead, they talked with each other about progress
and status throughout the day. Also, Team B assigned only one work item to each
person and viewed work in terms of releases that span several iterations, not single
iterations. This suggests that Team B could make even better use of an overview of
activities, but using different time spans.

Third, Team B had many proposed items in their repository, but most items were
not scheduled to be worked on. Also, many of the project areas, which were shown in
WIPDash because they contained proposed work items, were simply not considered
relevant by the team at the time of our observations. Thus, as Team B had many more
items to track than did Team A, and since WIPDash showed all work items in
‘proposed’ state, the display for Team B was more cluttered.

Our study has limitations that should be considered when interpreting the results.
Although very different work styles were observed, the two teams were from the
same organization. Therefore, our results may not be generalizable to software teams
everywhere. Also, we only observed the teams for one week. While we learned much
from the initial feedback, it would be interesting to see the long term effects of
WIPDash. Another concern is that we do not know how the collocated Agile teams
that we have focused on compare with larger, distributed teams. It could be that a
focus on collocated, Agile software teams may reveal some issues in team
coordination that also apply to distributed software teams. For example, Gutwin et al.
[8] suggest a need for awareness of areas of expertise within a distributed open source
project team because developers work on all parts of the code. This might relate to the
information needs we seek to provide with our visualization (e.g., what people are

working on and have been working on). For example, a glance at WIPDash first thing
in the morning to see what team members in Argentina have been doing for the last
ten hours could be very useful in terms of setting daily priorities or offering more
timely assistance. We intend to extend our focus to distributed team awareness in our
future work.

Informed by the insights we have gained from our study of WIPDash, the design of
the next version of the dashboard will include the following:

• A more glanceable display;

• sound cues for users to look at the dashboard when information changes;

• on a user’s display, it will only show notifications (e.g., ‘toaster’ type alerts in
the system tray) as information changes;

• a wide diversity of project data field definitions and usages;

• support for add-on visualizations developed by a dashboard community;

• data caching to reduce the load on the repositories from dashboard clients.

Conclusion and Future Work

This study on WIPDash suggests benefits from providing awareness of work item
status. Earlier work on FASTDash [1] showed benefits from providing a team
situation awareness display based on code activity. An interesting perspective for
future work is to combine information about work items with information about code
activity in one visualization [14]. A potential disadvantage of such an approach is that
the display gets too busy. However, linking code activity and the state of work items
could give the team a solid shared context if it focused simply on what is or has just
recently changed. That is the main goal for our next iteration. We intend to create a
simple list of recently changed work items, and the people who are actively related to
them. In addition, the new WIPDash will have integrated chat and RSS feeds for
notifications to the desktop. The ethnographic study of Souza and Redmiles [17]
confirms our observations: (a) a need for awareness of who made the changes; (b) a
need to peripherally integrate awareness notifications into an existing work items
repository, and to link them to code changes in order to keep work items’ status better
up to date and thus coordinate work more proactively.

In this paper, we have reported on a human-centered design approach to
developing a situational awareness dashboard visualization to help software
development teams track people and work items. From observations and interviews of
development teams we learned about their current work practice and what might be
provided to improve situation awareness. We then developed a dashboard for
supporting awareness in teams, called WIPDash (Work Item and People Dashboard).
We gathered feedback on an initial design from a focus group, which drove the
detailed design and the implementation of WIPDash. Finally, we have studied the use
of WIPDash in situ with two development teams, and reflected on the observations
and data we gathered. While questions remain to be answered, the results from our
study provide initial insights about use of a shared display to support team awareness
of work item data in software repositories.

References

1. J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson (2007). FASTDash: a visual
dashboard for fostering awareness in software teams. In Proc. CHI ’07, 1313–1322, ACM.

2. M. Bruls, K. Huizing, and J.J. van Wijk (2000). Squarified Treemaps. In Proc. TCVG ’00,
33-42. IEEE Press.

3. R. DeLine, M. Czerwinski, and G. Robertson (2005). Easing program comprehension by
sharing navigation data. In Proc. VL/HCC ’05, 241-248. IEEE Computer Society.

4. S. C. Eick, J. L. Steffen, E. E. Sumner Jr. (1992). Seesoft - A Tool for Visualizing Line
Oriented Software Statistics. In IEEE Trans. on Software Engineering, 18 (11), 957-968.

5. J. B. Ellis, S. Wahid, C. Danis, and W. A. Kellogg (2007). Task and social visualization in
software development: evaluation of a prototype. In Proc. CHI ’07, 577–586, ACM.

6. G. Fitzpatrick, P. Marshall, and A. Phillips (2006). CVS integration with notification and
chat: lightweight software team collaboration. In Proc. CSCW '06, 49-58, ACM.

7. J. Froehlich and P. Dourish (2004). Unifying artifacts and activities in a visual tool for
distributed software development teams. In Proc. ICSE ’04, 387–396, IEEE.

8. C. Gutwin, R. Penner, and K. Schneider (2004). Group Awareness in Distributed Software
Development, Proc. CSCW ’04, 72-81. ACM.

9. C. W. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless (1992). Edit wear and read
wear. In Proc. CHI '92, 3-9, ACM, New York, NY, USA.

10. A. J. Ko, R. DeLine, and G. Venolia (2007). Information Needs in Collocated Software
Development Teams. In Proc. ICSE ’07, 344-353. IEEE Computer Society.

11. B. A. Olaniran (1996) A Model of Group Satisfaction in Computer Mediated
Communication and Face-to-Face Meetings, Behaviour and Information Technology, 15
(1), 24-36. Taylor and Francis.

12. C. O'Reilly, D. Bustard, and P. Morrow (2005). The war room command console: shared
visualizations for inclusive team coordination. In Proc. SoftVis '05, 57-65, ACM.

13. S. Paul, P. Seetharaman, and K. Ramamurthy (2004) User Satisfaction with System,
Decision Process, and Outcome in GDSS Based Meeting: An Experimental Investigation.
In Proc. HICSS ’04, vol. 1. IEEE Press.

14. A. Sarma, D. Redmiles, and A. van der Hoek (2008). Empirical evidence of the benefits of
workspace awareness in software configuration management. In Proc. SIGSOFT '08/FSE-

16, 113-123.
15. K. Schwaber and M. Beedle (2002). Agile Software Development with Scrum. Prentice

Hall.
16. C. de Souza, J. Froehlich, and P. Dourish (2005). Seeking the source: Software source code

as a social and technical artifact. In Proc. GROUP ’05, 197-206, ACM.
17. C. R. de Souza and D. F. Redmiles (2008). An empirical study of software developers'

management of dependencies and changes. In Proc. ICSE '08, 241-250, ACM.
18. R. M. Taylor (1989). Situational Awareness Rating Technique (SART) The Development

of a Tool for Aircrew System Design. Proceedings of the Symposium on Situational

Awareness in Aerospace Operations, AGARD-CP-478.
19. S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson (2000). How does radical collocation

help a team succeed? In Proc. CSCW ’00, 339-346. ACM.

