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Abstract

We describe a system for volume rendering via ray casting, targeted at medical data and clinicians. We discuss the
benefits of server vs client rendering, and of GPU vs CPU rendering, and show how we combine these two advan-
tages using nVidia’s Tesla hardware and CUDA toolkit. The resulting system allows hopsital-acquired data to be
visualized on-demand and in real-time by multiple simultaneous users, with low latency even on low bandwidth
networks and on thin clients. Each GPU serves multiple clients, and our system scales to many GPUs, with data
distribution and load balancing, to create a fully scalable system for commercial deployment. To optimize render-
ing performance, we present our novel solution for empty space skipping, which improves on previous techniques
used with CUDA. To demonstrate the flexibility of our system, we show several new visualization techniques, in-
cluding assisted interaction through automatic organ detection and the ability to toggle visibility of pre-segmented
organs. These visualizations have been deemed by clinicians to be highly useful for diagnostic purposes. Our per-
formance results indicate that our system may be the best-value option for hospitals to provide ubiquitous access
to state-of-the-art 3D visualizations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Volume rendering algorithms take an input signal de-
fined on a three-dimensional domain and project it onto
a two-dimensional image. Volume rendering has a long
history [Lev90, Neu92, LL94, EKE01, EWRS∗06, TSD08,
SHC∗09] with applications in a variety of different domains
such as mechanical engineering [SMW∗05, RBG07], scien-
tific visualization [Lev90] and medical analysis [RTF∗06,
BCFT06, TSD08, SHC∗09]. Although impressive visualiza-
tions have often been obtained, the main challenge has re-
mained that of achieving such visualizations efficiently.

This paper addresses the problem of efficient remote ren-
dering of medical volume data for a commercial system suit-
able for hospital-scale deployment. Unlike previous systems
where rendering has been done on GPU workstations or on
CPU clusters, we make the leap to GPU clusters, in order
to provide clinicians with ubiquitous access to 3D visualiza-

tions, on thin clients and over low bandwidth internet con-
nections. This approach yields challenges related to simulta-
neous clients, load balancing, transport and efficiency. Our
system achieves rendering of diagnostic quality 3D images,
as confirmed by radiology experts. It is being developed as
part of a commercial radiology product.

In this paper we describe our implementation of volume
rendering using CUDA, including a novel space skipping al-
gorithm which improves on previous results. We go on to
discuss the architecture of our enterprise solution for remote
rendering of medical images using GPU-equipped servers
and thin clients. We show performance evaluation results for
individual renderings, and scalability results which demon-
strate our ability to scale with the number of simultaneous
clients. Finally we show some novel visualization techniques
which are enabled by our remote rendering solution and dis-
cuss their clinical relevance.
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Figure 1: A user adds a clipping plane with their mouse
wheel to reveal internal structure.

2. Related Work

Although the theory of direct volume rendering is well
understood a number of expedients have been sought in
order to make the rendering process more computation-
ally efficient. Some of the early approaches used a sur-
face representation [Lev88]. Other techniques relied on ef-
ficient geometric transformations to avoid the inefficien-
cies of ray-casting [LL94, Lac95]. Others exploited exist-
ing texture hardware [WE98,RSEB∗00,LMC01]. Algorithm
parallelism, empty-space skipping, tree-based data struc-
ture and frequency domain processing have also been used
for computational efficiency and data compression [Neu92,
SGL94,MPHK93,LMK03,WFM∗05,KW03,TL93,VKG04,
SMW∗05, GWGS02]. Interactive remote rendering is ad-
dressed in [ESE00, HHN∗02]. More recently, the introduc-
tion of multi-core graphics processors and the new nVidia
CUDA platform has led to new, faster algorithms [PN01,
Waa08, KGB∗09].

The usefulness of volume rendering in medical applica-
tions has been demonstrated in a number of research pa-
pers [Lev90, BCFT06, RBE08, TSD08, KGB∗09, SHC∗09].
Specifically, volume rendering has been found useful in an-
alyzing Computed Tomography data [HRS∗99, PDSB05],
fused CT and MRI data [RBE08], as well as functional
MRI and in DTI tractography [HBT∗05, RTF∗06]. Specific
medical applications include: vascular analysis [BA01], tis-
sue classification [SWB∗00] and diagnosis and treatment
of aneurisms [THFC97]. The recent work of Smelyanskiy
et al. [SHC∗09] demonstrates that ray-casting produces the
best diagnostic quality, medical renderings.

The problem of improving the diagnostic clarity of med-
ical renderings has been tackled either by using multi-
dimensional transfer functions [KKH02] or by using some
level of segmentation to remove clutter and focus on the

regions of interest [BCFT06, Bru06, RBG07]. The remote
visualization of medical data was discussed in [EEH∗00,
THRS∗01]. Parallel volumetric rendering on GPU clusters
was addressed in [SMW∗05].

More information on the vast volumetric visualization
literature may be found in [Lju06, EWRS∗06, SCCB, Yag,
Bey09].

3. Rendering

At the core of our system is efficient volume rendering using
CUDA. We perform volume rendering via ray casting, where
we shoot one ray per pixel, through the camera centre and
into the volume.

In previous work on GPU volume rendering [EWRS∗06],
setting up rays has been done by a vertex shader, rendering
the faces of the bounding cube, with the 3D position of each
vertex encoded in a texture coordinate. Since we are using
CUDA rather than a graphics API, we have no need of this
method, and instead simply back-project each pixel through
an inverse projection matrix.

We are given a 3D scalar array of dimension (w,h,d) and
use it to define a right-handed local coordinate system on
the volume data. We use these discrete values in conjunction
with standard trilinear texturing to define a sampling func-
tion V (x,y,z) : R3 −→ [0,1]. We wish to render the volume
to an ARGB image I(x,y) : Ω ⊂ Z2 −→ [0,1]4. The client
software provides a 4-by-4 transformation matrix P which
projects from volume co-ordinates to image co-ordinates.
The third row of P allows for near and far clipping planes
to be specified.

For each render request, the volume-to-viewport matrix
P is inverted on the CPU and passed to the CUDA kernel
along with other rendering parameters. The method we de-
scribe here supports both affine and perspective cameras,
which may be inside or outside the bounding volume. The
ray-casting kernel begins by computing a ray r(λ) = a+λd̂
for each pixel. For an image pixel with index (x,y), a = s(0),
where s(z) = bP−1(x+0.5,y+0.5,z,1)c, and b.c represents
the operation of de-homogenizing a vector by dividing its en-
tries by its last component. Then d= s(1)−a, and d̂= d/|d|.
We will proceed to integrate along the ray between λnear = 0
and λ f ar = |d|.

Before integration, we clip each ray to all the active clip-
ping planes. These planes include both the bounding box of
the volume and any planes specified by the user. Each clip-
ping plane π is a 4-vector such that a point (x,y,z) shall be
visible if and only if π

T (x,y,z,1)> 0. λnear and λ f ar are up-
dated by intersecting each ray with each clipping plane. At
this stage, empty space skipping may also be performed (see
section 4).

We may now define the sampling positions along the
ray as {r(λ j)} for λ j = λnear + j.λstep and j ∈ [0,(λ f ar −
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Figure 2: The effect of various rendering options. Top-left:
MIP integration (see [PB07]); top-right: alpha blending in-
tegration; bottom-left: with shading added; bottom-right:
jittering the ray start positions. See text for details

λnear)/λstep). (We always set λstep = 1.) We then step along
the ray at these positions, sampling the texture at each posi-
tion as V (r(λ)) and integrating as appropriate.

We support multiple integration modes, as required
for clinical medical use [PB07]. For MIP (Maximum
Intensity Projection), the result of integration I(x,y) =
max j{V (r(λ j))} is simply the maximum of the sampled
scalar values along the ray (see figure 2). Minimum and Av-
erage values are similarly computed.

For the Alpha Blending integration mode, during integra-
tion, an associated [] (or pre-multiplied) ARGB colour vec-
tor is updated along each ray as c = c+(1− cα)src j, where
src j represents the amount of light and opacity emitted or
reflected along the viewing direction at position r(λ j).

The client supplies a transfer function as a set of key-
points {(x,α,r,g,b) j} such that ∀ j : x j,α j ∈ [0,1] and
r j,g j,b j ≤ α j are pre-multiplied colours. We can then de-
fine a sampling function T(x) : [0,1]−→ [0,1]4 which maps
scalar volume values to colours and opacities. In this case,
src j = T(V (r(λ j))).

We also use pre-integration of the transfer function
[EKE01] to avoid unnecessary aliasing where the transfer
function may contain high frequencies. In this case, src j =

T2D(V (r(λ j−1)),V (r(λ j))), where T2D : R2 −→ [0,1]4 is a

pre-computed texture such that

T2D(x,y) =
{ ∫ y

x T(τ)dτ/(y− x) (x 6= y)
T(x) (x = y)

We estimate gradients during integration using 6-point fi-
nite differences in order to perform shading:

∇V (x,y,z)≈ 1
2δ

 V (x+δ,y,z)−V (x−δ,y,z)
V (x,y+δ,z)−V (x,y−δ,z)
V (x,y,z+δ)−V (x,y,z−δ)

 .
To mitigate wood-grain artefacts, we expose an option to

jitter the ray start position by up to one voxel in the direction
of the ray. In this case, λ j = λnear +( j+J(i, j))λstep, where
J(i, j) : R2 −→ [0,1] is a pre-computed jitter texture.

To improve performance, we implemented early ray ter-
mination [EWRS∗06], so that if cα becomes sufficiently
close to 1 during integration, the ray computation may be
considered finished.

4. Empty space skipping

The most important optimization for volume rendering is
empty space skipping. We tried several approaches to empir-
ically determine the most appropriate strategy for our con-
text.

4.1. Depth-First Tree Traversal

One strategy that briefly appeared promising was depth-first
traversal of a BSP tree. This strategy is typically used for
CPU rendering. We constructed a binary tree where the root
node corresponds to the entire volume. The tree is con-
structed by repeatedly bisecting the volume along the di-
mension with longest length. At each node we stored both
the minimum and maximum scalar values within the corre-
sponding sub-volume. Thereafter it is relatively straightfor-
ward to perform the ray casting with reference to the BSP
tree.

However, there are two significant problems with this ap-
proach in our context. First is the issue of thread divergence.
Within the CUDA architecture, threads in a thread group
(called a warp) must all execute the same instruction simul-
taneously to achieve good performance. If different threads
take different code paths this can be disastrous for perfor-
mance. The thread divergence in this strategy makes it quite
unsuitable for GPUs.

We tried to avoid the problem of thread divergence by
simply using the tree to determine the ray start position,
λnear. However, we found that this scheme was still not effi-
cient since it was necessary to store the stack or queue of vis-
ited nodes for each thread, which is required for the depth-
first traversal. This per-thread storage requirement was too
great for either registers or shared memory, and therefore
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r = a + λd

λnear

λ’near

λfar

λ’far

Figure 3: Empty space skipping represented in 2D. The
smallest squares represent the underlying volume data; the
larger squares represent the bricks whose minimum and
maximum values are stored in a low-resolution proxy vol-
ume. We traverse all the bricks that intersect a ray (shown
in brown outline), determining whether each bricks is vis-
ible (pink in diagram). The ray bounds λnear and λ f ar are
tightened accordingly.

the cost of accessing and updating this stack dominated the
render time.

4.2. Our Proposed Method

Previous methods for GPU space skipping rasterize pre-
computed bounding geometry to determine the start position
for each ray. This has typically been performed on a ver-
tex shader [LMK03,EWRS∗06], although [KGB∗09] imple-
ments the strategy using CUDA.

Instead, we propose a new multi-resolution method
for empty space skipping. We create a pyramid of low-
resolution proxy volumes where each voxel in a low-
resolution volume stores only the minimum and maximum
values within the corresponding brick at the high resolution.
For each ray, after clipping the ray to bounding planes, we
interesect the ray with the lowest resolution proxy volume,
and visit each intersected brick in the range [λnear,λ f ar]. We
walk through the low resolution voxels, from front to back
in a Bressenham-style 3D line-drawing routine (see Figure
3).

For each intersected brick, we compute the ray param-
eters λ f ,λb at the front-most and back-most intersection
points of the ray with the brick. At the first non-transparent
brick, we set λnear := λ f and λ f ar := λb. At subsequent non-
transparent bricks, λ f ar := λb. When an opaque brick is en-
countered, the ray may terminate.

With pre-integrated transfer functions, it is simple to de-
termine whether a brick is transparent from the minimum
and maximum scalar volume values. The pre-integrated
transfer function already stores the average opacity of the

transfer function between each pair of scalar values. There-
fore a brick can be considered transparent precisely when
the pre-integrated opacity between minimum and maxi-
mum values is below a threshold close to zero, i.e. when
T2D(vmin,vmax)< θ. We use θ = 0.002. A similar computa-
tion discovers fully opaque bricks.

After stepping along the rays through the lowest resolu-
tion proxy volume, we have updated values of λnear and λ f ar
for each ray, which are tighter to the visible volume data than
the original bounds. We then proceed to the next finest res-
olution and repeat, beginning each ray at the new λnear po-
sition. In this way we progressively update the near and far
clipping positions for each ray with efficient parallelism.

Finally, we use the tightest bounds for each ray in the in-
tegration phase, which uses the original volume data. We
implement each level of ray clipping in a separate CUDA
kernel invocation.

For the scalar integration modes, e.g. MIP, there are sim-
ilar rules for adjusting λnear,λ f ar based on whether each
brick may contain values that affect the integration result.

For volumes up to 5123 in size, we found that the best
results were produced with two proxy volumes, using scale
factors of 8 and 64. In this case, overall rendering time was
reduced by between 35% and 78% (depending on the trans-
fer function) compared to 15% reported in [KGB∗09]. The
two low-resolution passes accounted for about 25% of the
total time. See the results in figure 4.

We think of our space skipping algorithm as being akin
to a breadth-first traversal of a BSP tree, as opposed to the
depth-first traversal which is better suited to CPUs.

5. Architecture

The design of our system is motivated by a few key require-
ments. In a typical hospital environment, CT scans are per-
formed more or less continually, with 3D data sets stored in
a database on a server within the hospital’s network. We aim
to provide interactive diagnostic-quality volume rendering
of these data sets for simultaneous remote users, over low-
bandwidth connections and on thin clients, while minimiz-
ing hardware cost. These remote users are not only radiolo-
gists that typically see the patient scans, but other clinicians
such as surgeons, oncologists and general practitioners who
may currently only see a textual description provided by the
radiologist. The patients themselves may also perhaps wish
to view their data, as it has been shown that a visual depic-
tion incentivizes patients to a greater degree of involvement
in their own health [Vis].

To achieve these goals, we architect our system for all ren-
dering to be performed on server GPUs. We submit that this
choice gives us a number of benefits over both client render-
ing and CPU rendering.
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Transfer No Our Speed-up
function skipping (ms) skipping (ms)
Internal 38.8 25.4 35%
Muscle 45.2 20.3 55%
Native 58.0 12.7 78%
Bones 34.9 16.7 52%

Figure 4: Results for our proposed empty space skipping
technique, for 4 different transfer functions, shown above.
Transfer functions are ordered clockwise, from top-left to
bottom-left.

5.1. Server vs Client Rendering

In our context of hospital installation, performing rendering
on server machines provides several advantages over client
rendering. First, it should be noted that the 3D data sets,
generated by MRI/CT scanners, are stored in a back-end
database. In smaller configurations, this storage server may
be the same machine as the rendering server. In larger con-
figurations, the rendering and storage servers will be nearby
on a high bandwidth connection, and the rendering server
will cache the data sets it retrieves from storage. Therefore
the data sets, which can be around 1GB in size, already ex-
ist on the server. Transferring these data sets across the wire
to client machines over potentially low bandwidth networks
would cause an unacceptable delay in interaction of perhaps
several minutes, in an environment where every second of
visualization counts.

Second, we know that volume rendering is highly com-
pute and memory intensive, and we do not wish to impose
cumbersome restrictions on client machines in terms of their

CPUs and GPUs. By performing the rendering remotely, we
enable the surgeon at home with her netbook to see the same
visualizations as the radiologist in his lab with a workstation.

Third, by concentrating the required compute power in the
data centre, we may leverage efficiencies and economies of
scale, reducing installation costs. By performing load bal-
ancing among multiple processors we achieve the scalability
that allows us to serve many different client requests simul-
taneously. Thus, rather than needing to equip each client ma-
chine with the relevant hardware for rendering, we can equip
our servers according to price or performance constraints,
without restricting the clients that may request rendered im-
ages.

5.2. GPU vs CPU Rendering

The benefits of server rendering for commercial medical
environments have long been understood by, for example,
Fovia [Fov]. But whereas Fovia’s products perform render-
ing on CPUs, we have designed for server rendering on
GPUs. In the literature, GPUs have been preferred for vol-
ume rendering in the last decade due to their much greater
parallelism, their buit-in trilinear texture sampling, and their
superior memory bandwidth. In the last few years, the gap
between CPU and GPU compute power has continued to
grow, both in real terms and in computational value (flops
per dollar).

5.3. Target Hardware

With the introduction of the CUDA platform, nVidia en-
abled general purpose programming on their GPUs without
the need to program a graphics API. But with the introduc-
tion of the Tesla hardware, it became feasible to add pow-
erful GPU compute ability to clusters within data centres.
The Tesla S1070 for example comprises four C1060 GPUs,
each with 4GB of memory and 240 cores, with a theoreti-
cal total peak performance of 4 Tflops in a 1U rack-mount
case [nvi]. The S1070 connects via cables to the PCIe bus
of a host machine. Two S1070s may be connected to each
server for a total of 8 GPUs on each rendering machine. In
2008, the Tokyo Institute of Technology famously boosted
the compute power of their TSUBAME supercomputer by
adding 170 Tesla S1070s.

To our knowledge, we are the first to present a system
for multiple-client volume rendering which is designed to
leverage this server GPU environment. We designed our sys-
tem for a cluster with one or more rendering servers running
Windows Server 2003 or later, each with one or more nVidia
GPUs attached.

The recently announced Tesla S2070 will replace the
S1070 with more than twice as many cores and 6 times as
much GDDR5 memory.
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Server Rendering Process

Request threads –
communication

GPU #0 GPU #1 GPU #2 GPU #3

Device threads –
GPU commands

Device queue –
GPU commands

Figure 5: Threading model of server process. Diagram
shows a server with four GPUs attached.

5.4. Scalability

A client session begins by requesting a volume. This re-
quest is handled by a master node, which selects a particu-
lar rendering server to handle the client’s rendering requests
for this volume. Subsequent requests from the client to ren-
der the volume are sent directly to the negotiated rendering
server. We have found that an effective method for selecting
the server is simply to look for the GPU with the most free
memory, and return its host’s address.

The volume data is then loaded as a 3D texture to the se-
lected GPU attached to the rendering server. Thus each view-
port’s rendering requests are served by exactly one GPU.

Each rendering server has multiple GPUs attached and
each GPU serves multiple clients. It is important for the
CUDA runtime that calls which use GPU resources should
occur in the same thread that allocates and frees those re-
sources. Therefore it is essential to get the process and
threading model right.

On each rendering server we run a process as a Windows
service which receives client requests, performs rendering
and replies with data as appropriate. Within this process, we
start one device thread for each GPU attached to the server.
As client requests arrive at the server, simultaneously on dif-
ferent calling threads, we determine which GPU must serve
each request, and serialize the request data to the appropriate
device thread (figure 5). Each time a device thread receives
a render request, it wakes up if necessary and processes its
render request queue in order. When the device thread has
finished processing a render request, it signals an event to
notify the calling thread. The calling thread then returns the
data to the client.

5.5. Programming

In the first instance we have programmed our transport and
request layers using COM/DCOM. For the GPU layer we
have used the CUDA Toolkit 2.3.

We support various rendering options (see section 3). We

program these different options using C++ templates directly
in the CUDA code. Each different integration method, data
access method, shading algorithm or transfer function type
is a function object [Str97]. This ensures that only the appro-
priate code is compiled in for each set of options.

This method, known as compile-time polymorphism or
static polymorphism, has long been popular in computer
graphics scenarios. Its disadvantage is that combinations of
different options can cause exponential growth in compiled
code size. Generally speaking, runtime-generated code is
preferable, but often difficult to produce. In the present case,
there seems to be no obvious way to compile CUDA code at
run-time.

6. Performance

6.1. Client-Side Visualization Software

In concert with our GPU-based volume rendering server, we
have developed client-side software for interactive visualiza-
tion of medical volume datasets. The software, which is de-
signed to run under Windows, can be configured to commu-
nicate with our COM-based rendering software running ei-
ther on the local machine or (via DCOM) on a remote server.
The software user interface provides most of the function-
ality typically used by clinicians to study medical volume
datasets, including the facility to load volume datasets from
filesystem storage, to choose the rendering mode, interac-
tively to manipulate the viewpoint and transfer function, and
to define and interactively manipulate clipping planes. We
have used this visualization software to render a wide vari-
ety of volumes (including all the rendering examples shown
in this paper).

6.2. Rendering Performance

Most authors quote rendering performance statistics ob-
tained using typical volume datasets and viewport sizes.
However, because the efficiency improvements obtained by
implementing empty space skipping depend critically on the
geometry of the non-empty region of the volume (which is
a function of the applied transfer function), it is difficult to
make meaningful performance comparisons with other sys-
tems. With this problem in mind, we have tried to select
medical volumes similar in size to those used by other au-
thors but, in addition, we have made all of our test data (in-
cluding volume datasets, projection matrices, transfer func-
tions) publicly available† so that others can more easily
obtain comparable results in future. Our volume datasets,
which we believe to be broadly representative of the more
demanding datasets likely to be encountered in modern hos-
pitals, are available both as standard DICOM series, and in

† See http://www.XXXXXXXXXX.com
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Figure 6: Representative 512 × 512 renderings of the
datasets used for performance evaluation (transfer functions
in brackets): (i) Head (Internal), (ii) Legs (Muscle) (iii, iv)
Body (Internal and Bones).

Time (ms) Transfer Function
Volume Internal Muscle Bones Native

Head 13 13 10 7
Torso 20 18 10 10
Legs 20 18 5 8

Figure 7: Mean rendering times (ms) for our test volumes
and transfer functions.

a binary format that can be read into memory easily with a
few lines of code (supplied).

Figure 6 illustrates our 3 test datasets. These were visual-
ized from viewpoints arranged in a circle about the centroid
of the volume with a viewport of size measuring 512×512.
So as to make our results comparable with those of other re-
searchers, we conducted these tests using a GTX285 graph-
ics card, which has a retail price of around e500. Rendering
speeds are reported in Table 7. This rendering performance
appears to be comparable with speed obtained by the fastest
published systems [KGB∗09].

6.3. Scalability Testing

In the context of our multi-user, server-based rendering ap-
plication, one limitation of the raw rendering performance
measures obtained in the previous subsection is that they
don’t take account of other activities likely to increase the
computational load on the server, such as retrieving volume

datasets from filesystem storage. Another is that, because in-
teractive visualization of real datasets does not generally re-
quire frames to be rendered at constant rate, it is difficult
to extrapolate from such figures more meaningful statistics,
such as the number of users that could be supported simul-
taneously under typical or peak loads.

To evaluate the likely performance of our system under re-
alistic operating conditions, we designed a test framework to
simulate server load representative of that likely to be gener-
ated in a real hospital. We achieved this by adding command
logging and playback capabilities to our volume rendering
software.

The command logging capability was designed to record
all the requests made of the volume rendering service, in-
cluding requests to load volume data into memory and to
modify transfer functions, clipping planes, and projection
matrices.

The playback capability allowed us to replay prerecorded
command sequences to the server with timing closely rep-
resentative of the original sequence. Our playback software
can play back many prerecorded sequences simultaneously
in multiple threads - allowing simulation of multiple users
simultaneously using the same server.

During playback, we reproduce the timing associated with
an original sequence of requests as closely as possible. After
a request has been serviced, each playback thread waits un-
til the start time of the next request. For rendering requests,
we measure the latency associated with the call since this is
directly representative of the latency and frame rate experi-
enced by the user during interactive usage. Render request
latencies were scored in three categories:

• GOLD means a latency of < 67 ms
• SILVER means a latency of < 100ms.

To determine how our software would be used, we ob-
served clinicians interacting with medical volume datasets.
Using this information, we recorded some test sequences (of
around five minutes’ duration) that closely represented the
clinicians’ behaviour. These sequences comprised the fol-
lowing components:

• Load a 5123 volume (c. 20 s)
• Load several transfer functions (c. 15 s)
• Interactive adjustment of the transfer function (c. 10 s)
• Adjust the viewpoint interactively at 15 fps (c. 150 s)
• Define some clipping planes and adjust them interactively

at 15 fps (c. 40 s)
• Passively inspect rendered frames (c. 10 s)

We explore the performance impact of varying the number
of simulatenous clients by replaying sequences in multiple
threads and measuring the proportion of rendering requests
that were serviced with GOLD and SILVER latency. So as to
avoid any artificial correlation between N playback threads,
we offset start times for successive threads by a time interval
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Figure 8: Results of scalability testing under representa-
tive loading. Top: Distribution of render request latencies
versus number of simultaneous clients. Bottom: Percentage
of requests serviced with GOLD (< 67 ms) and SILVER
(<100 ms) latency vs. number of simultaneous clients.

D/N where D is the sequence duration. So as to avoid mak-
ing performance measurements in the start up period, each
sequence is replayed three times but performance statistics
are obtained only for the middle repetition when the maxi-
mum number of playback threads is always active.

We performed these tests on a Dell T5500 workstation
with 8 Intel Xeon cores, 16GB RAM and one attached
nVidia Tesla S1070 (four GPUs). Figure 8 shows how ren-
dering performance scales with the number of simultaneous
interactive clients under representative loading. Each GPU
has 4GB of memory and so we were only able to support 15
simultaneous clients per GPU before running out of mem-
ory. As the load nears the maximum that can be supported,
we see that performance decreases approximately linearly.

Our design target was for 90% of rendering requests to be
serviced within a 67 ms (GOLD) latency so that we could
achieve good responsiveness at interactive frame rates of at
least 15 fps. From the graph, we see that our system can

Figure 9: Volumetric rendering for the diagnosis of liver he-
mangioma.

support approximately 52 simultaneous interactive users at
this frame rate.

The current cost for the Tesla hardware which sup-
ports these 50-60 simultaneous interactive clients is approx-
imatelye4K-6K, equating to a hardware cost of undere100
per simultaneous 3D user.

7. Applications

In this section we show applications of our remote render-
ing system to radiology diagnosis. Figure 9 shows an ex-
ample. In a patient’s CT scan the liver and spleen have
been segmented via the interactive technique in [CSB08].
In fig. 9a the foreground objects are visualized as opaque
and the background with a highly translucent transfer func-
tion. In our visualization system, each segmented layer has
an associated colour transfer function and thus the visual
characteristics of each layer can be individually modified. In
fig. 9b the background has been removed completely and the
transparency of the liver increased so as to show structures
within. This highlights the anomalous hemangiomas (shown
in green circles) in this patient.

In fig. 10a we show a mandible and clavicles from a CT
scan. The visualization highlights both the dense bony struc-
tures and the bone marrow inside. Simultaneous visualiza-
tions of these diverse (and occluding) tissues is of funda-
mental importance for the diagnosis of osteoporosis or can-
cerous conditions. Figure 10b shows some selected vertebrae
and the bone marrow within.

Figure 11 we show 3D renderings of a CT scan of a pa-
tient’s abdomen. In fig 11b the segmented aorta is high-
lighted and the background removed. In this view the pres-
ence of two aneurysms (enlargements of blood vessels)
becomes very clear, together with numerous calcifications
along the vessels walls. Figure 11c highlights the presence
of a thrombus (blood clot) within the bigger aneurysm.

Figure 12 shows integration of our volumetric rendering
with a recent automatic organ detection technique [CSB09].
Running an automatic organ detection algorithm in the back-
ground allows new, single-click visual navigation. On the
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Figure 10: Volumetric rendering for the analysis of bony
structures and the bone marrow within.

Figure 11: Volumetric rendering for the diagnosis of
aneurysms and thrombus in blood vessels.

right hand side of the viewer a list of detected structures
is automatically populated. Now the user can simply click
on the structure of interest to perform the following opera-
tions: i) the virtual camera is re-positioned to best view the
selected structure; ii) clipping planes are automatically ac-
tivated; iii) the colour transfer function is modified to best
view the selected structure. This novel one-click navigation
technique greatly improves the efficiency of typical radiol-
ogy workflows, which is of paramount importance to these
practitioners.

The diagnostic value of our visualizations has been con-
firmed by the professional radiologists to whom we have

Figure 12: Visualizing automatically detected organs to im-
prove clinical workflow efficiency. (a) a clipped view of a
patient’s abdomen. (b) shows the effect of selecting the heart
/ mitral valve option.

informally shown our system at the RSNA09 meeting in
Chicago.

8. Conclusions

By exploiting the power of general purpose GPU hardware
and a novel GPU-based algorithm for empty space skipping,
we have developed a volume rendering implementation that
gives state-of-the-art performance. Our test data have been
made publicly available in the hope that other researchers
will more easily be able to compare their own rendering per-
formance results.

Based on this implementation, we have developed a scal-
able server-based architecture for enterprise-scale volume
rendering that is capable of supporting a large number of
simulataneous users. To validate our system, we have con-
ducted scalability testing by carefully simultating likely real-
world loads. We show that a system based on an 8-core Intel
Xeon server equipped with four Tesla GPUs can support up
to 60 clients at interactive frame rates. We believe the price
performance ratio is unprecedented.
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