
Auditory Augmented Reality:
Object Sonification for the Visually Impaired

Flávio Ribeiro#1, Dinei Florêncio ∗2, Philip A. Chou ∗3, and Zhengyou Zhang ∗4

# Electronic Systems Eng. Dept., Universidade de São Paulo, Brazil
1 fr@lps.usp.br

∗ Microsoft Research, One Microsoft Way, Redmond, WA
2,3,4 {dinei,pachou,zhang}@microsoft.com

Abstract—Augmented reality applications have focused on
visually integrating virtual objects into real environments. In
this paper, we propose an auditory augmented reality, where we
integrate acoustic virtual objects into the real world. We sonify
objects that do not intrinsically produce sound, with the purpose
of revealing additional information about them. Using spatialized
(3D) audio synthesis, acoustic virtual objects are placed at specific
real-world coordinates, obviating the need to explicitly tell the
user where they are. Thus, by leveraging the innate human
capacity for 3D sound source localization and source separation,
we create an audio natural user interface. In contrast with
previous work, we do not create acoustic scenes by transducing
low-level (for instance, pixel-based) visual information. Instead,
we use computer vision methods to identify high-level features of
interest in an RGB-D stream, which are then sonified as virtual
objects at their respective real-world coordinates. Since our
visual and auditory senses are inherently spatial, this technique
naturally maps between these two modalities, creating intuitive
representations. We evaluate this concept with a head-mounted
device, featuring modes that sonify flat surfaces, navigable paths
and human faces.

Index Terms—augmented reality, natural user interface, soni-
fication, spatialization, blind, visually impaired.

I. INTRODUCTION

According to the World Health Organization, there are

an estimated 39 million blind people in the world [1]. In

the United States, there are an estimated 1.3 million legally

blind individuals [2], with approximately 109,000 who use

long canes and 7,000 who rely on guide dogs [3]. Since

vision impairments hinder a wide variety of human activities,

assistive devices have been designed to facilitate specific tasks

or enhance mobility.

We start from the observation that our two highest band-

width senses – vision and hearing – have spatial structure.

Using spatialized (3D) audio, we synthesize virtual acoustic

objects, placing them at specific real-world coordinates. Thus,

by leveraging the innate human ability for 3D sound source

localization, we can relay location-dependent information

without having to explicitly encode spatial coordinates.

In this paper, we combine this approach with computer

vision techniques to create natural high-level scene represen-

tations for the visually impaired. For example, we use face

recognition to detect known individuals, who can then virtually

identify themselves using recordings of their own voices,
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Figure 1. Encoding used by The vOICe

which appear to originate from their real-world locations. On

one hand, computer-vision adds a layer of cognition which

promotes relevance and produces tremendous bandwidth sav-

ings. On the other hand, spatial audio eliminates the overhead

of encoding, transmitting and decoding spatial coordinates.

In recent years, there have been several proposals for

translating visual information into audio by encoding low

level features. For instance, several methods were proposed

to encode a bitmap image one pixel column at a time, using

frequency-domain multiplexing for each column. The vOICe

[4] was the first proposal for a wearable device of this kind.

A camera acquires a bitmap image of up to 64x64 pixels with

16 shades of gray per pixel, and the system encodes columns

in left-to-right order. Given a column, each pixel controls a

sinusoidal generator, with its value determining amplitude, and

its coordinate being proportional to the frequency (see Fig.

1). At a given moment, the user hears the superposition of

all the sinusoids from a column. After all columns have been

rendered, a synchronization click is generated and the process

restarts.

The literature features several variations of this approach. In

[5], an RGB camera image was first reduced to 1 bit per pixel,

and pixels were associated with musical notes. A black and

white image was then be mapped into a melody. SVETA [6]

was a more recent proposal which transduced a disparity image

obtained from stereo matching. To reduce user fatigue, pixels

were associated with major chords instead of pure sinewaves.

Unless the image is very sparse, encoding every pixel
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generally produces an overwhelming combination of sounds.

The representation is difficult to interpret, and despite attempts

to use more pleasant sounds, even short-term use produces

significant user fatigue. To reduce the amount of information

to be encoded, See ColOr [7], [8] used segmentation to create a

cartoon-like image, and objective saliency methods to estimate

the most relevant regions. To transduce a simplified RGB-D

image, hue was encoded by the timbre of a musical instrument,

saturation by one of four possible notes, and luminosity with

bass or a singing voice. Pixel locations were spatialized using 9

ambisonic channels. To avoid overwhelming the listener, only

a small window (chosen by the user on a tactile tablet) was

encoded.

Even though segmentation and saliency reduce the amount

of information, color adds another dimension which must be

encoded. Since current state-of-the-art objective saliency meth-

ods are only based on low-level features such as luminance,

contrast and texture, they completely neglect cognitive aspects

which often determine regions of interest. These issues are

reflected in a See ColOr user study, where participants required

an average of 6.6 minutes to locate a red door on an image

which had no other red features [8].

Thus, it becomes clear that given the bandwidth limitations

of audio, it is important to avoid low-level representations and

arbitrary encodings. In this paper, we present our preliminary

work intended to address these issues. We acquire and trans-

duce data in real-time using a helmet mounted RGB-D camera,

an inertial measurement unit and open-ear headphones. We

illustrate the concept by applying computer-vision methods

for plane decomposition, navigable floor mapping and object

detection. This representation carries more cognitive content

and is much more summarized than a raster scan, and thus

can be relayed without overwhelming the user. By sonifying

high-level spatial features with 3D audio, users can use their

inherent capacity for sound source localization to identify

the position of virtual objects. Thus, we intuitively represent

coordinates from visual space in auditory space, avoid using

explicit arbitrary encodings, and the representation is summa-

rized further.

This paper is organized as follows. Section 2 presents the

designed system, which includes an audio spatialization en-

gine and components for plane detection, floorplan estimation

and face recognition. For each component, we describe how

outputs are sonified into 3D audio. Section 3 describes exper-

iments used for evaluating our auditory mapping techniques.

Finally, Section 4 has our conclusions and directions for future

work.

II. SYSTEM DESCRIPTION

Figure 2 shows the block diagram for the proposed device.

Visual input is captured at 640x480 pixels with the RGB-D

camera module used in the Microsoft Kinect (see Figure 3).

The RGB and depth cameras were calibrated to produce an

accurate correspondence between depth and RGB pixels.

This proof of concept version implements modules for plane

detection, floorplan estimation and face recognition. High-

RGB-D camera
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Figure 2. System block diagram

Figure 3. Prototype device

level visual information is represented using a combination

of pre-recorded wave files, a text to speech synthesizer and

a musical instrument synthesizer. Every sound is spatialized

in 3D space using HRTFs from the CIPIC database [9]. As

described below, head tracking is implemented with a 3D

gyroscope. A 3D accelerometer is used to estimate the gravity

vector, and infer the location of the floor plane.

A. Audio spatialization

When representing real-world elements using audio, one

must establish how to sonify real-world coordinates. Several

previous proposals have relied on arbitrary encodings (for

example, using frequency to represent vertical position [4]–

[6]). Instead, we render the location of an object by synthe-

sizing a virtual sound source at its corresponding real-world

coordinates. The source is spatialized with 5◦ resolution in

azimuth and elevation, by filtering with HRTFs from the CIPIC

database [9]. We used HRTFs for the KEMAR with small

pinnae, interpolated to obtain 5◦ resolution.

Since the CIPIC HRTFs are measured at a fixed distance of

1.0 m, they are not range dependent and effectively act as a

far-field model. We represent range by attenuating the source

by 6 dB for each doubling in distance, and by adding a fixed,

location-independent reverberation component (see Fig. 4).

Intensity and direct-to-reverberant energy ratio are known to be

the two primary cues for range, and have complementary roles

for relative and absolute range perception [10]–[12]. We use

a time-invariant virtual room for synthesizing reverberation,

with a reverberation time of 300 ms. Having a fixed virtual

room is useful, because users are known to learn the acoustic
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Figure 4. Spatialized source

characteristics of an environment, and improve their sound

source localization performance with time [13].

HRTF filtering is performed with an FFT accelerated con-

volution engine, with a typical latency of 10 ms. Each audio

source is associated with a playlist of wave samples, speech

utterances (produced by a text-to-speech synthesizer) or mu-

sical notes (produced by an FM synthesizer). To facilitate the

description of real-world features, a source can also describe

parameterized curves in real-world coordinates.

Head tracking is an integral component of audio spatial-

ization. If the user moves, the virtual audio sources associated

with real-world objects should not be dragged along with him.

Thus, during the acoustic rendering of a scene (which lasts

approximately 1 second) we perform head tracking, and update

the coordinates of all 3D audio objects. To simplify tracking,

we only estimate the relative rotation between computer vision

updates. This rotation is given by the composition of rotation

matrices of the form

R (θx, θy, θy) =

⎡
⎣ 1 −θz θy

θz 1 −θx
−θy θx 1

⎤
⎦ . (1)

While the composition of rotations is not commutative, the

composition of infinitesimal rotations is. We sample a 3D

gyroscope at 40 Hz, such that a relative rotation matrix can

be updated by iteratively multiplying by (1) and reorthonor-

malizing the result.

B. Plane detection

Plane detection is used for two purposes: to identify the

floor, and to provide an environmental decomposition into flat

surfaces. Indeed, planes are the dominant primitives in man-

made environments, and can be conveniently used to identify

walls and furniture. Our underlying assumption is that given

the decomposition of an environment into planes of known

sizes and locations, a user is able to infer which classes of

objects they belong to, given contextual clues. For instance,

the location of a table could be inferred from the description of

a large horizontal plane. Likewise, a chair could be associated

with a small pair of horizontal and vertical planes.

Our algorithm for fast plane detection is described in the

Appendix. Figure 5 shows an example for plane segmentation,

where each plane is drawn with a different color. The sampling

rectangles used for each rectangle are also represented.

Figure 6 shows how planes are represented acoustically. The

plane detector associates each detected plane with its point

cloud. Using the eigendecomposition of this flat set of points,

we approximate it as a quadrilateral and produce an estimate

Figure 5. Plane segmentation example
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Figure 6. Acoustic rendering for plane representation

of its 4 corners. A vertical plane is represented by a clockwise

sequence of musical notes, rising in pitch, with each corner

rendered by a virtual source at the corner’s real world location.

A horizontal plane is distinguished by being represented by a

counterclockwise sequence of musical notes, falling in pitch.

While other representations are certainly possible, this proved

sufficient to relay the concept of a plane.

C. Floorplan description

Several devices for the visually impaired have relied on

ultrasound for describing local geometry. In comparison, depth

cameras provide a dramatic improvement in terms of spatial

resolution. Furthermore, their range can reach 10 m with

current technology. Thus, one can perform local mapping to

complement the short range and tactile feedback of a white

cane. With this in mind, our device implements a floorplan

description mode, which is intended to relay on demand a fast

description of the navigable floor.

We define the navigable region to be the visible floor,

bounded by obstacles. Visibility is important for safety rea-

sons, as it prevents instructing the user to walk on potentially

nonexistent ground. Depth cameras relying on infrared also

produce offscale high pixels for glass and black surfaces,

effectively classifying them as distant objects. By treating

these offscale regions as non-navigable, we prevent collisions

with undetectable obstacles.

The plane detector is first used to locate the floor, which is

the largest plane with an orientation consistent with the gravity

vector (given by the accelerometer). After plane detection, we

rotate the entire point cloud so y = 0 for all points in the

floor. We then project the entire point cloud onto the xz plane,

creating a 2D floorplan. We ignore points which are small

in height, and fall under the error threshold of the camera.

We also ignore obstacles which the user can walk under.

The obstacle floorplan is then convolved with a human-like
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Figure 7. Navigable floorplan example

cross-section, defining a navigable floorplan. From the camera

coordinates, we cast a ray for every degree in azimuth, and

store the maximum distance that can be traveled before hitting

an obstacle.

Figure 7 shows an example of this polar floorplan, which

we sonify. The red regions indicate the visible floor which can

be reached by line of sight. The green regions are reachable

by walking along a straight line.

Figure 8 illustrates how the polar floorplan is acoustically

rendered. Even rendering cycles start with a synchronization

click, spatialized at −90◦ in azimuth (the user’s absolute

left), and describe the polar floorplan in left-to-right order.

Odd rendering cycles start with a synchronization click at

+90◦, and describe the floorplan in right-to-left order. The

synchronization clicks are important for giving an indication of

when the description starts, and for giving the user a reference

for absolute left and right. This reference is always useful, and

becomes more important if the CIPIC HRTF is significantly

mismatched with respect to the user’s personal HRTF.

This sequential description was shown experimentally to be

preferable to a random sampling, especially in the presence

of HRTF mismatch. Indeed, it appears that with a sequential

sweep, the spatial sense from a click can be integrated with

neighboring clicks, providing a clearer spatial sense.

Following the synchronization click, the floorplan is sam-

pled at every 2◦, generating a low pitched click if an obstacle

has been detected at less than 1 m, and a high pitched

click otherwise (indicating a navigable direction). Low pitched

clicks have constant amplitude, while high pitched clicks are

stronger for longer navigable paths1. This modulation provides

an intuitive cue for navigability, since the user becomes

accustomed to walk into the direction of loud high pitched

clicks. We note that this agrees with the convention used

worldwide for crosswalks.

D. Face detection and recognition

During interviews with visually impaired and blind users,

face detection and recognition were suggested as desirable

features for an assistive device. Indeed, for a blind individual,

not knowing the identity of an approaching person generally

implies a missed opportunity for social interaction. Thus, our

1High pitched clicks are spatialized at the correct azimuth, with amplitude
proportional to 6.0 − r, where r ∈ [0, 5.0] is the distance to the nearest
obstacle (in meters).

FOV

60º FOV navigable direction

obstacle

synchronization click

-90º +90º

Figure 8. Acoustic rendering for navigation

Figure 9. Training set

device integrates face detection and recognition, implemented

with [14], [15].

During start-up, the device loads a database of faces, which

are used to recognize individuals who appear on the RGB

frame. Each face is represented by the spatialized name of

the person, rendered as a virtual source located at the real-

world coordinates of the face. When a face is detected but not

recognized, the device uses a musical note fallback. With an

enhanced face detector, one could potentially use voices for

more descriptive fallbacks (male/female, adult/child, etc.).

III. EVALUATION

While the mapping from a scene to the auditory representa-

tion is straightforward, it produces a summarized description.

Thus, it remained to be seen whether the sonifications could be

interpreted with sufficient accuracy, enabling the identification

of environmental features. To obtain quantifiable and repeat-

able results, we designed a scene classification task, where

sighted users listened to an auditory rendering, and then were

asked to choose the scene which best matched it. For this task

we used pre-captured still frames, allowing the same data to

be presented to multiple participants.

The classification experiment began with a training session,

where users were shown an RGB image of a scene and then

listened to its associated acoustic rendering. For each example,

participants were instructed to notice how specific spatial

features corresponded to synthesized sounds. The training set

consisted of 8 diverse indoor environments (see Figure 9),

which captured a wide variety of detail. During this step,

participants were free to ask any questions.

The evaluation phase used 3 sets of 8 scenes (see Figure

10). For each participant, 2 scenes were drawn randomly from

each of the 3 sets, without replacement, for a total of 6 scenes.

For each scene, the participant only knew which set it came

from. His task was to identify which of the 8 set members
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Figure 10. Test sets

best described the acoustic rendering. Participants typically

required approximately 1 minute, and no more than 2 minutes

to make decisions. We note that a significant fraction of this

time was actually spent looking at the features of each of the

8 photographs, and mentally comparing them to the auditory

rendering. We expect these times to improve through the use

of personalized HRTFs.

Our user study featured 14 participants, who had received

no previous training. Figure 11 shows the score histogram

for their answers. By observing the experiments, it was clear

that some individuals were extremely adept at matching our

acoustic representation with visual information. In general,

users showed very good results, with 9 participants correctly

associating at least 5 of the 6 test scenes. Some users com-

plained about having difficulty localizing spatialized sounds,

which could be due to a mismatch between their personal

HRTFs and the KEMAR HRTF, or due to physiological con-

straints (some individuals have poor sound source localization,

even in real-life scenarios). Some mistakes were clearly due

to limited training, because participants were hearing the

representation correctly, but making incorrect inferences (for

example, confusing the meaning of the clicks from Figure 8).

With an ideal natural representation, training would only

involve learning which sound is assigned to each type of

object. Training with a low-level (e.g., pixel-based) represen-

tation is much more involved, due to the wide diversity of

encoded sounds and to the lack of a one-to-one map. Like

a natural representation, our approach sonifies high-level ob-

Figure 11. Participant score histogram
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Figure 12. Answers to the survey question "I believe my performance will
improve with training"

jects. Nevertheless, it still performs some high-level encoding

due to the absence of scene interpretation. With advances in

computer vision, we foresee the use of progressively more

natural descriptions (for instance, a chair could have a unique

sound, instead of being represented as two planes).

A detailed study with visually impaired participants is being

planned, and initial feedback has been very positive. Accord-

ing to a blind user, "it’s a very intuitive device, so I think that

you would get used to it very quickly". Plane decomposition

was considered useful for unknown environments: "the flat

surface mode – I really liked that, because you can detect

objects around you and kind of get a feel for how the room

is laid out".

Blind interviewees also noted the importance of training.

Visually impaired individuals learn to interpret the world

through suble cues (for example, a blind person can detect a

telephone pole by noticing how traffic sounds diffract around

it). In contrast, this device renders environments using a very

explicit representation. Thus, a blind person would be expected

to adapt to this new language.

IV. CONCLUSION

In this paper, we described a new approach for representing

visual information with spatial audio. This method was imple-

mented using a head-mounted device with a RGB-D camera

module, an accelerometer, a gyroscope and open-ear head-

phones. In contrast with previous proposals, we rely heavily

on computer vision for obtaining summarized environmental

models, and on audio spatialization for representing spatial

locations, thus circumventing the need to encode coordinates.

Preliminary results show that most users can interpret the

representations, effectively building mental maps from the

acoustic signals, and associating them with spatial data. This

is an encouraging result, since these users received little

training and personalized HRTFs were not used. For a practical

device, we envision measuring personalized HRTFs, similarly

to fitting a hearing aid or glasses.
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Our proof of concept device features modes for plane

decomposition, floorplan estimation and face detection. Plane

decomposition could be generalized with other primitives.

A practical device would benefit from additional operating

modes, such as optical character recognition followed by

text-to-speech synthesis, and barcode recognition followed

by product lookup. Outdoor urban use could benefit from

crosswalk and traffic sign detectors, and GPS integration.

Specific context-dependent tasks could also be modeled. In

particular, entertainment applications could involve games

such as bowling and billiards.

APPENDIX

Plane detection is performed using the 640x480 point cloud

produced by the depth camera. We implemented a fully de-

terministic approach based on multi-scale sampling, designed

to be computationally efficient and robust to noise. While

RANSAC and its variants [16], [17] are very effective for

fitting a wide range of primitives, plane detection can benefit

from a more specialized approach. Our proposal samples

a depth frame using uniform rectangular grids which are

gradually refined. This approach promotes the fast and robust

removal of large flat regions, and progressively searches for

smaller plane sections.

At each sampling scale, the depth frame is divided into

rectangles with 50% overlap. For each rectangle, a gradient

fill is applied at its center, effectively identifying a connected

region in 3D space. For sufficiently large connected regions

with points {(xi, yi, zi)}Ni=1, we estimate the least-squares

plane ax+ by+ cz+d = 0 using the least-squares solution to⎡
⎢⎢⎢⎣

x1 y1 z1 1
x2 y2 z2 1
...

...
...

...

xN yN zN 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎦ = 0. (2)

Note that the optimal plane is given by the least significant

right singular value of A, which is also the least significant

eigenvector of ATA. In practice, one can subsample the

connected region to reduce N .

Similarly to RANSAC, we obtain the set of inliers, i.e.,

the subset of points which are close to a least-squares plane.

Unlike RANSAC, we do not iterate over multiple plane

candidates in search for the largest plane. Instead, we either

accept a plane candidate at the current scale if the ratio of

inliers to the total number of points in the sampling rectangle

is sufficiently large, and reject it otherwise. Using a model

for the depth camera, we define the inliers such that this

ratio test produces plane estimates with a given false positive

probability.

For the Kinect depth camera, we assume that the depth map

noise is Gaussian, with a variance given by [18]

σ2
z =

σ2
0z

4

f2
dB

2
, (3)

where z is the depth coordinate, fd =
fx+fy

2 is the mean focal

length and σ0 and B are constants. Let t0 be the inlier distance

threshold at a reference depth z0. One can use (3) to determine

the probability p0 of having a depth error exceeding t0. We

use (3) to produce a depth-dependent inlier threshold t (z),
such that for all z, the depth error exceeds t (z) with constant

probability p0. Assuming the independence of depth errors,

for sufficiently large N one should have approximately Np0
inliers. By comparing Np0 with the actual number of inliers,

one can accept or reject a plane candidate. After extracting

inliers for the connected region, we recompute the least-

squares estimate, and extract inliers for the entire depth map.

The least-squares estimate is computed again, and produces

the accepted plane estimate after a final inlier extraction.

This method is more computationally efficient than

RANSAC, since it does not require testing a large number

of randomly sampled plane candidates. By using a multiscale

approach, it is guaranteed to extract large planes first, dramat-

ically reducing the size of the remaining point cloud.
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