

Variance Aware Optimization of Parameterized Queries

 Surajit Chaudhuri Hongrae Lee Vivek Narasayya

Microsoft Research University of British Columbia Microsoft Research

ABSTRACT

Parameterized queries are commonly used in database

applications. In a parameterized query, the same SQL statement is

potentially executed multiple times with different parameter

values. In today‟s DBMSs the query optimizer typically chooses a

single execution plan that is reused for multiple instances of the

same query. A key problem is that even if a plan with low average

cost across instances is chosen, its variance can be high, which is

undesirable in many production settings. In this paper, we

describe techniques for selecting a plan that can better address the

trade-off between the average and variance of cost across

instances of a parameterized query. We show how to efficiently

compute the skyline in the average-variance cost space. We have

implemented our techniques on top of a commercial DBMS. We

present experimental results on benchmark and real-world

decision support queries.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – Query Processing.

General Terms

Algorithms, Performance, Design, Experimentation

Keywords

Query optimizer, Workload, Variance

1. INTRODUCTION
Parameterized queries are widely used and play a crucial role in

enterprise database applications. These include stored procedures

as well as dynamic queries whose parameter values are passed in

at runtime. In a parameterized query, the same SQL statement is

repeatedly executed, but each instance of the query has potentially

different parameter values. Consider the following query from the

TPC-H benchmark [21] where @ denotes parameters.

SELECT sum(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part
WHERE p_partkey = l_partkey and p_size <= @size
 and p_container = @container and p_retailprice <= @price

 and l_quantity < (SELECT 0.2 * avg(l_quantity)
 FROM lineitem

 WHERE l_partkey = p_partkey)

One instance of the query may be executed with parameters being

bound to values (@size=7, @container=‟MED BOX‟,

@price=3000) whereas another instance may be executed with

(@size=6, @container=‟SM BOX‟, @price=2000).

A key issue in plan selection for a parameterized query is

identifying the criteria that the selected plan should satisfy. At one

end of the spectrum is the simple approach of always compiling

(i.e. optimizing) each query instance. Since each query instance is

guaranteed its optimal plan, the average cost over all query

instances is also minimized. The drawback of this approach is that

it incurs significant resource overheads associated with

compilation. Prior work on Parametric Query Optimization (PQO),

(e.g. [2][15]), aims to select multiple (say K) plans such that the

average cost over query instances is minimized. In PQO we are

required to select K plans appropriately and also provide a method

for identifying which of these plans to use for any given query

instance. Finally, most commercial database systems use a simpler

approach where a single plan is selected (i.e. K=1), which is then

used for all query instances. The choice of this plan is once again

typically optimized for average cost (e.g.[8]) over a given set of

query instances.

In this paper we argue that in addition to average cost, a second

criterion, namely the variance in cost over query instances is also

important. The problem of using a plan with high variance is that

some query instances can have good performance, but others can

be unacceptably slow. This gives the impression of

unpredictability in query performance, and often leads to

expensive manual performance troubleshooting. Variance as an

optimization criterion has received little attention in previous

work on plan selection for parameterized queries. We focus on the

problem of selecting a single plan for a parameterized query (a

popular approach in today‟s DBMSs), and study it for the case

when there are two optimization criteria: average and variance.

Thus, our goal is to explore the trade-off between average and

variance in a principled manner. For example, the DBA might be

willing to use a plan whose average cost is 20% higher than the

plan with the lowest average, but has a significantly lower

variance. Note that if the DBA is able to find a plan with a

suitable average-variance trade-off, then plan hinting mechanisms

that are available in today‟s DBMSs (e.g.[9][16][20]) can be

exploited to force the use of this plan for all query instances.

A useful tool for balancing multiple criteria (in this case average

and variance of cost over query instances) is the skyline, which

has proven to be valuable in multi-criteria decision making [3].

Figure 1 shows an example skyline in an average-variance plot.

Each point in the plot represents a plan. The x-coordinate (resp. y-

coordinate) shows the average (resp. variance) over the cost of a

set of query instances when using the plan. In Figure 1, Plans 1, 3

and 6 offer interesting trade-offs between variance and average

performance forming a skyline, while Plans 2, 4 and 5 are of less

interest to DBAs because they are dominated by plans in the

skyline. Thus, the ability to efficiently identify plans in the skyline

of a parameterized query for a given set of instances of that query

can be valuable to a DBA or application developer. We study the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD’10, June 6-10, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06...$10.00.

novel problem of finding the average-variance skyline of plans for

a given workload (set of query instances). We refer to the above

problem informally as the Plan Skyline problem.

One key challenge in computing the average-variance skyline is

that the space of plans to consider for a parameterized query can

be large. As shown in the previous work on plan diagrams [19],

there could be a large number of plans that are optimal at different

points in the entire selectivity space of the parameterized query. In

this paper we show empirically that even the seemingly natural

approach of restricting the space of plans to those that are optimal

for at least one query in the given workload does not work well

for our problem, i.e. it misses too many plans in the skyline. In

other words, any plan in the plan diagram could potentially be part

of the skyline. The other approach of first generating the entire

plan diagram (or even an approximate plan diagram e.g. as in

[11]) and then selecting the skyline plans among them does not

scale when the query has many parameters. In contrast, our

approach relies on sampling over the space of all plans in the plan

diagram, and leverages the fact that we are not required to

generate the plan diagram, but rather the plan skyline only. We

establish a probabilistic guarantee that enables early termination

by exploiting the skyline of plans observed in the sample thus far.

Intuitively, this guarantee ensures that we obtain most of the

skyline plans with high likelihood. We also show how to exploit

workload information to bias the sampling towards “more

relevant” regions of the multi-dimensional selectivity space, i.e.

biasing the sampling to accelerate the termination of our skyline

generation algorithm.

Another challenge is that in order to determine if a plan belongs to

the skyline, we need to compute its average and variance over all

query instances in the workload. The baseline approach of

invoking the query optimizer to cost the plan for each query

instance can be very expensive, particularly for large workloads.

Thus techniques for reducing such optimizer invocations are

crucial for scalability. We develop sufficient conditions for

pruning a plan from consideration using the costs obtained for a

subset of query instances in the workload. In conjunction with a

carefully chosen processing order of queries, the above pruning

conditions enable a significant reduction in the number of

optimizer invocations.

Our solution scales well with query dimensionality (i.e. number of

parameters) as well as workload size (i.e. number of query

instances). We have implemented our solution on top of Microsoft

SQL Server 2008, using the optimizer as a black box, and in

principle can be implemented on any off-the-shelf database

system. We evaluate our solution via extensive experiments on

TPC-H benchmark [21] queries as well as complex decision

support queries against a real world sales database. To the best of

our knowledge, the problem of finding the average-variance

skyline has not been studied previously. Note that despite the

similarity of our problem to general skyline computation (e.g.[3])

or multi-objective optimization (e.g.[13]), the key challenges of

our problem lie elsewhere, i.e. in efficiently generating and

costing the plans as described above.

The rest of this paper is organized as follows. We formally define

the problem in Section 2 and give an overview of the solution in

Section 3. Section 4 describes our sampling based algorithm for

generating the plan skyline. In Section 5 we present techniques

for efficient average-variance computation using sufficient

conditions for pruning. We discuss extensions to the basic

algorithm in Section 6 including a generalization of the Plan

Skyline problem to the case when we want to pick K Plans (as in

the PQO work) instead of a single plan (which is the main focus

of this paper). We present experimental results in Section 7 and

discuss related work in Section 8.

2. PROBLEM FORMULATION

2.1 Preliminaries
In this paper, a parameterized query is a SQL query with

placeholders for parameters in predicates. The dimensionality of a

query is the number of parameters. For instance, the TPC-H query

mentioned in the introduction is a 3-dimensional query since it has

three parameters: @size, @container, and @price. When an

instance of the query executes, the parameters are bound to

specific values. We define a workload to be a set of instances of a

given parameterized query. A workload of query instances can be

collected using profiling tools in today‟s DBMSs, e.g. a DBA can

log all instances of invocations of a particular stored procedure.

Unless stated otherwise in this paper we use the term query to

refer to an instance of a parameterized query, i.e. a query with

parameter values bound.

We distinguish two types of calls to the optimizer: optimization

and plan costing calls. An optimization call is the basic optimizer

API which, given a query, returns its optimal plan. It is supported

in all modern database systems. Given a query q and a plan P,

which is not necessarily the optimal plan of q, a plan costing call

returns the estimated cost of plan P for q. Optimizers that support

both calls are classified as Class II optimizers in [11]. We assume

a Class II optimizer which are found in several commercial

database systems e.g. IBM DB2 (Optimization Profile), Microsoft

SQL Server (XML Plan) and Sybase ASE (Abstract Plan).

Let the workload W = {q1,…,qn} be the set of instances of the

parameterized query. In general each query can have an associated

frequency. The techniques in this paper carry over to this case as

well, so we omit this for simplicity. Given a query instance qi and

a plan P, we denote by CostP(qi) the optimizer estimated cost of

plan P for query qi. The average cost and the standard deviation of

cost of a plan P for the workload are defined as follows.

We will denote avg(P) by “avg” and std(P) by “std” when P is

clear or implied in the context.

Selectivity space for a parameterized query: For each

parameter (i.e. dimension), the selectivity of that parameter can

Average cost of plan for

workload

V
ar

ia
nc

e
in

 c
os

t o
f p

la
n

fo
r

w
or

kl
oa

d

Plan 6

Plan 1

Plan 3

+Plan 2

+Plan 5

+Plan 4

 Figure 1. An example skyline of plans.

take on a value between 0 and 1. Thus the entire selectivity space

for a parameterized query is the space of all points in this multi-

dimensional space. In practice, the selectivity space along each

dimension is discretized; thus we only consider points in this

discretized multi-dimensional selectivity space. This is the same

approach as in the work on plan diagrams ([11][19]).

Space of plans for a parameterized query: The space of plans

we consider for a given parameterized query is the union of plans

that is optimal for at least one point in the selectivity space for the

parameterized query (i.e. all plans in the plan diagram). We

denote the space of plans for a parameterized query q by C(q).

2.2 The Plan Skyline Problem
For a given workload, we say that Plan P dominates plan R,

denoted P < R, if and if only avg(P) and std(P) for the workload

are not bigger than avg(R) and std(R) respectively, and at least one

of them is smaller than R‟s. In other words, P is not worse than R

in either dimension, and is better in at least one of the two

dimensions. We will also use (avg(P), std(P)) < (avg(R), std(R))

interchangeably with P < R.

Plan Skyline Problem: Given a parameterized query q and a

workload W = {q1,…,qn} consisting of instances of q, find all non-

dominated plans P ∈ C(q).

We call the set of non-dominated plans the plan skyline. Given the

plan skyline, a DBA can choose one that appropriately balances

the average cost and variance in cost.

2.3 Constrained Versions of the Problem
DBAs might also be interested in minimizing variance as long as

the average performance is not “too slow”. Thus, we also study

constrained variations of the above Plan Skyline problem. Let the

min-avg plan for the parameterized query q and workload W be

the plan in C(q) with the smallest avg. Likewise, define the min-

std plan to be the one with the smallest std. In an avg-std plot (as

in Figure 1), the min-avg plan is the leftmost plan and the min-std

plan is the bottommost plan.

τ-Min-Var Plan Problem: Given a parameterized query q and a

workload W = {q1,…,qn}, let S be the min-avg plan. Find plan P

whose std is minimum among all plans R with avg(R) being

within τ % of avg(S).

Intuitively, we are willing to sacrifice up to τ % of average

performance compared to the plan with the best average, in order

to minimize variance. Similarly, we have a dual formulation:

τ-Min-Avg Plan Problem: Given a parameterized query q and a

workload W = {q1,…,qn}, let S be the min-std plan. Find plan P

whose avg is minimum among all plans R with std(R) being

within τ % of std(S).

We note that unlike the Plan Skyline problem that returns all plans

in the skyline, the two constrained versions above return a single

plan (except in the case of ties) that minimizes the measure of

interest while constraining the other measure. The above

formulations follow the classical approach of converting a two-

criteria optimization problem into a single criterion optimization

problem with a constraint on the other criterion.

3. SOLUTION OVERVIEW

3.1 Algorithm Overview
We now provide a brief overview of the algorithm we use in our

solution to the Plan Skyline problem. While the structure of the

algorithm (shown below) is relatively simple, each of the first

three steps poses non-trivial challenges: (1) How do we know

when to stop sampling (Step 1)? Intuitively, our result provides a

termination condition with a probabilistic guarantee (configurable

via an error threshold) that the skyline plans missed cannot

occupy a large area in the selectivity space (Section 4). (2) Can

we speed up the algorithm compared to uniform random sampling

over C(q) (Step 2)? We approach this using weighted sampling.

We assign a weight to each point in the selectivity space by

leveraging information about query instances in the given

workload, such that plans that are likely to be in the skyline get a

higher weight. We do this assignment in a scalable manner even

for queries with many parameters. (3) How do we efficiently

compute avg(P) and std(P) (as defined in Section 2.1) (Step 3)?

We present sufficient conditions for pruning the avg and std

computations in Section 5. Finally, updating the skyline (Step 4)

is not difficult when the number of plans in the plan skyline is

small, e.g. in our experiments the number of plans in the skyline

was typically less than 10. Therefore, in this paper we do not

focus on this step. In principle, if the number of plans in the

skyline is large, previously known techniques for skyline

computation (e.g.[3]) could be used.

3.2 Architecture
As a proof of concept of our ideas, we have developed a Plan

Skyline tool, which implements the above algorithm. Figure 2

shows an overview of how the Plan Skyline tool can be used in

today‟s database systems.

Query

Optimizer

Plan

hints

Query

Execution

Engine

Plan

DBA

Plan Skyline

tool

Skyline

Result

Query

 DBMS

Workload

Monitor

The Plan Skyline tool takes as input a workload consisting of

instances of a given parameterized query, and produces as output

the skyline of plans (as defined in Section 2.2). We note that such

a workload can be obtained using monitoring capabilities

available in all commercial DBMSs, e.g. Query Patroller in IBM

DB2, AWR in Oracle, and Profiler in Microsoft SQL Server. The

DBA can analyze the plan skyline and select an appropriate plan

among them to use for that parameterized query. Then the DBA

can leverage the plan hinting mechanisms available in today‟s

Figure 2. Architecture Overview.

Input: Parameterized query q, Workload W of instances of q

Output: Plan skyline for q

1. While <termination condition not satisfied>

2. Sample a new plan P from C(q)

3. Compute avg(P) and std(P) over query instances in W

4. Update the plan skyline appropriately

DBMSs (e.g. [9][16][20]) to force the use of this plan for all

instances of that parameterized query.

4. PLAN SKYLINE GENERATION
The Plan Skyline problem, defined in Section 2.2, requires us to

find all plans P C(q) such that P is not dominated by any other

plan in C(q) for the given workload W. Consider Figure 3 which

shows a plan diagram [19] of a two dimensional parameterized

query. For ease of exposition, we show a simplified plan diagram

with rectangular regions. In reality, regions where a plan is

optimal need not be rectangular or contiguous and the shape of a

plan diagram can be quite complex [19]. The dots (superimposed

on the plan diagram) represent query instances in workload W.

Observe that there are a total of 7 plans in C(q). A solution to the

Plan Skyline problem, however, is required to output only the

skyline plans, i.e. Plans 1, 2, 3 and 4 (the shaded plans).

100%

10
0%

0 Selectivity 1

S
el

ec
tiv

ity
 2

Plan 5Plan 4

Plan 3

Plan 2

Plan 1 Plan 6 Plan 7

Skyline plan Non-Skyline plan

Queries in the workload W, |W|=5

At first glance, the Plan Skyline problem appears to be similar to

the problem of efficiently generating a plan diagram for a

parameterized query, i.e. generating C(q). To avoid the

complexity of exhaustively enumerating the entire selectivity

space, the work in [11] uses an approach based on uniform

random sampling of the selectivity space to identify plans. It stops

when a “sufficient number” of distinct plans have been obtained.

Since their goal is to generate (an approximation of) the entire

plan diagram, their termination criterion is based on estimating

|C(q)| and stopping when the actual number of distinct plans

observed via sampling is within a certain threshold of the

estimated number of distinct plans.

While the above approach of sampling the selectivity space is

applicable to our problem as well, there are two crucial

differences. First, we need to generate the plan skyline and not

C(q). Since the plan skyline is typically much smaller than C(q),

we have an opportunity to identify a more efficient termination

condition that is able to detect when we have a “sufficient

number” of plans in the plan skyline. We present a novel method

(with a probabilistic guarantee) that can tell us when we have

sampled enough (Section 4.1). Second, the plan skyline is defined

with respect to the avg and std over query instances in the given

workload. Thus, unlike in plan diagram generation where uniform

random sampling is appropriate, we are able to exploit workload

information to bias the sampling towards regions in the selectivity

space that are more likely to contain a plan in the plan skyline

(Section 4.2). This can significantly speed up the algorithm.

Finally, we note that our method for sampling a point from the

selectivity space (i.e. selectivities for each dimension) requires

identifying parameter values such that the query‟s predicates have

the required selectivities. We use an approach similar to that in

[11]. Once we have a query with the desired parameter values, we

invoke the query optimizer to obtain the optimal plan for that

point. We omit further details due to lack of space.

4.1 Early Termination by Gap Counting
Our procedure for early termination of sampling uses the

following two concepts: (a) Region of optimality for a given plan.

This is the sub-space of the selectivity space where the given plan

is optimal. (b) Area of optimality for a given plan. This is the total

area in the selectivity space where the given plan is optimal.

(Since our examples are 2-dimensional, we use the term area; in

an n-dimensional space this represents the volume). In Figure 3

the selectivity along each dimension is discretized into 5 ranges,

for a total of 25 cells. The region of optimality of each plan is

shown in the figure as a rectangular box. The area of optimality of

Plans 4 and 6 respectively are 1 and 8 cells. We emphasize that

our techniques do not depend in any way on the actual shape or

contiguity of the regions of optimality.

Observe that when we sample the selectivity space using uniform

random sampling, the probability of sampling a plan is

proportional to its area of optimality. Similarly, the probability of

sampling any plan from a set of plans is simply the sum of their

probabilities because the optimal regions of plans do not overlap.

Consider the following example.

Example 1. In the example of Figure 3, if we sample uniformly at

random, then each plan will be sampled with a probability

proportional to its area. Pr (Plan 1) = 4/25 since Plan 1 occupies 4

cells out of 25 total cells. Likewise, Pr (Plan 6) = 8/25. Similarly,

Pr (Plan 1 or Plan 2) = (4 + 2)/25 = 6/25.

Note that the above concepts generalize naturally to the case of

weighted sampling, where the probability of sampling a point in

the selectivity space is not uniform, but is proportional to a

specified weight. Thus, in general, the probability of sampling a

plan is proportional to its weight, which is the sum of the weights

of all points in the selectivity space where the plan is optimal. We

discuss the issue of how to assign weights based on the given

workload in Section 4.2.

Probability of sampling a skyline plan: From the above

discussion, it follows that the probability of sampling any plan in

the plan skyline is proportional to the area (in general weights) of

plans in the plan skyline.

Example 2. Assume in the example of Figure 3 that Plans 1, 2, 3

and 4 are skyline plans and the other plans are not. Then Pr

(Sampling a skyline plan) = Pr (Plan 1 or Plan 2 or Plan 3 or Plan

4) = (4 + 2 + 2+ 1)/25 = 9/25.

Now consider the probability of finding a plan in the skyline,

conditioned on a subset of skyline plans having already been

found. The probability is proportional to the sum of the weights of

missing skyline plans, i.e. skyline plans not yet sampled.

Example 3. Pr (Sampling a skyline plan | Plan 1 and Plan 2

already sampled) = Pr (Plan 3 or Plan 4) = 3/25. Similarly, Pr

(Sampling a skyline plan | Plan 1, Plan 2, Plan 3 found) = Pr (Plan

4) = 1/25.

The above examples illustrate the key idea that the probability of

finding a new skyline plan decreases as we find more skyline

Figure 3. A plan diagram showing skyline, non-skyline

plans and queries in the workload W.

plans in the sample. Thus, the more skyline plans we have already

found in the sample thus far, the more samples it will take on

average to find an additional skyline plan. Thus, our idea is to stop

sampling when we do not obtain a new skyline plan for a long,

pre-determined gap. We formalize this idea next.

4.1.1 Gap Counting
We maintain a counter called the gap counter, which keeps track

of the interval between the last two new skyline plans observed in

the sample. Each time we sample a plan, if the plan is a new plan

in the skyline of all plans observed thus far in the sample, we reset

the gap counter. Otherwise, we increment the gap counter.

Figure 4 depicts a sequence of this sampling. Circles denote

“successful” sampling, i.e. the sampled plan was observed to be a

new skyline plan among the plans sampled thus far. The bars

denote unsuccessful sampling. Assume that after t samples, we

found a successful sample. The gap counter is reset to 0 and we

start counting. Let g be the number of additional samples after t to

find the next successful sample. The key observation is that the

probability of a successful sample is constant between t and t + g,

since the sum of areas (in general weights) of the missing skyline

plans does not change during this interval. If we denote the

probability of a successful sample after t samples by Prns(t),

where wms is the weight of all missing skyline plans (i.e. skyline

plans not yet sampled), and wtotal is the total weight of all plans.

The above observation implies that g follows a geometric

distribution with a success probability of wms / wtotal. The

following theorem allows us to quantify when to stop sampling.

Theorem 1. With a probability at least 1 – ε, if we do not find a

new skyline plan in the sample for a gap g ≥ g0 = (1 + ε-1/2) / δ,

then the sum of weights of skyline plans not yet found ≤ δ.

Proof: See Appendix A.

Intuitively, this theorem states that if the gap counter reaches a

value g0 (which we refer to as the gap threshold), then with

high probability the missing skyline plans cover a small area (in

general weight) in the plan diagram. For instance, suppose that we

choose ε = 0.05 and δ = 0.05, then if we do not find a new skyline

plan for 110 samples, the sum of weights of missing skyline plans

≤ 0.05 with a probability at least 0.95. Note that Theorem 1 is

very general in the sense that it does not depend on the query

dimensionality or specific characteristics of the parameterized

query. Of course, the actual sequence of gaps observed (and hence

actual termination) does depend on the specific parameterized

query and the workload. We observe that the weighting scheme

(discussed in Section 4.2) can have a significant impact on how

quickly the gap threshold is reached. For instance, consider a poor

weighting scheme that assigns all skyline plans a very low weight.

Then a large number of samples may be required to reach the gap

threshold. The SkylinePlans algorithm, which implements the

above gap counting technique, is shown in Figure 5.

The guarantee in Theorem 1 is probabilistic, and therefore the

algorithm may miss some skyline plans. The following theorem

quantifies the likelihood of missing a skyline plan based on its

area of optimality.

Theorem 2. Suppose we stop sampling according to the gap

threshold g0 = (1 + ε-1/2) / δ in Theorem 1. If a skyline plan P has

weight Δ ≥ γ∙δ, for a constant 0 < γ ≤ 1/δ, then the probability that

plan P is not sampled is at most e-γ(1+ ε-1/2).

Proof: See Appendix A.

Intuitively, Theorem 2 states that if a skyline plan has a “large”

area of optimality (in general weight), then we will find it with

high probability if we use the stopping condition of Theorem 1.

Note from Theorem 2 that the probability of missing a skyline

plan decreases exponentially with its area. For example, if ε =

0.05, δ = 0.05, and γ=0.5 (i.e. the plan‟s area (weight) is at least

0.025), Theorem 2 states that the probability of not sampling the

plan is at most 0.065 if we use the stopping criterion of Theorem 1.

If γ=1.0 (i.e. area ≤ 0.05), the failure probability is at most 0.0043.

Thus, while Theorem 1 refers to the aggregate weight of all

missing skyline plans, Theorem 2 further shows that individual

skyline plans with any non-trivial weight will be found with high

probability.

Finally, we note that despite the stopping criterion of Theorem 1,

there may exist skyline plans (with small weight) that dominate

plans returned by the SkylinePlans algorithm. In our experimental

evaluation we compare our algorithm against a method that

exhaustively enumerates the discretized selectivity space (we refer

to this method as ES) and computes the skyline among those plans.

Our results (Section 7) show that: (a) We often find all skyline

plans found by ES. (b) Even when we miss some skyline plans, in

most cases the missed plans have avg and std that is very close to

one or more plan returned by the algorithm. Thus, in practice, we

found that the impact of the missed skyline plans is not significant.

4.1.2 The Impact of False Positives
Observe that in the above algorithm, it is possible that we think a

plan P belongs to the skyline, but in reality another plan P exists

Figure 4. A sequence of plan samples and gap counting.

Figure 5. Algorithm for generating Plan Skyline for a

given parameterized query and workload.

Algorithm: SkylinePlans

Input: parameterized query Q, workload W, error threshold ε,

weight sum threshold δ

Output: Set of skyline plans Skyline

1. Skyline = φ, Plans = φ

2. g0 = (1+ ε-1/2) / δ

3. g = 0

4. While g ≤ g0

5. Sample a point q from the selectivity space of Q

6. Pq = optimal plan for q // optimize query q

7. If Pq ∈ Plans // if plan already seen

8. g++ and continue // increment gap counter

9. Plans = {Pq}∪ Plans // a new plan is found

10. Compute avg(Pq) and std(Pq) over W

11. Remove plans dominated by Pq in Skyline

12. If Pq is a new skyline plan

13. g = 0 // reset the gap counter

14. Skyline = {Pq} ∪ Skyline

15. Else // dominated by a plan in Skyline

16. g++ // increment gap counter

17. Return Skyline

that dominates P, but P has not been sampled so far. We refer to

such a plan P as a false positive. Figure 6 shows an example

sequence of sampled plans. The dotted circle represents a false

positive at the beginning of the gap. The false positive causes a

reset of the gap counter. Thus the gap maintained by the gap

counter is shorter than the true gap. In other words, the reset

caused by a false positive can make the algorithm obtain more

samples before we reach the gap threshold g0. Therefore, a false

positive may cause the algorithm to terminate with more samples

than necessary, but never to terminate with fewer samples, which

does not hurt the guarantee of Theorem 1. Finally, observe that

there can never be any false negatives since a plan that is

dominated by another plan in the sample itself cannot be in the

true skyline.

4.2 Leveraging Workload for Weighted

Sampling
We now describe how we assign weights to any point in the

selectivity space, and thus to any plan in C(q). Recollect that the

weight of a plan is the sum of the weights of all points in the

selectivity space where the plan is optimal. Ideally, the weight of

a point should reflect the probability that the optimal plan at that

point is in the plan skyline. This is however clearly infeasible

since obtaining this probability would require solving the Plan

Skyline problem itself. Thus, our goal is to heuristically

approximate the ideal weight but at low overhead.

We develop weighting schemes based on the following two ideas:

(1) A point in the selectivity space that is closer to a query

instance in the workload is more likely to be the skyline plan

compared to a more distant point. To motivate this, consider the

case when all points in the workload have the same optimal plan P

(e.g. one tight cluster of queries with high locality). In this case P

would be the only point in the skyline since it would have the

lowest avg and std. (2) Non-workload points have a non-zero

probability of generating a skyline plan. Consider a workload

with two query instances q1 and q2 that are far apart in the

selectivity space. Plan P1 is optimal for q1 and plan P2 is optimal

for q2. It is likely that for q1 plan P2 has very high cost, leading to

large avg and std for P2. Similarly since q2 may have a high cost

when using P1, P1 is also likely to have a large avg and std. Thus,

a third plan P3 that is not optimal for either query, but having an

overall lower avg and std for q1 and q2 may dominate P1 and P2.

Our strategy is to assign a weight to a point in the selectivity

space that decreases as the distance of that point to a point in the

workload increases. The actual distance function used decides

how quickly weight decreases as distance increases. Observe that

assigning weights individually to each point in the selectivity

space could be expensive since there are O(dkn) points in a k-

dimensional space with d step discretization and n = |W|, the

number of queries in the workload. Since low overhead for weight

assignment is a key requirement, we consider each dimension

independently. A point is projected onto each dimension and its

weight on each dimension is assigned according to the projected

distance between the point and query instances in the workload.

Let ai denote point a‟s discretized step value in the i-th dimension.

Its weight in the i-th dimension, denoted weighti(a), is defined as

follows:

where dist is a function that measures the distance between two

points. This weight can be computed efficiently by pre-computing

all possible d2 value pairs dist(ai,bi) with O(k(n + d2)) complexity.

We use the max function to prevent division by zero.

1 0 3

2
1

1

x

y

histogram on x-axis

hi
st

og
ra

m
 o

n
y-

ax
is

2.5 4 3.5 weight of each step in x-axis

3.
5

4
2.

5

w
ei

gh
t o

f e
ac

h
st

ep
 in

 y
-a

xi
s

2.5 = 1 * 1/1 + 0 * 1/1 + 3 * 1/2

Example 4. Consider a 2-dimensional selectivity space where

each axis is discretized into three units (see Figure 7). Suppose the

workload has 4 queries. The counts of queries at each axis are

shown as a histogram. Suppose we measure distance as the

number of units between the two points. Focusing on the weight

of the first step in x-axis, 1/dist values are 1/1, 1/1, and 1/2 resp.

with a minimum distance of 1. Summing the values multiplied by

the corresponding counts gives the weight as 2.5 (note that in

practice we use normalized weights rather than absolute weights).

Sampling is done at each axis independently. Let wi be the total

weight of the i-th dimension. For example, in Figure 7, the weight

of dimension x = (2.5+4+3.5) = 10. The probability of sampling a

point is as follows:

Note that the above dimension independent weight assignment is

unrelated to the independence assumption of selectivity values

often made by query optimizers. The effect of independent weight

assignment in our scheme is that weights can be more “spread

out” and thus may lead to oversampling compared to a scheme

that explicitly models correlations across dimensions.

In this paper, we evaluate the following commonly used distance

measures (presented in increasing order of how quickly the weight

decreases with distance):

 Uniform: dist (ai, bi) = 1

 Sqrt: dist (ai, bi) = sqrt (|ai – bi|)

 L1: dist (ai, bi) = |ai – b i|

 Sq: dist (ai, bi) = (ai – bi)2

Our experimental evaluation (see Section 7) shows that the L1

function appears to work best: it leads to considerably less

sampling by the SkylinePlan algorithm when compared to uniform

random sampling; and it is efficient to compute.

5. EFFICIENT AVG-STD COMPUTATION
In this section, we present sufficient conditions for pruning the

avg-std computation using bounding techniques. We focus on

Figure 6. Impact of false positives on SkylinePlans algorithm.

Figure 7. An example calculation of weights for a point in

the selectivity space.

sound pruning only, i.e. our conditions do not incorrectly prune a

plan (modulo the cost monotonicity assumption stated below). We

note that heuristic approaches such as reducing the workload size

via clustering or compression (e.g. [5][12]) can also potentially be

used and are orthogonal to the techniques presented here.

5.1 Lower Bounds on Avg and Std
Conceptually, the avg-std computation is a nested loops iteration

where for each candidate plan in the outer loop we measure its

costs for all query instances in the inner loop. In the context of the

SkylinePlans algorithm described in Figure 5, this logic is

implemented in Step 10.

1. For each plan P

2. For each query instance q ∈ W

3. Get CostP (q) by invoking the query optimizer

4. Compute avg(P) and std(P).

When we detect that plan P cannot be in the skyline after we get

the cost of a query q (line 3), we prune processing P, i.e., we

break out the for-loop at line 2 and move to the next plan. Our

idea is to maintain lower bounds on avg(P) and std(P) and if we

find that a plan exists in the current skyline that dominates P

based on the bounds, we prune P without having to iterate over

the remaining queries in the workload. Since the major cost is

invoking the query optimizer, such pruning can significantly

reduce the time needed. For the above bounds to be effective, we

rely on the monotonic cost assumption which states that optimizer

estimated cost of the query monotonically increases in the

selectivities of the query. This assumption is observed to hold in

many queries in practice and has previously been used in related

contexts (e.g. [2][11]).

LT

LB

(a) An example workload in the
selectivity space

(b) Bottom layer and top layer.
Edges represent partial orders

Selectivity 1

S
e
le

c
ti
v
it
y
 2

Selectivity 1

S
e
le

c
ti
v
it
y
 2

Let a and b be two k-dimensional queries. They can be

represented by two vectors [a1,…,ak] and [b1,…,bk] respectively in

the k-dimensional selectivity space. We define a partial order ≼ as

follows:

We say a precedes b if a ≼ b. We define the bottom layer LB as the

set of queries in workload W such that no query in W precedes

them. Likewise, the top layer LT is the set of queries that do not

precede any queries in W. Note that we do not count the same

queries multiple times in LB and LT, and a query can be in the both

layers. Figure 9(a) shows an example workload in the selectivity

space and 9(b) shows partial orders among queries (a  b denotes

that a precedes b) and the top and the bottom layers. Not all edges

are shown for clarity.

At any given time, let min(P) to be the minimum cost of P over all

remaining queries in the inner loop and max(P) to be the

maximum cost over the same remaining queries. Then, from the

monotonic cost assumption:

Now suppose we have obtained the cost for q1,…,ql in W, where 1

< l < n, n = |W|. The observation is that we can maintain a lower

bound on the avg and std based on the costs seen so far, CostP (qi),

1 ≤ i ≤ l. A lower bound avgLB(P,l) and an upper bound avgUB(P,l)

on avg(P) are as follows since costs of unseen queries (ql+1,…,qn)

are not smaller than min(P) and not bigger than max(P):

Similarly, we can derive a lower bound varLB(l) on var(P) as

follows:

where

The following condition is sufficient for pruning the further

processing of P where Skyline is the set of skyline plans so far:

∃ plan R ∈ Skyline s.t. (avg(R),var(R)) < (avgLB(P,l) ,varLB(P,l))

At each iteration of the inner loop we check the above condition,

and if it holds, we stop processing P and move on to the next plan.

5.2 Tighter Cost Bounds
The effectiveness of the pruning conditions largely depends on

how tight the cost bounds (min(P) and max(P)) are. We describe a

refinement of the above algorithm where we update the cost

bounds as we process queries instead of using the bounds fixed at

the start of the algorithm.

LB (resp. LT) in Figure 9 is in fact the skyline in the increasing

(resp. decreasing) selectivity direction. After processing LB and LT,

we can apply the same idea for the remaining queries repeatedly.

Generalizing the top and bottom layers, we inductively define

layers (a sequence of sets) of queries in W as follows:

L1 is the bottom layer LB. We call Lm a min layer when m is odd

and a max layer when m is even. Intuitively min layer Lm is the

skyline in the increasing selectivity direction excluding queries in

preceding layers L1,…,Lm-1. A max layer can be thought of in a

similar way.

Figure 8. Outline of Avg-Std computation procedure.

Figure 9. Top and bottom layers of queries in the workload.

The Min-Max layering algorithm is straightforward, so we omit

details due to lack of space. We illustrate min-max layering of the

example workload in Figure 10. L1 is formed by selecting nodes

without incoming edges as shown in (a). We delete all associated

edges after selecting the layer. Switching directions, the next layer

is a max layer and consists of nodes without outgoing edges as in

(b). We select nodes in the skyline from the remaining nodes,

alternating the direction. The layering result is in (d). The

algorithm runs in O(n2) time, were n is the number of queries in

the workload. This preprocessing of the workload needs to be

done only once at the beginning of the SkylinePlans algorithm.

Since the cost of optimizer calls by far dominates the SkylinePlans

algorithm, the cost of Min-Max layering is negligible.

(b) The first layer is output and
associated edges are deleted.
Nodes with no outgoing edge
are in the second layer.

(a) The first layer is formed by
nodes with no incoming edge.

L 1

a

b
c

d

e

f

g

h

i

L 1

a

b
c

d

e

f

g

h

i

L 2

(d) Final result. Queries are

divided into 4 layers.

L 1

L 2

a

b
c

d

e

f

g

h

i

(c) All edges to the second

layer are deleted. The third

layer is selected.

L 1

a

b
c

d

e

f

g

h

i

L 2 L 4

3L L 3

Our avg-std computation (shown in Figure 11) processes queries

layer by layer in batches.

min(P) is updated after processing a min layer and max(P) is

updated after processing a max layer. Suppose that we processed

all the queries in layer L1,…,Lm and Lm is a min layer. min(P) is

updated as follows:

min(P) is the lower bound for unseen queries in layer Lm+1,…,L|L|.

Note that min(P) is now the minimum cost of the just processed

min layer and all the preceding max layers. This is because some

of queries in the skyline might have been deleted in a preceding

max layer, and thus a min layer is not a complete layer of skyline.

max(P) can be defined in a similar fashion.

Finally, note that other variants of above idea of layering are also

possible, e.g. have only min layers and thereby update only min(P)

while fixing max(P) to the top layer) We empirically found that

the min-max strategy generally worked best, and was significantly

better than the basic bounding approach of Section 5.1.

6. EXTENSIONS

6.1 Handling Constraints
In Section 2.3 we presented constrained versions of the Plan

Skyline problem. For example, in the τ-Min-Avg problem, we

want to find the plan with the minimum variance among the plans

whose average cost is within τ % of the minimum average cost.

We observe that such constraint checking can be done efficiently

by exploiting the bounding techniques of Section 5. In particular,

we can piggyback the constraint checking onto the lower bound

checking (Figure 11). We maintain avgmin for the minimum

average cost of skyline plans so far. The following condition is a

sufficient condition for pruning P.

Thus, after computing avgLB, if the above condition is met, we

stop processing P. Note however that unlike pruning by

dominance (Section 5), a plan pruned by a constraint might be in

the skyline. Therefore, we conservatively reset the gap counter in

that case. The case of τ-Min-Std problem can be solved similarly.

In our experiments (Section 7) we study the impact of constraints

on the running time of the SkylinePlans algorithm.

6.2 Choosing Multiple Plans
Thus far our focus has been on finding a single plan that has a

good trade-off between average cost and variance in cost for a

given workload. Once such a plan is identified, the DBA can

install that plan using a plan hint so that all instances of that

parameterized query use the chosen plan. Here we briefly outline

a more general version of the Plan Skyline problem that can allow

the DBA to choose multiple (say K) plans. As in parametric query

optimization (PQO) where using multiple plans allows reduction

in average cost, using K plans here provides additional

opportunities to reduce average and/or variance. Our

generalization exploits the intuition of an end-biased histogram

([14]) which keeps K–1 “outlier” (i.e. most frequent) values

separately and use one bucket to store the combined frequencies

of all other values. Similarly, we can use optimal plans for K–1

“outlier” queries in the workload, and use a single plan for the rest

of the queries. One advantage of such an approach is that it still

easily maps to existing plan hinting mechanisms in today‟s

DBMSs, and unlike PQO does not require specifying distance

functions to map incoming query instances to one of the K plans.

While a full study of this problem is beyond the scope of this

paper, below we sketch some of the issues that arise and outline

potential approaches. Given a plan P, let A = [u1,…,un] be the

costs of queries in the workload with P and let B = [v1,…,vn] be

AvgStdComputation

Input: min-max layers L, plan P, min avg th. τ, min avg so far
avgmin, current skyline Skyline

Output: avg(P) and std(P) or pruned

1. Process L1 and L2 updating min(P) and max(P) resp.

2. For each layer Lm, m=3,… do

3. For each query q ∈ Lm do

4. Get Cost P(q) // make an optimizer call

5. Update avgLB and varLB

6. If ∃ a plan R ∈ Skyline, that dominates P

7. Return „P is pruned‟

8. Update min(P) (when m is odd) or max(P) (otherwise)

9. Update avgmin

10. Return computed avg(P) and std(P)

Figure 10. Min-Max layering of queries in the workload.

Figure 11. Avg-Std computation with Min-Max layering.

their optimal costs: vi ≤ ui, i.e. vi is the cost of the optimal plan for

query qi. Suppose that we use the optimal plans for some K-1

queries and use P for the rest of the queries. Let us refer to this

extended plan as R. We observe the following: (a) The new

average is never bigger than the original average: avg(R) ≤

avg(P). (b) In contrast, the new variance may be smaller or bigger

than the original variance: std(R) ≰ std(P). Thus, R may or may

not dominate P.

There are possible choices of “outlier” queries for R. Thus

for each plan in the original plan diagram, there are

extended plans. We can extend the plan skyline in several ways,

depending on how we choose outliers. Some choices are as

follows. (1) Multi-plan extension: Consider all extended plans of

the original plan that are not dominated by another extended plan.

(2) Min-Avg extension: Among all extended plans of the original

plan, choose the one with the minimum average. (3) Min-Var

extension: Among all extended plans of an original plan, choose

the one with the minimum variance. As a proof of concept, we

implemented the Min-Avg extension and evaluated this for

different values of K. Our initial results indicate that the K-plan

version of the Plan Skyline problem can significantly reduce

average and variance. For example, for a workload on TPC-H

Query 5 with n=100 instances, and K=10 plans, the average cost

reduced by around 22% and the variance reduced by 5%

compared to K=1. A full study of this problem is beyond the

scope of this paper, and is an interesting area of future work.

7. EXPERIMENTS
We have implemented the techniques described in this paper on

Microsoft SQL Server 2008. Below we describe the setup and

results of the empirical evaluation of our techniques.

7.1 Experimental Setup
Data sets and queries: We used TPC-H benchmark [21] and a

real world sales database (~10GB). We used the modified TPC-H

data generator [21] to generate skewed data distributions for each

column with Zipfian distribution using a skew factor of z=1. We

evaluated the result on a tuned version of the 1GB, where indexes

were created using recommendations from an index advisor tool.

For each parameterized query, we use a workload with 100

instances for TPC-H, and 20 instances of real-world workloads for

the sales database. TPC-H queries were evaluated up to 3

parameters and the real-world parameterized queries have

between 2 to 6 parameters. For TPC-H queries, to obtain diverse

workloads, we generate workloads using a Gaussian Mixture

Model (GMM). We first generate 8 basic distributions (A ~ H)

with divergent selectivity and locality as shown in Figure 12.

Then two or three basic distributions are mixed to model the

complex nature of real-world workloads. For example, AB is a

GMM of distributions A and B.

Discretization of the selectivity space: We empirically found

that finer granularity is important in small selectivity ranges

(below ~2%). This is due to the fact that non-clustered indexes are

typically effective in this range. Thus we use non-uniform

discretization where we use finer grained intervals at small

selectivity ranges. We divided the [0, 2%] range into 0.05%

intervals: [0,0.05%],…,(1.95%,2%]. The rest is divided into 1%

intervals: (2%,3%],…,(99%,100%].

Algorithms compared: The baseline algorithm is exhaustive

search (denoted ES) over the full discretized selectivity space. We

also implemented an algorithm (denoted WA) which restricts plans

to only those that are optimal for at least one query instance in the

given workload. In effect, this algorithm assigns non-zero weights

(Section 4.2) only to points in the selectivity space corresponding

to an instance in the workload. We denote the SkylinePlans

algorithm (Figure 5) Sky. We set =0.1, ε=0.1 (see Section 4.1.1).

Evaluation metrics: We define the skyline recall metric to

measure how effectively the algorithms find the plan skyline. It is

defined as the number of found skyline plans / the total number of

true skyline plans. We also show both counts. The denominator is

found by an ES (exhaustive search). An ES beyond 2 parameters

took too long, so we do not report the recall of real-world queries

which have more than 5 parameters. For efficiency evaluation, we

report the algorithm runtime. For pruning effectiveness in avg-std

computation (Section 5), we report two figures: the fraction of

pruned plans and the % of optimizer calls saved.

7.2 Results on TPC-H

7.2.1 Comparison of algorithms
We first report the recall over 16 different workloads using Query

5 from the TPC-H benchmark. Figure 13 shows the number of

skyline plans found by Sky and WA as well as the true number

0

2

4

6

8

10

12

A B C D E

A
B

B
C

A
C F G H

F
G

G
H

F
H

A
B

C

F
G

H

N
u

m
b

e
r

o
f

p
la

n
s

Workload

True
Skyline

Sky

WA

0

2

4

6

8

10

12

A B C D E

A
B

B
C

A
C F G H

F
G

G
H

F
H

A
B

C

F
G

H

N
u

m
b

e
r

o
f

p
la

n
s

Workload

True
Skyline

Sky_5%

WA_5%

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1S
e
le

ct
iv

it
y
 o

f
th

e
 1

st
 p

a
ra

m

Selectivity of the 2nd param

A

B

C

D

E

F

G

H

A

B

E

D

G

C

H

F

Figure 12. Synthetic workloads using Gaussian Mixture Models.

Figure 13. Comparing skyline recall of algorithms.

Figure 14. Skyline recall when allowing for plans with

close avg and std.

found by ES. While both Sky and WA miss some true skyline

plans, Sky finds more plans than WA for most of the workloads. At

first it might appear that missing skyline plans could have an

adverse affect on avg and std. However, Figure 14 shows the

same experiment as above but with the following variant. If there

exists a plan in the skyline found that is within 5% of both avg

and std of a true skyline plan, we count the skyline as being

found. We now observe that Sky finds all the skyline plans given

this margin. This also implies that there are many skyline plans

with trivial differences, which agrees with the findings in [19]. A

clear contrast is that WA misses many skyline plans even with the

margin, especially when the workload is a mix of different

selectivity distributions (e.g. AB, FG). To better illustrate the

above behavior, we drill-down to a specific workload AB

consisting of 100 query instances. Tables 1 and 2 show

respectively: (a) The distribution of optimal plans. For instance,

for 23 queries in the workload, Plan 5 is optimal. (b) Avg and Std

cost details for some of the plans. The table also shows if a plan is

in the skyline, and whether the plan is an optimal plan for any

query in the workload.

Optimal Plan ID # Queries

1 3

3 11

4 13

5 23

9 50

Plan ID Avg Std Skyline? Workload

point?

12 108.60 3.21 Y

13 108.60 3.21 Y

11 108.60 3.21 Y

10 109.26 1.03 Y

7 156.67 146.96

5 243.46 235.49 Y

25 1155.29 1150.81

4 1155.94 1151.46 Y

3 2030.07 2035.69 Y

1 2033.04 2026.88 Y

2 5173.89 4638.06

9 8438.72 7564.61 Y

Interestingly, compared to a skyline plan (e.g. Plan 12), Plan 5 has

an avg that is 2x bigger and a std that is over 70x higher. This is

because Plan 5 is optimal for certain query instances (belonging to

distribution A), but performs very poorly for other instances

(belonging to distribution B). Thus, WA which only considers

plans that are optimal for at least one query in the workload will

miss skyline plans such as Plan 12. Similarly plans at other

workload points (e.g. Plan 1, 3, 4, 9) are also significantly worse

than the skyline plans. The above example additionally illustrates

how in practice (skyline) plans are often bunched together with

very similar avg and std costs. This typically happens because the

plans have only minor differences in the operators.

Figure 15 gives the overall skyline recall for other TPC-H queries.

Some queries are excluded for the limitation of our current

implementation. We observe that Sky‟s recall is consistently

above 95% while WA‟s recall is generally between 50% and 70%.

Finally, Figure 16 shows the running time of Sky and WA for

TPC-H queries. In some cases, WA is twice as fast as Sky since it

typically considers much fewer plans. However, we note that Sky

finishes reasonably quickly in absolute terms (within several

minutes) whereas ES (not shown in the figure) typically took

several hours for the same cases.

7.2.2 Effectiveness of pruning technique
We analyze the effectiveness of pruning conditions (Section 5)

and constraints (Section 6) in reducing invocations of the query

optimizer. In Figure 17, the top stack of each bar shows the

number of skyline plans and the bottom stack shows the number

of plans which were pruned when using the bounds on avg or std

described in Section 5.2. The middle stack shows the plans that

are not skyline plans but were not pruned. Figures 17 and 18 show

the results when using bounds as well as a Min-Avg constraint

(skyline plans whose avg is within a factor of 2 of the skyline plan

with the smallest average).

From Figure 17 we see that pruning is effective for a large

fraction of the plans (skyline plans cannot be pruned). Figure 18

shows that the pruning results in a significant savings in optimizer

invocations as well. For example, a value of 91% means that for a

workload with 100 queries, on average we pruned the plan after

invoking the optimizer for just 9 queries. Finally, we observed

significant savings in the number of plans pruned (around 50%)

0%

20%

40%

60%

80%

100%

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
4

Q
1
6

Q
1
7

Q
1
8

Q
2
0

Q
2
1

S
k
y
li
n

e
 r

e
c
a
ll

Query

Sky_5%

WA_5%

0

50

100

150

200

250

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
4

Q
1
6

Q
1
7

Q
1
8

Q
2
0

Q
2
1

R
u

n
n

in
g

 t
im

e
 (

s
e
c
)

Query ID

Sky

WA

0

5

10

15

20

25

30

A B C D E

A
B

B
C

A
C F G H

F
G

G
H

F
H

A
B

C

F
G

H

N
u

m
b

e
r

o
f

p
la

n
s

Workload

skyline

not
pruned

pruned

58%

96%

81%

88%

61%
52%

91%

68%
67%

96%

58%
51%

66%

44%
50%

0%

20%

40%

60%

80%

100%

A B C D E

A
B

B
C

A
C F G H

F
G

G
H

F
H

A
B

C

F
G

HA
v
e
ra

g
e
 s

a
v
in

g
s
 i

n

o
p

ti
m

iz
e
r

c
a
ll
s

Workload

Table 1. Distribution of optimal plans for TPC-H Q5.

Table 2. Avg, Std of plans for TPC-H Q5.

Figure 15. Sky vs. WA for TPC-H queries.

Figure 16. Running time of Sky vs. WA

Figure 17. Pruning plans using bounds and constraints.

Figure 18. Optimizer calls saved by pruning.

and optimizer calls (around 20%) even when using only bounds

(without any constraints). We omit details due to lack of space.

7.2.3 Effect of weighting scheme
Figure 19(a) shows the running time of various weighting

schemes (described in Section 4.2) averaged over the workloads

and (b) shows the skyline recall. The schemes show increasing

bias towards points in the workload in the order of Uniform, Sqrt,

L1 and Sq. Uniform is the slowest since it wastes much time

exploring non-skyline plans. Sq is the fastest since the weight

decreases very quickly with distance from the workload point, but

its drawback is poor skyline recall. It biases the search too much

towards workload points and misses some of the skyline plans that

are not from the workload. L1 offers a good balance between the

running time and skyline recall.

 (a) Running time (b) Skyline recall

7.3 Results on Real World Queries
We next present the results of the real world queries in the Sales

database. Unlike TPC-H, these queries include high-dimensional

queries with up to 6 parameters. Below we discuss the results of a

query with 5 parameters. As mentioned earlier, we were unable to

run ES since it would have taken too long. The results were

largely similar for other queries, so we omit those due to lack of

space. The selectivity distribution of the 5 parameters over queries

in the workload is shown in Figure 20. We notice that the

selectivity distribution in the real world workload is similar to our

synthetically generated distributions for TPC-H queries. Some

parameters have consistently big or small selectivities while

others show mixed distributions.

Table 3 shows the cost details of skyline plans. There are 4 plans

in the skyline forming two clusters. We can see that the two

clusters offer interesting trade-offs between average and variance.

Plan ID Avg Std
17 10.6 8.17

18 16.96 4.6

40 16.96 4.6

12 16.97 4.6

Plan 17 has a lower avg but its std is close to its avg. In contrast,

the other plans have higher avg’s but lower std’s. Thus the

decision of which plan to choose is not straightforward and could

differ depending on the DBA‟s preferences. For instance, with

Plan 17, query costs could vary widely between 2 and 19. A DBA

may choose one from the other cluster (e.g. Plan 18) if such a big

cost variance is not desirable.

Figure 21 shows diverse examples of plan skyline using TPC-H

queries. The x-coordinate (resp. y-coordinate) shows the avg

(resp. std) over the workload mentioned in the plot title. We

observe that the same query can have very different plan skylines

depending on the workload. Thus, a DBA can be presented with

varying trade-offs for different cases.

8. RELATED WORK
The concept of a plan diagram was proposed in [19] to highlight

the problem in current optimizers of too many plans with only

marginal cost differences. Our experimental observations agree

with the claims in [11][19] and the proposed work touches upon

some of the concerns in [4] by helping DBAs determine an

appropriate plan to use for a parameterized query.

Least expected cost (LEC) optimization ([7][8]) aims to minimize

the expected cost over parameter distributions. However, they do

not consider variance as in our work. A brief theoretical

discussion about optimizing a query for a combination of cost and

variance is mentioned in [7]. Note that the algorithms in [8] are

not applicable to our problem since assumptions made in the

paper (such as cost linearity) does not hold for variance of cost

unlike for the expected cost.

Parametric query optimization, (e.g. [2][15]), focuses on

minimizing the average cost of the parameterized query over a

given distribution of parameter/selectivity values. However, they

are not concerned with minimizing variance or identifying the

trade-off between average and variance cost as in our work.

Robust query optimization [1] and dynamic query optimization

(see [10] for an overview), are concerned with handling the

uncertainty in selectivity estimation of input parameters in a

0

20

40

60

80

100

R
u

n
ti

m
e

 (
s

e
c

)

90%

92%

94%

96%

98%

100%

S
k

y
li

n
e

 R
e

c
a

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

S
e

le
c

ti
v
it

y

Query ID

Store.Division

Store.Region

Item.Subject

Store.District

Date.Date_Value

0

10

20

30

80 85 90 95 100 105

Q10 (G)

0

5

10

15

0 50 100 150

lineitem ⋈orders (G)

0

50

100

90 95 100 105

Q5_3d (QR)

0

2

4

6

0 50 100 150 200

Q9 (G)

0

2

4

6

0 50 100 150 200

Q9 (FG)

0

10

20

80 90 100 110 120

Q9_3d (BC)

Table 3. Avg, Std of skyline plans for a real world query.

Figure 19. Comparing running time and recall of

weighting schemes.

Figure 20. Selectivity distribution of parameters for a

real-world query.

Figure 21. Diverse examples of plan skyline.

single query. In contrast, our work considers the variance of a

plan across multiple instances of a parameterized query.

The Plan Skyline problem, although superficially similar, faces

different challenges when compared with the traditional skyline

computation problem [3] or the multi-objective optimization

problem [13]. First, the points over which to compute the skyline

are not given and are expensive to compute in our case. Second,

any type of pre-processing (e.g. indexing or sorting) is not feasible

since the points are not known a priori. Finally, unlike in the

traditional skyline computation problem, space (for skyline or

intermediate computation) or the number points are not major

concerns in our problem.

There have been growing interests in “predictability” in query

processing, e.g. [17][18][22]. A distinctive aspect of our approach

is that it provides a clear trade-off between loss in average

performance and reduction of variance. Also, our work can be

viewed as complementary to the above approaches; our

techniques can be applied on top of any DBMS, whereas the

above approaches rely on changes to the query execution engine.

9. CONCLUSION
The ability to control variance in cost of query instances of a

parameterized query is an important consideration in performance

tuning. However, there is little support today for helping DBAs

achieve a suitable average vs. variance trade-off over multiple

instances of the query. We study this novel problem and present

an efficient and scalable solution that we have implemented on

top of a commercial DBMS. Our experimental results on real

world and benchmark queries show the promise of our techniques.

One interesting area of future work is to study an extension of the

above problem where we are allowed to keep multiple plans for a

given parameterized query. Another orthogonal issue is to

examine whether the functionality described in this paper can be

embedded directly into the query optimizer component.

10. REFERENCES
[1] Babcock, B. et al. Towards a Robust Query Optimizer: A

Principled and Practical Approach. SIGMOD 2005.

[2] Bizarro, P., Bruno, N., DeWitt, D. J. Progressive Parametric
Query Optimization. IEEE TKDE g. 21, 4 (2009), 582-594.

[3] Borzsonyi, S., Kossmann, D., Stocker, K. The skyline operator.
ICDE 2001.

[4] Chaudhuri, S. Query optimizers: time to rethink the contract?
SIGMOD 2008.

[5] Chaudhuri, S. et al. Primitives for Workload Summarization and
Implications for SQL. VLDB 2003.

[6] Chaudhuri, S., Narasayya, V. Program for TPC-D Data
Generation with skew.
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/

[7] Chu, F., Halpern, J. Y., Gehrke, J. Least Expected Cost Query
Optimization: What Can We Expect? PODS 2002.

[8] Chu, F., Halpern, J. Y., Seshadri, P. Least Expected Cost Query
Optimization: An Exercise in Utility. PODS 1999.

[9] DB2. Optimizer profiles and guideline overview.
http://publib.boulder.ibm.com/

[10] Deshpande, A. et al. Adaptive Query Processing. Foundations
and Trends in Databases. 1, 1 (2007), 1-140.

[11] Dey, A. et al. Efficiently Approximating Query Optimizer Plan
Diagrams. PVLDB 2008.

[12] Ghosh, A. et al. Plan Selection based on Query clustering.
VLDB 2002.

[13] Hutchison, D. et al. Multiobjective Optimization: Interactive and
Evolutionary Approaches. Springer, 2008.

[14] Ioannidis, E. et al. Optimal histograms for limiting worst-case
error propagation in the size of join results. TODS 1993.

[15] Ioannidis, Y. E., Ng, R. T., Shim, K., Sellis, T. K. Parametric
query optimization. The VLDB Journal (1997) 6, 132-151.

[16] Oracle. Using Query Hints. http://www.oracle.com

[17] Qiao, L. et al. Main-Memory Scan Sharing For Multi-Core
CPUs. PVLDB 2008.

[18] Raman, V. et al. Constant-Time Query Processing. ICDE’08.

[19] Reddy, N., Haritsa, J. R. Analyzing Plan Diagrams of Database
Query Optimizers. VLDB 2005.

[20] SQL Server Books Online, Hints (Transact-SQL). 2009.
http://technet.microsoft.com/en-us/library/ms187713.aspx

[21] TPC-H Benchmark. http://www.tpc.org/tpch/

[22] Unterbrunner, U. et al. Predictable Performance for
Unpredictable Workloads. In PVLDB 2009.

Appendix A
Proof of Theorem 1: Let p be the unknown parameter, which is

the probability of sampling a new skyline plan. Then E[g] = 1/p,

Var[g] = (1-p)/p2. By Chebyshev‟s inequality, for any ,

We wish to bound p using the above inequality. Solving the inside

for p gives,

Two solutions of the LSH are

Expressing the bound using p, p1 and p2,

Let go = (1+k) / δ. If g ≥ g0 = (1+k) / δ then δ ≥ (1+k) / g. By

lemma 1 below, δ > p2 (δ ≥ (1+k) / g > p2). From the above

inequalities, Pr[p ≥ δ] < Pr[p ≥ p2] ≤ 1/k2. Letting ε =1/k2 proves

the theorem. ■

Lemma 1.

Proof: We will prove the RHS inequality.

■

Proof of Theorem 2: Assume that the total sample size is r.

Consider the probability of missing a Plan P with weight Δ ≥ γ∙δ

in the sample, denoted γ is a constant s.t. 0 < γ ≤

1/δ. Since r ≥ g0 and 1- Δ ≤ 1,

 .■

