
Automatic and Scalable Fault Detection for Mobile
Applications

Lenin Ravindranath
lenin@csail.mit.edu
M.I.T. & Microsoft

Research
Cambridge, MA, USA

Suman Nath
sumann@microsoft.com

Microsoft Research
Redmond, WA, USA

Jitendra Padhye
padhye@microsoft.com

Microsoft Research
Redmond, WA, USA

Hari Balakrishnan
hari@csail.mit.edu

M.I.T.
Cambridge, MA, USA

ABSTRACT
This paper describes the design, implementation, and evaluation
of VanarSena, an automated fault finder for mobile applications
(“apps”). The techniques in VanarSena are driven by a study of 25
million real-world crash reports of Windows Phone apps reported
in 2012. Our analysis indicates that a modest number of root causes
are responsible for many observed failures, but that they occur in a
wide range of places in an app, requiring a wide coverage of possi-
ble execution paths. VanarSena adopts a “greybox” testing method,
instrumenting the app binary to achieve both coverage and speed.
VanarSena runs on cloud servers: the developer uploads the app
binary; VanarSena then runs several app “monkeys” in parallel to
emulate user, network, and sensor data behavior, returning a de-
tailed report of crashes and failures. We have tested VanarSena
with 3000 apps from the Windows Phone store, finding that 1108
of them had failures; VanarSena uncovered 2969 distinct bugs in
existing apps, including 1227 that were not previously reported.
Because we anticipate VanarSena being used in regular regression
tests, testing speed is important. VanarSena uses two techniques
to improve speed. First, it uses a “hit testing” method to quickly
emulate an app by identifying which user interface controls map
to the same execution handlers in the code. Second, it generates
a ProcessingCompleted event to accurately determine when
to start the next interaction. These features are key benefits of Va-
narSena’s greybox philosophy.

1. INTRODUCTION
No one doubts the importance of tools to improve software reli-

ability. For mobile apps, improving reliability is less about making
sure that “mission critical” software is bug-free, but more about
survival in a brutally competitive marketplace. Because the suc-
cess of an app hinges on good user reviews, even a handful of poor
reviews can doom an app to obscurity. A scan of reviews on mo-
bile app stores shows that an app that crashes is likely to garner
poor reviews.

Mobile app testing poses different challenges than traditional
“enterprise” software. Mobile apps are typically used in more un-
controlled conditions, in a variety of different locations, over dif-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’14, June 16–19, 2014, Bretton Woods, New Hampshire, USA.
Copyright 2014 ACM 978-1-4503-2793-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594368.2594377.

ferent wireless networks, with a wide range of input data from user
interactions and sensors, and on a variety of hardware platforms.
Coping with these issues is particularly acute for individual devel-
opers or small teams.

There are various approaches for mobile app testing. Static anal-
ysis of app binaries [34, 17], although scalable, can fail to uncover
app faults due to the runtime issues such as poor network condition
and corrupted or unexpected responses from cloud services. Sym-
bolic execution [10] and its hybrid variant, concolic execution, re-
quire constructing symbolic model for program execution environ-
ment. Although such a model is shown feasible for simple android
libraries [37] and UI events [7, 19] of simple apps, applicability of
the techniques have been limited for two key reasons. First, it is not
easy to model real-world execution environment for mobile apps,
consisting of sensors, networks, and cloud services. Second, they
do not scale well to real-world apps due to notorious path explo-
sion problem. Recent efforts, therefore, focus on dynamic analysis,
where runtime behavior of an app is examined by executing it [41,
16, 8, 31, 35, 32]. We take a similar approach.

Our goal is to develop an easy to use, and scalable system that
thoroughly tests mobile apps for common faults. The developer
should be able to submit an app binary to the system, and then
within a short amount of time obtain a report. This report should
provide a correct stack trace and a trace of interactions or inputs for
each failure. We anticipate the system being used by developers in-
teractively while debugging, as well as a part of regular nightly and
weekly regression tests, so speed is important. An ideal way to de-
ploy the system is as a service in the cloud, so the ability to balance
resource consumption and discovering faults is also important.

We describe VanarSena, a system that meets these goals. The
starting point in the design is to identify what types of faults have
the highest “bang for the buck” in terms of causing real-world fail-
ures. To this end, we studied 25 million crash reports from more
than 100,000 Windows Phone apps reported in 2012. Three key
findings inform our design: first, over 90% of the crashes were at-
tributable to only 10% of all the root causes we observed. Second,
although the “90-10” rule holds, the root causes affect a wide va-
riety of execution paths in an app. Third, a significant fraction of
these crashes can be mapped to externally induced events, such as
unhandled HTTP error codes (see §2).

The first finding indicates that focusing on a small number of
root causes will improve reliability significantly. The second sug-
gests that the fault finder needs to cover as many execution paths
as possible. The third indicates that software emulation of user in-
puts, network behavior, and sensor data is likely to be effective,
even without deploying on phone hardware.

Using these insights, we have developed VanarSena,1 a system
that finds faults in mobile applications. The developer uploads the
app binary to the service, along with any supporting information
such as a login and password. VanarSena instruments the app, and
launches several monkeys to run the instrumented version on phone
emulators. As the app is running, VanarSena emulates a variety of
user, network and sensor behaviors to uncover and report observed
failures.

A noteworthy principle in VanarSena is its “greybox” approach,
which instruments the app binary before emulating its execution.
Greybox testing combines the benefits of “whitebox” testing, which
requires detailed knowledge of an app’s semantics to model inter-
actions and inputs, but isn’t generalizable, and “blackbox” testing,
which is general but not as efficient in covering execution paths.

The use of binary instrumentation enables a form of execution-
path exploration we call hit testing (§6.1), which identifies how
each user interaction maps to an event handler. Hit testing al-
lows VanarSena to cover many more execution paths in a given
amount of time. Moreover, app instrumentation makes VanarSena
extensible, by inserting our own event handlers that trigger un-
der certain situations, such as network calls and certain user ac-
tions. VanarSena can then trap these event handlers to induce spe-
cific faults such as emulating slow or faulty networks. We have
written several such fault inducers, and more can be easily writ-
ten. Binary instrumentation also allows VanarSena to determine
when to emulate the next user interaction in the app. This task is
tricky because emulating a typical user requires knowing when the
previous page has been processed and rendered, a task made eas-
ier with our instrumentation approach. We call this generation of
ProcessingCompleted event (§6.2), which leverages our ear-
lier work on AppInsight [42].

We have implemented VanarSena for Windows Phone apps, run-
ning it as an experimental service. We evaluated VanarSena em-
pirically by testing 3,000 apps from the Windows Phone store
for commonly-occurring faults. VanarSena discovered failures
in 1,108 of these apps, which have presumably undergone some
testing and real-world use2. Overall, VanarSena detected 2,969
crashes, including 1,227 that were not previously reported. The
testing took 4500 machine hours on 12 desktop-class machines,
at average of 1.5 hours per app. At current Azure prices, the
cost of testing is roughly 25 cents per app. These favorable cost
and time estimates result from VanarSena’s use of hit testing and
ProcessingCompleted event.

While many prior systems [41, 16, 8, 31, 35] have analyzed mo-
bile apps in various ways by exercising them with automated “mon-
keys” and by inducing various faults, this paper makes three new
research contributions, that have general applicability.

Our first contribution is the study of 25 million crash reports
from windows phone apps (§2). We believe that this is the first
study of its kind. The insights from this study anchor the design
of VanarSena. Other mobile app testing systems such as Dyn-
odroid [35] can also benefit from these insights. For example, Dyn-
odroid currently does not inject faults due to external factors such
as bad networks or event timing related to unexpected or abnor-
mal user behavior. Our study shows that these are among the most
common root causes of real-world crashes.

Our second contribution is the technique of hit testing (§6.1).
This technique allows VanarSena to speed up testing signifi-
cantly. Our third contribution is the idea of generation and use of
ProcessingCompleted event (§6.2). We show that this is nec-
1VanarSena in Hindi means an “army of monkeys”.
2Thus, VanarSena would be even more effective during earlier
stages of development

0

0.2

0.4

0.6

0.8

1

0 25000 50000 75000 100000

C
D

F

App ID

Figure 1: CDF of crash reports per app.

0: TransitTracker.BusPredictionManager.ReadCompleted
1: System.Net.WebClient.OnOpenReadCompleted
2: System.Net.WebClient.OpenReadOperationCompleted
...

Figure 2: Stack trace fragment for Chicago Transit Tracker
crash. The exception was WebException.

essary to both speed up the testing, and to correctly simulate both
patient and impatient users. We are not aware of any other app
testing framework that incorporates comparable techniques. Both
these techniques leverage our earlier work on AppInsight.

While the implementation details of hit testing and generation
of processing completed event are specific to VanarSena, the core
ideas behind both of them are quite general, and can be used by
other testing frameworks as well.

2. APP CRASHES IN-THE-WILD
To understand why apps crash in the wild, we analyze a large

data set of crash reports. We describe our data set, our method for
determining the causes of crashes, and the results of the analysis.

2.1 Data Set
Our data set was collected by Windows Phone Error Reporting

(WPER) system, a repository of error reports from all deployed
Windows Phone apps. When an app crashes due to an unhandled
exception, the phone sends a crash report to WPER with a small
sampling probability3. The crash report includes the app ID, the
exception type, the stack trace, and device state information such
as the amount of free memory, radio signal strength, etc.

We study over 25 million crash reports from more than 100,000
apps collected in 2012. Figure 1 shows the number of crash reports
per app. Observe that the data set is not skewed by crashes from
handful of bad apps. A similar analysis shows that the data is not
skewed by a small number of device types, ISPs, or countries of
origin.

2.2 Root Causes of Observed Crashes
To determine the root cause of a crash, we start with the stack

trace and the exception type. An exception type gives a general
idea about what went wrong, while the stack trace indicates where
things went wrong. An example stack fragment is shown in Fig-
ure 2. Here, a WebException was thrown, indicating that something
went wrong with a web transfer, causing the OnOpenReadCompleted

function of the WebClient class to throw an exception. The excep-
tion surfaced in the ReadCompleted event handler of the app, which
did not handle it, causing the app to crash.

We partition crash reports that we believe originate due to the
same root cause into a collection called a crash bucket: each crash
bucket has a specific exception type and system function name
where the exception was thrown. For example, the crash shown
in Figure 2 will be placed in the bucket labeled WebException,

System.Net.WebClient.OnOpenReadCompleted.
3The developer has no control over the probability.

Given a bucket, we use two techniques to determine the likely
root cause of its crashes. First, we use data mining techniques [5]
to discover possible patterns of unusual device states (such as low
memory or poor signal strength) that hold for all crashes in the
bucket. For example, we found that all buckets with label (Out-
OfMemoryException, *) have the pattern AvailableMemory = 0.

Second, given a bucket, we manually search
various Windows Phone developer forums
such as social.msdn.microsoft.com and
stackoverflow.com for issues related to the exception
and the stack traces in the bucket. We limit such analysis to only
the 100 largest buckets, as it is not practical to investigate all
buckets and developer forums do not contain enough information
about less frequent crashes. We learned enough to determine the
root causes of 40 of the top 100 buckets. We also manually verified
the root causes we determined. The whole process took us around
one week.

2.3 Findings
A small number of large buckets cover most of the crashes. Fig-
ure 3 shows the cumulative distribution of various bucket sizes. The
top 10% buckets cover more than 90% crashes (note the log-scale
on the x-axis). This suggests that we can analyze a small number
of top buckets and still cover a large fraction of crashes. Table 1
shows several large buckets of crashes.
A significant fraction of crashes can be mapped to well-defined
externally-inducible root causes. We use the following taxonomy
to classify various root causes. A root cause is deterministically in-
ducible if it can be reproduced by deterministically modifying the
external factors on which the app depends. For example, crashes
of a networked app caused by improperly handling an HTTP Error
404 (Not Found) can be induced by an HTTP proxy that returns
Error 404 on a Get request. Some crashes such as those due to
memory faults or unstable OS states are not deterministically in-
ducible. We further classify inducible causes into two categories:
device and input. Device-related causes can be induced by sys-
tematically manipulating device states such as available memory,
available storage, network signal, etc. Input-related causes can be
induced by manipulating various external inputs to apps such as
user inputs, data from network, sensor inputs, etc.

Table 1 shows several top crash buckets, along with their
externally-inducible root causes and their categories. For exam-
ple, the root causes behind the bucket with label (WebException,
WebClient.OnDownloadStringCompleted) are various HTTP Get
errors such as 401 (Unauthorized), 404 (Not Found), and 405
(Method Not Allowed), and can be induced with a web proxy in-
tercepting all network communication to and from the app.

We were able to determine externally-inducible root causes of
40 of the top 100 buckets; for the remaining buckets, we either
could not determine their root causes from information in devel-
oper forums or identify any obvious way to induce the root causes.
Together, these buckets represent around 48% of crashes in the top
100 buckets (and 35% of all crashes); the number of unique root
causes for these buckets is 8.

These results imply that a significant number of crashes can be
induced with a relatively small number of root causes.
Although a small number, the dominant root causes affect
many different execution paths in an app. For example, the
same root cause of HTTP Error 404 can affect an app at many dis-
tinct execution points where the app downloads data from a server.
To illustrate how often it happens, we consider all crashes from one
particular app in Figure 4 and count the number of distinct stack
traces in various crash buckets of the app. The higher the number

Categories page

Businesses page

Directions page

Business detail page

CLICK
an address

CLICK directions

Settings page

CLICK
settings Search page

Search results
page

SWIPE CLICK
category

CLICK business

CLICK
search icon

Figure 7: App structure for the example in Figure 6.

of distinct stack traces in a bucket, the more the distinct execution
points where the app crashed due to the same root causes respon-
sible for the bucket. As shown in Figure 4, for 25 buckets, the
number of distinct stack traces is more than 5. The trend holds in
general, as shown in Figure 5, which plots the distribution of dis-
tinct stack traces in all (app, bucket) partitions. We find that it is
common for the same root cause to affect many tens of execution
paths of an app.

3. GOALS AND NON-GOALS
Our goal is to build a scalable, easy to use system that tests mo-

bile apps for common, externally-inducible faults as thoroughly as
possible. We want to return the results of testing to the developer as
quickly as possible, and for the system to be deployable as a cloud
service in a scalable way.

VanarSena does not detect all app failures. For example, Va-
narSena cannot detect crashes that result from hardware idiosyn-
crasies, or failures caused by specific inputs, or even failures caused
by the confluence of multiple simultaneous faults that we do test
for. VanarSena also cannot find crashes that result from erroneous
state maintenance; for example, an app may crash only after it has
been run hundreds of times because some log file has grown too
large. VanarSena cannot adequately test apps and games that re-
quire complex free-form gestures or specific order of inputs.

Before we describe the architecture of VanarSena, we need to
discuss how we measure thoroughness, or coverage. Coverage of
testing tools is traditionally measured by counting the fraction of
basic blocks [9] of code they cover. However, this metric is not
appropriate for our purpose. Mobile apps often include third party
libraries of UI controls (e.g., fancy UI buttons). Most of the code in
these libraries is inaccessible at run time, because the app typically
uses only one or two of these controls. Thus, coverage, as measured
by basic blocks covered would look unnecessarily poor.

Instead, we focus on the user-centric nature of mobile apps. A
mobile app is typically built as a collection of pages. An example
app called AroundMe is shown in Figure 6. The user navigates be-
tween pages by interacting with controls on the page. For example,
each category listing on page 1 is a control. By clicking on any of
the business categories on page 1, the user would navigate to page
2. Page 1 also has a swipe control. By swiping on the page, the user
ends up on the search page (page 4). From a given page, the user
can navigate to the parent page by pressing the back button. The
navigation graph of the app is shown in Figure 7. The nodes of the
graph represent pages, while the edges represent unique user trans-
actions [42] that cause the user to move between pages. Thus, we
measure coverage in terms of unique pages visited [8], and unique

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

C
D
F

Bucket

Figure 3: Cumulative distribution of
bucket sizes

0

5

10

15

20

25

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

D
is

ti
n

ct
 S

ta
ck

 T
ra

ce
s

Crash Bucket

Figure 4: Distinct stack traces in various
buckets for one particular app

1

10

100

1000

1 100 10000 1000000

D
is

ti
n

ct
 S

ta
ck

 T
ra

ce
s

(App, Bucket)

Figure 5: Distinct stack traces in various
buckets for all apps

Rank (Fraction) Bucket Root Cause Category HowToInduceException Crash Function

1 (7.51%) OutOfMemory
Exception

* WritablePages = 0 Device/Memory Memory pressure

2 (6.09%) InvalidOperation
Exception

ShellPageManager.CheckHResult User clicks buttons or links in quick
succession, and thus tries to navigate to
a new page when navigation is already
in progress

Input/User Impatient user
3 (5.24%) InvalidOperation

Exception
NavigationService.Navigate

8 (2.66%) InvalidOperation
Exception

NavigationService.GoForwardBackCore

12 (1.16%) WebException Browser.AsyncHelper.BeginOnUI Unable to connect to remote server Input/Network Proxy15 (0.83%) WebException WebClient.OnDownloadStringCom-
pleted

HTTP errors 401, 404, 405

5 (2.30%) XmlException * XML Parsing Error Input/Data Proxy11 (1.14%) NotSupportedExcep-
tion

XmlTextReaderImpl.ParseDoctypeDecl

37 (0.42%) FormatException Double.Parse Input Parsing Error Input/User,
Input/Data

Invalid text entry,
Proxy50 (0.35%) FormatException Int32.Parse

Table 1: Examples of crash buckets and corresponding root causes, categories, and ways to induce the crashes

user transactions mimicked by the tool. In §8.2, we will show that
we cover typical apps as thoroughly as a human user.

4. ARCHITECTURE
Figure 8 shows the architecture of VanarSena. VanarSena instru-

ments the submitted app binary. The Monkey manager then spawns
a number of monkeys to test the app. A monkey is a UI automation
tool built around the Windows Phone Emulator. The monkey can
automatically launch the app in the emulator and interact with the
UI like a user. When the app is monkeyed, we systematically feed
different inputs and emulate various faults. If the app crashes, the
monkey generates a detailed crash report for the developer. Fig-
ure 9 shows the key components of the monkey.
Emulator: We use an off-the-shelf Windows Phone emulator in
our implementation. We intentionally do not modify the emulator
in any way. The key benefit of using an emulator instead of de-
vice hardware is scalability: VanarSena can easily spin up multiple
concurrent instances in a cloud infrastructure to accelerate fault-
finding.
Instrumentation: The instrumenter runs over the app binary; it
adds five modules to the app as shown in Figure 9. At run-time,
these modules generate information needed for UI Automator and
the Fault Inducer (§5).
UI Automator: The UI Automator (UIA) launches and navigates
the instrumented app in the emulator. It emulates user interactions
such as clicking buttons, filling textboxes, and swiping. It incorpo-
rates techniques to ensure both coverage and speed (§6).
Fault Inducer: During emulated execution, the Fault Inducer (FI)
systematically induces different faults at appropriate points during
execution (§7).

App

Analysis

Developer

Crash Logs

Developer
Feedback

Monkey Manager

Monkeys

Submit app

Spawn

App,
Config

Instrumenter

App
Instrumented

Figure 8: VanarSena Architecture.

5. INSTRUMENTATION
We use the binary instrumentation framework that we developed

in AppInsight [42] to rewrite an app binary. The instrumentation
is designed for apps written using the Silverlight framework [40].
Silverlight is used by a vast majority of apps in the Windows Phone
app store. In Silverlight, the app is written in C# and XAML [46]
and compiled to MSIL byte code [33]. We instrument the app at
the byte code level.

In VanarSena, the instrumentation injects five modules into the
app that provides the information needed for the UI Automator and
the Fault Inducer, as shown in Figure 9. The modules communicate
with the UI Automator and the Fault Inducer via local sockets.

1

1

1

1

1

2

4

5

4

4

4

5

5

4

4

6 6

7

1 Categories page 2 Businesses page 3 Business detail page 4 Search page

3

Figure 6: Example app pages. UI elements pointed by red arrows can be interacted with. Arrows and numbers will be explained in
Section 6.1.

UI Scraper

Transaction Tracker

API Interceptors

UI
Automator

Fault Inducer

Crash Logs

UI events, Hit Test

Callbacks

Config

Instrumented App

Crash Logger

Hit Test Monitor

Phone Emulator

Handlers invoked

Processing state

UI state

Figure 9: Monkey design.

UI Scraper: In Silverlight, an app page is represented as a DOM
tree of UI elements. The UI Scraper, when invoked, serializes the
current UI page and sends it to the UIA. For each UI element, it
sends the element’s type, location and whether it is visible on the
current screen. The UI Automator can invoke the UI Scraper on
demand to inspect the current UI.
Hit Test Monitor: We instrument every event handler in the app
with a Hit Test Monitor. The Hit Test Monitor helps the UIA to
decide which controls to interact with. We describe hit testing in
detail in §6.1.
Transaction Tracker: The transaction tracker provides the
ProcessingCompleted event used by the UIA to decide when
to interact next. We describe transaction tracking in detail in §6.2.
API Interceptors: The instrumenter rewrites the app to intercept
certain API calls to proxy through the Fault Inducer. We describe
API interceptors and Fault Inducer in detail in §7.
Crash Logger: To identify that an app has crashed, we rewrite
the app to subscribe for the unhandled exception handler [18]. The
unhandled exception handler is invoked just before the app crashes
with an exception that is not handled by the developer. When the
handler is invoked, we log the exception and the stack trace associ-
ated with it.

6. UI AUTOMATOR
As the UIA navigates through the app, it needs to make two key

decisions: what UI control to interact with next, and how long to

wait before picking the next control. In addition, because of the
design of each monkey instance, VanarSena adopts a “many ran-
domized concurrent monkeys” approach, which we discuss below.

To pick the next control to interact with, the UIA asks the UI
Scraper module (Figure 9) for a list of visible controls on the cur-
rent page (controls may be overlaid atop each other).

In one design, the UIA can systematically explore the app by
picking a control that it has not interacted with so far, and emulat-
ing pressing the back button to go back to the previous page if all
controls on a page have been interacted with. If the app crashes,
VanarSena generates a crash report, and the monkey terminates.

Such a simple but systematic exploration has three problems that
make it unattractive. First, multiple controls often lead to the same
next page. For example, clicking on any of the business categories
on page 1 in Figure 6 leads to the Business page (page 2), a situa-
tion represented by the single edge between the pages in Figure 7.
We can accelerate testing in this case by invoking only one of these
“equivalent” controls, although it is possible that some of these may
lead to failures and not others (a situation mitigated by using mul-
tiple independent monkeys).

Second, some controls do not have any event handlers attached
to them. For example, the title of the page may be a text-box control
that has no event handlers attached to it. UIA should not waste time
interacting with such controls, because it will run no app code.

Last but not least, a systematic exploration can lead to dead ends.
Imagine an app with two buttons on a page. Suppose that the app al-
ways crashes when the first button is pressed. If we use systematic
exploration, the app would crash after the first button is pressed.
To explore the rest of the app, the monkey manager would have to
restart the app, and ensure that the UIA does not click the first but-
ton again. Maintaining such state across app invocations is com-
plicated and makes the system more complex for many reasons,
prominent among which is the reality that the app may not even
display the same set of controls on every run.

We address the first two issues using a novel technique we call
hit testing (§6.1), and the third by running multiple independent
random monkeys concurrently (§6.3).

6.1 Hit Testing
Hit testing works as follows. The instrumentation framework in-

struments all UI event handlers in an app with a hit test monitor.
It also assigns each event handler a unique ID. Figure 10 shows an
example. When hit testing is enabled, interacting with a control
will invoke the associated event handler, but the handler will sim-

void btnFetch_Click(object sender, EventArgs e) {
if (HitTestFlag == true) {
HitTest.MethodInvoked(12, sender, e);
return;

}

// Original Code
}

Figure 10: Event Handlers are instrumented to enable Hit Test-
ing. Handler’s unique id is 12.

Interaction UI Update

UI Thread

Background thread

GPS Callback

UI dispatch

Background thread

Web Call

GPS Call

Web Callback

Processing Started Processing Completed

Figure 11: Generating ProcessingCompleted event.

ply return after informing the UIA about the invocation, without
executing the event handler code.

On each new page, UIA sets the HitTestFlag and interacts with
all controls on the page, one after the other. At the end of the test,
the UIA can determine which controls lead to distinct event han-
dlers. UIA can test a typical page within a few hundred millisec-
onds.

The arrows and the associated numbers in Figure 6 shows the
result of hit tests on pages. For example, clicking any item on the
categories page leads to the same event handler, while clicking on
the word “categories” on that page does not invoke any event han-
dler (gray arrow). In fact, the controls on the page lead to just three
unique event handlers: clicking on one of the categories leads to
event handler 1, clicking on settings leads to handler 2 and swip-
ing on the page leads to handler 3. Note also that several controls
on page 1 have no event handlers attached them (gray arrows). By
using hit testing, the monkey can focus only on controls that have
event handlers associated with them. And from different controls
associated with the same event handler, it needs to pick only one4,
thereby significantly reducing the testing time. In §8.2, we will
evaluate the impact of hit testing.

We stress that the binding of event handlers to controls can be
dynamic, (i.e. it can be changed by the app at run time). Thus
static analysis is not sufficient to determine which event handler
will be triggered by a given control. This issue has also been
raised in [34].

6.2 When to interact next?
Emulating an “open loop” or impatient user is straightforward

because the monkey simply needs to invoke event handlers inde-
pendent of whether the current page has properly been processed
and rendered, but emulating a real, patient user who looks at the
rendered page and then interacts with it is trickier. Both types of
interactions are important to test. The problem with emulating a pa-
tient user is that it is not obvious when a page has been completely
processed and rendered on screen. Mobile applications exhibit sig-
nificant variability in the time they take to complete rendering: we
4In other words, we assume that two controls that lead to same
event handler are equivalent. See §6.3 for a caveat.

show in §8 (Figure 21) that this time could vary between a few hun-
dred milliseconds to several seconds. Waiting for the longest pos-
sible timeout using empirical data would slow the monkey down to
unacceptable levels.

Fortunately, VanarSena’s greybox binary instrumentation pro-
vides a natural solution to the problem, unlike blackbox techniques.
The instrumentation includes a way to generate a signal that in-
dicates that processing of the user interaction is complete. (Un-
like web pages, app pages do not have a well-defined page-loaded
event [45] because app execution can be highly asynchronous. So
binary instrumentation is particularly effective here.)

We instrument the app to generate a signal that indicates that
processing of the user interaction is complete. We use techniques
developed in AppInsight [42] to generate the signal, as follows.

The core ideas in AppInsight are the concept of user transac-
tion, and techniques to track their progress. For example, Fig-
ure 11 shows the user transaction [42] for the interaction with
"Bars" in Figure 6. The thick horizontal lines represent thread
executions, while the dotted lines link asynchronous calls to their
corresponding callbacks [42]. When a category (e.g. “Bars”) is
clicked on page 1, it calls the associated event handler, which in
turn makes an asynchronous call to get GPS location. After obtain-
ing the location, the callback thread makes another asynchronous
call to a web server to fetch information about bars near that lo-
cation. The web callback thread parses the results and initiates
a dispatcher call to update the UI with the list of bars. To track
this transaction, we instrument the app to add transaction tracker
(Figure 9). It monitors the transaction at runtime and generates
a ProcessingCompleted event when all the processing (syn-
chronous and asynchronous) associated with an interaction is com-
plete. Two key problems in tracking the transaction are (a) moni-
toring thread start and ends with minimal overhead, and (b) match-
ing asynchronous calls with their callbacks, across thread bound-
aries. We address these problems using techniques from AppIn-
sight [42]5. The key difference between AppInsight and transaction
tracker is that our tracker is capable of tracking the transaction in
an online manner (i.e. during execution). In contrast, AppInsight
generated logs that were analyzed by an offline analyzer.

6.3 Randomized Concurrent Monkeys
VanarSena uses many simple monkeys operating independently

and at random, rather than build a single more complicated and
stateful monkey.

Each monkey picks a control at random that would activate an
event handler that it has not interacted with in past. For example,
suppose the monkey is on page 1 of Figure 6, and it has already
clicked on settings previously, then it would choose to either swipe
(handler 3), or click one of the businesses at random (handler 1).

If no such control is found, the monkey clicks on the back button
to travel to the parent page. For example, when on page 3 of Fig-
ure 6, the monkey has only one choice (handler 6). If it finds itself
back on this page after having interacted with one of the controls, it
will click the back button to navigate back to page 2. Pressing the
back button in page 1 will quit the app.

Because an app can have loops in its UI structure (e.g. a “Home”
button deep inside the app to navigate back to the first page), run-
ning the monkey once may not fully explore the app. To mitigate
this, we run several monkeys concurrently. These monkeys do not
share state, and make independent choices.

Running multiple, randomized monkeys in parallel has two ad-
vantages over a single complicated monkey. First, it overcomes the

5We correctly handle thread waits, sleeps, and timers.

Hit Testing
(on new controls)

Hit Test
History

Interaction
History

Randomly pick control
(not interacted before)

Interact with
control

Press back
button

Wait for
ProcessingCompleted Event

Hit Test Results

Control Nothing to interact

Figure 12: UI automator flow.

Original code
void fetch(string url) {
WebRequest.GetResponse(url, callback);

}
Rewritten code
void fetch(string url) {
WebRequestIntercept.GetResponse(url, callback);

}
class WebRequestIntercept {
void GetResponse(string url, delegate callback) {
if (MonkeyConfig.InducingResponseFaults)

ResponseFaultInducer.Proxy(url, callback);
if (MonkeyConfig.InducingNetworkFaults)
NetworkFaultInducer.RaiseNetworkEvent();

}
}

Figure 13: Intercepting web API to proxy through web re-
sponse FIM and informing network FIM about the impending
network transfer.

problem of deterministic crashes. Second, it can improve cover-
age. Note that we assumed that when two controls lead to the same
event handler, they are equivalent. While this assumption generally
holds, it is not a fact. One can design an app where all button clicks
are handled by a single event handler, which takes different actions
depending on the button’s name. Random selection of controls en-
sures that different monkeys would pick different controls tied to
the same event handler, increasing coverage for apps that use this
coding pattern.

Putting it all together: Figure 12 shows the overall flow of the UI
automator.

7. INDUCING FAULTS
The Fault Inducer (FI) is built as an extensible module in which

various fault inducing modules (FIM) can be plugged in. The mon-
key manager configures each monkey to turn on one or more FIMs.

The FIMs are triggered by the instrumentation added to the app.
The binary instrumentation rewrites the app code to intercept calls
to specific APIs to proxy them through the appropriate FIM. Fig-
ure 13 shows an example. When the call to the HTTP API is made
at run-time, it can be proxied through the FIM that mimics web er-

rors. The FIM may return an HTTP failure, garble the response,
and so forth.

We built FIMs that help uncover some of the prominent crash
buckets in Table 1. The first three intercept API calls and return
values that apps may overlook, while the others model unexpected
user behavior.

(1) Web errors: When an app makes a HTTP call, the FIM
intercepts the calls and returns HTTP error codes such as 404 (Not
Found) or 502 (Bad Gateway, or unable to connect). These can
trigger WebExceptions. The module can also intercept the reply
and garble it to trigger parsing errors. Parsing errors are particularly
important for apps that obtain data from third-party sites. We use
Fiddler [3] to intercept and manipulate web requests.

(2) Poor Network conditions: Brief disconnections and poor
network conditions can trigger a variety of network errors, lead-
ing to WebExceptions. To emulate these network conditions, we
instrument the app to raise an event to the FI just before an im-
pending network transfer. The FIM can then emulate different net-
work conditions such as brief disconnection, slow network rate, or
long latency. We use a DummyNet-like tool [43] to simulate these
conditions.

(3) Sensor errors: We introduce sensor faults by returning null
values and extreme values for sensors such as GPS and accelerom-
eters.

(4) Invalid text entry: A number of apps do not validate user
inputs before parsing them. To induce these faults, the UIA and
the FI work together. The UI Scraper generates an event to the
FI when it encounters a textbox. The FIM then informs the UIA
to either leave the textbox empty, or fill it with text, numbers, or
special symbols.

(5) Impatient user: In §6.2, we described how the UIA emu-
lates a patient user by waiting for the ProcessingCompleted
event. However, real users are often impatient, and may interact
with the app again before processing of the previous interaction is
complete. For example, in Figure 6, an impatient user may click
on “Bars” on page 1, decide that the processing is taking too long,
and click on the back button to try and exit the app. Such behavior
may trigger race conditions in the app code. Table 1 shows that it is
the root cause of many crashes. To emulate an impatient user, the
transaction tracker in the app raises an event to the FI when a trans-
action starts, i.e., just after the UIA interacted with a control. To
emulate an impatient user, the FIM then instructs the UIA to im-
mediately interact with another specific UI control, without wait-
ing for ProcessingCompleted event. We emulate three dis-
tinct impatient user behaviors—clicking on the same control again,
clicking on another control on the page, and clicking on the back
button.

It is important to be careful about when faults are induced. When
a FIM is first turned on, it does not induce a fault on every inter-
cept or event, because it can result in poor coverage. For example,
consider testing the AroundMe app (Figure 6) for web errors. If
the FIM returns 404 for every request, the app will never populate
the list of businesses on page 2, and the monkey will never reach
page 3 and 4 of the app. Hence, a FIM usually attempts to induce
each fault with some small probability. Because VanarSena uses
multiple concurrent monkeys, this approach works in practice.

During app testing, VanarSena induces only one fault at a time:
each one instance of the monkey runs with just one FIM turned on.
This approach helps us pinpoint the fault that is responsible for the
crash. The monkey manager runs multiple monkeys concurrently
with different FIMs turned on.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D
F

Crashes/app

Figure 14: Crashes per app

8. EVALUATION
We evaluate VanarSena along two broad themes. First, we

demonstrate the usefulness of the system by describing the crashes
VanarSena found on 3,000 apps from the Windows Phone Store.
Then, we evaluate the optimizations and heuristics described in §6.

To test the system, we selected apps as follows. We bucketized
all apps that were in the Windows Phone app store in the first week
of April 2013 into 6 groups, according to their rating (no rating,
rating ≤ 1, · · · , rating ≤ 5). We randomly selected 500 apps from
each bucket. This process gives us a representative set of 3,000
apps to test VanarSena with.

We found that 15% of these apps had a textbox on the first page.
These might have required user login information, but we did not
create such accounts for the apps we evaluated. So it is possible
(indeed, expected) that for some apps, we didn’t test much more
than whether there were bugs on the sign-in screen. Despite this
restriction, we report many bugs, suggesting that most (but not all)
apps were tested reasonably thoroughly. In practice, we expect the
developer to supply app-specific inputs such as sign-in information.

8.1 Crashes
We ran 10 concurrent monkeys per run, where each run tests one

of the eight fault induction modules from Table 3, as well as one
run with no fault induction. Thus, there were 9 different runs for
each app, 90 monkeys in all. In these tests, the UIA emulated a
patient user, except when the “impatient user” FIM was turned on.

We ran the tests on 12 machines, set up to both emulate Windows
Phone 7 and Windows Phone 8 in different tests. Overall, testing
3,000 apps with 270,000 distinct monkey runs took 4,500 machine
hours with each app tested for 1.5 hours on average. At current
Azure pricing, the cost of testing one app is roughly 25 cents, which
is small enough for nightly app tests to be done. The process emu-
lated over 2.5 million interactions, covering over 400,000 pages.

8.1.1 Key Results
Overall, VanarSena flagged 2969 unique crashes6 in 1108 apps.

Figure 14 shows that it found one or two crashes in 60% of the
apps. Some apps had many more crashes—one had 17.

Note that these crashes were found in apps that are already in the
marketplace; these are not “pre-release” apps. VanarSena found
crashes in apps that have already (presumably) undergone some
degree of testing by the developer.

Table 2 bucketizes crashed apps according to their ratings
rounded to nearest integer values. Note that we have 500 total apps
in each rating bucket. We see that VanarSena discovered crashes

6The uniqueness of the crash is determined by the exception type
and stack trace. If the app crashes twice in exactly the same place,
we count it only once.

Rating value VanarSena WPER
None 350 (32%) 21%
1 127 (11%) 13%
2 146 (13%) 16%
3 194 (18%) 15%
4 185 (17%) 22%
5 106 (10%) 13%

Table 2: Number of crashed apps for various ratings

in all rating buckets. For example, 350 of the no-rating 500 apps
crashed during our testing. This represents 31% of total (1108)
apps that crashed. We see that the crash data in WPER for these
3000 apps has a similar rating distribution except for the ’no-rating’
bucket. For this bucket, WPER sees fewer crashes than VanarSena
most likely because these apps do not have enough users (hence no
ratings).

8.1.2 Comparison Against the WPER Database
It is tempting to directly compare the crashes we found with the

crash reports for the same apps in the WPER database discussed in
§2. Direct comparison, however, is not possible because both the
apps and the phone OS have undergone revisions since the WPER
data was collected. But we can compare some broader metrics.

VanarSena found 1,227 crashes not in the WPER database. We
speculate that this is due to two key reasons. First, the database cov-
ers a period of one year. Apps that were added to the marketplace
towards the end of the period may not have been run sufficiently of-
ten by users. Also, apps that are unpopular (usually poorly rated),
do not get run very often in the wild, and hence do not encounter
all conditions that may cause them to crash. To validate this hy-
pothesis, we examined metadata of the apps in Windows Phone
Store. The app store provides information such as rating counts
and average rating values of apps, but not their actual downloads or
usage counts. However, previous works have pointed out that rat-
ing count and download count of apps are strongly correlated and
hence a high rating count is a strong indication of a high download
count [12]. We found that apps for which VanarSena found these
1,227 crashes have, on average, 3× fewer reviews (and hence likely
fewer downloads) and 10% worse rating than remaining of the apps
we used.

The crashes found by VanarSena cover 16 out of 20 top
crash buckets (exception name plus crash method) in WPER, and
19 of the top 20 exceptions. VanarSena does not report any
OutOfMemoryException because of the following reason. To
collect crashes, VanarSena instruments the unhandled exception
handler inside the app. Out of memory is a fatal exception that
crashes the app without calling the exception handler. WPER col-
lects crash data at the system level instead of the app level where
OutOfMemoryException is logged.

Figure 15 shows another way to compare VanarSena crash data
and WPER. For this graph, we consider the subset of WPER
crashes that belong to the crash buckets and the apps for which Va-
narSena found at least one crash. For each bucket, we take the apps
that appear in WPER, and compute what fraction of these apps are
also crashed by VanarSena. We call this fraction bucket coverage.
Figure 15 shows that for 40% of the buckets, VanarSena crashed all
the apps reported in WPER, which is a significant result suggesting
good coverage.

8.1.3 Analysis
Even “no FIM” detects failures. Table 3 shows the breakdown

of crashes found by VanarSena. The first row shows that even with-
out turning any FIM on, VanarSena discovered 506 unique crashes

FIM Crashes (Apps) Example crash buckets Not in WPER

No FIM 506 (429) NullReferenceException, InvokeEventHandler 239 (205)
Text Input 215 (191) FormatException, Int32.Parse 78 (68)
Impatient User 384 (323) InvalidOperationException, Navigation.GoBack 102 (89)
HTTP 404 637 (516) WebException, Browser.BeginOnUI 320 (294)
HTTP 502 339 (253) EndpointNotFoundException, Browser.BeginOnUI 164 (142)
HTTP Bad Data 768 (398) XmlException, ParseElement 274 (216)
Network Poor 93 (76) NotSupportedException, Web-

Client.ClearWebClientState
40 (34)

GPS 21 (19) ArgumentOutOfRangeException, GeoCoordinate..ctor 9 (9)
Accelerometer 6 (6) FormatException, Double.Parse 1 (1)

Table 3: Crashes found by VanarSena.

0

0.2

0.4

0.6

0.8

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

A
p

p
 C

o
ve

ra
ge

Crash Buckets

Figure 15: Coverage of crash buckets in WPER data

in 429 apps (some apps crashed multiple times with distinct stack
traces; also, the number of apps in this table exceeds 1108 for this
reason). The main conclusion from this row is that merely explor-
ing the app thoroughly can uncover faults. A typical exception ob-
served for crashes in this category is the NullReferenceException.
The table also shows that 239 of these 506 crashes (205 apps) were
not in the WPER database.

We now consider the crashes induced by individual FIMs. To
isolate the crashes caused by a FIM, we take a conservative ap-
proach. If the signature of the crash (stack trace) is also found in
the crashes included in the first row (i.e., no FIM), we do not count
the crash. We also manually verified a large sample of crashes to
ensure that they were actually being caused by the FIM used.

Most failures are found by one or two FIMs, but some apps
benefit from more FIMs. Figure 16 shows the number of apps
that crashed as a function of the number of FIMs that induced the
crashes. For example, 235 apps required no FIM to crash them at
all7. Most app crashes are found with less than three FIMs, but
complex apps fail for multiple reasons (FIMs). Several apps don’t
use text boxes, networking, or sensors, making those FIMs irrel-
evant, but for apps that use these facilities, the diversity of FIMs
is useful. The tail of this chart is as noteworthy as the rest of the
distribution.

Many apps do not check the validity of the strings entered
in textboxes. We found that 191 apps crashed in 215 places due
to this error. The most common exception was FormatException.
We also found web exceptions that resulted when invalid input was
proxied from the cloud service backing the app.

Emulating an impatient user uncovers several interesting
crashes. Analysis of stack traces and binaries of these apps showed
that the crashes fall in three broad categories. First, a number of
apps violate the guidelines imposed by the Windows Phone frame-

7This number is less than 429 (row 1 of Table 3), because some of
those 429 apps crashed with other FIMs as well. Unlike Table 3,
apps in Figure 16 add up to 1108.

235

385

230

172

37 24 22
3

0

100

200

300

400

No FIM 1 2 3 4 5 6 7

A

p
p

s

FIMs

Figure 16: FIMs causing crashes

work regarding handling of simultaneous page navigation com-
mands. These crashes should be fixed by following suggested pro-
gramming practices [1]. Second, a number of apps fail to use
proper locking in event handlers to avoid multiple simultaneous
accesses to resources such as the phone camera and certain storage
APIs. Finally, several apps had app-specific race conditions that
were triggered by the impatient behavior.

Several apps incorrectly assume a reliable server or network.
Some developers evidently assume that cloud servers and networks
are reliable, and thus do not handle HTTP errors correctly. Va-
narSena crashed 516 apps in 637 unique places by intercepting web
calls, and returning the common “404” error code. The error code
representing Bad Gateway (“502”) crashed 253 apps.

Some apps are too trusting of data returned from servers.
They do not account for the possibility of receiving corrupted or
malformed data. Most of the crashes in this category were due to
XML and JSON parsing errors. These issues are worth addressing
also because of potential security concerns.

Some apps do not correctly handle poor network connectiv-
ity. In many cases, the request times out and generates a web ex-
ception which apps do not handle. We also found a few interesting
cases of other exceptions, including a NullReferenceException,
where an app waited for a fixed amount of time to receive data from
a server. When network conditions were poor, the data did not ar-
rive during the specified time. Instead of handling this possibility,
the app tried to read the non-existent data.

A handful of apps do not handle sensor failures or errors.
When we returned a NaN for the GPS coordinates, which indi-
cates that the GPS is not switched on, some apps crashed with
ArgumentOutOfRangeException. We also found a timing-related
failure in an app where it expected to get a GPS lock within a cer-
tain amount of time, failing when that did not happen.

API compatibility across OS versions caused crashes. For ex-
ample, in the latest Windows Phone OS (WP8), the behavior of sev-
eral APIs has changed [2]. WP8 no longer supports the FM radio
feature and developers were advised to check the OS version before

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio Per App

Ratio of Invokable to Total Controls
Ratio of Unique Transactions to Total Controls

Figure 17: Fraction of invokable to total controls and unique
event handlers to total controls in an app.

using this feature. Similar changes have been made to camera and
GPS APIs. To test whether the apps we selected are susceptible
to API changes, we ran them with the emulator emulating WP8.
The UIA emulated patient user, and no FIMs were turned on. We
found that 8 apps crashed with an RadioDisabledException, while
the camera APIs crashed two apps. In total, we found about 221
crashes from 212 apps due to API compatibility issues8.

8.2 Monkey Techniques
We now evaluate the heuristics and optimizations discussed in

§6. Unless specified otherwise, the results in this section use the
same 3000 apps as before. The apps were run 10 times, with no
FIM, and the UIA emulated a patient user.

8.2.1 Coverage
We measure coverage in terms of pages and user transactions.

We desire that the monkey should cover as much of the app as pos-
sible. However, there is no easy way to determine how many unique
pages or user transactions the app contains. Any static analysis
may undercount the pages and controls, since some apps generate
content dynamically. Static analysis may also overestimate their
numbers, since apps often include 3rd party libraries that include a
lot of pages and controls, only a few of which are accessible to the
user at run-time.

Thus, we rely on human calibration to thoroughly explore a small
number of apps and compare it to monkey’s coverage. We ran-
domly picked 35 apps and recruited 3 users to manually explore the
app. They were specifically asked to click on possible controls and
trigger as many unique transactions as possible. We instrumented
the apps to log the pages visited and the transactions invoked. Then,
we ran the app through our system, with the configuration described
earlier.

In 26 out of 35 apps, the monkey covered 100% of pages and
more than 90% of all transactions. In five of the remaining nine
apps, the monkey covered 75% of the pages. In four apps, the
monkey was hampered by the need for app-specific input such as
login/passwords and did not progress far. Although this study is
small, it gives us confidence that the monkey is able to explore the
vast majority of apps thoroughly.

8.2.2 Benefits of Hit Testing
Hit testing accelerates testing by avoiding interacting with non-

invokable controls. Among invokable controls, hit testing allows
the monkey to interact with only those that lead to unique event
handlers.

To evaluate the usefulness of hit testing, we turned off random-
ization in the UIA, and ran the monkey with and without hit testing
once for each app. When running without hit testing, we assume
8Note that this data is not included in any earlier discussion (e.g.
Table 3) since we used Windows 7 emulator for all other data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Time to run an app (s)

Without hit testing
With hit testing

Figure 18: Time to run apps with and without hit testing

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio of pages covered with and without hit test

Figure 19: Fraction of pages covered with and without hit test-
ing.

that every control leads to a unique event handler, so the monkey
interacts with every control on the page.

Figure 17 shows the ratio of invokable controls and unique event
handlers to the total controls in each app. We found that in over
half the apps, less than 33% of the total controls in the app were
invokable, and only 18% lead to unique event handlers.

Figure 18 shows the time to run apps with and without hit test-
ing. The 90th percentile of the time to run the app once with no
fault induction was 365 seconds without hit testing, and only 197
seconds with hit testing. The tail was even worse: for one particu-
lar app, a single run took 782 seconds without hit testing, while hit
testing reduced the time to just 38 seconds, a 95% reduction.

At the same time, we found that hit testing had minimal impact
on app coverage (Figure 19 and Figure 20). In 95.7% of the apps,
there was no difference in page coverage with and without hit test-
ing, and for 90% of the apps, there was no difference in transaction
coverage either. For the apps with less than 100% coverage, the
median page and transaction coverage was over 80%. This matches
the observation made in [42]: usually, only distinct event handlers
lead to distinct user transactions.

8.2.3 Importance of the ProcessingCompleted Event
When emulating a patient user, the UIA waits for the

ProcessingCompleted event to fire before interacting with
the next control. Without such an event, we would need to use a
fixed timeout. We now show that using such a fixed timeout is not
feasible.

Figure 21 shows distribution of the processing time for transac-
tions in the 3000 apps. Recall (Figure 11) that this includes the time
taken to complete all processing associated with a current interac-
tion [42]. For this figure, we separate the transactions that involved
network calls and those that did not. We also ran the apps while the
FIM emulated typical 3G network speeds. This FIM affects only
the duration of transactions that involve networking, and the graph
shows this duration as well.

The graph shows that processing times of the transactions vary
widely, from a few milliseconds to over 10 seconds. Thus, with a
small static timeout, we may end up unwittingly emulating an im-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio of unique transactions covered
 with and without hit test

Figure 20: Fraction of transactions covered with and without
hit testing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
D

F

Processing Time (ms)

Non-Network Transactions (Normal Operation)

Network Transactions (Normal Operation)

Emulating Cellular Network Conditions

Figure 21: Processing times for transaction.

patient user for many transactions. Worse yet, we may miss many
UI controls that are populated only after the transaction is complete.
On the other hand, with a large timeout, for many transactions, the
UIA would find itself waiting unnecessarily. For example, a static
timeout of 4 seconds covers 90% of the normal networking trans-
actions, but is unnecessarily long for non-networking transactions.
On the other hand, this value covers only 60% of the transactions
when emulating a 3G network.

This result demonstrates that using the ProcessingCompleted
event allows VanarSena to maximize coverage while minimizing
processing time.

8.2.4 Multiple Concurrent Monkeys are Useful
Figure 22 shows the CDF of the fraction of pages covered with 1,

5, and 9 monkeys compared to the pages covered with 10 monkeys.
The y-axis is on a log scale. Although 85% of apps need only one
monkey for 100% coverage, the tail is large. For about 1% of the
apps, new pages are discovered even by the 9th monkey. Similarly,
Figure 23 shows that for 5% of the apps, VanarSena continues to
discover new transactions even in the 9th monkey.

We did an additional experiment to demonstrate the value of mul-
tiple concurrent runs. Recall that we ran each app through each
FIM 10 times. To demonstrate that it is possible to uncover more
bugs if we run longer, we selected 12 apps from our set of 3000
apps that had the most crashes in WPER system. We ran these apps
100 times through each FIM. By doing so, we uncovered 86 new
unique crashes among these apps (4 to 18 in each) in addition to
the 60 crashes that we had discovered with the original 10 runs.

9. DISCUSSION AND LIMITATIONS
Why not instrument the emulator? VanarSena could have been
implemented by modifying the emulator to induce faults. As a sig-
nificant practical matter, however, modifying the large and com-
plex emulator code would have required substantially more devel-
opment effort than our architecture. Moreover, it would require the
fault detection software to be adapted to the emulator evolving.
Why cloud deployment? We envision VanarSena as a cloud ser-
vice for a couple of reasons. First, the cloud offers elastic resources

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio of pages covered compared
 to pages covered in 10 runs

1 monkey
5 monkeys
9 monkeys

Figure 22: Fraction of pages covered by runs compared to
pages covered by 10 runs.

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio of transactions covered compared
 to transactions covered in 10 runs

1 monkey
5 monkeys
9 monkeys

Figure 23: Fraction of transactions covered by runs compared
to transactions covered by 10 runs.

– i.e. a large number of emulators can be deployed on demand.
Second, a cloud-based deployment also makes for easier updates.
We can update the monkey in a variety of ways – e.g. by adding
more FIMs based on crash reports from the field, or by using (as yet
undiscovered) techniques for improving testing speed or resource
consumption. That said, it is easy to envision non-cloud deploy-
ment models as well. For example, VanarSena can work by spawn-
ing multiple VMs on developer’s desktop (resources permitting), or
on a network of local machines. These other deployment scenarios
have their own advantages and disadvantages. The fact that mon-
keys run independently of each other allows for many deployment
and pricing models.
Target audience: We envision that VanarSena would be primarily
used by amateur developers, or small app shops who lack resources
to perform thorough testing of their apps. A majority of apps (on
any platform) are developed by such entities. However, note that
our evaluation did not focus on only such apps, and we were able to
crash so-called professionally developed apps as well. Apart from
app developers, VanarSena can also be used by app store owners
during app ingestion and approval pipeline to test submitted apps
for common faults. The extensibility of the fault inducer, and not
requiring source code, are both significant assets in realizing this
scenario.
Number of monkeys per app: For results reported in this paper,
we ran a fixed number of monkeys for every app. However, we also
found that running more monkeys often uncovers more crashes (al-
though we expect that the the returns will be diminishing). We also
believe that the number of monkeys needed to test an app com-
prehensively for each fault depends on the complexity of the app.
Static analysis of the app should be able to provide some guidance
in this matter. We leave this as part of our future work.
Providing inputs in a specific order: Some apps do not make
progress until certain inputs are provided in a specific order. For
example, log-in button should be clicked only after filling username
and password. In VanarSena, we expect developers to provide in-
puts to textboxes. When the UI Automator discovers textboxes in
a page, it fills the textboxes first (with the developer provided input

or a random value) before hit testing and clicking controls. This
helps the UIA to quickly go past login screens. For all other types
of inputs, the UIA picks the controls randomly. If an app requires
a specific order of interaction, it might be worthwhile to get hints
from the developer to save testing time. We are currently exploring
how developers can provide such hints easily.
Testing Games: Many games requires complex, free-form ges-
tures. Thus, trace replay [21] may be a more appropriate testing
strategy on game apps, than randomized monkey actions. Our mon-
key can easily support trace replay, although collection and valida-
tion of such traces is a challenging problem that we plan to address
in future. We also note that we cannot test certain other kinds of
apps with the current version of VanarSena. Some apps launch
other apps (e.g. web browser) and terminate. Testing such apps re-
quires keeping careful track of different app contexts – something
which we have not yet implemented. This, however, is an engineer-
ing challenge only - not a fundamental one.
Overhead: On average, our instrumentation increases the runtime
of transactions by 0.02%. This small overhead is unlikely to affect
the behavior of the app.
False Positives: The binary instrumentation may itself be buggy,
causing “false positive” crashes. We cannot prove that we do not
induce such false positives, but careful manual analysis of crash
traces shows that none of the crashes occurred in the code Va-
narSena added.
Combination of fault inducers: We evaluated apps by injecting
one fault at a time to focus on individual faults. In reality, multiple
faults may happen at the same time. We plan to investigate this in
future.
Improving the SDK: Some of the bugs we have uncovered should
be fixed in the platform, instead of in the app. For example, crashes
due to violation of simultaneous page navigation could be avoided
by redesigning the API.
Beyond Windows Phone: VanarSena currently supports Windows
Phone applications. However, its techniques are broadly applicable
to mobile apps and can be extended to other platforms. In [42],
we have described how the instrumentation framework can be ex-
tended to other platforms.
Beyond crashes: We currently focus on app crashes only. How-
ever, app developers also typically care about performance of their
app [42], under a variety of conditions. Extending VanarSena to do
performance testing is the primary thrust of our future work.

10. RELATED WORK
At a high level, VanarSena consists of two components: (1) dy-

namic analysis with a monkey, and (2) fault injection for app test-
ing. Below we discuss how VanarSena compares with prior works
in these two aspects.

Static and dynamic analysis of mobile apps. Several prior works
have statically analyzed app binaries to uncover energy bugs [39,
44], performance problems [30], app plagiarism [13], security
problems [17, 23], and privacy leaks [34, 20]. Static analysis is
not suitable for our goal of uncovering runtime faults of apps since
it cannot capture runtime issues such as poor network condition and
corrupted or unexpected responses from cloud services. Several re-
cent works have proposed using a monkey to automatically execute
mobile apps for analysis of app’s runtime properties. AppsPlay-
ground [41] runs apps in the Android emulator on top of a modified
Android software stack (TaintDroid [15]) in order to track infor-
mation flow and privacy leaks. Authors evaluate the tool with an
impressive 3,968 apps. Recently A3E [8] and Orbit [47] use com-
binations of static and dynamic analysis to automatically generate

test cases to reach various activities of an app. AMC [31] uses a dy-
namic analysis to check accessibility properties of vehicular apps.
It has a UI Automator similar to VanarSena, but unlike our system,
it clicks on every control in a given page and waits for a static time-
out of 10 seconds before making the next interaction. With hit test-
ing and processing completed event, we believe that VanarSena’s
UI Automator would be much faster than AMC’s. Eprof [38] uses
dynamic analysis (without a monkey) for fine-grained energy ac-
counting. ProtectMyPrivacy [4] uses the crowd to analyze app pri-
vacy settings and to automatically recommend app-specific privacy
recommendations. All these works differ by their end goals and
specific optimizations. Similarly, VanarSena differ from them in its
end goal of uncovering runtime faults of apps and its novel mon-
key optimization techniques: hit testing and accurate processing
completed event. The optimizations are general and can be used
for other systems as well. We cannot directly compare the perfor-
mance of our monkey with the other systems since all of them are
for Android apps.

VanarSena uses AppInsight [42] to instrument Windows Phone
app binaries. For Android apps, one could use similar frameworks
such as SIF [26] and RetroSkeleton [14].
Mobile app testing with a monkey. As mentioned in Sec-
tion 1, mobile app testing poses different challenges than traditional
“enterprise” software, motivating researchers to develop mobile-
specific solutions. Researchers have used Android Monkey [22]
for automated fuzz testing [6, 7, 19, 27, 37]. Similar UI automa-
tion tools exist for other platforms. VanarSena differs from these
tools is two major ways. First, the Android Monkey generates only
UI events, and not the richer set of faults that VanarSena induces.
Second, it does not optimize for coverage or speed like VanarSena.
One can provide an automation script to the Android Monkey to
guide its execution paths, but this approach is not scalable when
exploring a large number of distinct execution paths.

Closest to our work is DynoDroid [35] that, like VanarSena, ad-
dresses the above problems, but with a different approach: it mod-
ifies the Android framework and involves humans at run-time to
go past certain app pages (e.g., login screen). Another fundamen-
tal difference is that it manipulates only UI and system events and
does not inject faults due to external factors such as bad network
or event timing related to unexpected or abnormal user behavior,
which are among the most common root causes in our real-world
crash reports. A3E [8] and Orbit [47] use static and dynamic anal-
ysis to generate test cases to traverse different app activities, but do
not inject external faults. All these systems could benefit from our
crash analysis insights to decide what faults to inject.

ConVirt [32] is a related effort on mobile app testing that it ex-
plores the concept of contextual fuzzing. Under contextual fuzzing
a variety of real world environmental and hardware conditions are
systematically explored through both real hardware and emulation;
these conditions include: user interaction, geo-locations, network
conditions, and device/system configurations. To reduce the time
in finding app performance problems, ConVirt implements a set of
algorithms that leverage inter-app behavioral similarities. Unlike
VanarSena, ConVirt takes a blackbox approach and incorporates
actual hardware into the testing process. We envision combining
ConVirt and VanarSena into a seamless system [11].
Other software testing techniques. Software testing has a rich
history, which cannot be covered in a few paragraphs. We focus
only on recent work on mobile app testing, which falls into three
broad categories: fuzz testing, which generates random inputs to
apps; symbolic testing, which tests an app by symbolically execut-
ing it; and model-based testing. Fuzz testing is done with a monkey
and is discussed above.

As mentioned in Section 1, symbolic execution [29, 10, 37] and
its hybrid variant, concolic execution [7, 28] have found limited
success in testing real-world apps due to path explosion problem
and difficulty in modeling real-world execution environment with
network, sensors, and cloud.

“GUI ripping” [36, 25, 6] systems and GUITAR [24] use model-
based testing to mobile apps. Unlike VanarSena, it requires devel-
opers to provide a model of the app’s GUI and can only check faults
due to user inputs. Applicability of these techniques has so far been
very limited (e.g., evaluated with a handful of “toy” apps only).
Comparison to AppInsight: VanarSena leverages the instru-
mentation framework and other techniques developed for AppIn-
sight [42]. However, the goals of VanarSena and AppInsight are
very different. Developers use AppInsight to collect analytics, per-
formance and crash data from mobile apps running “in the wild” –
i.e. being used by real users. Thus, AppInsight does not include
emulator, UI Automator or fault inducer. On the other hand, Va-
narSena is meant for catching bugs in the app before it is released
to end users. Indeed, the development of VanarSena was motivated
by our experience with AppInsight and feedback from developers
who used it. We found that while AppInsight helped the developers
fix bugs in subsequent releases of the app, it was sometimes “too
late”. Users of mobile apps can be quite unforgiving – once an app
gets a poor rating due to crashes, few download subsequent “fixed”
versions. The key goal of VanarSena is to detect the common faults
in the app before it is released.

11. CONCLUSION
VanarSena is a software fault detection system for mobile apps

designed by gleaning insights from an analysis of 25 million crash
reports. VanarSena adopts a “greybox” testing method, instrument-
ing the app binary to achieve both high coverage and speed, us-
ing hit testing and generation of ProcessingCompleted event.
We found that VanarSena is effective in practice. We tested it on
3000 apps from the Windows Phone store, finding that 1108 of
them had failures. VanarSena uncovered over 2969 distinct bugs
in existing apps, including over 1227 that were not previously re-
ported. Each app was tested, on average, in just 1.5 hours. De-
ployed as a cloud service, VanarSena can provide a automated test-
ing framework to mobile software reliability even for amateur de-
velopers who cannot devote extensive resources to testing.

Acknowledgments
We thank the MobiSys reviewers and our shepherd, Zhiyun Qian,
for several useful comments and suggestions that improved this
paper. We also thank Felix Xiaozhu Lin and Jessica Miller for
their support during VanarSena development. LR and HB were
supported in part by the National Science Foundation under Grant
0931508 and the MIT Center for Wireless Networks and Mobile
Computing (Wireless@MIT).

12. REFERENCES
[1] http://www.magomedov.co.uk/2010/11/

navigation-is-already-in-progress.html.
[2] App platform compatibility for Windows Phone.

http://msdn.microsoft.com/en-US/library/
windowsphone/develop/jj206947(v=vs.105)
.aspx.

[3] Fiddler. http://fiddler2.com/.
[4] Y. Agarwal and M. Hall. Protectmyprivacy: Detecting and

mitigating privacy leaks on ios devices using crowdsourcing.
In Mobisys, 2013.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, 1994.

[6] D. Amalfitano, A. R. Fasolino, S. D. Carmine, A. Memon,
and P. Tramontana. Using gui ripping for automated testing
of android applications. In ASE, 2012.

[7] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated
concolic testing of smartphone apps. In FSE, 2012.

[8] T. Azim and I. Neamtiu. Targeted and depth-first exploration
for systematic testing of android apps. In OOPSLA, 2013.

[9] T. Ball and J. Larus. Efficient Path Profiling. In PLDI, 1997.
[10] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[11] R. Chandra, B. F. Karlsson, N. Lane, C.-J. M. Liang, S. Nath,
J. Padhye, L. Ravindranath, and F. Zhao. Towards Scalable
Automated Mobile App Testing. MSR-TR-2014-44.

[12] P. H. Chia, Y. Yamamoto, and N. Asokan. Is this app safe?:
A large scale study on application permissions and risk
signals. In Proceedings of the 21st International Conference
on World Wide Web, WWW ’12, 2012.

[13] J. Crussell, C. Gibler, and H. Chen. Attack of the clones:
Detecting cloned applications on android markets. In
ESORICS, 2012.

[14] B. Davis and H. Chen. Retroskeleton: Retrofitting android
apps. In Mobisys, 2013.

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Seth. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones. In OSDI, 2010.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

[17] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In USENIX Security, 2011.

[18] Unhandled exception handler.
http://msdn.microsoft.com/en-us/library/
system.appdomain.unhandledexception.aspx.

[19] S. Ganov, C. Killmar, S. Khurshid, and D. Perry. Event
listener analysis and symbolic execution for testing gui
applications. Formal Methods and Software Engg., 2009.

[20] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: Automatically detecting potential privacy
leaks in android applications on a large scale. In Trust and
Trustworthy Computing, 2012.

[21] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran:
Timing- and touch-sensitive record and replay for android. In
ICSE, 2013.

[22] Google. UI/Application Exerciser Monkey.
http://developer.android.com/tools/help/
monkey.html.

[23] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: Scalable and accurate zero-day android malware
detection. In Mobisys, 2012.

[24] GUITAR: A model-based system for automated GUI testing.
http://guitar.sourceforge.net/.

[25] D. Hackner and A. M. Memon. Test case generator for
GUITAR. In ICSE, 2008.

[26] S. Hao, D. Li, W. Halfond, and R. Govindan. SIF: A
Selective Instrumenation Framework for Mobile
Applications. In MobiSys, 2013.

http://www.magomedov.co.uk/2010/11/navigation-is-already-in-progress.html
http://www.magomedov.co.uk/2010/11/navigation-is-already-in-progress.html
http://msdn.microsoft.com/en-US/library/windowsphone/develop/jj206947(v=vs.105).aspx
http://msdn.microsoft.com/en-US/library/windowsphone/develop/jj206947(v=vs.105).aspx
http://msdn.microsoft.com/en-US/library/windowsphone/develop/jj206947(v=vs.105).aspx
http://fiddler2.com/
http://msdn.microsoft.com/en-us/library/system.appdomain.unhandledexception.aspx
http://msdn.microsoft.com/en-us/library/system.appdomain.unhandledexception.aspx
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

[27] C. Hu and I. Neamtiu. Automating gui testing for android
applications. In AST, 2011.

[28] C. S. Jensen, M. R. Prasad, and A. MÃÿller. Automated
testing with targeted event sequence generation. In Int. Symp.
on Software Testing and Analysis, 2013.

[29] J. C. King. Symbolic execution and program testing. CACM,
19(7):385–394, 1976.

[30] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun,
L. Huang, P. Maniatis, M. Naik, and Y. Paek. Mantis:
Automatic performance prediction for smartphone
applications. In Usenix ATC, 2013.

[31] K. Lee, J. Flinn, T. Giuli, B. Noble, and C. Peplin. Amc:
Verifying user interface properties for vehicular applications.
In ACM Mobisys, 2013.

[32] C.-J. M. Liang, N. Lane, N. Brouwers, L. Zhang,
B. Karlsson, R. Chandra, and F. Zhao. Contextual Fuzzing:
Automated Mobile App Testing Under Dynamic Device and
Environment Conditions. MSR-TR-2013-100.

[33] S. Lidin. Inside Microsoft .NET IL Assembler . Microsoft
Press, 2002.

[34] B. Livshits and J. Jung. Automatic mediation of
privacy-sensitive resource access in smartphone applications.
In USENIX Security, 2013.

[35] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input
generation system for android apps. In FSE, 2013.

[36] A. Memon. Using reverse engineering for automated
usability evaluation of gui-based applications.
Human-Centered Software Engineering, 2009.

[37] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and
R. Mahmood. Testing android apps through symbolic
execution. SIGSOFT Softw. Eng. Notes, 37(6):1–5, 2012.

[38] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app? fine grained energy accounting on
smartphones with eprof. In Eurosys, 2012.

[39] A. Pathak, A. Jindal, Y. C. Hu, , and S. Midkiff. What is
keeping my phone awake? characterizing and detecting
no-sleep energy bugs in smartphone apps. In Mobisys, 2012.

[40] C. Perzold. Microsoft Silverlight Edition: Programming
Windows Phone 7. Microsoft Press, 2010.

[41] V. Rastogi, Y. Chen, and W. Enck. Appsplayground:
Automatic security analysis of smartphone applications. In
CODASPY, 2013.

[42] L. Ravindranath et al. Appinsight: Mobile app performance
monitoring in the wild. In OSDI, 2012.

[43] L. Rizzo. Dummynet.
[44] P. Vekris, R. Jhala, S. Lerner, and Y. Agarwal. Towards

verifying android apps for the absence of wakelock energy
bugs. In HotPower, 2012.

[45] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystifying Page Load Performance with
WProf. In NSDI, 2013.

[46] Xaml. http://msdn.microsoft.com/en-us/
library/ms752059(v=vs.110).aspx.

[47] W. Yang, M. R. Prasad, and T. Xie. A Grey-box Approach
for Automated GUI-Model Generation of Mobile
Applications. In FASE, 2013.

http://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx

	Introduction
	App Crashes in-the-Wild
	Data Set
	Root Causes of Observed Crashes
	Findings

	Goals and Non-Goals
	Architecture
	Instrumentation
	UI Automator
	Hit Testing
	When to interact next?
	Randomized Concurrent Monkeys

	Inducing Faults
	Evaluation
	Crashes
	Key Results
	Comparison Against the WPER Database
	Analysis

	Monkey Techniques
	Coverage
	Benefits of Hit Testing
	Importance of the ProcessingCompleted Event
	Multiple Concurrent Monkeys are Useful

	Discussion and Limitations
	Related work
	Conclusion
	References

