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Abstract 

Recently we proposed a cubic-spline-based variable-

parameter hidden Markov model (CS-VPHMM) whose mean 

and variance parameters vary according to some cubic spline 

functions of additional environment-dependent parameters. 

We have shown good properties of the CS-VPHMM and 

demonstrated on the Aurora-3 corpus that MCE-trained CS-

VPHMM greatly outperforms the MCE-trained conventional 

HMM at the cost of increased total number of model 

parameters. In this paper, we propose to share spline functions 

across different Gaussian mixture components to reduce the 

total number of model parameters and develop a clustering 

algorithm to do so. We demonstrate the effectiveness of our 

parameter clustering and sharing algorithm for the CS-

VPHMM on Aurora-3 corpus and show that proper parameter 

sharing can reduce the number of parameters from 4 times of 

that used in the conventional HMM to 1.13 times and still get 

18% relative WER reduction over the MCE trained 

conventional HMM under the well-matched condition. 

Effective parameter sharing makes the CS-VPHMM an 

attractive model for noise robustness. 

Index Terms: speech recognition, variable-parameter hidden 

Markov model, cubic spline, parameter sharing, clustering 

1. Introduction 

Recently Cui and Gong [2] proposed a new model, named 

variable-parameter hidden Markov model (VPHMM), for 

robust automatic speech recognition (ASR). In their original 

VPHMM model the means and variances of the Gaussian 

mixtures change according to a polynomial function of some 

environment-dependant conditioning parameters such as 

signal-to-noise ratio (SNR).  

We further advanced the technique with the cubic-spline-

based VPHMM (CS-VPHMM) [6]. In the CS-VPHMM, the 

continuous observation density function , ,( , )i r t r tb x ζ for state i, 

acoustic observation ,r tx  and the conditioning parameter ,r tζ

at frame t in the utterance r is 
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where L is the number of Gaussian mixture components, ,i lw

is a positive weight for the l-th Gaussian component with the 

constraint ,1,...,
1i ll L

w


 , and
 

   , , , , ,( | , )r t i l r t i l r tN x μ ζ Σ ζ  is 

the l-th Gaussian mixture component whose mean and 

variance vary based on the conditioning parameter ,r tζ . In our 

CS-VPHMM, we assume that covariance matrices are 

diagonal and each dimension d of the mean and variance 

vector can be approximated with a cubic spline   as 
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are the spline knots (will be discussed in Section 2) that can 

be shared across different Gaussian mixture components, and 

 , ,i l d is the regression class so that many different pairs 

of  , ,i l d may be mapped to the same regression class. 

In our companion paper [6], we developed the 

discriminative training algorithm for the CS-VPHMM defined 

by (1), (2) and (3). We showed that the CS-VPHMM can use 

the dimension-wise instantaneous SNR as the conditioning 

parameter and so is much more flexible and powerful than the 

polynomial function based VPHMM proposed by Cui and 

Gong [2]. We also demonstrated on the Aurora-3 corpus that 

the discriminatively trained CS-VPHMM greatly outperforms 

the discriminatively trained conventional HMM both with and 

without our recently developed Mel-frequency cepstral 

minimum mean square error (MFCC-MMSE) motivated noise 

suppressor [5], esp. under the well-matched condition, at the 

cost of increased total number of model parameters. 

In this paper, we explore the parameter sharing capability 

of the CS-VPHMM and answer the question whether it is 

possible to reduce the number of parameters in the CS-

VPHMM without losing the gains achieved when no 

parameters are shared. We develop and describe a clustering 

algorithm to determine how the splines should be tied and 

report our experimental results on Aurora-3 corpus. We show 

that proper parameter sharing can reduce the number of 

parameters from 4 times of that used in the conventional 

HMM to 1.13 times and still get 18% relative WER reduction 

over the MCE trained conventional HMM under the well-

matched condition. Effective parameter sharing makes the 

CS-VPHMM an attractive model for noise robustness. 

The rest of the paper is organized as follows. In Section 2, 

we review some concepts related to the cubic spline and CS-

VPHMM. In Section 3, we describe the detailed spline 

clustering algorithm. In Section 4, we report our experimental 

results on Aurora-3 with different degrees of parameter 

sharing and demonstrate the effectiveness of the clustering 

algorithm. We conclude the paper in Section 4. 

2. Cubic Spline and CS-VPHMM 

In this section, we briefly review some concepts related to the 

cubic spline and CS-VPHMM to set the background. Detailed 

information on the CS-VPHMM and the discriminative 

training algorithm used to estimate the model parameters can 

be found in our companion paper [6]. 

As mentioned in section 1, the mean and variance of each 

Gaussian mixture component in the CS-VPHMM vary 
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according to (2) and (3) given the conditioning parameter

, ,r t d . The core of (2) and (3) is the cubic spline function 

which is solely determined by the control pointes (knots) and 

the boundary conditions. There are two typical boundary 

conditions for the cubic spline: one that whose first derivative 

is zero and one that whose second derivative is zero. The 

spline with the latter boundary condition is usually called 

natural spline and is the one used in this study. 

Given K knots 
         1

, | 1, , ;
i i i i

x y i K x x


  in the 

cubic spline, the value of a data point x can be estimated by 
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are interpolation parameters, and 
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 is the section 

where the point x falls. Note that for a K-knot cubic spline, it 

requires 2K parameters: K parameters for 
 i

x  and other K 

parameters for
 i

y . The number of parameters can be greatly 

reduced if we choose evenly distributed 
 j

x  
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0, , 1, , 1

j j k k
h x x x x j k K
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since we only need to store 
 i

y  and 
    1

, ,
K

K x x . Note that 

only one 
    1

, ,
K

K x x is needed for each dimension of the 

conditioning parameter as will be clear later and so the 

average number of parameters needed for each spline is very 

close to K. 

With evenly distributed knots, (5) and (6) can be 

simplified into 
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 1b a  , and  3 21

6
d b b h  . (9) 

As we have indicated in our companion paper [6], (4) can be 

rewritten as 
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Note that 
xE and 

xF are functions of x  since , , ,a b c d are 

functions of x , and -1
C D is independent of x  and hence can 

be pre-calculated. Using this simplified notation, the 

parametric form (2) and (3) can be rewritten succinctly as 
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respectively where 
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One of the key decisions to make in the CS-VPHMM is 

the choice of the environment dependent conditioning 

parameter , ,r t d . In our model and system , ,r t d is chosen to be 

the dimension-wise instantaneous posterior SNR in the 

cepstral domain:  

  
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i ii n
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where ,d ia is the inverse discrete cosine transformation (IDCT) 

coefficient, 2

,i y  and 2

,i n  are the power of noisy signal and 

noise from the i-th Mel-frequency filter, respectively. A 

minimum-controlled recursive moving-average noise tracker 

[1] was used in our system to track the noise power 2

,i n with 

the same procedure and parameters used in our MFCC-

MMSE noise suppresser work reported in [5].  

Note that we have set  

 
 1

d dd      , and (23) 

 
 

d d

K
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as the conditioning value of the first and the last knots,  where 

 was set to 2 in our experiments and we have assumed that 

each dimension of the conditioning parameter follows a 

Gaussian distribution whose mean 
d

 and standard deviation 

d
 can be estimated from the training data. Since 

 1

d and

 K

d are independent on the Gaussian components, they can 

be shared across all Gaussian components. 

3. Clustering of Cubic Splines 

Our parametric formulation (1), (2) and (3) (or equivalently 

(1), (16) and (17)) allows for sharing the spline parameters 

across different Gaussian components. In this section we 

describe the spline clustering algorithm used in our CS-

VPHMM.  

The distance between two functions 
1f and

2f given the 
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distribution of the domain  p x can be defined as 

         
2

1 2 1 2,
x

d f f f x f x p x dx  . (25) 

This distance is also valid for two splines determined by 

the evenly distributed knots  
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Note that the calculation of the exact distance using (25)

can be time consuming. For this reason, we approximate the 

integration in (25) with quantized summations 
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Note that the parameters h ,  and are the same for all the 

splines to be clustered, and 

 
2

1
h

K





, (30) 

 
     1

1
i

x x i h   , (31) 

 
 1 1

2

K
x h


  . (32) 

The distance calculation can thus be further simplified as 
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Note that our essential goal is to minimize the distances 

between the conditioning-parameter-dependent means and 

variances before and after the spline sharing. For this reason, 

when applying (33) to the variance splines, we replace 
 
1

i
y

and 
 
2

i
y with 

 
1log

i
y and 

 
2log
i

y respectively. 

Given the distance between two splines, we use the well-

known k-means clustering algorithm to determine the 

regression classes. The number of clusters is predetermined 

based on the constraint on the number of parameters. 

4. Experiments 

We have evaluated our parameter clustering and sharing 

algorithm for CS-VPHMM on the Aurora-3 corpus. We aim 

at finding out whether the gain can be attained when some 

splines are shared across different Gaussian components. In 

this section, we describe the experimental setting and results. 

4.1. Experimental Setup  

The Aurora-3 noisy digit recognition task under realistic 

automobile environments contains recordings from either a 

high, low, or quiet noise environment, and with either  a 

close-talk microphone or a hands-free, far-field microphone. 

It is consisted of digit recognition sub-tasks for languages 

German, Finnish, Spanish, and Danish. For each language, 

three experimental settings are defined for the evaluation: the 

well-matched condition is the multi-training scenario where 

both the training and the testing sets contain all combinations 

of noise environments and microphones. In the mid-

mismatched condition, the mismatch is mainly caused by the 

noise as the training set contains quiet and low noise data 

recorded using the far-field microphone, and the testing set 

contains the high noisy data recorded using the far-field 

microphone. In the high-mismatched condition, both channel 

distortion and additive noise exist as the training set contains 

close-talk data from all noise classes, and the testing set 

contains high noise and low noise far-field data. 

The conventional HMMs used in our experiments consist 

of 6-mixture 16-state whole-word models for each digit in 

addition to the “sil” and “sp” models, with 546 total number 

of Gaussian components. The 39-dimensional features used in 

our experiments are formed with the 13-dimension (with 

energy and without C0) static MFCC features and their first 

and second derivatives. The MFCC-MMSE motivated 

additive noise suppressor [5] has been applied to enhance the 

speech signal. The same noise tracking component is shared 

by both the noise suppressor and the conditioning parameter 

estimator.  

To set the baseline we have trained a conventional HMM 

system using the ML criterion, on top of which a conventional 

HMM system was trained using the minimum classification 

error (MCE) criterion. The ML baseline system was trained in 

the manner prescribed by the scripts included with the 

Aurora-3 task. The MCE baseline was trained using 10 

percent of the training data as the held out set with detailed 

information available in the companion paper [6].  

All the CS-VPHMMs reported in this paper were 

discriminatively trained (also using the MCE criterion) upon 

the MCE-trained conventional HMM with the number of 

knots in the cubic spline set to four. Due to the time 

complexity, we only ran four iterations of training and we 

report the result after the fourth iteration.  

4.2. Experimental Results  

Table 1 summarizes the number of spline clusters and the 

associated number of parameters used in different settings 

relative to the conventional HMM. The Setting 1 is the setting 

where a single spline cluster is used by all the Gaussian 

components, and the Setting 8 is the setting where no spline is 

shared. Note that when a cubic spline is used only by one 

Gaussian component, the Gaussian component-specific mean 

and variance can be absorbed into the spline and that’s the 

reason only 4 times of the parameters used in the conventional 

HMM are needed in the Setting 8 although each spline has 4 

knots.  

Table 2 summarizes the absolute WER on the Aurora-3 

corpus and Figure 1 illustrates how the WER changes as a 

function of the number of spline clusters. In these 

experiments, we first trained the CS-VPHMM model for the 

Setting 8. We then determine the regression classes using the 

clustering algorithm described in Section 3 with the number 

of spline clusters predetermined according to Table 1. The 
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CS-VPHMM model with the specified number of spline 

clusters is then trained on top of the MCE trained 

conventional HMM. 

  
# of Spline 

Clusters 

# of Parameters 

(times) 

Conventional HMM (MCE) 0 1.00 

CS-VPHMM (MCE) Setting 1 1 1.01 

CS-VPHMM (MCE) Setting 2 9 1.06 

CS-VPHMM (MCE) Setting 3 17 1.13 

CS-VPHMM (MCE) Setting 4 34 1.25 

CS-VPHMM (MCE) Setting 5 68 1.50 

CS-VPHMM (MCE) Setting 6 136 2.00 

CS-VPHMM (MCE) Setting 7 273 3.00 

CS-VPHMM (MCE) Setting 8 546 4.00 

 Table 1. Summary of the number of spline clusters 

and the number of parameters relative to that used in 

the conventional HMM for different settings. 

Summary of Aurora 3 Absolute Word Error Rate 

  Well Mid High Average 

Conventional HMM (ML) 5.08% 12.26% 23.26% 12.13% 

Conventional HMM (MCE) 4.93% 11.80% 23.15% 11.89% 

CS-VPHMM (MCE) Setting 1 4.71% 11.58% 22.94% 11.67% 

CS-VPHMM (MCE) Setting 2 4.20% 11.07% 22.52% 11.18% 

CS-VPHMM (MCE) Setting 3 4.04% 11.13% 22.79% 11.21% 

CS-VPHMM (MCE) Setting 4 4.03% 11.12% 22.30% 11.08% 

CS-VPHMM (MCE) Setting 5 4.01% 11.04% 22.57% 11.11% 

CS-VPHMM (MCE) Setting 6 4.09% 10.99% 22.74% 11.17% 

CS-VPHMM (MCE) Setting 7 4.25% 10.94% 22.57% 11.17% 

CS-VPHMM (MCE) Setting 8 4.12% 11.27% 22.31% 11.17% 

Table 2. Summary of the absolute WER on Aurora-3 

corpus 

Figure 1. Absolute WER under well-matched condition as a 

function of the number of spline clusters

 
 

From these tables and figures, we can see that the CS-

VPHMM outperforms the MCE-trained conventional HMM 

under all conditions with the largest gain observed under the 

well-matched condition. 

The curve in the Figure 1 demonstrated some important 

relationship between the number of parameters and the 

recognition accuracy. When no spline is shared (Setting 8) the 

CS-VPHMM obtained the absolute WER of 4.12% under the 

well-matched condition which outperforms the conventional 

HMM by relative WER reduction of 16.47% (statistically 

significant at the significance level of 1%). When 273 spline 

clusters (or equivalently 3 times of parameters) are used the 

WER increases to 4.25%. However, as the number of spline 

clusters further decreases to 136, 68, 34 and 17, the WER 

decreases to 4.09%, 4.01%, 4.03% and 4.04% respectively. 

Finally, when the number of spline clusters decreases to 9, the 

WER increases again to 4.20%. As all Gaussian components 

share a single spline the WER is dramatically increased and 

reaches 4.71%, which is still better than the MCE trained 

conventional HMM by a 4.56% relative WER reduction. This 

behavior is likely caused by the fact that two factors are 

affecting the final result when the number of clusters is 

decreased: the modeling ability becomes poorer since means 

and variances that share the same spline need to follow the 

same changing pattern; the spline parameters can be more 

reliably estimated as the same spline are shared by more 

Gaussian components. When the number of clusters 

decreases, the first factor outweighs the second factor and the 

recognition accuracy drops. As the number of clusters further 

decreases, the second factor starts to show the effect and the 

recognition accuracy moves back. When the number of 

clusters continues to decrease, the effect of the second factor 

saturates and the effect of the first factor shows up again. For 

the Aurora-3 corpus, we can see that the CS-VPHMM 

outperforms the MCE trained conventional HMM with 

18.09% relative WER reduction even if only 17 spline 

clusters are used, or equivalently, 1.13 times of parameters 

used in the conventional HMM. This improvement is 

statistically significant at the significance level of 1%. 

5. Conclusions 

In the companion paper [6] we have shown that the CS-

VPHMM can use the dimension-wise instantaneous SNR as 

the conditioning parameter, and the model parameters can be 

discriminatively trained using the growth-transformation 

based formula [3] [4] without using quantized conventional 

HMMs as the initial model and/or using quantization based 

approximation approach for parameter estimation. We have 

also shown that the CS-VPHMM significantly outperforms 

the conventional HMM at the cost of greatly increased 

number of parameters. 

In this paper, we addressed the problem of increased 

number of parameters and presented a spline clustering and 

sharing algorithm. We demonstrated the effectiveness and the 

behavior pattern of the parameter clustering algorithm on 

Aurora-3 and showed that we can attain the gain even with 

1.13 times of the parameters used in the conventional HMM. 

This is a great indication that CS-VPHMM may have great 

practical implication. 
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