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ABSTRACT 

Past work has suggested that query execution feedback can be 

useful in improving the quality of plans by correcting cardinality 

estimation errors in the query optimizer. The state-of-the-art 

approach for obtaining execution feedback is “passive” 

monitoring which records the cardinality of each operator in the 

execution plan. We observe that there are many cases where even 

after repeated executions of the same query with use of feedback 

from passive monitoring, suboptimal choices in the execution plan 

cannot be corrected. We present a novel “pay-as-you-go” 

framework in which a query potentially incurs a small overhead 

on each execution but obtains cardinality information that is not 

available with passive monitoring alone. Such a framework can 

significantly extend the reach of query execution feedback in 

obtaining better plans. We have implemented our techniques in 

Microsoft SQL Server, and our evaluation on real world and 

synthetic queries suggests that plan quality can improve 

significantly compared to passive monitoring even at low 

overheads.  

1. INTRODUCTION 
Using feedback from query execution to improve query plans has 

been proposed e.g., [12], [21] where feedback consists of 

recording the number of rows produced by each operator in the 

execution plan. Such a monitoring approach has low overhead 

since it requires no changes to the physical operators besides 

counting the number of tuples output by each operator.This 

feedback is stored in a feedback cache or warehouse, which is 

consulted by the query optimizer in conjunction with database 

statistics when optimizing a query. The accurate cardinalities 

obtained from feedback can help improve the quality of plans 

chosen by the optimizer. Feedback obtained from one query can 

be used by the optimizer when optimizing any query. We refer to 

this method for obtaining feedback from query execution as 

passive monitoring. 

Despite the simplicity and low overheads of passive monitoring, a 

key question that has not been addressed so far is if the execution 

feedback from a given query is useful in improving the execution 

plan for a future execution of that query itself. After all, it seems 

natural to expect that the database system should be able to learn 

more about a query‟s characteristics from its own execution 

without having to necessarily rely on execution feedback from 

other queries to help “accidentally”. In this paper, we critically 

examine this question. One of the key observations of our paper is 

that relying only on passive monitoring for gathering feedback 

can cause the query execution plan to remain stuck with a 

suboptimal plan, regardless of how many times the query 

executes. The following example illustrates the limitations of 

passive monitoring in the context of access path selection. 

Filter

(MarketSegment=’FURNITURE’ and 

State=’WA’ and Year=’2007')

Index Scan (I1) 

(MarketSegment=

’FURNITURE’)

Index Scan (I2) 

(Year=’2007')

RID Intersect

Filter(State=’WA’)

...

Fetch (Sales)

Table Scan (Sales)

...

(a) (b)
 

 

 

Example 1: Consider a table Sales (SalesId, MarketSegment, 

State, Year, PaymentType, Amount) with indexes 

I1=(MarketSegment) and I2 = (Year), and a query SELECT 

SUM(Amount) FROM Sales WHERE State = „WA‟ and 

MarketSegment = „FURNITURE‟ and Year = „2007‟. Suppose the 

query optimizer picks a Table Scan plan (see Figure 1(a)), 

whereas the plan that intersects indexes I1 and I2 and fetches the 

qualifying rows from the table (see Figure 1(b)) is actually lower 

in execution cost. This can happen for instance, if the predicates 

MarketSegment= FURNITURE‟ and Year = „2007‟ are negatively 

correlated. After executing the current plan (a Table Scan), using 

passive monitoring we only get the cardinality of the expression 

(State=‟WA‟ and MarketSegment= FURNITURE‟ and 

Year=‟2007‟) from the output of the Filter operator in the plan. 
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Figure 1. Two alternative plans for a query: (a) Table 

Scan plan. (b) Index Intersection plan 

 

. 

 

 



 

However, a cardinality required to accurately cost the index 

intersection plan in this case is the expression (MarketSegment= 

FURNITURE‟ and Year = „2007‟), which cannot be obtained via 

passive monitoring when executing the Table Scan plan. Thus the 

optimizer is unable to correct its error using execution feedback 

obtained by passive monitoring. 

As we show later in this paper (Section 2.3), in many cases 

passive monitoring is also unable to obtain cardinalities of join 

expressions whose availability can significantly improve plan 

quality. Thus similar to the access methods problem in Example 1, 

a plan can also be “stuck” with suboptimal join ordering and join 

methods despite use of execution feedback. Intuitively, the reason 

why passive monitoring cannot help correct the optimizer‟s 

erroneous choices in many cases is because key cardinality 

information that is necessary to make the correction cannot be 

obtained by only examining the output of operator nodes of the 

current plan. Therefore, even if the database administrator (DBA) 

or application developer were willing to pay a higher monitoring 

overhead during query execution it is not possible to obtain 

additional expression cardinalities if we were to limit ourselves to 

passive monitoring. 

On the other hand, it can be too expensive to collect execution 

feedback on all relevant sub-expressions for a given query that 

might impact the choice of an execution plan. However, we argue 

that there are many more opportunities to extend the benefits of 

execution feedback (without paying excessive overheads) if we 

are willing to step beyond the confines of passive monitoring. In 

this paper, we propose a “pay-as-you-go” framework for 

execution feedback in which a query pays a small additional 

overhead on each execution so that the plan quality of future 

executions of the query (or similar queries) is potentially 

improved. We show that such a framework is able to produce 

significantly better plans by leveraging execution feedback much 

more richly while respecting the limits on monitoring overhead 

defined by the DBA at his/her discretion.  

A key enabler of our framework is novel low overhead 

mechanisms for gathering the necessary additional cardinality 

information from a given query execution plan (Section 3). These 

mechanisms require modest changes to implementation of 

existing operators. We refer to these as proactive monitoring 

mechanisms.The second important part of the framework is 

extending the optimizer to judiciously leverage additional 

cardinality information obtained through proactive monitoring 

mechanisms for a query. We refer to this as plan modification 

(Section 4). Plan modification enables generation of a modified 

plan that ensures collection of the most promising expression 

cardinalities by piggybacking on the query execution while 

respecting the DBA specified constraint on the overhead. 

We note that the feedback obtained using proactive monitoring 

can also be used in the same scenarios where feedback from 

passive monitoring is used today e.g., for refining histograms 

[1][20], creating statistics [2], during query optimization for 

improving plans of other queries [21] and manual troubleshooting 

of plan quality.   

We have implemented our techniques inside the Microsoft SQL 

Server engine. Our evaluation (Section 5) shows that: (a) 

proactive monitoring mechanisms can be utilized with relatively 

low overhead. (b) The use of proactive monitoring (even with low 

overhead bounds) results in significant improvement in plan 

quality in choice of access methods, join ordering and join 

methods when compared to passive monitoring.  

2. ARCHITECTURE 

2.1 Assumptions 
Queries: Queries can be any SELECT statement with the 

following restrictions: (a) Selections on a table are a conjunction 

of predicates. (b) Joins are key-foreign key (K-FK).  

Query optimizer: Query optimizers use a cost model to compare 

different execution plans for a given query. A key input to the cost 

model is the cardinality of relevant logical sub-expressions1 of the 

query. The query optimizer considers a set of expressions for a 

query during optimization. For example, the Microsoft SQL 

Server optimizer, which is based on the Cascades framework [17], 

maintains a memo data structure. Each node in the memo (group) 

represents a logical expression. In this paper we assume that the 

set of relevant expressions for a query is the set of groups in the 

memo that correspond to relational expressions.  

2.2 Query Optimization using Passive 

Monitoring 
As described earlier, passive monitoring functionality in today‟s 

DBMSs support the ability to obtain actual cardinalities of 

operators in the current execution plan. Note that the cardinalities 

that are available using passive monitoring are dependent on the 

current plan itself and are often a much smaller subset of all 

relevant expressions for the query (we discuss this further in 

Section 2.3). The (expression, cardinality) pairs obtained from 

execution can be persisted into a feedback cache/warehouse and 

used as described below. Passive monitoring typically incurs low 

overhead relative to normal query execution since the additional 

cost is limited to counting the number of rows output from each 

operator.  

We assume an architecture (e.g., similar to LEO [21]) where the 

query optimizer can leverage execution feedback to improve 

accuracy of cardinality estimation. During query optimization, 

when the optimizer requires the cardinality of a given expression, 

it looks up the feedback cache (by leveraging existing view 

matching techniques e.g., [7][16]), and uses the cardinality if 

available. Otherwise, the optimizer falls back to its default mode 

of estimating the expression cardinality from the available 

database statistics. When the query is executed, the cardinalities 

obtained by monitoring the execution plan are added to the 

feedback cache. Thus in this architecture, the above cycle of 

optimizeexecutemonitor can repeat multiple times for any 

query, and the execution plan chosen can potentially change based 

on the feedback information obtained from the set of queries that 

have executed before it.   

In any system that exploits execution feedback for query 

optimization, there are issues such as maintenance policy for 

updates, replacement policy for the feedback cache etc. These 

issues, while important, are orthogonal to the focus of this paper 

and are not discussed here. 

2.3 Limitations of Passive Monitoring 
The attractiveness of passive monitoring is that it has low 

overhead and is easy to implement, since it only pays the 

                                                                 
1 For simplicity, we interchangeably refer to sub-expressions of a 

query as expressions.  



 

relatively small cost of counting the number of rows output by the 

operator. However, these very characteristics also limit the scope 

of passive monitoring. In particular, the cardinality of any relevant 

expression for the query that does not correspond to an operator in 

the current plan cannot be obtained via passive monitoring. Thus, 

even if a DBA were willing to pay a higher overhead (than what 

passive monitoring incurs), it is not possible to obtain additional 

cardinalities.  

A key factor that determines the effectiveness of execution 

feedback for improving the plan quality of a query is which 

expression cardinalities are available in the feedback cache for the 

query optimizer. In Example 1 we presented a case where passive 

monitoring is unable to obtain an expression cardinality that can 

overcome suboptimal choice of access methods. Below we 

describe a second example that illustrates that the cardinalities of 

certain relevant join expressions cannot be obtained by today‟s 

passive monitoring approach, thus negatively impacting the 

opportunity to improve the plan. 

Example 2. Consider the following query on the TPC-H schema 

involving the join of tables Customer, Orders, Lineitem and Part:  

SELECT * FROM Customer, Orders, Lineitem, Part  

WHERE l_orderkey = o_orderkey and c_custkey = o_custkey and 

l_partkey = p_partkey and l_shipdate > '1995-06-01' and 

o_orderpriority = '5-LOW' and c_mktsegment = 'MACHINERY' 

Note that all joins in this query are K-FK joins. Suppose the 

current execution plan picked by the query optimizer is the one 

shown in Figure 2(a). For simplicity we don‟t show the Filter 

operators in the figure, and assume that the selection conditions 

on each table are applied in the Table Scan operators. Consider 

the case when the predicates o_orderpriority = '5-LOW' and 

c_mktsegment = 'MACHINERY' are negatively correlated, 

thereby resulting in a much smaller cardinality for (Customer  
Orders) than estimated by the optimizer. In this case, the plan 

shown in Figure 2(b) can be much better since the small 

cardinality of (Customer  Orders) allows efficient Index 

Nested Loops Joins with both Lineitem and Part tables. Observe 

that using passive monitoring of the current plan (Figure 2(a)), it 

is not possible to obtain the cardinality of the relevant expression 

(Customer  Orders). Thus it is possible that despite repeated 

executions of the same query, the quality of the plan (in particular 

the choice of join ordering and join method) may not improve.  

Table Scan 
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Table Scan 

(Lineitem) 

Table Scan 

(Part)
Hash 

Join

Hash 

Join

Hash 

Join

Table Scan 
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2.4 A Pay-As-You-Go Framework  
We propose a “pay-as-you-go” execution feedback framework in 

which a query pays a small additional overhead on each execution 

so that the plan quality of future executions of the query (or 

similar queries) is potentially improved. In our framework, a DBA 

can specify a bound on the additional overhead for a query. As 

with passive monitoring, in our architecture (see Figure 3), the 

optimizer consults the feedback cache during optimization and 

uses cardinalities of available relevant expressions to derive a plan 

P. However, unlike passive monitoring, in this architecture, the 

optimizer is able to influence which cardinalities should be 

obtained from the current execution of the query by suitably 

modifying the plan P. This additional step is termed Plan 

Modification (see Figure 3). 
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They key contributions of this framework include:  

(a) A rich set of proactive monitoring mechanisms that can be 

used to obtain additional cardinalities for a range of values of 

the overhead bound (Section 3). Thus, if a DBA is willing to 

pay a larger overhead, our mechanisms allow the overhead to 

be exploited effectively. It is important that these 

mechanisms are efficient so that they can be leveraged 

appropriately by a DBA. 

(b) A novel plan modification step (Section 4) as part of query 

optimization that modifies the plan P produced by the 

transformation engine [17] to obtain additional cardinalities 

using the above proactive monitoring mechanisms. Since 

plan modification must be able to identify which expressions 

(among the many relevant ones for the query) are 

“important” to be obtained, this step is integrated with the 

optimizer and uses the memo data structure. We note that the 

plan modification step itself needs to be low overhead since 

we do not want to significantly increase query optimization 

time. Thus our algorithms for identifying important 

expressions as well as changing the current plan use intuitive 

but lightweight techniques. 

In the above framework we model the overhead bound using the 

optimizer estimated cost, i.e., the optimizer estimated cost of the 

plan P output by plan modification should be no more than t% 

higher relative to the optimizer estimated cost of plan P. Of 

course, optimizer estimated cost may not always accurately reflect 

execution cost. However, like the case of today‟s commercial 

physical design tools (see [22] for an overview); we rely on 

optimizer estimated cost as a pragmatic alternative to execution 

cost. We have prototyped the above framework by modifying 

Microsoft SQL Server. 

3. MECHANISMS FOR PROACTIVE 

MONITORING 
In this section, we describe novel mechanisms for obtaining 

additional expression cardinalities from the current query‟s 

execution that cannot be obtained by passive monitoring alone. 

Figure 3. Architecture for query optimization in the 

presence of proactive monitoring. 

 

 

Figure 2. Two different plans for a join query on TPC-H 

involving Lineitem, Orders, Part and Customer tables. 
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Notice that we need mechanisms that can be used for a range of 

values for the overhead parameter t% (Section 2.4). We present a 

spectrum of techniques with varying overheads that can be 

leveraged based on the threshold. These mechanisms involve 

changes to the server, in particular the predicate evaluator and 

query operators. We also discuss efficient implementation of these 

mechanisms in this section. 

3.1 Mechanisms for Single-Table Expressions 
Using the available indexes effectively is an important 

responsibility of the query optimizer. In order to determine if an 

available index (or an intersection of two available indexes) is 

appropriate to use for the query, the optimizer needs to be able to 

accurately estimate the cardinality of the predicate (or conjunction 

of predicates). Such expressions are single-table expressions, i.e., 

all predicates are on the same table. Thus obtaining accurate 

cardinality for single-table expressions can be very important for 

improving suboptimal choice of access methods by the query 

optimizer. In the discussion below, we assume the current plan 

can either be a Table Scan or an Index Seek plan and we are given 

an expression (or set of expressions) for which the cardinality 

value is required. We use the following query as a running 

example to illustrate the different mechanisms.  

Example 3.  Single table expressions available via passive 

monitoring. Consider a query with four predicates on a table: A > 

10 and B = 20 and C < 30 and D = 40. Suppose three single 

column indexes: IA= (A), IB = (B) and IC = (C) exist on the table. 

If the optimizer chooses a Table Scan operator in the current plan, 

then only the cardinality corresponding to the expression (A > 10 

and B = 20 and C < 30 and D=40) is available via passive 

monitoring. If an Index Seek on IA is used to answer the query, 

then the cardinalities for the expressions (A > 10) as well as (A > 

10 and  B = 20 and C < 30 and D=40) are available. On the other 

hand, if an Index Intersection plan of indexes IA and IB is used, 

then the cardinalities for (A>10), (B=20), (A>10 and B=20) as 

well as (A > 10 and  B = 20 and C < 30 and D=40) are available. 

Note that in the above three plans, cardinalities of expressions 

such as (C<30) or (A>10 and B=20 and C < 30) etc. are not 

available from execution.  

Our basic mechanisms involve modifications to the predicate 

evaluator in the database engine. We briefly review the main 

components of a predicate evaluator. Consider a conjunction of 

atomic predicates. The predicate evaluator: a) Maintains an 

ordered list of the atomic predicates. b) Typically resorts to 

predicate short-circuiting for efficiency. Thus, in our example, if 

the predicates are evaluated in the order (A<10 and B=20 and 

C<30 and D=40) for a particular row, if the predicate (A<10) 

evaluates to FALSE, then the remaining predicates in the 

expression are not evaluated. c) Maintains a single counter to 

count the number of rows that satisfy the predicates. During query 

evaluation, the predicate evaluator takes as input a tuple and 

returns TRUE/FALSE. The overheads incurred in predicate 

evaluation include the cost of evaluating the predicate and the cost 

of maintaining the counter.  

In Sections 3.1.1 to 3.1.3, we use a Table Scan plan to illustrate 

our mechanisms. We discuss index plans in Section 3.1.4. Finally, 

we note that for mechanisms presented in Sections 3.1.1 to 3.1.3, 

sampling techniques can be used to reduce the monitoring 

overheads. We discuss how sampling techniques can be leveraged 

in Section 3.1.5. 

3.1.1 Prefix Counting 
Consider the predicate: (A<10 and B =20 and C<30 and D=40) in 

Example 3. Let the query plan be a Table Scan operator and 

assume that the predicate evaluator evaluates the predicate in the 

left to right order. With passive monitoring we can obtain only the 

cardinality of (A<10 and B =20 and C<30 and D=40).  

Observe that it is possible to obtain the cardinality of each leading 

prefix of the predicate list with only the small additional overhead 

of counting. We add one additional counter for each leading 

prefix whose cardinality we wish to obtain (in this example, 

(A<10) and (A<10 and B=20) etc.). Each time a prefix of the 

predicates is satisfied for a row we increment the corresponding 

counter. The limitation of this technique is that it can only obtain 

a counter if it is a prefix of the predicate list in the Filter operator. 

For example, it is not possible to obtain the cardinalities for 

expressions such as (A<10 and C<30) or (B=20 and C<30) using 

prefix counting.  

3.1.2 Predicate Reordering 
Predicate reordering evaluates the predicates in a different order 

than the one chosen by the optimizer. In the example query above, 

suppose we want to obtain cardinality for the expressions (B=20) 

and (B=20 and C<30). This can be achieved using predicate 

reordering as follows: the predicates (B=20 and C<30 and A<10 

and D=40) are evaluated in the left to right order and prefix 

counting (Section 3.1.1) is applied. Thus the cardinality of prefix 

expressions, namely (B>20) and (B>20 and C=30) also become 

available. Observe that predicate reordering is more powerful than 

prefix counting since it allows obtaining any single expression 

cardinality by suitably reordering the predicates.  

The overhead incurred by predicate reordering is due to the fact 

that the cost of evaluating the predicates can be higher than if the 

original ordering was preserved. In the above example, if (A <10) 

is the most selective predicate and if the predicates (B =20) and (C 

< 30) are not selective, then the new predicate ordering would not 

be able to exploit predicate short-circuiting as effectively as the 

original ordering which used (A < 10) as the first conjunct. 

Consequently the new reordering would incur more overhead.  

3.1.3 Avoiding Predicate Short-Circuiting 
As mentioned earlier, the predicate evaluator typically resorts to 

predicate short-circuiting for efficiency. However, if we can 

modify the predicate evaluator code to bypass the short-circuiting 

optimization, then a much larger set of expression cardinalities 

can be obtained.  In our running example, assume the order of 

evaluation of predicates is (A<10 and B=20 and C<30 and D=40). 

Since (A<10) is always evaluated for every row, the cardinality of 

that expression can be obtained accurately. If we bypass predicate 

short-circuiting for the first predicate only, then note that the 

cardinalities for (A<10) as well as (B=20) become available. This 

implies that the cardinality of (A<10 and B=20) can also be 

derived. In general, if we bypass predicate short-circuiting for the 

first k-1 predicates, the cardinality of any subset of the first k 

predicates can be computed. Suppose we need to obtain the 

cardinalities of both (A<10 and C<30) and (B=20 and C<30), if 

we avoid predicate short-circuiting, we can determine the truth 

value of all the individual predicates (i.e. (A<10), (B=20) and 

(C<30)) from which the truth value of any subset of predicates 

can be computed.  

Note that the mechanism of avoiding predicate short-circuiting 

can be used in conjunction with predicate reordering. Consider the 



 

predicate (A<10 and B=20 and C<30 and D=40 and E<50) and 

assume that the original ordering of the predicates is as above, i.e., 

left to right. If we require the cardinalities (A<10 and E<50) and 

(B <20 and E<50), we can reorder and evaluate the predicates 

using the order (A<10 and B =20 and E<50 and C<30 and D=40) 

and disable predicate short-circuiting for only the first two 

predicates. In general, to obtain the cardinalities for a given set of 

expressions, we need to find a reordering with the smallest prefix 

that covers all the required attributes and disable predicate short-

circuiting for the prefix. 

Finally, we note that the predicate expression can include 

expensive predicates (such as those that apply user defined 

functions). Since we only compute cardinalities of expressions 

that can affect choice of access methods, we typically avoid short-

circuiting for only the simpler predicates. 

3.1.4 Index Seek Plans 
In Sections 3.1.1 to 3.1.3 we considered mechanisms for proactive 

monitoring for Table Scan plans. We now consider the case when 

the plan is an Index Seek plan (the techniques naturally extend to 

the case of index intersection plans).  

Referring to Example 3, let the current plan be an Index Seek on 

the index IA (corresponding to the predicate A < 10) where the 

remaining predicates are evaluated as residual predicates after the 

tuples are fetched from the table. All the previously described 

mechanisms (Sections 3.1.1-3.1.3) namely prefix counting, 

predicate reordering, avoiding predicate short-circuiting are also 

applicable in the case of Index Seek plans, but in a more limited 

fashion.  Since the tuples fetched from the table are only those 

that satisfy the predicate (A < 10), we can only get cardinalities of 

any expressions of the form (A < 10) & (p) where p is any 

predicate in the query defined on the columns of the Table T. For 

instance, if the residual predicates are evaluated in the order 

(B=20 and C<30 and D=40), the expression (A < 10 and B = 20) 

can be obtained using prefix counting.  However, the cardinality 

of the expression (B=20 and C < 30) cannot be obtained using any 

of the previously described mechanisms.  

Consider the case when the requested expression is (B=20 and 

C<30) (this expression may be relevant because there is an index 

IBC in the database), then it is possible to get the additional 

cardinality by using index intersections. For instance, suppose the 

current plan is Index Seek on IA; if we modify the plan to an Index 

Intersection plan between the indexes IA and IBC, then note that 

the cardinality of (B=20 and C<30) can be obtained when the 

modified plan is executed. Of course, adding an index intersection 

incurs an overhead relative to the current plan. The overhead is 

the cost of scanning the range in the index IBC as well as the cost 

of intersecting the RIDs satisfying (A<10) with the RIDs 

satisfying (B=20 and C<30). In general, this cost can be non-

trivial particularly if the number of rows satisfying (B=20 and 

C<30) is large. However, note that by adding an intersection, the 

number of fetches from the table cannot increase (and in fact may 

decrease significantly). Thus index intersection can serve as a 

useful tool for obtaining additional cardinalities when the original 

plan is an index seek plan but should be used only when the 

overhead bound is large enough (see Section 4 for plan 

modification technique that ensure this). 

3.1.5 Reducing Monitoring Overheads using 

Sampling 
The problem of counting the cardinality of an expression such as 

(A<10 and B=20) can be done accurately using uniform random 

sampling. The key idea is that we use the proposed mechanisms 

(prefix counting, predicate reordering etc.) only for a sample of 

the input tuples and scale the cardinality obtained using the 

sample to derive an estimate of the cardinality of the expression. 

We note that Bernoulli sampling [13] can be used where each row 

is given equal likelihood of being chosen independently from any 

other row. Thus, if the total number of rows in the input to the 

Filter is N, then the expected number of rows for which predicate 

short-circuiting is disabled is N.p rows. Bernoulli sampling also 

has the advantage that it does not require us to buffer the rows. 

Thus, this sampling method incurs no additional memory 

overhead.   

Consider the expressions (B=20) and (B=20 and C<30). In 

Section 3.1.2, we explained how reordering the predicate in the 

order (B=20 and C<30 and A<10 and D=40) would enable 

obtaining the cardinality of these expressions. We can leverage 

sampling for predicate reordering in the following fashion. For a 

randomly selected fraction p of the rows, the predicates are 

evaluated in the order (B=20 and C<30 and A<10 and D=40). For 

the remaining (1-p) fraction of the rows the predicates are 

evaluated in the originally chosen order (A<10 and B =20 and 

C<30 and D=40).  By applying prefix counting for the fraction p 

of the rows it is possible to estimate the cardinality of expressions 

such as (B>20) and (B>20 and C=30). This can be implemented 

by keeping track of both predicate orderings in the evaluator and 

using Bernoulli sampling to decide which evaluator to use for an 

input tuple. Similarly, sampling can be used for other mechanisms 

discussed (such as avoiding predicate short-circuiting) by 

applying the mechanisms for only a fraction p of the input tuples.  

The cardinality of an expression e can be estimated by scaling the 

cardinality obtained by the sample. Note that this estimator is an 

unbiased estimator of the actual cardinality since it is computed 

on a uniform random sample of the rows. Thus, we can control the 

overheads of proactive monitoring by using sampling. Another 

observation is that we only the need the expression cardinalities at 

the end of execution of the query. Since all rows are considered, 

the accuracy of the resulting cardinality is not affected by the 

order in which the rows arrive at the Filter operator. Therefore, 

this technique is unaffected by how the rows are clustered into 

pages on disk. In our experiments (see Section 5.1) we find that 

sampling dramatically reduces the overhead, without significantly 

affecting the accuracy of cardinality. 

3.2 Mechanism for Join Expressions  
Similar to the choice of access methods, the choice of appropriate 

join order and join methods can also have a significant impact on 

query performance. A common reason why an appropriate join 

order or method is not chosen is because the cardinality estimation 

of a join expression is incorrect. Passive monitoring is only able to 

obtain cardinalities of join expressions corresponding to join 

operators in the current plan. However, as Example 2 shows, the 

cardinalities of certain relevant join expressions may not be 

obtainable by passive monitoring.  

Consider the case of a join expression (R R.a=S.b S) which is not 

available from the current query using passive monitoring. (An 

example of this is (Orders  Customer) in Figure 2(a)). In the 



 

discussion below we assume that the selection predicates on both 

R and S have already been applied. Note that if (R R.a=S.b S) is 

an arbitrary join, counting the cardinality of the join requires: (1) 

Creating a frequency table, i.e., count of each distinct value of the 

join attribute of one relation (say R.a) followed by (2) Looking up 

the above frequency table for each row S.b in S. However, for the 

class of key foreign key joins (which occur commonly in real 

world queries and are also reflected in benchmarks such as TPC-

H) we can implement the above operation more efficiently as 

outlined below.  

We leverage the observation that the frequency table for the key 

side relation can be compactly encoded by a bitmap without loss 

of information assuming sufficient number of bits since there can 

be no duplicates in the key column. This makes it possible to 

monitor the join cardinality efficiently as described below. In this 

section we describe a mechanism (that we refer to as bitvector 

counting) for obtaining the cardinality of K-FK join expression 

that is not available via passive monitoring. Observe that for any 

K-FK join, there is always a well-defined key side relation (say R 

in our running example) and a foreign-key side relation (S) that 

can be determined based on the declared key foreign-key 

relationship in the system catalogs. To apply our mechanism two 

properties need to hold in the current plan: (1) The key side 

relation must be scanned prior to the foreign-key side relation in 

the current plan. (2) Both relations must be fully scanned2.  

For any relation, property (2) holds in the following cases: (a) It is 

an input to a Hash Join operator in the current plan. (b) It is the 

outer input to an Index Nested Loops Join. (c) It is an input to a 

Sort operator feeding into a Merge Join. (d) It is an input to a 

Merge Join and early termination of scanning of that input does 

not happen. As we show in our experiments (Section 5.2), for 

queries against the TPC-H database, property (2) holds quite 

often.  

We maintain a bitmap of size n bits initialized to 0 (we discuss 

below how to determine n). Let H be a hash function that can be 

applied to the domain of the join columns R.a and S.b and returns 

an integer between 1 and n. Query execution engines typically 

already support such hash functions e.g., to implement the Hash 

Join method. When R is scanned, for each row in R, we set the bit 

corresponding to H (R.a) to 1. Subsequently in the execution of 

the plan, when relation S is scanned, we maintain a single counter 

c for tracking the join cardinality. For each row of S, we compute 

H (S.a) and lookup the bitmap constructed on R. If the bit is set, 

we increment c. At the end of the scan on S, we output the counter 

c as the cardinality of the expression (R R.a=S.b S).  

Example 4. Obtaining key foreign-key join expression 

cardinalities. Consider the query from Example 2. Suppose the 

optimizer chooses the plan shown in Figure 4 and we want to 

compute the cardinality of (Customer  Orders) from this plan. 

When the Customers table (the key side) is scanned as part of the 

build of a Hash Join, for the rows that satisfy the selection on 

Customers, we construct a bitmap on H (c_custkey). 

Subsequently, when the Orders table is scanned as part of the 

build phase of another Hash Join, for the rows that satisfy the 

selection on Orders, we compute H (o_custkey) and lookup the 

bitmap. If the bit is set to 1, we increment the counter.  

                                                                 
2 Note that the scan of a covering index is also sufficient. 

Observe that if n ≥ |R| (note that R is relation obtained after 

selections have been applied) and the hash function H produces 

no collisions, then C is the exact cardinality of the join expression. 

If n  |R|, then C is an upper bound on the actual join cardinality. 

If |R| is already known exactly, then n can be set to |R| (or higher 

to reduce chance of collisions). This can happen if the cardinality 

of R is already available in the feedback cache from a previous 

execution of the query. Alternatively if cardinality of R is not 

available in the feedback cache, and R is an expression obtained 

by applying selections on a base table T (e.g., as in Example 4 on 

the base table Customers), then n can conservatively be set to |T| 

(i.e., |Customers| in the example). Note that even when |T| = 10 

million rows, the memory requirement for the bitmap is modest 

(only ~1.25MB). In the general case, when R is itself a K-FK join 

and its cardinality is not available from the feedback cache, we set 

n to the cardinality of the FK side relation. For example, if R = 

(Customer  Orders), then we set n = |Orders|. As we show in 

our experiments (Section 5.2.3) bitvector counting is effective 

even with a modest bitvector size (~1MB),  
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Example 5. Reducing overheads of hashing. Observe that in 

Figure 4, since the join column of the expression (Customer  
Orders) is c_custkey, which is the same as the join column of the 

Hash Join where the bitmap is constructed, we can avoid incurring 

the cost of H (c_custkey) since this is already performed as part 

of the Hash Join. However the cost of H (o_custkey) during the 

scan of Orders cannot be avoided since the join attribute of the 

current join is different, i.e., o_orderkey. Now consider a different 

execution plan for the same query shown in Figure 5. Suppose we 

want to obtain the cardinality for the key foreign-key expression 

(Orders  Lineitem). This can be achieved as shown in the 

figure. In this case note that the cost of H (o_orderkey) cannot be 

avoided, but the cost of H (l_orderkey) can be avoided during the 

scan of Lineitem.  

Our overhead experiments in Section 5.1 indicate that bitvector 

counting incurs low overhead (around 2%) compared to normal 

query execution. We also note that this mechanism can be used to 

obtain multiple join cardinalities from a given plan as long as the 

two properties described earlier are satisfied.  

Figure 4. Obtaining a key foreign-key join expression 

using the bitvector counting mechanism. 

 

 



 

Finally, this mechanism can be viewed as an adaptation of the 

bitvector filtering technique used in the context of parallel 

database systems (e.g., [14]). The key differences are: (1) Unlike 

bitvector filtering where the bitmap is always constructed on the 

join attribute of the current join operator, we may need to 

construct the bitmap on a join attribute for a different join 

expression. For example, in Figure 5 the bitmap is constructed on 

o_orderkey whereas the current join column is o_custkey. (2) 

Bitvector filtering is used to avoid reducing data shipping across 

nodes in a parallel system, whereas we use the bitvector to count 

the number of rows in a join expression. (3) Unlike bitvector 

filtering, as Figures 4 and 5 show, we may “build” a bitvector 

during a probe phase of a join and “probe” the bitvector during the 

build phase! 
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4. PLAN MODIFICATION  
In our framework (described in Figure 3) plan modification occurs 

as part of query optimization. In a typical usage scenario the DBA 

explicitly specifies an overhead threshold that he/she is willing to 

tolerate for obtaining additional cardinality information. Recall 

that the set of relevant expressions is the set of groups that 

correspond to relational expressions in the memo for which 

accurate cardinality information has not been obtained. Note that 

this is more restrictive than the pure syntactic definition of all sub-

expression of a query. For example, the memo may not generate 

cross-products. The optimizer is allowed to modify the current 

plan P in order to obtain relevant expression cardinalities as long 

as the optimizer estimated cost of the new plan (P) does not 

exceed the cost of the current plan by more than t%. 

Plan modification has the following key challenges. First given an 

expression e and the plan P, we need the ability to quantify the 

cost of modifying P to obtain cardinality of e, denoted as C(e, P). 

We discuss this in Section 4.1. Second, for a query referencing 

many tables and predicates, there can be a large number of 

relevant expressions. Thus the optimizer must be able to 

differentiate the relative “importance” of these expressions in 

order to judiciously exploit the available budget for proactive 

monitoring. We discuss alternative approaches for determining 

importance of an expression e (denoted by B(e)) in Section 4.2. 

Finally, we describe the plan modification algorithm in Section 

4.3.  A key design consideration is that the techniques must be 

lightweight so as to not increase the query optimization time 

significantly. 

4.1 Costing Plan Modification 
We briefly outline how to compute C(e, P), the cost of modifying 

the plan P to obtain an expression e. Our goal is to draw attention 

to the parameters that affect the cost model. We omit details about 

the exact functions used and their calibration etc. First if e is an 

expression that corresponds to an existing operator in P, then C(e, 

P) is simply the cost of counting the number of rows output by 

that operator (same as cost of passive monitoring). For single-

table expressions (on table T) obtained by using the technique of 

avoiding predicate short-circuiting (Section 3.1.3), C(e, P) takes 

the form (|T|  f  p), where f is the sampling fraction used 

(Section 3.1.5), and p is the cost of evaluating the predicate. Note 

that the optimizer already has cost functions for determining p. 

For Index Seek plans where the expression is obtained by adding 

an additional intersection (Section 3.1.4), we use the optimizer‟s 

cost model to cost the additional intersection. For a K-FK join 

expression on (R  S) that can be obtained using bitvector 

counting, C(e, P) is of the form (|R|  h + |S|  l) where h is the 

cost of hashing the join attribute and l is the cost of looking up a 

bitmap. Once again h and l can be obtained by adapting cost 

functions already present in the query optimizer. Finally, if e 

cannot be obtained from P using any of the above mechanisms, 

then the cost is . 

4.2 Identifying Important Expressions 
Intuitively an expression is important if obtaining accurate 

cardinality for the expression can significantly improve quality of 

the current plan. However, this definition of importance cannot be 

directly implemented since it requires obtaining the accurate 

cardinality for an expression in the first place! Recall that plan 

modification happens as part of query optimization. Therefore it is 

critical that the techniques used for identifying importance of 

expressions are lightweight and simple to implement. We note 

that the MNSA technique proposed in [10] is too heavy-weight for 

our purpose, and the sensitivity analysis techniques discussed in 

[15] is focused only on single-table expressions. Therefore, we 

focus on low overhead but intuitive measures for ranking 

expressions by importance. We note however that these 

approaches do not preclude an offline process which can carefully 

analyze a pre-specified workload of queries more thoroughly and 

prune out irrelevant expressions (e.g. using sensitivity analysis). 

Such an offline process can indeed be useful and can be used to 

seed a set of "interesting" expression cardinalities to obtain using 

the mechanisms suggested in this paper. This is an area of future 

work 

As stated previously, we denote the importance of an expression e 

by B(e). Intuitively, we view the importance measure B(e) as an 

indicator of the “benefit” obtained by using the accurate 

cardinality of that expression. Below we present two alternatives 

for estimating B(e). These two techniques are both lightweight 

and simple to integrate into the optimizer. In our experiments 

(Section 5), we find that both these techniques are effective in 

improving plan quality when compared to passive monitoring 

even when using a small overhead threshold. While these initial 

results are encouraging, we note that this is an important problem 

and we expect to further refine these techniques as part of future 

work.    

4.2.1 ASSUM:  Number of Assumptions 
This measure returns a count of the number of assumptions the 

optimizer must make in order to estimate the cardinality of the 

expression. These include independence assumptions among 

Figure 5. Obtaining (Orders  Lineitem) from a plan 

using bitvector counting. 

 

 



 

predicates, containment assumptions for a join, uniformity 

assumption when interpolating the cardinality within a bucket in 

the histogram. ASSUM uses a similar intuition to the nInd 

measure used in [8] for choosing among different ways of 

estimating the cardinality of an expression using existing statistics 

on views. The rationale is that the optimizer‟s estimation errors 

increase with the number of assumptions. Note that this measure 

can be easily computed for each group as it is derived in the 

memo [17].  

Example 6.  We illustrate the ASSUM measure using the 

example query from Example 2:  

SELECT * FROM Customer, Orders, Lineitem, Part  

WHERE l_orderkey = o_orderkey and c_custkey = o_custkey and 

l_partkey = p_partkey and l_shipdate > '1995-06-01' and 

o_orderpriority = '5-LOW' and c_mktsegment = 'MACHINERY' 

Consider the expression e1 that is the entire query. Each table 

(except Part) has one selection condition, and hence there is an 

independence assumption between the selection and the join 

predicate on that table. Similarly for each of the joins, there is one 

containment assumption made by the optimizer. Thus there are 

total of 6 assumptions made by the optimizer. Now consider the 

sub-expression for this query that is e2 = (Orders  Lineitem). 

For this expression the number of assumptions is 3.  

Note that as additional execution feedback becomes available, the 

number of assumptions for an expression can reduce. For 

example, if the accurate cardinality of e2 above is obtained, then 

the number of assumptions in e1 = (Customer  Orders  
Lineitem) is reduced to 2. This is because the optimizer no longer 

needs to make any assumptions regarding the cardinality of 

(Orders  Lineitem). Although the simplest version of the 

ASSUM measure assigns equal weight to all assumptions, it can 

be generalized to have different weights for different kinds of 

assumptions. This allows capturing the relative impact of each 

kind of assumption on the accuracy of the optimizer‟s estimate 

(e.g., independence assumption across predicates typically incurs 

larger error than a uniformity assumption within a histogram 

bucket).  

4.2.2 SPREAD:  Modeling the Estimation 

Uncertainty 
This measure uses the uncertainty in the optimizer‟s estimate as 

the basis for deciding the importance of an expression. For each 

expression we maintain a lower bound (LB) and an upper bound 

(UB) of the cardinality of that expression. The measure of 

importance is the uncertainty of cardinality estimate which we 

define as spread = (UB-LB).  

For single-table expressions, the lower bound is initialized to 0 

and the upper bound to the cardinality of the table. For a K-FK 

join expression, the lower bound is 0 and the upper bound is the 

cardinality of the FK side relation. The key idea is to use feedback 

obtained from execution to refine (i.e., tighten) the upper and 

lower bounds. We illustrate this idea using the example below. 

Example 7.  For the query shown in Example 6, consider the 

expressions e1 = (Lineitem), e2 = (Lineitem  Part) and e3 = 

(Lineitem  Orders). The expressions include all selections on 

the involved tables. Initially, all of these expressions have LB=0, 

and UB=|Lineitem|. Suppose after an execution of the query, we 

obtain the accurate cardinality of (Lineitem), i.e., we know that 

exactly 10,000 rows satisfy the predicate (l_shipdate > „1995-06-

01‟). This execution feedback allows us to refine the UB of e2 and 

e3 to 10,000 since e2 and e3 are K-FK joins where (Lineitem) is 

the FK side relation. Similarly, it is also possible to refine the LB.  

For example, if we obtain the accurate value of an expression e4 = 

(Lineitem  Part  Orders), it can be used as the new LB for 

the expressions e2 and e3.   

The LB and UB counters can be maintained in the memo data 

structure [17] as two new properties of a group. During query 

optimization, when the optimizer propagates cardinality 

information (using the feedback cache) among groups, these 

bounds can be refined using the accurate cardinality information. 

4.3 Algorithm 
Recall that the plan modification procedure takes as input the set 

of relevant expressions E (whose actual cardinality is not already 

available) and the current plan P. Each expression e  E has an 

associated measure of importance B(e) (Section 4.2) and C(e, P) 

that computes the cost of modifying P to obtain e. The goal of the 

plan modification step is to produce a plan P that obtains a set of 

expressions S  E such that Cost(P)/Cost(P) ≤ (1 + t/100), while 

maximizing ∑eS B(e).  

Observe that in our problem, we need to select a subset of the 

expressions in E with maximal ∑eS B(e) such that the set of 

expressions can be obtained without violating the specified 

overhead constraint. However, note that for a set of expressions, 

the B(e) values may not be independent, and thus not additive. For 

example, if we can use the current plan to obtain (R  S), then 

the additional benefit of obtaining (R  S  T) can reduce. 

However tracking such dependencies across expressions can be 

non-trivial. For example, when using the SPREAD measure 

(Section 4.2.2), it is not possible to compute the new benefit 

without obtaining the accurate LB and UB values. For simplicity, 

we assume independence between expressions. Notice that the 

problem is now similar to the 0-1 Knapsack problem where each 

item has a benefit and cost, and we use the well known and 

efficient greedy algorithm. 

 

 

 

 

 

 

 

 

 

 

In Figure 6 we describe the procedure for plan modification. 

Recall that B(e) is the measure of importance of an expression, 

and C(e, P) denotes the cost of obtaining expression e from plan 

P. Starting with the P = P (the current plan), we consider adding 

expressions from E in descending order of B(e)/C(e, P) (Step 2). 

Step 3 enforces the necessary checks to see if the expression e can 

in fact be obtained from P. For example, if e is a K-FK join 

expression, we need to check that in P the key side relation is 

scanned before the FK side relation is scanned (Section 3.2). It 

also verifies that the overhead constraint is not violated by the 

addition of e to P.  

Input: Set of expressions E. Output: Modified plan P. 

1. P = P 

2. For each e  E in decreasing order of  B(e)/C(e,P)  

3.   If e can be obtained from P by an available monitoring 

          mechanism and obtaining e from P does not violate  

          Cost(P) ≤ Cost(P)(1 + t / 100) 

4.       Modify P so that expression e is obtained when P  

              Executes. Update cost of P. 

5. End For 

6. Return P 

 
Figure 6. Procedure for plan modification. 

 



 

Finally, we note that the above procedure only modifies the 

current plan P. In general, we can potentially obtain a larger set of 

relevant expressions if we expand the set of plans considered for 

modification. If the threshold value t% is high enough we can 

potentially execute a plan with a different join order if it helps in 

obtaining important expression cardinalities. For example 

consider the plans shown in Figure 2(a) and 2(b). These could be 

alternative plans in the memo. Suppose the first plan is picked as 

the optimal plan (P). If the second plan is within a cost of t% of P, 

we can potentially leverage it for plan modification. Naturally, it 

is important to make sure that the query optimization overheads 

remain small.  

5. EXPERIMENTS 
We have implemented the techniques described in this paper 

inside the Microsoft SQL Server engine. These include the 

proactive monitoring mechanisms discussed in Section 3 which 

required changes to the predicate evaluator (for obtaining single-

table filter expressions) as well as join operators (for bitvector 

counting to obtain K-FK join expressions). The plan modification 

schemes required changes to the query optimizer as described in 

Section 4.  

The goals of the experiments are: a) To quantify the overheads of 

our proposed proactive monitoring techniques b) To examine the 

utility of plan modification in real and benchmark datasets. All the 

experiments were run on a 2.4GHz, 4-processor machine with 4 

GB RAM. Numbers we report are based on cold runs so as to 

eliminate effects of buffering.  

5.1 Overheads 
There are two sources of overheads in our architecture: (a) Query 

execution time overhead due to proactive monitoring. (b) 

Additional overheads in query optimization due to plan 

modification. We found that (b) was negligible for all queries in 

our experiments. Thus in this section, we focus on (a). In 

particular, we study how the overheads of obtaining additional 

expression cardinalities varies as a function of the number of 

additional cardinalities obtained. We use a synthetically generated 

dataset where we can vary the number of predicates and join 

cardinalities to be obtained in a controlled manner. We generated 

a synthetic relation (R) with 10 million rows and 10 columns (c1 

to c10). Each column has values 1 to 10 million. We used multiple 

copies of the same relation for the join experiments. We present 

experimental results using benchmark and real data sets in 

Sections 5.2 and 5.3. 

5.1.1 Mechanisms for Single-Table Expressions 
There are two factors that contribute to the overhead of proactive 

monitoring for single table expressions. The first is the sampling 

fraction p, i.e., the number of rows on which the proactive 

monitoring mechanisms are evaluated (Section 3.1.5). The second 

is the number of expression cardinalities obtained using proactive 

monitoring from a query (k). Among the techniques outlined in 

Section 3, avoiding predicate short-circuiting incurs the largest 

overhead. We thus report only the overheads of this technique; the 

results are an upper-bound on the overheads incurred by other 

techniques outlined in Section 3.1. We generated different queries 

on table R with varying number of predicates on columns c1 to c8.  

In this experiment we study how the overhead of avoiding 

predicate short-circuiting varies with these two parameters for 

queries where the original plan is Table Scan.  

Figure 7 shows that even when a relatively large sampling fraction 

like 10% is used, and 8 expression cardinalities are obtained using 

proactive monitoring from a given query, the average overhead is 

still no more than around 4%. In fact, for sampling fraction of 1% 

(used in the experiment in Section 5.2), the overheads are below 

1% even when 8 cardinalities are obtained. This expression 

demonstrates that in practice the overheads of proactive 

monitoring for obtaining additional single table expression 

cardinalities can be acceptable. 

 

 

5.1.2 Mechanisms for Join Expressions 
In Section 3.2, we outlined a mechanism for obtaining the 

cardinality of key foreign-key joins using bitvector counting. In 

this section, we evaluate how the overhead of this mechanism 

varies as a function of the number of joins in the query and the 

number of join expressions obtained using proactive monitoring. 

We created multiple copies of the table R (R1 to R6) where 

relations R2 to R6 all have foreign keys referencing different 

columns of relation R1. We generated queries of the form (R1

R2 … Rk) and forced the join order such that relation R1 was 

scanned before any other relation in the plan. The parameter k 

itself was varied from 3 to 6. We measured the overhead of 

obtaining the cardinality of the join expressions (R2 R1), (R3

R1), (Rk R1) etc. using bitvector counting for different values of 

k. In order to measure worst-case overheads, we took care to 

ensure that the special cases as discussed in Example 5 did not 

apply for these queries. 

 

 

Figure 8 shows the overheads of using bitvector counting as a 

function of the pair (number of tables joined in the query, the 

number of expressions obtained). The results indicate that 
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Figure 8.  Overheads of Bitvector Counting. 

 

 



 

bitvector counting can be used to obtain as many as 4 additional 

join expression cardinalities at reasonable overheads (~ 2%).  

5.2 Impact on Plan Quality 
There are two key aspects to the pay-as-you-go framework 

discussed in Section 4: a) the module that evaluates the 

importance of expressions and b) the plan modification 

component that modifies the existing plan to obtain the desired 

expression cardinalities. In this section, we fix the algorithm for 

(a) to ASSUM (Section 4.2.1) and we evaluate the impact of 

additional counters obtained by plan modification using 

appropriate proactive monitoring mechanisms. We discuss the 

tradeoffs between the ASSUM and SPREAD (Section 4.2.2) 

algorithms to identify important expressions in Section 5.3. We 

use a sampling fraction of 1% for the single-table mechanisms 

(Section 3.1.5) for all experiments. 

5.2.1 Experiments on Real World Queries 
We first present experimental results from a real world Sales 

database application. The database size is around 1 GB and the 

query workload consisted of 30 queries, each query consisting of 

between 5 to 8 joins. In this experiment, we compare PASSIVE 

with PROACTIVE (with the threshold value t set to 1%). We use 

the ASSUM algorithm to select the expressions. We set the 

number of iterations to 2 i.e. we run the workload, gather 

feedback information using the appropriate technique and then 

rerun the same workload and measure the improvement in the 

execution times of the query plans. Figure 9 shows the 

improvement in execution time for both PASSIVE and 

PROACTIVE-1% when compared to the original plan. We 

present the results after sorting queries by the improvement of 

PASSIVE. The first point to note is that PASSIVE is sufficient to 

correct suboptimal plan choices for 8 of the queries, while 

PROACTIVE can correct the suboptimal plan choice for 9 

additional queries and thus significantly extend the reach of query 

execution feedback. The regressions (where the improvement is < 

0%) indicate the cases where optimizer can potentially pick a 

“worse” plan even when more accurate cardinalities are available 

(e.g., due to inaccuracies in the cost model itself). 

 

Figure 9.  Passive vs. Proactive on Real World Queries 

5.2.2 Experiments on TPC-H  
We used the modified TPC-H data generator [9] to generate 

skewed data for each column independently with a Zipfian 

distribution with a skew factor of z=1. Note also that the TPC-H 

data has limited correlation across tables. For example 

o_orderdate column from the Orders table is correlated with the 

l_shipdate column from the Lineitem table. However, in order to 

better evaluate the effectiveness of proactive monitoring for join 

mechanisms we introduced a richer set of correlations across 

tables. We added correlations between: a) the c_mktsegment 

column in the Customer table and the o_orderpriority column in 

the Orders table (i.e., orders in a certain market segment have the 

same priority) and b) the p_mfr column in the Parts table and 

l_discount column in the Lineitem table (i.e. certain 

manufacturers offer the same discount rate). We report numbers 

on both the 1GB and the 10 GB version of the TPC-H database. 

The query workload was generated by using 2 templates. One is a 

single-table query on the Lineitem table with predicates on 

l_shipdate, l_commitdate and l_receiptdate and l_discount. The 

other template is a join of 4 relations, Lineitem, Orders, Customer 

and Part. The ranges of selection conditions on the columns 

l_shipdate, l_discount, o_orderdate, o_orderpriority, 

c_mktsegment and p_mfr were varied in these queries by 

generating different ranges chosen at random.  Indexes were built 

on all primary keys, join columns and the date columns of the 

Lineitem table. We used a workload of 100 queries with 50 

queries generated using each template and set the number of 

iterations to 2. 

 

Figure 10.  PROACTIVE-1% (TPC-H 1GB) 

 

Figure 11.  PROACTIVE-5% (TPC-H 1GB) 

In Figure 10, we compare the reduction in execution time of the 

queries using PASSIVE and PROACTIVE (with the overhead 

threshold value set to 1%). We show the relative improvement of 

PROACTIVE when compared to PASSIVE. We present the 

results after sorting queries based on the relative improvement. 

For instance, Figure 10 indicates that for nearly 20% of the 
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queries, PROACTIVE-1% is able to provide an additional 

improvement of nearly 80% when compared to PASSIVE. The 

results indicate that PROACTIVE has the potential to find much 

better plans even with small threshold values (1%). The clustering 

of the results around 80% relative improvement is in contrast to 

the results in Section 5.2.1. This is because in the TPC-H 

database, the Lineitem table is the largest table. The biggest 

savings in performance results when the original plan scans the 

Lineitem table while the improved plan uses an index instead or 

uses Lineitem as an inner of an INL Join. For most of the queries, 

the saving arises due to this fact and hence the relative 

improvement is clustered around 80%. For a threshold value of 

1%, we observed that out of the 18 queries that improved 

significantly 16 were single table queries from template 1 and 2 

were join queries from template 2. 

In Figure 11, we show the results for the case of PROACTIVE 

with the threshold t value set to 5%. The results indicate that with 

an increased threshold value, PROACTIVE is able to improve the 

quality of more plans (in particular PROACTIVE-5% is able to 

correct suboptimal plan choices in 9 additional join queries than 

PROACTIVE-1%). The key difference is due to the increased 

number of join expression cardinalities that can be obtained with a 

higher threshold value.  

We also repeated the above experiments for a 10GB version of the 

TPCH database and found the results were similar. For instance, 

Figure 12 shows the results of the experiment for PASSIVE vs. 

PROACTIVE-1% for the 10GB version. For t=1% we observed 

the actual execution time overheads were also low. In particular 

the average was 0.82% and the maximum was 2.1%.  

 

Figure 12.  PROACTIVE-1% (TPC-H 10GB) 

5.2.3 Sensitivity to Size of Bitvector 
As described in Section 3.2, a key parameter that governs the 

accuracy of the bitvector counting mechanism is the size of the 

bitvector. In the above experiments we used a default setting of 

10MB for the bitvector. To study the sensitivity for the TPC-H 

10GB database, we re-ran the join queries from the above 

experiment where there the plan improved due to availability of 

additional join cardinalities. We varied the bitvector size as 

follows: 100KB, 1 MB and 10MB. For a bitvector size of 100KB, 

we noticed that we obtained the same plan (as with 10MB) for 

only about 20% of the cases. However, we found that with a 

bitvector size of 1MB we obtained the same results for all cases as 

with a size of 10MB. Thus, bitvector counting can be effective 

even with a modest amount of additional memory. Finally, note 

that for proactive monitoring mechanisms for single-table 

expressions there is no additional memory requirement (as 

discussed in Section 3.1.5).  

5.3 Choice of Expressions to Monitor 
In Section 4.2, we presented two methods ASSUM and SPREAD 

for identifying “important” expressions for a query. The 

experiments of Section 5.2 used the ASSUM method. We 

repeated the experiments on the TPC-H database using SPREAD 

instead of ASSUM and found the results were similar. This is 

because for the queries in the above experiment, most of the 

relevant expression cardinalities (that can be obtained via 

proactive monitoring) can be obtained even at a low threshold 

value such as 1%. Therefore, to better understand the tradeoffs 

between the two methods, we carried out a controlled experiment 

in which for each execution of the query, we constrained the 

execution to obtain exactly one expression cardinality as part of 

feedback. In particular, this is the expression with the highest 

importance value B(e) (as determined by that method), among all 

expression whose cardinality has not yet been obtained. We 

measured the number of executions (iterations) of the query 

required to reach the improved plan for each method ASSUM and 

SPREAD.  

We observed that there was no clear winner among the two 

techniques. Consider the query discussed in Example 2. In this 

case, there are about 10 expressions in total and ASSUM can 

obtain the cardinality of the key expression (Customer  Orders) 

in 3 iterations while SPREAD can take as long as 7 iterations to 

get to this expression. This is because SPREAD gives a larger 

weight to the Lineitem table and if the predicates on the Lineitem 

table are not selective, SPREAD can potentially exhaust all 

expressions involving the Lineitem table before choosing 

(Customer  Orders). Likewise, consider a case where the 

important expression required is a sub-expression of a predicate in 

the Lineitem table. In such cases, SPREAD can converge much 

faster (in the first few iterations) than ASSUM which would target 

expressions with a larger number of independence/containment 

assumptions. We intend to study the tradeoffs between these two 

techniques in more detail as part of future work. 

6. RELATED WORK 
Today‟s commercial DBMSs support the ability to monitor query 

execution, e.g., the Query Patroller in IBM DB2, Profiler in 

Microsoft SQL Server, and the Automatic Workload Repository 

in Oracle. The proactive monitoring mechanisms presented in 

Section 3 can be viewed as increasing the space of counters that 

can be obtained using such profiling infrastructure. 

The idea of using execution feedback to correct cardinality 

estimates was introduced in [12]. Previous work in exploiting 

execution feedback can be classified into two main themes. The 

first is concerned with using expression cardinalities derived using 

feedback to correct existing histograms. The notion of self-tuning 

histograms was introduced in [1], and [20] presents a principled 

way of using feedback to refine histograms based on the 

maximum-entropy principle. The second main way of employing 

feedback is to keep a cache of query expression to cardinality 

mappings and to utilize it as a supplement to cardinality estimates 

derived using histograms during query optimization. The LEO 

project [21] is an example of this approach. The work presented in 

this paper can be considered to fall in the latter bucket with the 

key difference being a novel pay-as-you-go framework where the 
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optimizer proactively monitors the plan at low overhead to extend 

the scope of execution feedback. 

There has been a lot of work on in the area of Dynamic Query Re-

Optimization e.g. [5],[18],[19] which uses execution feedback to 

dynamically alter the current execution plan. In contrast to the 

body of work in dynamic re-optimization, our work is primarily 

concerned with obtaining cardinalities from the current execution 

so that future executions of the same (or similar) queries can 

improve the plans. Interestingly, proactive monitoring can also be 

leveraged for dynamic re-optimization. Consider the plan shown 

in Figure 2(a). Observe that if the accurate cardinality of 

(Customer  Orders) were available at the end of the build 

phase on Orders, we could re-optimize the query at that point and 

potentially switch to plan shown in Figure 2(b) that avoids the 

scan of the Lineitem table. It is an interesting area of future work 

to study how proactive monitoring can be leveraged for dynamic 

re-optimization. 

The idea of obtaining relevant expression cardinalities prior to 

query optimization using single table and join synopses has been 

studied in [4]. For a query with many relevant expressions the cost 

of obtaining all cardinalities up-front can be significant. In 

contrast, our pay-as-you-go approach incurs a bounded overhead 

on each query execution. The idea of Query-Specific Statistics 

(JITS) presented in [15] is focused on obtaining statistics of 

relevant single-table expressions. Our mechanisms can also apply 

for K-FK joins (Section 3.2). It is interesting to examine if the 

sensitivity analysis techniques presented in [15] can be extended 

for the case of joins. 

There has been prior work which identifies the need for proactive 

monitoring. The proactive re-optimization technique presented in 

[5] also uses sampling to derive cardinality estimates in order to 

decide whether to re-optimize the query. The difference is that [5] 

uses sampling to quickly compute estimates that can be obtained 

by the current execution plan (i.e., the counters that would be 

obtained by passive monitoring) and does not proactively attempt 

to obtain other counters. Proactive monitoring has been used in 

[11] to obtain feedback for helping accurately estimate the distinct 

page count, another important parameter of the cost model used 

by the optimizer. In contrast, we present comprehensive 

mechanisms for single-table as well as foreign-key joins that are 

tailored for obtaining expression cardinalities. 

7. CONCLUSION 
In this paper, we identify cases where the state-of-the-art approach 

of passive monitoring for obtaining execution feedback is 

inadequate for improving choices by the optimizer. We describe a 

pay-as-you-go framework for execution feedback where each 

query incurs a small overhead for obtaining additional expression 

cardinalities. As demonstrated on real and synthetic queries, our 

low overhead proactive monitoring mechanisms significantly 

extend the reach of execution feedback for correcting optimizer 

errors. Identifying other lightweight proactive monitoring 

mechanisms and exploring alternative techniques for modeling 

importance of an expression are interesting areas of future work.  
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