

A Pay-As-You-Go Framework for Query Execution
Feedback

Surajit Chaudhuri
Microsoft Research
One Microsoft Way

Redmond, WA 98052

surajitc@microsoft.com

Vivek Narasayya
Microsoft Research
One Microsoft Way

Redmond, WA 98052

viveknar@microsoft.com

Ravi Ramamurthy
Microsoft Research
One Microsoft Way

Redmond, WA 98052

ravirama@microsoft.com

ABSTRACT

Past work has suggested that query execution feedback can be

useful in improving the quality of plans by correcting cardinality

estimation errors in the query optimizer. The state-of-the-art

approach for obtaining execution feedback is “passive”

monitoring which records the cardinality of each operator in the

execution plan. We observe that there are many cases where even

after repeated executions of the same query with use of feedback

from passive monitoring, suboptimal choices in the execution plan

cannot be corrected. We present a novel “pay-as-you-go”

framework in which a query potentially incurs a small overhead

on each execution but obtains cardinality information that is not

available with passive monitoring alone. Such a framework can

significantly extend the reach of query execution feedback in

obtaining better plans. We have implemented our techniques in

Microsoft SQL Server, and our evaluation on real world and

synthetic queries suggests that plan quality can improve

significantly compared to passive monitoring even at low

overheads.

1. INTRODUCTION
Using feedback from query execution to improve query plans has

been proposed e.g., [12], [21] where feedback consists of

recording the number of rows produced by each operator in the

execution plan. Such a monitoring approach has low overhead

since it requires no changes to the physical operators besides

counting the number of tuples output by each operator.This

feedback is stored in a feedback cache or warehouse, which is

consulted by the query optimizer in conjunction with database

statistics when optimizing a query. The accurate cardinalities

obtained from feedback can help improve the quality of plans

chosen by the optimizer. Feedback obtained from one query can

be used by the optimizer when optimizing any query. We refer to

this method for obtaining feedback from query execution as

passive monitoring.

Despite the simplicity and low overheads of passive monitoring, a

key question that has not been addressed so far is if the execution

feedback from a given query is useful in improving the execution

plan for a future execution of that query itself. After all, it seems

natural to expect that the database system should be able to learn

more about a query‟s characteristics from its own execution

without having to necessarily rely on execution feedback from

other queries to help “accidentally”. In this paper, we critically

examine this question. One of the key observations of our paper is

that relying only on passive monitoring for gathering feedback

can cause the query execution plan to remain stuck with a

suboptimal plan, regardless of how many times the query

executes. The following example illustrates the limitations of

passive monitoring in the context of access path selection.

Filter

(MarketSegment=’FURNITURE’ and

State=’WA’ and Year=’2007')

Index Scan (I1)

(MarketSegment=

’FURNITURE’)

Index Scan (I2)

(Year=’2007')

RID Intersect

Filter(State=’WA’)

...

Fetch (Sales)

Table Scan (Sales)

...

(a) (b)

Example 1: Consider a table Sales (SalesId, MarketSegment,

State, Year, PaymentType, Amount) with indexes

I1=(MarketSegment) and I2 = (Year), and a query SELECT

SUM(Amount) FROM Sales WHERE State = „WA‟ and

MarketSegment = „FURNITURE‟ and Year = „2007‟. Suppose the

query optimizer picks a Table Scan plan (see Figure 1(a)),

whereas the plan that intersects indexes I1 and I2 and fetches the

qualifying rows from the table (see Figure 1(b)) is actually lower

in execution cost. This can happen for instance, if the predicates

MarketSegment= FURNITURE‟ and Year = „2007‟ are negatively

correlated. After executing the current plan (a Table Scan), using

passive monitoring we only get the cardinality of the expression

(State=‟WA‟ and MarketSegment= FURNITURE‟ and

Year=‟2007‟) from the output of the Filter operator in the plan.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’08, August 24-30, 2008, Auckland, New Zealand.

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Figure 1. Two alternative plans for a query: (a) Table

Scan plan. (b) Index Intersection plan

.

However, a cardinality required to accurately cost the index

intersection plan in this case is the expression (MarketSegment=

FURNITURE‟ and Year = „2007‟), which cannot be obtained via

passive monitoring when executing the Table Scan plan. Thus the

optimizer is unable to correct its error using execution feedback

obtained by passive monitoring.

As we show later in this paper (Section 2.3), in many cases

passive monitoring is also unable to obtain cardinalities of join

expressions whose availability can significantly improve plan

quality. Thus similar to the access methods problem in Example 1,

a plan can also be “stuck” with suboptimal join ordering and join

methods despite use of execution feedback. Intuitively, the reason

why passive monitoring cannot help correct the optimizer‟s

erroneous choices in many cases is because key cardinality

information that is necessary to make the correction cannot be

obtained by only examining the output of operator nodes of the

current plan. Therefore, even if the database administrator (DBA)

or application developer were willing to pay a higher monitoring

overhead during query execution it is not possible to obtain

additional expression cardinalities if we were to limit ourselves to

passive monitoring.

On the other hand, it can be too expensive to collect execution

feedback on all relevant sub-expressions for a given query that

might impact the choice of an execution plan. However, we argue

that there are many more opportunities to extend the benefits of

execution feedback (without paying excessive overheads) if we

are willing to step beyond the confines of passive monitoring. In

this paper, we propose a “pay-as-you-go” framework for

execution feedback in which a query pays a small additional

overhead on each execution so that the plan quality of future

executions of the query (or similar queries) is potentially

improved. We show that such a framework is able to produce

significantly better plans by leveraging execution feedback much

more richly while respecting the limits on monitoring overhead

defined by the DBA at his/her discretion.

A key enabler of our framework is novel low overhead

mechanisms for gathering the necessary additional cardinality

information from a given query execution plan (Section 3). These

mechanisms require modest changes to implementation of

existing operators. We refer to these as proactive monitoring

mechanisms.The second important part of the framework is

extending the optimizer to judiciously leverage additional

cardinality information obtained through proactive monitoring

mechanisms for a query. We refer to this as plan modification

(Section 4). Plan modification enables generation of a modified

plan that ensures collection of the most promising expression

cardinalities by piggybacking on the query execution while

respecting the DBA specified constraint on the overhead.

We note that the feedback obtained using proactive monitoring

can also be used in the same scenarios where feedback from

passive monitoring is used today e.g., for refining histograms

[1][20], creating statistics [2], during query optimization for

improving plans of other queries [21] and manual troubleshooting

of plan quality.

We have implemented our techniques inside the Microsoft SQL

Server engine. Our evaluation (Section 5) shows that: (a)

proactive monitoring mechanisms can be utilized with relatively

low overhead. (b) The use of proactive monitoring (even with low

overhead bounds) results in significant improvement in plan

quality in choice of access methods, join ordering and join

methods when compared to passive monitoring.

2. ARCHITECTURE

2.1 Assumptions
Queries: Queries can be any SELECT statement with the

following restrictions: (a) Selections on a table are a conjunction

of predicates. (b) Joins are key-foreign key (K-FK).

Query optimizer: Query optimizers use a cost model to compare

different execution plans for a given query. A key input to the cost

model is the cardinality of relevant logical sub-expressions1 of the

query. The query optimizer considers a set of expressions for a

query during optimization. For example, the Microsoft SQL

Server optimizer, which is based on the Cascades framework [17],

maintains a memo data structure. Each node in the memo (group)

represents a logical expression. In this paper we assume that the

set of relevant expressions for a query is the set of groups in the

memo that correspond to relational expressions.

2.2 Query Optimization using Passive

Monitoring
As described earlier, passive monitoring functionality in today‟s

DBMSs support the ability to obtain actual cardinalities of

operators in the current execution plan. Note that the cardinalities

that are available using passive monitoring are dependent on the

current plan itself and are often a much smaller subset of all

relevant expressions for the query (we discuss this further in

Section 2.3). The (expression, cardinality) pairs obtained from

execution can be persisted into a feedback cache/warehouse and

used as described below. Passive monitoring typically incurs low

overhead relative to normal query execution since the additional

cost is limited to counting the number of rows output from each

operator.

We assume an architecture (e.g., similar to LEO [21]) where the

query optimizer can leverage execution feedback to improve

accuracy of cardinality estimation. During query optimization,

when the optimizer requires the cardinality of a given expression,

it looks up the feedback cache (by leveraging existing view

matching techniques e.g., [7][16]), and uses the cardinality if

available. Otherwise, the optimizer falls back to its default mode

of estimating the expression cardinality from the available

database statistics. When the query is executed, the cardinalities

obtained by monitoring the execution plan are added to the

feedback cache. Thus in this architecture, the above cycle of

optimizeexecutemonitor can repeat multiple times for any

query, and the execution plan chosen can potentially change based

on the feedback information obtained from the set of queries that

have executed before it.

In any system that exploits execution feedback for query

optimization, there are issues such as maintenance policy for

updates, replacement policy for the feedback cache etc. These

issues, while important, are orthogonal to the focus of this paper

and are not discussed here.

2.3 Limitations of Passive Monitoring
The attractiveness of passive monitoring is that it has low

overhead and is easy to implement, since it only pays the

1 For simplicity, we interchangeably refer to sub-expressions of a

query as expressions.

relatively small cost of counting the number of rows output by the

operator. However, these very characteristics also limit the scope

of passive monitoring. In particular, the cardinality of any relevant

expression for the query that does not correspond to an operator in

the current plan cannot be obtained via passive monitoring. Thus,

even if a DBA were willing to pay a higher overhead (than what

passive monitoring incurs), it is not possible to obtain additional

cardinalities.

A key factor that determines the effectiveness of execution

feedback for improving the plan quality of a query is which

expression cardinalities are available in the feedback cache for the

query optimizer. In Example 1 we presented a case where passive

monitoring is unable to obtain an expression cardinality that can

overcome suboptimal choice of access methods. Below we

describe a second example that illustrates that the cardinalities of

certain relevant join expressions cannot be obtained by today‟s

passive monitoring approach, thus negatively impacting the

opportunity to improve the plan.

Example 2. Consider the following query on the TPC-H schema

involving the join of tables Customer, Orders, Lineitem and Part:

SELECT * FROM Customer, Orders, Lineitem, Part

WHERE l_orderkey = o_orderkey and c_custkey = o_custkey and

l_partkey = p_partkey and l_shipdate > '1995-06-01' and

o_orderpriority = '5-LOW' and c_mktsegment = 'MACHINERY'

Note that all joins in this query are K-FK joins. Suppose the

current execution plan picked by the query optimizer is the one

shown in Figure 2(a). For simplicity we don‟t show the Filter

operators in the figure, and assume that the selection conditions

on each table are applied in the Table Scan operators. Consider

the case when the predicates o_orderpriority = '5-LOW' and

c_mktsegment = 'MACHINERY' are negatively correlated,

thereby resulting in a much smaller cardinality for (Customer
Orders) than estimated by the optimizer. In this case, the plan

shown in Figure 2(b) can be much better since the small

cardinality of (Customer Orders) allows efficient Index

Nested Loops Joins with both Lineitem and Part tables. Observe

that using passive monitoring of the current plan (Figure 2(a)), it

is not possible to obtain the cardinality of the relevant expression

(Customer Orders). Thus it is possible that despite repeated

executions of the same query, the quality of the plan (in particular

the choice of join ordering and join method) may not improve.

Table Scan

(Orders)

Table Scan

(Lineitem)

Table Scan

(Part)
Hash

Join

Hash

Join

Hash

Join

Table Scan

(Customer)

Table Scan

(Customer)

Table Scan

(Orders)

Index Seek

(Lineitem)

Hash

Join

Index Nested

Loops Join

Index Seek

(Part)

(a) (b)

Index Nested

Loops Join

2.4 A Pay-As-You-Go Framework
We propose a “pay-as-you-go” execution feedback framework in

which a query pays a small additional overhead on each execution

so that the plan quality of future executions of the query (or

similar queries) is potentially improved. In our framework, a DBA

can specify a bound on the additional overhead for a query. As

with passive monitoring, in our architecture (see Figure 3), the

optimizer consults the feedback cache during optimization and

uses cardinalities of available relevant expressions to derive a plan

P. However, unlike passive monitoring, in this architecture, the

optimizer is able to influence which cardinalities should be

obtained from the current execution of the query by suitably

modifying the plan P. This additional step is termed Plan

Modification (see Figure 3).

DBMS

Query

Query

Execution

Engine

Plan

P
Plan

Modification

Plan

P’

Results
Feedback

cache

Query Optimizer

Transformation

Engine

Memo

They key contributions of this framework include:

(a) A rich set of proactive monitoring mechanisms that can be

used to obtain additional cardinalities for a range of values of

the overhead bound (Section 3). Thus, if a DBA is willing to

pay a larger overhead, our mechanisms allow the overhead to

be exploited effectively. It is important that these

mechanisms are efficient so that they can be leveraged

appropriately by a DBA.

(b) A novel plan modification step (Section 4) as part of query

optimization that modifies the plan P produced by the

transformation engine [17] to obtain additional cardinalities

using the above proactive monitoring mechanisms. Since

plan modification must be able to identify which expressions

(among the many relevant ones for the query) are

“important” to be obtained, this step is integrated with the

optimizer and uses the memo data structure. We note that the

plan modification step itself needs to be low overhead since

we do not want to significantly increase query optimization

time. Thus our algorithms for identifying important

expressions as well as changing the current plan use intuitive

but lightweight techniques.

In the above framework we model the overhead bound using the

optimizer estimated cost, i.e., the optimizer estimated cost of the

plan P output by plan modification should be no more than t%

higher relative to the optimizer estimated cost of plan P. Of

course, optimizer estimated cost may not always accurately reflect

execution cost. However, like the case of today‟s commercial

physical design tools (see [22] for an overview); we rely on

optimizer estimated cost as a pragmatic alternative to execution

cost. We have prototyped the above framework by modifying

Microsoft SQL Server.

3. MECHANISMS FOR PROACTIVE

MONITORING
In this section, we describe novel mechanisms for obtaining

additional expression cardinalities from the current query‟s

execution that cannot be obtained by passive monitoring alone.

Figure 3. Architecture for query optimization in the

presence of proactive monitoring.

Figure 2. Two different plans for a join query on TPC-H

involving Lineitem, Orders, Part and Customer tables.

.

Notice that we need mechanisms that can be used for a range of

values for the overhead parameter t% (Section 2.4). We present a

spectrum of techniques with varying overheads that can be

leveraged based on the threshold. These mechanisms involve

changes to the server, in particular the predicate evaluator and

query operators. We also discuss efficient implementation of these

mechanisms in this section.

3.1 Mechanisms for Single-Table Expressions
Using the available indexes effectively is an important

responsibility of the query optimizer. In order to determine if an

available index (or an intersection of two available indexes) is

appropriate to use for the query, the optimizer needs to be able to

accurately estimate the cardinality of the predicate (or conjunction

of predicates). Such expressions are single-table expressions, i.e.,

all predicates are on the same table. Thus obtaining accurate

cardinality for single-table expressions can be very important for

improving suboptimal choice of access methods by the query

optimizer. In the discussion below, we assume the current plan

can either be a Table Scan or an Index Seek plan and we are given

an expression (or set of expressions) for which the cardinality

value is required. We use the following query as a running

example to illustrate the different mechanisms.

Example 3. Single table expressions available via passive

monitoring. Consider a query with four predicates on a table: A >

10 and B = 20 and C < 30 and D = 40. Suppose three single

column indexes: IA= (A), IB = (B) and IC = (C) exist on the table.

If the optimizer chooses a Table Scan operator in the current plan,

then only the cardinality corresponding to the expression (A > 10

and B = 20 and C < 30 and D=40) is available via passive

monitoring. If an Index Seek on IA is used to answer the query,

then the cardinalities for the expressions (A > 10) as well as (A >

10 and B = 20 and C < 30 and D=40) are available. On the other

hand, if an Index Intersection plan of indexes IA and IB is used,

then the cardinalities for (A>10), (B=20), (A>10 and B=20) as

well as (A > 10 and B = 20 and C < 30 and D=40) are available.

Note that in the above three plans, cardinalities of expressions

such as (C<30) or (A>10 and B=20 and C < 30) etc. are not

available from execution.

Our basic mechanisms involve modifications to the predicate

evaluator in the database engine. We briefly review the main

components of a predicate evaluator. Consider a conjunction of

atomic predicates. The predicate evaluator: a) Maintains an

ordered list of the atomic predicates. b) Typically resorts to

predicate short-circuiting for efficiency. Thus, in our example, if

the predicates are evaluated in the order (A<10 and B=20 and

C<30 and D=40) for a particular row, if the predicate (A<10)

evaluates to FALSE, then the remaining predicates in the

expression are not evaluated. c) Maintains a single counter to

count the number of rows that satisfy the predicates. During query

evaluation, the predicate evaluator takes as input a tuple and

returns TRUE/FALSE. The overheads incurred in predicate

evaluation include the cost of evaluating the predicate and the cost

of maintaining the counter.

In Sections 3.1.1 to 3.1.3, we use a Table Scan plan to illustrate

our mechanisms. We discuss index plans in Section 3.1.4. Finally,

we note that for mechanisms presented in Sections 3.1.1 to 3.1.3,

sampling techniques can be used to reduce the monitoring

overheads. We discuss how sampling techniques can be leveraged

in Section 3.1.5.

3.1.1 Prefix Counting
Consider the predicate: (A<10 and B =20 and C<30 and D=40) in

Example 3. Let the query plan be a Table Scan operator and

assume that the predicate evaluator evaluates the predicate in the

left to right order. With passive monitoring we can obtain only the

cardinality of (A<10 and B =20 and C<30 and D=40).

Observe that it is possible to obtain the cardinality of each leading

prefix of the predicate list with only the small additional overhead

of counting. We add one additional counter for each leading

prefix whose cardinality we wish to obtain (in this example,

(A<10) and (A<10 and B=20) etc.). Each time a prefix of the

predicates is satisfied for a row we increment the corresponding

counter. The limitation of this technique is that it can only obtain

a counter if it is a prefix of the predicate list in the Filter operator.

For example, it is not possible to obtain the cardinalities for

expressions such as (A<10 and C<30) or (B=20 and C<30) using

prefix counting.

3.1.2 Predicate Reordering
Predicate reordering evaluates the predicates in a different order

than the one chosen by the optimizer. In the example query above,

suppose we want to obtain cardinality for the expressions (B=20)

and (B=20 and C<30). This can be achieved using predicate

reordering as follows: the predicates (B=20 and C<30 and A<10

and D=40) are evaluated in the left to right order and prefix

counting (Section 3.1.1) is applied. Thus the cardinality of prefix

expressions, namely (B>20) and (B>20 and C=30) also become

available. Observe that predicate reordering is more powerful than

prefix counting since it allows obtaining any single expression

cardinality by suitably reordering the predicates.

The overhead incurred by predicate reordering is due to the fact

that the cost of evaluating the predicates can be higher than if the

original ordering was preserved. In the above example, if (A <10)

is the most selective predicate and if the predicates (B =20) and (C

< 30) are not selective, then the new predicate ordering would not

be able to exploit predicate short-circuiting as effectively as the

original ordering which used (A < 10) as the first conjunct.

Consequently the new reordering would incur more overhead.

3.1.3 Avoiding Predicate Short-Circuiting
As mentioned earlier, the predicate evaluator typically resorts to

predicate short-circuiting for efficiency. However, if we can

modify the predicate evaluator code to bypass the short-circuiting

optimization, then a much larger set of expression cardinalities

can be obtained. In our running example, assume the order of

evaluation of predicates is (A<10 and B=20 and C<30 and D=40).

Since (A<10) is always evaluated for every row, the cardinality of

that expression can be obtained accurately. If we bypass predicate

short-circuiting for the first predicate only, then note that the

cardinalities for (A<10) as well as (B=20) become available. This

implies that the cardinality of (A<10 and B=20) can also be

derived. In general, if we bypass predicate short-circuiting for the

first k-1 predicates, the cardinality of any subset of the first k

predicates can be computed. Suppose we need to obtain the

cardinalities of both (A<10 and C<30) and (B=20 and C<30), if

we avoid predicate short-circuiting, we can determine the truth

value of all the individual predicates (i.e. (A<10), (B=20) and

(C<30)) from which the truth value of any subset of predicates

can be computed.

Note that the mechanism of avoiding predicate short-circuiting

can be used in conjunction with predicate reordering. Consider the

predicate (A<10 and B=20 and C<30 and D=40 and E<50) and

assume that the original ordering of the predicates is as above, i.e.,

left to right. If we require the cardinalities (A<10 and E<50) and

(B <20 and E<50), we can reorder and evaluate the predicates

using the order (A<10 and B =20 and E<50 and C<30 and D=40)

and disable predicate short-circuiting for only the first two

predicates. In general, to obtain the cardinalities for a given set of

expressions, we need to find a reordering with the smallest prefix

that covers all the required attributes and disable predicate short-

circuiting for the prefix.

Finally, we note that the predicate expression can include

expensive predicates (such as those that apply user defined

functions). Since we only compute cardinalities of expressions

that can affect choice of access methods, we typically avoid short-

circuiting for only the simpler predicates.

3.1.4 Index Seek Plans
In Sections 3.1.1 to 3.1.3 we considered mechanisms for proactive

monitoring for Table Scan plans. We now consider the case when

the plan is an Index Seek plan (the techniques naturally extend to

the case of index intersection plans).

Referring to Example 3, let the current plan be an Index Seek on

the index IA (corresponding to the predicate A < 10) where the

remaining predicates are evaluated as residual predicates after the

tuples are fetched from the table. All the previously described

mechanisms (Sections 3.1.1-3.1.3) namely prefix counting,

predicate reordering, avoiding predicate short-circuiting are also

applicable in the case of Index Seek plans, but in a more limited

fashion. Since the tuples fetched from the table are only those

that satisfy the predicate (A < 10), we can only get cardinalities of

any expressions of the form (A < 10) & (p) where p is any

predicate in the query defined on the columns of the Table T. For

instance, if the residual predicates are evaluated in the order

(B=20 and C<30 and D=40), the expression (A < 10 and B = 20)

can be obtained using prefix counting. However, the cardinality

of the expression (B=20 and C < 30) cannot be obtained using any

of the previously described mechanisms.

Consider the case when the requested expression is (B=20 and

C<30) (this expression may be relevant because there is an index

IBC in the database), then it is possible to get the additional

cardinality by using index intersections. For instance, suppose the

current plan is Index Seek on IA; if we modify the plan to an Index

Intersection plan between the indexes IA and IBC, then note that

the cardinality of (B=20 and C<30) can be obtained when the

modified plan is executed. Of course, adding an index intersection

incurs an overhead relative to the current plan. The overhead is

the cost of scanning the range in the index IBC as well as the cost

of intersecting the RIDs satisfying (A<10) with the RIDs

satisfying (B=20 and C<30). In general, this cost can be non-

trivial particularly if the number of rows satisfying (B=20 and

C<30) is large. However, note that by adding an intersection, the

number of fetches from the table cannot increase (and in fact may

decrease significantly). Thus index intersection can serve as a

useful tool for obtaining additional cardinalities when the original

plan is an index seek plan but should be used only when the

overhead bound is large enough (see Section 4 for plan

modification technique that ensure this).

3.1.5 Reducing Monitoring Overheads using

Sampling
The problem of counting the cardinality of an expression such as

(A<10 and B=20) can be done accurately using uniform random

sampling. The key idea is that we use the proposed mechanisms

(prefix counting, predicate reordering etc.) only for a sample of

the input tuples and scale the cardinality obtained using the

sample to derive an estimate of the cardinality of the expression.

We note that Bernoulli sampling [13] can be used where each row

is given equal likelihood of being chosen independently from any

other row. Thus, if the total number of rows in the input to the

Filter is N, then the expected number of rows for which predicate

short-circuiting is disabled is N.p rows. Bernoulli sampling also

has the advantage that it does not require us to buffer the rows.

Thus, this sampling method incurs no additional memory

overhead.

Consider the expressions (B=20) and (B=20 and C<30). In

Section 3.1.2, we explained how reordering the predicate in the

order (B=20 and C<30 and A<10 and D=40) would enable

obtaining the cardinality of these expressions. We can leverage

sampling for predicate reordering in the following fashion. For a

randomly selected fraction p of the rows, the predicates are

evaluated in the order (B=20 and C<30 and A<10 and D=40). For

the remaining (1-p) fraction of the rows the predicates are

evaluated in the originally chosen order (A<10 and B =20 and

C<30 and D=40). By applying prefix counting for the fraction p

of the rows it is possible to estimate the cardinality of expressions

such as (B>20) and (B>20 and C=30). This can be implemented

by keeping track of both predicate orderings in the evaluator and

using Bernoulli sampling to decide which evaluator to use for an

input tuple. Similarly, sampling can be used for other mechanisms

discussed (such as avoiding predicate short-circuiting) by

applying the mechanisms for only a fraction p of the input tuples.

The cardinality of an expression e can be estimated by scaling the

cardinality obtained by the sample. Note that this estimator is an

unbiased estimator of the actual cardinality since it is computed

on a uniform random sample of the rows. Thus, we can control the

overheads of proactive monitoring by using sampling. Another

observation is that we only the need the expression cardinalities at

the end of execution of the query. Since all rows are considered,

the accuracy of the resulting cardinality is not affected by the

order in which the rows arrive at the Filter operator. Therefore,

this technique is unaffected by how the rows are clustered into

pages on disk. In our experiments (see Section 5.1) we find that

sampling dramatically reduces the overhead, without significantly

affecting the accuracy of cardinality.

3.2 Mechanism for Join Expressions
Similar to the choice of access methods, the choice of appropriate

join order and join methods can also have a significant impact on

query performance. A common reason why an appropriate join

order or method is not chosen is because the cardinality estimation

of a join expression is incorrect. Passive monitoring is only able to

obtain cardinalities of join expressions corresponding to join

operators in the current plan. However, as Example 2 shows, the

cardinalities of certain relevant join expressions may not be

obtainable by passive monitoring.

Consider the case of a join expression (R R.a=S.b S) which is not

available from the current query using passive monitoring. (An

example of this is (Orders Customer) in Figure 2(a)). In the

discussion below we assume that the selection predicates on both

R and S have already been applied. Note that if (R R.a=S.b S) is

an arbitrary join, counting the cardinality of the join requires: (1)

Creating a frequency table, i.e., count of each distinct value of the

join attribute of one relation (say R.a) followed by (2) Looking up

the above frequency table for each row S.b in S. However, for the

class of key foreign key joins (which occur commonly in real

world queries and are also reflected in benchmarks such as TPC-

H) we can implement the above operation more efficiently as

outlined below.

We leverage the observation that the frequency table for the key

side relation can be compactly encoded by a bitmap without loss

of information assuming sufficient number of bits since there can

be no duplicates in the key column. This makes it possible to

monitor the join cardinality efficiently as described below. In this

section we describe a mechanism (that we refer to as bitvector

counting) for obtaining the cardinality of K-FK join expression

that is not available via passive monitoring. Observe that for any

K-FK join, there is always a well-defined key side relation (say R

in our running example) and a foreign-key side relation (S) that

can be determined based on the declared key foreign-key

relationship in the system catalogs. To apply our mechanism two

properties need to hold in the current plan: (1) The key side

relation must be scanned prior to the foreign-key side relation in

the current plan. (2) Both relations must be fully scanned2.

For any relation, property (2) holds in the following cases: (a) It is

an input to a Hash Join operator in the current plan. (b) It is the

outer input to an Index Nested Loops Join. (c) It is an input to a

Sort operator feeding into a Merge Join. (d) It is an input to a

Merge Join and early termination of scanning of that input does

not happen. As we show in our experiments (Section 5.2), for

queries against the TPC-H database, property (2) holds quite

often.

We maintain a bitmap of size n bits initialized to 0 (we discuss

below how to determine n). Let H be a hash function that can be

applied to the domain of the join columns R.a and S.b and returns

an integer between 1 and n. Query execution engines typically

already support such hash functions e.g., to implement the Hash

Join method. When R is scanned, for each row in R, we set the bit

corresponding to H (R.a) to 1. Subsequently in the execution of

the plan, when relation S is scanned, we maintain a single counter

c for tracking the join cardinality. For each row of S, we compute

H (S.a) and lookup the bitmap constructed on R. If the bit is set,

we increment c. At the end of the scan on S, we output the counter

c as the cardinality of the expression (R R.a=S.b S).

Example 4. Obtaining key foreign-key join expression

cardinalities. Consider the query from Example 2. Suppose the

optimizer chooses the plan shown in Figure 4 and we want to

compute the cardinality of (Customer Orders) from this plan.

When the Customers table (the key side) is scanned as part of the

build of a Hash Join, for the rows that satisfy the selection on

Customers, we construct a bitmap on H (c_custkey).

Subsequently, when the Orders table is scanned as part of the

build phase of another Hash Join, for the rows that satisfy the

selection on Orders, we compute H (o_custkey) and lookup the

bitmap. If the bit is set to 1, we increment the counter.

2 Note that the scan of a covering index is also sufficient.

Observe that if n ≥ |R| (note that R is relation obtained after

selections have been applied) and the hash function H produces

no collisions, then C is the exact cardinality of the join expression.

If n  |R|, then C is an upper bound on the actual join cardinality.

If |R| is already known exactly, then n can be set to |R| (or higher

to reduce chance of collisions). This can happen if the cardinality

of R is already available in the feedback cache from a previous

execution of the query. Alternatively if cardinality of R is not

available in the feedback cache, and R is an expression obtained

by applying selections on a base table T (e.g., as in Example 4 on

the base table Customers), then n can conservatively be set to |T|

(i.e., |Customers| in the example). Note that even when |T| = 10

million rows, the memory requirement for the bitmap is modest

(only ~1.25MB). In the general case, when R is itself a K-FK join

and its cardinality is not available from the feedback cache, we set

n to the cardinality of the FK side relation. For example, if R =

(Customer Orders), then we set n = |Orders|. As we show in

our experiments (Section 5.2.3) bitvector counting is effective

even with a modest bitvector size (~1MB),

Table Scan

(Orders)
Table Scan

(Lineitem)

Table Scan

(Part)
Hash

Join

Hash

Join

Hash

Join

Table Scan

(Customer)

During build phase,

count number of times

H(o_custkey) maps

to 1 in bitmap

During build phase

construct bitmap on

H(c_custkey)

Example 5. Reducing overheads of hashing. Observe that in

Figure 4, since the join column of the expression (Customer
Orders) is c_custkey, which is the same as the join column of the

Hash Join where the bitmap is constructed, we can avoid incurring

the cost of H (c_custkey) since this is already performed as part

of the Hash Join. However the cost of H (o_custkey) during the

scan of Orders cannot be avoided since the join attribute of the

current join is different, i.e., o_orderkey. Now consider a different

execution plan for the same query shown in Figure 5. Suppose we

want to obtain the cardinality for the key foreign-key expression

(Orders Lineitem). This can be achieved as shown in the

figure. In this case note that the cost of H (o_orderkey) cannot be

avoided, but the cost of H (l_orderkey) can be avoided during the

scan of Lineitem.

Our overhead experiments in Section 5.1 indicate that bitvector

counting incurs low overhead (around 2%) compared to normal

query execution. We also note that this mechanism can be used to

obtain multiple join cardinalities from a given plan as long as the

two properties described earlier are satisfied.

Figure 4. Obtaining a key foreign-key join expression

using the bitvector counting mechanism.

Finally, this mechanism can be viewed as an adaptation of the

bitvector filtering technique used in the context of parallel

database systems (e.g., [14]). The key differences are: (1) Unlike

bitvector filtering where the bitmap is always constructed on the

join attribute of the current join operator, we may need to

construct the bitmap on a join attribute for a different join

expression. For example, in Figure 5 the bitmap is constructed on

o_orderkey whereas the current join column is o_custkey. (2)

Bitvector filtering is used to avoid reducing data shipping across

nodes in a parallel system, whereas we use the bitvector to count

the number of rows in a join expression. (3) Unlike bitvector

filtering, as Figures 4 and 5 show, we may “build” a bitvector

during a probe phase of a join and “probe” the bitvector during the

build phase!

Table Scan

(Customer)
Table Scan

(Orders)

Table Scan

(Lineitem)

Hash

Join

Hash

Join

Hash

Join

Table Scan

(Part)

During probe phase,

count number of times

H(l_orderkey) maps

to 1 in bitmap

During probe phase,

construct a bitmap

on H(o_orderkey)

4. PLAN MODIFICATION
In our framework (described in Figure 3) plan modification occurs

as part of query optimization. In a typical usage scenario the DBA

explicitly specifies an overhead threshold that he/she is willing to

tolerate for obtaining additional cardinality information. Recall

that the set of relevant expressions is the set of groups that

correspond to relational expressions in the memo for which

accurate cardinality information has not been obtained. Note that

this is more restrictive than the pure syntactic definition of all sub-

expression of a query. For example, the memo may not generate

cross-products. The optimizer is allowed to modify the current

plan P in order to obtain relevant expression cardinalities as long

as the optimizer estimated cost of the new plan (P) does not

exceed the cost of the current plan by more than t%.

Plan modification has the following key challenges. First given an

expression e and the plan P, we need the ability to quantify the

cost of modifying P to obtain cardinality of e, denoted as C(e, P).

We discuss this in Section 4.1. Second, for a query referencing

many tables and predicates, there can be a large number of

relevant expressions. Thus the optimizer must be able to

differentiate the relative “importance” of these expressions in

order to judiciously exploit the available budget for proactive

monitoring. We discuss alternative approaches for determining

importance of an expression e (denoted by B(e)) in Section 4.2.

Finally, we describe the plan modification algorithm in Section

4.3. A key design consideration is that the techniques must be

lightweight so as to not increase the query optimization time

significantly.

4.1 Costing Plan Modification
We briefly outline how to compute C(e, P), the cost of modifying

the plan P to obtain an expression e. Our goal is to draw attention

to the parameters that affect the cost model. We omit details about

the exact functions used and their calibration etc. First if e is an

expression that corresponds to an existing operator in P, then C(e,

P) is simply the cost of counting the number of rows output by

that operator (same as cost of passive monitoring). For single-

table expressions (on table T) obtained by using the technique of

avoiding predicate short-circuiting (Section 3.1.3), C(e, P) takes

the form (|T|  f  p), where f is the sampling fraction used

(Section 3.1.5), and p is the cost of evaluating the predicate. Note

that the optimizer already has cost functions for determining p.

For Index Seek plans where the expression is obtained by adding

an additional intersection (Section 3.1.4), we use the optimizer‟s

cost model to cost the additional intersection. For a K-FK join

expression on (R S) that can be obtained using bitvector

counting, C(e, P) is of the form (|R|  h + |S|  l) where h is the

cost of hashing the join attribute and l is the cost of looking up a

bitmap. Once again h and l can be obtained by adapting cost

functions already present in the query optimizer. Finally, if e

cannot be obtained from P using any of the above mechanisms,

then the cost is .

4.2 Identifying Important Expressions
Intuitively an expression is important if obtaining accurate

cardinality for the expression can significantly improve quality of

the current plan. However, this definition of importance cannot be

directly implemented since it requires obtaining the accurate

cardinality for an expression in the first place! Recall that plan

modification happens as part of query optimization. Therefore it is

critical that the techniques used for identifying importance of

expressions are lightweight and simple to implement. We note

that the MNSA technique proposed in [10] is too heavy-weight for

our purpose, and the sensitivity analysis techniques discussed in

[15] is focused only on single-table expressions. Therefore, we

focus on low overhead but intuitive measures for ranking

expressions by importance. We note however that these

approaches do not preclude an offline process which can carefully

analyze a pre-specified workload of queries more thoroughly and

prune out irrelevant expressions (e.g. using sensitivity analysis).

Such an offline process can indeed be useful and can be used to

seed a set of "interesting" expression cardinalities to obtain using

the mechanisms suggested in this paper. This is an area of future

work

As stated previously, we denote the importance of an expression e

by B(e). Intuitively, we view the importance measure B(e) as an

indicator of the “benefit” obtained by using the accurate

cardinality of that expression. Below we present two alternatives

for estimating B(e). These two techniques are both lightweight

and simple to integrate into the optimizer. In our experiments

(Section 5), we find that both these techniques are effective in

improving plan quality when compared to passive monitoring

even when using a small overhead threshold. While these initial

results are encouraging, we note that this is an important problem

and we expect to further refine these techniques as part of future

work.

4.2.1 ASSUM: Number of Assumptions
This measure returns a count of the number of assumptions the

optimizer must make in order to estimate the cardinality of the

expression. These include independence assumptions among

Figure 5. Obtaining (Orders Lineitem) from a plan

using bitvector counting.

predicates, containment assumptions for a join, uniformity

assumption when interpolating the cardinality within a bucket in

the histogram. ASSUM uses a similar intuition to the nInd

measure used in [8] for choosing among different ways of

estimating the cardinality of an expression using existing statistics

on views. The rationale is that the optimizer‟s estimation errors

increase with the number of assumptions. Note that this measure

can be easily computed for each group as it is derived in the

memo [17].

Example 6. We illustrate the ASSUM measure using the

example query from Example 2:

SELECT * FROM Customer, Orders, Lineitem, Part

WHERE l_orderkey = o_orderkey and c_custkey = o_custkey and

l_partkey = p_partkey and l_shipdate > '1995-06-01' and

o_orderpriority = '5-LOW' and c_mktsegment = 'MACHINERY'

Consider the expression e1 that is the entire query. Each table

(except Part) has one selection condition, and hence there is an

independence assumption between the selection and the join

predicate on that table. Similarly for each of the joins, there is one

containment assumption made by the optimizer. Thus there are

total of 6 assumptions made by the optimizer. Now consider the

sub-expression for this query that is e2 = (Orders Lineitem).

For this expression the number of assumptions is 3.

Note that as additional execution feedback becomes available, the

number of assumptions for an expression can reduce. For

example, if the accurate cardinality of e2 above is obtained, then

the number of assumptions in e1 = (Customer Orders
Lineitem) is reduced to 2. This is because the optimizer no longer

needs to make any assumptions regarding the cardinality of

(Orders Lineitem). Although the simplest version of the

ASSUM measure assigns equal weight to all assumptions, it can

be generalized to have different weights for different kinds of

assumptions. This allows capturing the relative impact of each

kind of assumption on the accuracy of the optimizer‟s estimate

(e.g., independence assumption across predicates typically incurs

larger error than a uniformity assumption within a histogram

bucket).

4.2.2 SPREAD: Modeling the Estimation

Uncertainty
This measure uses the uncertainty in the optimizer‟s estimate as

the basis for deciding the importance of an expression. For each

expression we maintain a lower bound (LB) and an upper bound

(UB) of the cardinality of that expression. The measure of

importance is the uncertainty of cardinality estimate which we

define as spread = (UB-LB).

For single-table expressions, the lower bound is initialized to 0

and the upper bound to the cardinality of the table. For a K-FK

join expression, the lower bound is 0 and the upper bound is the

cardinality of the FK side relation. The key idea is to use feedback

obtained from execution to refine (i.e., tighten) the upper and

lower bounds. We illustrate this idea using the example below.

Example 7. For the query shown in Example 6, consider the

expressions e1 = (Lineitem), e2 = (Lineitem Part) and e3 =

(Lineitem Orders). The expressions include all selections on

the involved tables. Initially, all of these expressions have LB=0,

and UB=|Lineitem|. Suppose after an execution of the query, we

obtain the accurate cardinality of (Lineitem), i.e., we know that

exactly 10,000 rows satisfy the predicate (l_shipdate > „1995-06-

01‟). This execution feedback allows us to refine the UB of e2 and

e3 to 10,000 since e2 and e3 are K-FK joins where (Lineitem) is

the FK side relation. Similarly, it is also possible to refine the LB.

For example, if we obtain the accurate value of an expression e4 =

(Lineitem Part Orders), it can be used as the new LB for

the expressions e2 and e3.

The LB and UB counters can be maintained in the memo data

structure [17] as two new properties of a group. During query

optimization, when the optimizer propagates cardinality

information (using the feedback cache) among groups, these

bounds can be refined using the accurate cardinality information.

4.3 Algorithm
Recall that the plan modification procedure takes as input the set

of relevant expressions E (whose actual cardinality is not already

available) and the current plan P. Each expression e  E has an

associated measure of importance B(e) (Section 4.2) and C(e, P)

that computes the cost of modifying P to obtain e. The goal of the

plan modification step is to produce a plan P that obtains a set of

expressions S  E such that Cost(P)/Cost(P) ≤ (1 + t/100), while

maximizing ∑eS B(e).

Observe that in our problem, we need to select a subset of the

expressions in E with maximal ∑eS B(e) such that the set of

expressions can be obtained without violating the specified

overhead constraint. However, note that for a set of expressions,

the B(e) values may not be independent, and thus not additive. For

example, if we can use the current plan to obtain (R S), then

the additional benefit of obtaining (R S T) can reduce.

However tracking such dependencies across expressions can be

non-trivial. For example, when using the SPREAD measure

(Section 4.2.2), it is not possible to compute the new benefit

without obtaining the accurate LB and UB values. For simplicity,

we assume independence between expressions. Notice that the

problem is now similar to the 0-1 Knapsack problem where each

item has a benefit and cost, and we use the well known and

efficient greedy algorithm.

In Figure 6 we describe the procedure for plan modification.

Recall that B(e) is the measure of importance of an expression,

and C(e, P) denotes the cost of obtaining expression e from plan

P. Starting with the P = P (the current plan), we consider adding

expressions from E in descending order of B(e)/C(e, P) (Step 2).

Step 3 enforces the necessary checks to see if the expression e can

in fact be obtained from P. For example, if e is a K-FK join

expression, we need to check that in P the key side relation is

scanned before the FK side relation is scanned (Section 3.2). It

also verifies that the overhead constraint is not violated by the

addition of e to P.

Input: Set of expressions E. Output: Modified plan P.

1. P = P

2. For each e  E in decreasing order of B(e)/C(e,P)

3. If e can be obtained from P by an available monitoring

 mechanism and obtaining e from P does not violate

 Cost(P) ≤ Cost(P)(1 + t / 100)

4. Modify P so that expression e is obtained when P

 Executes. Update cost of P.

5. End For

6. Return P

Figure 6. Procedure for plan modification.

Finally, we note that the above procedure only modifies the

current plan P. In general, we can potentially obtain a larger set of

relevant expressions if we expand the set of plans considered for

modification. If the threshold value t% is high enough we can

potentially execute a plan with a different join order if it helps in

obtaining important expression cardinalities. For example

consider the plans shown in Figure 2(a) and 2(b). These could be

alternative plans in the memo. Suppose the first plan is picked as

the optimal plan (P). If the second plan is within a cost of t% of P,

we can potentially leverage it for plan modification. Naturally, it

is important to make sure that the query optimization overheads

remain small.

5. EXPERIMENTS
We have implemented the techniques described in this paper

inside the Microsoft SQL Server engine. These include the

proactive monitoring mechanisms discussed in Section 3 which

required changes to the predicate evaluator (for obtaining single-

table filter expressions) as well as join operators (for bitvector

counting to obtain K-FK join expressions). The plan modification

schemes required changes to the query optimizer as described in

Section 4.

The goals of the experiments are: a) To quantify the overheads of

our proposed proactive monitoring techniques b) To examine the

utility of plan modification in real and benchmark datasets. All the

experiments were run on a 2.4GHz, 4-processor machine with 4

GB RAM. Numbers we report are based on cold runs so as to

eliminate effects of buffering.

5.1 Overheads
There are two sources of overheads in our architecture: (a) Query

execution time overhead due to proactive monitoring. (b)

Additional overheads in query optimization due to plan

modification. We found that (b) was negligible for all queries in

our experiments. Thus in this section, we focus on (a). In

particular, we study how the overheads of obtaining additional

expression cardinalities varies as a function of the number of

additional cardinalities obtained. We use a synthetically generated

dataset where we can vary the number of predicates and join

cardinalities to be obtained in a controlled manner. We generated

a synthetic relation (R) with 10 million rows and 10 columns (c1

to c10). Each column has values 1 to 10 million. We used multiple

copies of the same relation for the join experiments. We present

experimental results using benchmark and real data sets in

Sections 5.2 and 5.3.

5.1.1 Mechanisms for Single-Table Expressions
There are two factors that contribute to the overhead of proactive

monitoring for single table expressions. The first is the sampling

fraction p, i.e., the number of rows on which the proactive

monitoring mechanisms are evaluated (Section 3.1.5). The second

is the number of expression cardinalities obtained using proactive

monitoring from a query (k). Among the techniques outlined in

Section 3, avoiding predicate short-circuiting incurs the largest

overhead. We thus report only the overheads of this technique; the

results are an upper-bound on the overheads incurred by other

techniques outlined in Section 3.1. We generated different queries

on table R with varying number of predicates on columns c1 to c8.

In this experiment we study how the overhead of avoiding

predicate short-circuiting varies with these two parameters for

queries where the original plan is Table Scan.

Figure 7 shows that even when a relatively large sampling fraction

like 10% is used, and 8 expression cardinalities are obtained using

proactive monitoring from a given query, the average overhead is

still no more than around 4%. In fact, for sampling fraction of 1%

(used in the experiment in Section 5.2), the overheads are below

1% even when 8 cardinalities are obtained. This expression

demonstrates that in practice the overheads of proactive

monitoring for obtaining additional single table expression

cardinalities can be acceptable.

5.1.2 Mechanisms for Join Expressions
In Section 3.2, we outlined a mechanism for obtaining the

cardinality of key foreign-key joins using bitvector counting. In

this section, we evaluate how the overhead of this mechanism

varies as a function of the number of joins in the query and the

number of join expressions obtained using proactive monitoring.

We created multiple copies of the table R (R1 to R6) where

relations R2 to R6 all have foreign keys referencing different

columns of relation R1. We generated queries of the form (R1

R2 … Rk) and forced the join order such that relation R1 was

scanned before any other relation in the plan. The parameter k

itself was varied from 3 to 6. We measured the overhead of

obtaining the cardinality of the join expressions (R2 R1), (R3

R1), (Rk R1) etc. using bitvector counting for different values of

k. In order to measure worst-case overheads, we took care to

ensure that the special cases as discussed in Example 5 did not

apply for these queries.

Figure 8 shows the overheads of using bitvector counting as a

function of the pair (number of tables joined in the query, the

number of expressions obtained). The results indicate that

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

1% 5% 10%

O
ve

rh
e

ad
s

Sampling Fraction

k=1

k=2

k=4

k=8

0.0%

1.0%

2.0%

3.0%

(3,1)(4,1)(4,2)(5,1)(5,2)(5,3)(6,1)(6,2)(6,3)(6,4)

(Num of Joins, Num of Expressions)

Overheads of bitvector counting

Figure 7. Overhead vs. Sampling Fraction

Figure 8. Overheads of Bitvector Counting.

bitvector counting can be used to obtain as many as 4 additional

join expression cardinalities at reasonable overheads (~ 2%).

5.2 Impact on Plan Quality
There are two key aspects to the pay-as-you-go framework

discussed in Section 4: a) the module that evaluates the

importance of expressions and b) the plan modification

component that modifies the existing plan to obtain the desired

expression cardinalities. In this section, we fix the algorithm for

(a) to ASSUM (Section 4.2.1) and we evaluate the impact of

additional counters obtained by plan modification using

appropriate proactive monitoring mechanisms. We discuss the

tradeoffs between the ASSUM and SPREAD (Section 4.2.2)

algorithms to identify important expressions in Section 5.3. We

use a sampling fraction of 1% for the single-table mechanisms

(Section 3.1.5) for all experiments.

5.2.1 Experiments on Real World Queries
We first present experimental results from a real world Sales

database application. The database size is around 1 GB and the

query workload consisted of 30 queries, each query consisting of

between 5 to 8 joins. In this experiment, we compare PASSIVE

with PROACTIVE (with the threshold value t set to 1%). We use

the ASSUM algorithm to select the expressions. We set the

number of iterations to 2 i.e. we run the workload, gather

feedback information using the appropriate technique and then

rerun the same workload and measure the improvement in the

execution times of the query plans. Figure 9 shows the

improvement in execution time for both PASSIVE and

PROACTIVE-1% when compared to the original plan. We

present the results after sorting queries by the improvement of

PASSIVE. The first point to note is that PASSIVE is sufficient to

correct suboptimal plan choices for 8 of the queries, while

PROACTIVE can correct the suboptimal plan choice for 9

additional queries and thus significantly extend the reach of query

execution feedback. The regressions (where the improvement is <

0%) indicate the cases where optimizer can potentially pick a

“worse” plan even when more accurate cardinalities are available

(e.g., due to inaccuracies in the cost model itself).

Figure 9. Passive vs. Proactive on Real World Queries

5.2.2 Experiments on TPC-H
We used the modified TPC-H data generator [9] to generate

skewed data for each column independently with a Zipfian

distribution with a skew factor of z=1. Note also that the TPC-H

data has limited correlation across tables. For example

o_orderdate column from the Orders table is correlated with the

l_shipdate column from the Lineitem table. However, in order to

better evaluate the effectiveness of proactive monitoring for join

mechanisms we introduced a richer set of correlations across

tables. We added correlations between: a) the c_mktsegment

column in the Customer table and the o_orderpriority column in

the Orders table (i.e., orders in a certain market segment have the

same priority) and b) the p_mfr column in the Parts table and

l_discount column in the Lineitem table (i.e. certain

manufacturers offer the same discount rate). We report numbers

on both the 1GB and the 10 GB version of the TPC-H database.

The query workload was generated by using 2 templates. One is a

single-table query on the Lineitem table with predicates on

l_shipdate, l_commitdate and l_receiptdate and l_discount. The

other template is a join of 4 relations, Lineitem, Orders, Customer

and Part. The ranges of selection conditions on the columns

l_shipdate, l_discount, o_orderdate, o_orderpriority,

c_mktsegment and p_mfr were varied in these queries by

generating different ranges chosen at random. Indexes were built

on all primary keys, join columns and the date columns of the

Lineitem table. We used a workload of 100 queries with 50

queries generated using each template and set the number of

iterations to 2.

Figure 10. PROACTIVE-1% (TPC-H 1GB)

Figure 11. PROACTIVE-5% (TPC-H 1GB)

In Figure 10, we compare the reduction in execution time of the

queries using PASSIVE and PROACTIVE (with the overhead

threshold value set to 1%). We show the relative improvement of

PROACTIVE when compared to PASSIVE. We present the

results after sorting queries based on the relative improvement.

For instance, Figure 10 indicates that for nearly 20% of the

-20%

0%

20%

40%

60%

80%

0 10 20 30

R
e

d
u

ct
io

n
 in

 E
xe

cu
ti

o
n

 T
im

e

Queries

PASSIVE PROACTIVE-1%

-50%

0%

50%

100%

0 20 40 60 80 100

R
e

la
ti

ve
 Im

p
ro

ve
m

e
n

t

Queries

PROACTIVE-1% vs. PASSIVE

-50%

0%

50%

100%

0 20 40 60 80 100

R
e

la
ti

ve
 Im

p
ro

ve
m

e
n

t

Queries

PROACTIVE-5% vs. PASSIVE

queries, PROACTIVE-1% is able to provide an additional

improvement of nearly 80% when compared to PASSIVE. The

results indicate that PROACTIVE has the potential to find much

better plans even with small threshold values (1%). The clustering

of the results around 80% relative improvement is in contrast to

the results in Section 5.2.1. This is because in the TPC-H

database, the Lineitem table is the largest table. The biggest

savings in performance results when the original plan scans the

Lineitem table while the improved plan uses an index instead or

uses Lineitem as an inner of an INL Join. For most of the queries,

the saving arises due to this fact and hence the relative

improvement is clustered around 80%. For a threshold value of

1%, we observed that out of the 18 queries that improved

significantly 16 were single table queries from template 1 and 2

were join queries from template 2.

In Figure 11, we show the results for the case of PROACTIVE

with the threshold t value set to 5%. The results indicate that with

an increased threshold value, PROACTIVE is able to improve the

quality of more plans (in particular PROACTIVE-5% is able to

correct suboptimal plan choices in 9 additional join queries than

PROACTIVE-1%). The key difference is due to the increased

number of join expression cardinalities that can be obtained with a

higher threshold value.

We also repeated the above experiments for a 10GB version of the

TPCH database and found the results were similar. For instance,

Figure 12 shows the results of the experiment for PASSIVE vs.

PROACTIVE-1% for the 10GB version. For t=1% we observed

the actual execution time overheads were also low. In particular

the average was 0.82% and the maximum was 2.1%.

Figure 12. PROACTIVE-1% (TPC-H 10GB)

5.2.3 Sensitivity to Size of Bitvector
As described in Section 3.2, a key parameter that governs the

accuracy of the bitvector counting mechanism is the size of the

bitvector. In the above experiments we used a default setting of

10MB for the bitvector. To study the sensitivity for the TPC-H

10GB database, we re-ran the join queries from the above

experiment where there the plan improved due to availability of

additional join cardinalities. We varied the bitvector size as

follows: 100KB, 1 MB and 10MB. For a bitvector size of 100KB,

we noticed that we obtained the same plan (as with 10MB) for

only about 20% of the cases. However, we found that with a

bitvector size of 1MB we obtained the same results for all cases as

with a size of 10MB. Thus, bitvector counting can be effective

even with a modest amount of additional memory. Finally, note

that for proactive monitoring mechanisms for single-table

expressions there is no additional memory requirement (as

discussed in Section 3.1.5).

5.3 Choice of Expressions to Monitor
In Section 4.2, we presented two methods ASSUM and SPREAD

for identifying “important” expressions for a query. The

experiments of Section 5.2 used the ASSUM method. We

repeated the experiments on the TPC-H database using SPREAD

instead of ASSUM and found the results were similar. This is

because for the queries in the above experiment, most of the

relevant expression cardinalities (that can be obtained via

proactive monitoring) can be obtained even at a low threshold

value such as 1%. Therefore, to better understand the tradeoffs

between the two methods, we carried out a controlled experiment

in which for each execution of the query, we constrained the

execution to obtain exactly one expression cardinality as part of

feedback. In particular, this is the expression with the highest

importance value B(e) (as determined by that method), among all

expression whose cardinality has not yet been obtained. We

measured the number of executions (iterations) of the query

required to reach the improved plan for each method ASSUM and

SPREAD.

We observed that there was no clear winner among the two

techniques. Consider the query discussed in Example 2. In this

case, there are about 10 expressions in total and ASSUM can

obtain the cardinality of the key expression (Customer Orders)

in 3 iterations while SPREAD can take as long as 7 iterations to

get to this expression. This is because SPREAD gives a larger

weight to the Lineitem table and if the predicates on the Lineitem

table are not selective, SPREAD can potentially exhaust all

expressions involving the Lineitem table before choosing

(Customer Orders). Likewise, consider a case where the

important expression required is a sub-expression of a predicate in

the Lineitem table. In such cases, SPREAD can converge much

faster (in the first few iterations) than ASSUM which would target

expressions with a larger number of independence/containment

assumptions. We intend to study the tradeoffs between these two

techniques in more detail as part of future work.

6. RELATED WORK
Today‟s commercial DBMSs support the ability to monitor query

execution, e.g., the Query Patroller in IBM DB2, Profiler in

Microsoft SQL Server, and the Automatic Workload Repository

in Oracle. The proactive monitoring mechanisms presented in

Section 3 can be viewed as increasing the space of counters that

can be obtained using such profiling infrastructure.

The idea of using execution feedback to correct cardinality

estimates was introduced in [12]. Previous work in exploiting

execution feedback can be classified into two main themes. The

first is concerned with using expression cardinalities derived using

feedback to correct existing histograms. The notion of self-tuning

histograms was introduced in [1], and [20] presents a principled

way of using feedback to refine histograms based on the

maximum-entropy principle. The second main way of employing

feedback is to keep a cache of query expression to cardinality

mappings and to utilize it as a supplement to cardinality estimates

derived using histograms during query optimization. The LEO

project [21] is an example of this approach. The work presented in

this paper can be considered to fall in the latter bucket with the

key difference being a novel pay-as-you-go framework where the

-20%

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100R
e

la
ti

ve
 Im

p
ro

ve
m

e
n

t

Queries

PROACTIVE-1% vs. PASSIVE

optimizer proactively monitors the plan at low overhead to extend

the scope of execution feedback.

There has been a lot of work on in the area of Dynamic Query Re-

Optimization e.g. [5],[18],[19] which uses execution feedback to

dynamically alter the current execution plan. In contrast to the

body of work in dynamic re-optimization, our work is primarily

concerned with obtaining cardinalities from the current execution

so that future executions of the same (or similar) queries can

improve the plans. Interestingly, proactive monitoring can also be

leveraged for dynamic re-optimization. Consider the plan shown

in Figure 2(a). Observe that if the accurate cardinality of

(Customer Orders) were available at the end of the build

phase on Orders, we could re-optimize the query at that point and

potentially switch to plan shown in Figure 2(b) that avoids the

scan of the Lineitem table. It is an interesting area of future work

to study how proactive monitoring can be leveraged for dynamic

re-optimization.

The idea of obtaining relevant expression cardinalities prior to

query optimization using single table and join synopses has been

studied in [4]. For a query with many relevant expressions the cost

of obtaining all cardinalities up-front can be significant. In

contrast, our pay-as-you-go approach incurs a bounded overhead

on each query execution. The idea of Query-Specific Statistics

(JITS) presented in [15] is focused on obtaining statistics of

relevant single-table expressions. Our mechanisms can also apply

for K-FK joins (Section 3.2). It is interesting to examine if the

sensitivity analysis techniques presented in [15] can be extended

for the case of joins.

There has been prior work which identifies the need for proactive

monitoring. The proactive re-optimization technique presented in

[5] also uses sampling to derive cardinality estimates in order to

decide whether to re-optimize the query. The difference is that [5]

uses sampling to quickly compute estimates that can be obtained

by the current execution plan (i.e., the counters that would be

obtained by passive monitoring) and does not proactively attempt

to obtain other counters. Proactive monitoring has been used in

[11] to obtain feedback for helping accurately estimate the distinct

page count, another important parameter of the cost model used

by the optimizer. In contrast, we present comprehensive

mechanisms for single-table as well as foreign-key joins that are

tailored for obtaining expression cardinalities.

7. CONCLUSION
In this paper, we identify cases where the state-of-the-art approach

of passive monitoring for obtaining execution feedback is

inadequate for improving choices by the optimizer. We describe a

pay-as-you-go framework for execution feedback where each

query incurs a small overhead for obtaining additional expression

cardinalities. As demonstrated on real and synthetic queries, our

low overhead proactive monitoring mechanisms significantly

extend the reach of execution feedback for correcting optimizer

errors. Identifying other lightweight proactive monitoring

mechanisms and exploring alternative techniques for modeling

importance of an expression are interesting areas of future work.

8. REFERENCES
[1] A.Aboulnaga, S.Chaudhuri. Self-Tuning Histograms:

Building Histograms Without Looking at Data. In

Proceedings of ACM SIGMOD 1999

[2] A. Aboulnaga, P.Haas, M.Kandil, S.Lightstone, G.Lohman,

V.Markl, I.Popivanov,V.Raman. Automated Statistics

Collection in DB2 UDB. In Proceedings of VLDB 2004.

[3] G.Antoshenkov, Dynamic Optimization in Rdb/VMS. In

Proceedings of ICDE 1993

[4] B. Babcock and S. Chaudhuri. Towards a Robust Query

Optimizer: A Principled and Practical Approach. In

Proceedings of ACM SIGMOD 2005.

[5] S.Babu, P.Bizarro, D.DeWitt: Pro-active Reoptimization. In

Proceedings of ACM SIGMOD 2005

[6] S.Babu et al. Adaptive Ordering of Pipelined Stream Filters.

In Proceedings of ACM SIGMOD 2004

[7] N. Bruno, S. Chaudhuri. Exploiting Statistics on Query

Expressions for Optimization. In Proceedings of ACM

SIGMOD 2002.

[8] N. Bruno, S. Chaudhuri. Conditional Selectivity for Statistics

on Query Expressions. In Proceedings of ACM SIGMOD

2004.

[9] S.Chaudhuri, V.Narasayya. Program for TPC-D Data

Generation with skew.

ftp://ftp.research.microsoft.com/users/viveknar/tpcdskew

[10] S.Chaudhuri, V.Narasayya. Automating Statistics

Management for Query Optimizers. In Proceedings of ICDE

2000.

[11] S.Chaudhuri, V.Narasayya, R.Ramamurthy. Diagnosing

Estimation Errors in Page Counts Using Execution

Feedback. In Proceedings of ICDE 2008.

[12] C.M.Chen, N.Roussopoulous, Adaptive Selectivity

Estimation Using Query Feedback. In Proceedings of ACM

SIGMOD 1994.

[13] W.G.Cochran. Sampling Techniques. 3rd Edition. Wiley.

[14] D. DeWitt, R.Gerber. Multiprocessor Hash-based Join

Algorithms. In Proceedings of VLDB 1985.

[15] A.El-Helw, I.F.Ilyas, W.Lau, V.Markl, C.Zuzarte. Collecting

and Maintaining Just-in-Time Statistics. In Proceedings of

ICDE 2007.

[16] C.A.Galindo-Legaria, M.M.Joshi, F.Waas, M.Wu. Statistics

on Views. In Proceedings of VLDB 2003.

[17] G. Graefe. The Cascades framework for query optimization.

Data Engineering Bulletin, 18(3), 1995.

[18] N.Kabra, D.DeWitt, Efficient Mid-Query Re-Optimization of

Sub-Optimal Query Execution Plans. In Proceedings of

ACM SIGMOD 1998.

[19] V.Markl et al. Robust Query Processing through Progressive

Optimization. In Proceedings of ACM SIGMOD 2004.

[20] U.Srivastava et al. ISOMER: Consistent Histogram

Construction Using Query Feedback. In Proceedings of

IEEE ICDE 2006.

[21] M.Stillger, G.Lohman,V.Markl, M.Kandil, LEO-DB2’s

Learning Optimizer. In Proceedings of VLDB 2001.

[22] IEEE Data Engineering Bulleting on Self-Managing

Database Systems. Volume 29, Number 3, September 2006.

ftp://ftp.research.microsoft.com/users/viveknar/tpcdskew

