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Abstract—Sound source localization (SSL) is an essential task in
many applications involving speech capture and enhancement. As
such, speaker localization with microphone arrays has received
significant research attention. Nevertheless, existing SSL algo-
rithms for small arrays still have two significant limitations: lack
of range resolution, and accuracy degradation with increasing
reverberation. The latter is natural and expected, given that strong
reflections can have amplitudes similar to that of the direct signal,
but different directions of arrival. Therefore, correctly modeling
the room and compensating for the reflections should reduce
the degradation due to reverberation. In this paper, we show
a stronger result. If modeled correctly, early reflections can be
used to provide more information about the source location than
would have been available in an anechoic scenario. The modeling
not only compensates for the reverberation, but also significantly
increases resolution for range and elevation. Thus, we show that
under certain conditions and limitations, reverberation can be
used to improve SSL performance. Prior attempts to compensate
for reverberation tried to model the room impulse response (RIR).
However, RIRs change quickly with speaker position, and are
nearly impossible to track accurately. Instead, we build a 3-D
model of the room, which we use to predict early reflections, which
are then incorporated into the SSL estimation. Simulation results
with real and synthetic data show that even a simplistic room
model is sufficient to produce significant improvements in range
and elevation estimation, tasks which would be very difficult when
relying only on direct path signal components.

Index Terms—Array processing, circular microphone array,
distance discrimination, image method, range estimation, sound
source localization (SSL).

I. INTRODUCTION

A major goal in speech research is the acquisition of
high-quality audio without constraining users with de-

vices such as close-talking microphones. Microphone arrays
can be used in this regard, and are progressively gaining pop-
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ularity in applications such as videoconferencing [1], smart
rooms [2]–[4], and human–computer interaction [5], [6]. Unlike
a single microphone, a microphone array can be electronically
steered to emphasize a signal coming from a direction of
interest and reject noise coming from other locations. Such
spatial filtering techniques require knowledge of the location of
the speaker, which must be known a priori or estimated.

A significant trend in human–computer interaction is the use
of joint audio and video sensor arrays to acquire the user’s en-
vironment. For example, a combination of video cameras can
be used to record a panoramic view of a scene, capturing more
detail than a single camera possibly could. Once again, it is typ-
ically necessary to identify regions of interest—for instance, the
location of individuals in a conference room. For videoconfer-
encing applications, speaker localization can be used to auto-
matically determine which sections of the acquired panoramic
frame should be transmitted to a remote location. Furthermore,
the knowledge of the range to the speaker can be used to identify
him, given a choice between two individuals located at approx-
imately the same direction of arrival, but at different distances
to the device. This information can then be used to zoom, focus,
and align individual cameras.

The general problem of sound source localization (SSL) has
been an active area of research for many years, and finds applica-
tions in most array processing algorithms. Several methods have
been proposed over the previous decades with varying degrees
of accuracy, noise robustness, and computational complexity.
Most algorithms can be classified into four categories: beam-
former steering [7], energy ratio estimation [8], subspace char-
acterization [9], [10], and time difference of arrival (TDOA) es-
timation [1], [11]–[15]. Common to these techniques is the fact
that performance decreases with increasing reverberation [16].
This can be readily explained, given that in typical indoor envi-
ronments, early reflections can have amplitudes similar to that
of the direct signal, but different directions of arrival. If not ac-
counted for explicitly, they will interfere with the estimation.

Another characteristic of these algorithms when applied to
small arrays is their emphasis on estimating only azimuth.
Indeed, a practical array designed for offices or conference
rooms can be expected to have a limited number of low cost
microphones (typically between 4 and 8), relatively small
dimensions (probably featuring an inter-element spacing of at
most 15 cm) and a simple circular or linear geometry. Under
these constraints, estimating elevation may be difficult, and es-
timating range with traditional methods is an almost impossible
task (see Fig. 1).

1558-7916/$26.00 © 2010 IEEE
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Fig. 1. Range discrimination problem for a six-element circular array. The
ranges to sources � and � can be discriminated only by implicitly or explic-
itly estimating ��, which corresponds to the difference between TDOAs. For
compact arrays,�� will be very small and its estimation will be very sensitive
to noise and reverberation.

Given the small array constraint and a reverberant environ-
ment, the choices for SSL algorithms are very limited. For in-
stance, many subspace methods were not developed for acoustic
environments, and perform poorly in the presence of correlated
signals resulting from reflections. SSL algorithms that rely on
sensing the difference in source energy among different micro-
phones cannot be applied reliably due to the close distance be-
tween microphones. Also, for any commercial device, it is not
cost-effective to use microphones with matched directivity pat-
terns, frequency responses and gains. Therefore, the algorithm
should estimate these quantities wherever possible, and should
be robust to estimation errors.

In this paper, we propose a novel approach to significantly
improve the resolution and accuracy of range and elevation es-
timation: we use a room model to help extract the indirect source
location information contained in the early reflections. We ex-
tend the TDOA method introduced in [15], [17] by explicitly
accounting for the attenuation and path of dominant early re-
flections, in a method that reduces gracefully to the original al-
gorithm in an anechoic scenario, and shows increased accuracy
and robustness in the presence of reverberation.

Previous research has tried to improve robustness to reverber-
ation by incorporating models to account for room reverberation
[14], [15], or directly trying to estimate room impulse responses
(RIRs) [18]–[20]. However, both approaches have limited ef-
fectiveness: generic reverberation models will only reduce the
interference caused by reverberation, and estimating RIRs is a
hard task. Furthermore, RIRs change rapidly and significantly
with the position and orientation of the source. We choose an
indirect approach: instead of trying to directly estimate RIRs,
we build a 3-D model of the room to help estimate the position
of the main reflectors (e.g., the closest walls and the ceiling).
Using this room model, we analytically compute the strongest
reflections and incorporate them into the SSL. Although more
complex 3-D models could be used, in our simulations we used a
simple model: four walls and a ceiling, with distances estimated
with the method proposed in [21]. As we show in Section IV,
this significantly improves range and elevation estimates, even
with imperfect estimation and modeling of the reflectors.

The remainder of this paper is organized as follows. Section II
gives an overview of room estimation methods and their require-
ments. Section III derives a maximum-likelihood SSL algorithm
that incorporates the room model’s early reflections. Section IV
shows experimental results on both real and synthetic data, and
Section V presents our conclusions.

II. ROOM ESTIMATION

The proposed SSL algorithm is based on using a room model
to estimate and predict early reflections. Thus, the first step is to
obtain such a model. The most obvious way would be to mea-
sure the size, distance, and reflection coefficient of every major
surface in the room. While cumbersome, this solution may be
practical for large auditoriums, amphitheaters, and other large,
instrumented rooms. These usually require a detailed and ex-
pensive setup, and adding a few measurements could be the
most effective approach. Indeed, this is the method we used for
one of the rooms reported in Section IV-C. Nevertheless, re-
quiring professional measurement during setup is not practical
for SSL in meeting rooms or homes, which are two of the im-
portant applications of the proposed technology. Thus, for many
applications, we need to automatically generate the room model.

Extensive research exists for obtaining 3-D models based
on video and images. Common passive methods include depth
from focus, depth from shading, and stereo edge matching. Ac-
tive methods include illuminating the scene with laser, or with
structured or patterned infrared light. Most of this research is
targeted at estimating 3-D objects, but could be readily applied
to obtain room models (see, for example [22]). These image
based methods may provide very precise spatial models, but
have the disadvantage of not estimating reflection coefficients.
However, as will be shown in Section IV, the estimation of
reflection coefficients is not strictly required.

To obtain estimates of reflection coefficients, acoustic mea-
surements have to be performed. Again, several algorithms
have been proposed for automatic acoustic room measure-
ments. O’Donovan [23] uses a 32-microphone spherical array
to visualize the location of sound reflections in concert halls.
Antonacci and Aprea [24], [25] use a single microphone and
either a moving source on a circular trajectory or multiple
sources to estimate the coordinates of reflectors. Moebus [26]
uses MVDR beamforming with a single ultrasound trans-
mitter/receiver pair mounted on a precision 2D positioning
system to perform ultrasound imaging in air, with which the
position and outline of obstacles can be determined. Similarly
to the video solutions, this is particularly intriguing, because
the use of ultrasound allows measurements to be performed
during operation.

To avoid the need for physical measurements, as well as any
additional hardware or moving parts, a reasonable method is
the one we recently proposed in [21]. Instead of finding a full,
detailed 3-D model of the room, the estimation is restricted to
finding the location of the nearest major reflectors, which are
usually the walls and the ceiling. To obtain these estimates, a
test signal is reproduced through an existing single speaker in-
tegrated into a teleconferencing array, recorded by the array
microphones and processed to extract the room model. This
method does not require ultrasound hardware, moving parts, or
multiple speakers, and was used to estimate the parameters of
one of the real rooms, and of the synthetic room in Section IV.

The estimation method and simple model we used produce
reasonable results. Note, however, that the optimum solution
would be a more complex 3-D model, and a combination of
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acoustic and visual measurements. Acoustic measurements
could be performed during setup, estimating the general room
geometry and reflection coefficients. Visual information could
be used during a meeting to account for people moving, rotation
or movement of the physical device, etc.

III. ML SSL FRAMEWORK WITH ROOM MODELS

A. Signal Propagation Model

Consider an array of microphones in a reverberant envi-
ronment. Given a signal of interest with frequency repre-
sentation , a simplified model for the signal arriving at each
microphone is [14]

(1)

where is the microphone index, is the time
delay from the source to the th microphone, is a micro-
phone dependent gain factor, which is a product of the th mi-
crophone’s directivity, the source gain and directivity, and the
attenuation due to the distance to the source, is a re-
verberation term corresponding to the room’s impulse response
minus the direct path, convolved with the signal of interest, and

is the noise captured by the th microphone.
A more elaborate version of (1) can be obtained by explicitly

considering early reflections. In this case, only
models reflections which were not explicitly accounted for. The
microphone signals can then be represented by

(2)

where is a gain factor which is a product of the th mi-
crophone’s directivity in the direction of the th reflection, the
source gain and directivity in the direction of the th reflection,
the reflection coefficients for all walls involved in the th re-
flection, and the attenuation due to the distance to the source,
and is the time delay for the th reflection. We also define

and , which correspond to the direct
path signal.

When early reflections are modeled, traditional SSL algo-
rithms such as [15] cannot be applied any more. In the following,
we present a scheme that models early reflections as a whole,
which results in a maximum likelihood algorithm that is both
accurate and efficient.

Let , which is fur-
ther decomposed into gain and phase shift components

, where

(3)

(4)

We further approximate the phase shift components by mod-
eling each with only attenuations due to reflections and
path lengths, such that

(5)

where and are, respectively, the path lengths for the
direct path and th reflection, , and is the product
of the reflection coefficients for all walls involved in the th
reflection. Note that reflection coefficients are assumed to be
frequency independent. As will be shown later in this section,

can be estimated directly from the data, such that it need
not be inferred from the room model and thus does not require
a similar approximation.

Using , (2) can be rewritten as

(6)

Even if reflection coefficients are frequency dependent, they
can always be decomposed into constant and frequency-depen-
dent components, such that the frequency-dependent part which
represents a modeling error is absorbed into the
term. In general, all approximation errors involving
can be treated as unmodeled reflections, and thus absorbed into

. Even if there are modeling errors, if the reflection
modeling term is able to reduce the amount
of energy carried by , we should have an
improvement over using (1).

Rewriting (6) in vector form, we obtain

(7)

where

B. Noise Model

As in [15], we assume that the combined noise

(8)

follows a zero-mean, independent between frequencies, joint
Gaussian distribution with a covariance matrix given by

(9)

Making use of a voice activity detector, can
be directly estimated from audio frames which do not contain



1784 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 7, SEPTEMBER 2010

speech. To simplify matters, we assume that noise is uncorre-
lated between microphones, such that

(10)

We also assume that the second noise term is diagonal, such that

(11)

with

(12)

(13)

where is an empirical parameter which models
the amount of reverberation residue, under the assumption that
the energy of the unmodeled reverberation is a fraction of the
difference between the total received energy and the energy of
the background noise. This model has been used successfully
[1], [14] for cases where reflections were not explicitly mod-
eled [ in (5)], and good results have be achieved for a
wide variety of environments with . Even though

depends on the distance from the source to the array, previous
work has shown that even a constant produces better results
than neglecting the reverberation energy and using . Fur-
thermore, by modeling early reflections, the proposed method
becomes even less sensitive to .

In reality, neither nor
should be diagonal. In

particular, any noise component due to reverberation should
be correlated between microphones. However, estimating

would become significantly more expensive if not for
these simplifications, and the algorithm’s main loop would
become significantly more expensive as well, since it requires
computing . In addition, the above assumptions do
produce satisfactory results in practice.

Under the assumptions above

(14)

(15)

such that is easily invertible, and can be estimated with a
voice activity detector.

C. Maximum-Likelihood Framework

The log-likelihood for receiving can be obtained as in
[15], and (neglecting an additive term which does not depend
on the hypothetical source location) is given by

(16)
The gain factor can be estimated by assuming

(17)

Fig. 2. Range discrimination problem with image sources. By considering
image sources, range discrimination can be recast as azimuth discrimination.

i.e., that the power received by the th microphone due to the
anechoic signal of interest and its dominant reflections can
be approximated by the difference between the total received
power and the combined power estimates for background noise
and residual reverberation. Inserting (15) into (17) and solving
for , we obtain

(18)
Substituting (18) into (16)

(19)
The proposed approach for SSL consists of evaluating (19) over
a grid of hypothetical source locations inside the room, and re-
turning the location for which it attains its maximum.

To evaluate (19), one must know which reflections to use in
(5), which is the only term that depends on the source location.
Given the location of the walls provided by the room modeling
step, we assume that the dominant reflections are the first- and
second-order reflections involving only the closest walls. Using
the image model [27], we analytically determine the path length
of each of the first- and second-order reflections, and thereby the
corresponding attenuation factors and time delays
in (5). Equation (19) is then evaluated using the thus obtained
value of .

Since only depends on the room geometry and on the
grid of hypothetical source locations, it can be precomputed.
By assuming that is constant, is independent of the hypo-
thetical source location, and has to be computed only once per
frame. As we show with experiments, considering reflections
from only the ceiling and one close wall is sufficient for accu-
rate SSL.

Fig. 2 provides intuition to why the proposed method is ef-
fective. Consider two sources and which have the same
azimuth and elevation angles with respect to the array. As seen
in Fig. 1, it is very difficult to discriminate between both sources
by using only the direct path TDOAs. However, consider image
sources and , which appear due to reflections off a wall.
The array has good resolution in azimuth, so it can easily distin-
guish between and . In reality, the array always acquires
the superposition of the direct path and several strong reflec-
tions, so it cannot isolate the contributions of and from
those due to and . Nevertheless, since signals emitted by
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and have nearly identical sets of phase shifts at the micro-
phones and because signals emitted by and have signif-
icantly different sets of phase shifts, their superposition results
in measurably different sets of phase shifts for sources 1 and
2. Thus, we have transformed a detection problem for which
the array had no resolution capability into another which it can
solve.

An equivalent interpretation of the image model provides fur-
ther insight into why this method is effective. Consider an image
model which has image microphones instead of image sources.
Under this model, the effective array manifold vector is written
as a weighed sum of the anechoic manifold vector and its im-
ages up to a certain order. By considering images with respect to
the ceiling and the walls, the resulting manifold vector no longer
corresponds to that of a planar array. Since the image arrays are
located outside the room, the effective manifold vector has con-
tributions from virtual elements which are very far apart. Thus,
even though the modeled array still has the same number of el-
ements, its weaknesses due to small size and simple geometry
are mitigated.

IV. EXPERIMENTAL RESULTS

Since the proposed algorithm makes use of a 3-D room
model, a natural question is how detailed and accurate the
model needs to be. Rooms are potentially complex environ-
ments, which may contain furniture, people, partial walls,
doors, windows, nonstandard corners, etc. Yet, in sampling a
few conference rooms in corporate environments, we find that
almost every room has four walls, a ceiling and a floor; the floor
is leveled and the ceiling parallel to the floor; walls are vertical,
straight, and extend from floor to ceiling and from adjoining
wall to adjoining wall. Carpet is common, and almost invariably
there is a conference table in the center of the room, about 80 cm
high. Furthermore, many objects that seem visually important
are small enough to be considered acoustically transparent for
most frequencies of interest. These small elements are difficult
to estimate, and are sometimes moving.

It would certainly be nearly impossible to accurately model a
real room. On the other hand, we need not model 100% of the
reverberation. Suppose, for example, that all we can reliably es-
timate is the ceiling. Even if we can account for only 10% of
the energy in the room added by reverberation, we would still
be better off than if we had no information. Based on these ob-
servations, we adopted a simple room model: one to four walls
and a ceiling. We assume the floor absorption coefficient is large
enough and that sound trapping under the table will absorb most
of the energy that goes below table level. To estimate the orien-
tation and distance of these walls and ceiling, we use the method
proposed in [21].

Note that this room estimation step detects only one point of
reflection on each wall, indicated by the black segments in each
of the four walls in Fig. 3. However, the locations of interest for
the walls are in fact the ones indicated by the red segments. The
underlying assumption is that the walls extend linearly and with
similar acoustic characteristics.

As we will show in this section, the proposed algorithm per-
forms well even with one wall and the ceiling, and is quite robust
to estimation errors in the room parameters.

Fig. 3. Simple room model featuring reflections.

Fig. 4. Synthetic room simulated with the image model.

A. Results on Synthetic Data

Using an image model simulation [27], we generated syn-
thetic signals to approximate what would be received by an
ideal uniform circular array with a radius of 13.5 cm and six di-
rectional microphones. A three-dimensional cardioid-like gain
pattern was used for each microphone.
The frequency responses for each microphone were assumed
to be flat, and the sampling frequency was set to 16 kHz. A
virtual room with dimensions m was created, with
noise sources simulating a ceiling fan and a desktop computer
(which were recorded from a real fan and computer), as shown
in Fig. 4. The coordinates for the ceiling fan, desktop computer,
and array were simulated at m, m
and m, respectively. The speaker was always at
a distance of 1.3 m from the array, at an elevation of 25 and
at azimuth . Unless otherwise noted,
the room was set to have a reverberation time ms.
The simulation does not model a conference room table, which
was present in both rooms where we performed real measure-
ments (see Section IV-C). Therefore, the dominant reflector for
the synthetic scenarios is the floor (which is usually the closest
surface).

The first set of synthetic data is used for modeling the room,
and contains sweeps played from the loudspeaker located in the
center of the device. We use this data as described in [21]. With
the exception of the most distant wall (which was not detected),
all walls and the ceiling were estimated within 1 cm of their
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TABLE I
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms

TABLE II
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms

true position, and reflection coefficients within 0.12 of their true
value, which was 0.77 for all surfaces. If the algorithm was set
to only find the three closest walls, reflection coefficients were
found to be exactly 0.77.

The second set of synthetic data is used to evaluate SSL per-
formance, and simulates a male speaker standing at 1.3 m from
the array. The SSL algorithm samples (19) in azimuth from 0
to 359 in 4 increments, in elevation from 0 to 60 in 1 in-
crements, and in range from 0.5 to 5.0 m in 0.05-m increments,
and only considers grid points which are inside the room. The
reported results are the average for ten speaker locations dis-
tributed uniformly in azimuth around the array, all located at a
distance of 1.3 m and at an elevation of 25 . At each location the
speech utterance lasted 30 s, and was preceded by 2 s of back-
ground noise. The reported signal-to-noise ratio (SNR) values
are for the best microphone (i.e., the one closest to the source).
The MCLT [28] was used as the frequency domain transform,
and the analysis frame of the SSL was set to 160 ms, overlap-
ping by 80 ms. Only frequency taps from 200 Hz to 4 kHz were
considered.

A simple energy thresholding voice activity detector (VAD)
was used to estimate noise and signal powers, and to decide
which frames to run the SSL algorithm on. If the VAD detected
speech, first the azimuth would be estimated with the algorithm
from [15], which is reasonably sensitive to elevation and com-
pletely insensitive to range. Even though the proposed algorithm
produces more robust and more precise estimates for azimuth, it
would require an expensive three-dimensional grid search over
azimuth, range, and elevation to jointly estimate all three coordi-
nates simultaneously. For reasonably high SNR values it would
suffice to estimate azimuth by guessing a range and elevation
and running a one-dimensional search, but doing so would not
produce better results than completely disregarding reflections
and falling back to [15]. After estimating azimuth, the proposed
algorithm jointly estimated range and elevation, this time mod-
eling first and second-order reflections.

In order to show that the proposed algorithm is robust to
modeling errors, the cardioid model was not used in the SSL

code, and an omnidirectional model was used instead for all
microphones. Experiments show that when the microphones are
known to have a nonuniform spatial pattern, it is useful to under-
estimate reflection coefficients. This can be justified by referring
to (5), where we implicitly neglected the source and microphone
directivities and assumed . However, if the
microphone is known to be directive, then .
By using an intentionally underestimated , we can indirectly
account for this attenuation. Underestimating reflection coeffi-
cients is also prudent in practical scenarios, where due to mov-
able obstacles such as chairs and people, the reflection from the
walls might not be as strong as estimated from the calibration
step.

We name the proposed algorithm R-ML-SSL, and compare it
to ML-SSL [15]. Table I presents simulation results for ML-SSL
and R-ML-SSL in terms of frames with azimuth error

, elevation error , and range error m
for a reverberation time ms. Table II presents the
corresponding simulations for ms. Both algorithms
use [see (13)] to model reverberation energy. It can
be seen that range estimation has been dramatically improved
when compared to ML-SSL. Elevation estimates have also been
significantly improved. Since ML-SSL is used for azimuth es-
timation in both algorithms, whenever the azimuth estimate is
wrong, the elevation and range joint estimation typically also
produces incorrect results.

One can significantly improve the accuracy of ML-SSL and
R-ML-SSL by rejecting frames without a clearly identifiable
peak in the log likelihood surface. By doing so, the error rates
can be made arbitrarily close to 0%, as long as the SNR values
are not exceedingly small (lower than 0 dB, for example), other-
wise all frames would be rejected. We describe below a version
of this technique that can be applied to ML-SSL and R-ML-SSL,
and delivers good results.

As mentioned previously, ML-SSL and R-ML-SSL were im-
plemented with a simple energy thresholding VAD. In order
to add a degree of noise robustness, we used a simple crite-
rion to reject frames which had noisy log likelihood curves for
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TABLE III
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms AND AZIMUTH LOG LIKELIHOOD THRESHOLDING

TABLE IV
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms AND AZIMUTH LOG LIKELIHOOD THRESHOLDING

Fig. 5. ML-SSL mean error rates for varying reverberation times.

azimuth. If the ratio of the log likelihood’s peak to its mean
value was smaller than a threshold (set to 3.0 for all simula-
tions, but which in a practical application would depend on the
hardware), the frame was ignored as if the VAD had never clas-
sified it as speech. Otherwise, the algorithm would proceed as
usual by computing the joint log likelihood for range and ele-
vation. Thus, by analyzing the log likelihood for azimuth alone
it is possible to reliably identify whether a frame has a suffi-
cient amount of speech content to allow accurate three-dimen-
sional SSL. If it does not, the frame can be immediately rejected,
saving the effort of computing the joint log likelihood for range
and elevation. Results are shown in Tables III and IV, and com-
pare very favorably to the data from Tables I and II, especially
for R-ML-SSL. We note that this technique was not used in any
other simulation.

Figs. 5 and 6 illustrate the performance of ML-SSL and
R-ML-SSL, respectively, for varying from 0 to 1000
ms, which correspond to reflection coefficients varying from

Fig. 6. R-ML-SSL mean error rates for varying reverberation times.

to . Like all previous simulations, this graph
considers mean SSL errors for a speaker distributed at ten
locations equally spaced in azimuth, at an elevation of 25 and
at a range of 1.3 m from the array. Data points are not present
for 0-dB SNR and ms because the voice activity
detector could not identify a significant number of speech
frames from at least one of the azimuth locations.

Since ML-SSL is always used for azimuth estimation,
the top plot is identical for both figures. It is clear from
both graphs that R-ML-SSL outperforms ML-SSL for
all data points. R-ML-SSL behaves extremely well for

ms ms because the walls are reflective
enough to provide extra localization information, but not so
reflective that the reverberation tail compromises the estimates.
For range estimation, R-ML-SSL is always better in the pres-
ence of reverberation (at least for ms).

To better understand how using walls helps to estimate range
and elevation, we first show on Fig. 7 the joint log likelihood for
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Fig. 7. ML-SSL log likelihood for range and elevation.

Fig. 8. R-ML-SSL log likelihood for range and elevation, considering only the
ceiling.

range and elevation when not modeling reflections. This surface
was obtained by processing a 25-dB SNR speech frame gener-
ated in the synthetic room, for a speaker located at a distance of
1.3 m and at an elevation of 25 . It has a maximum at the correct
azimuth and elevation, but at an incorrect range of 0.8 m. This
joint likelihood function is always very smooth, but since com-
pact circular arrays have very poor range resolution, the max-
imum for range is extremely sensitive to noise and generally
not a reliable estimate of the ground truth.

Now compare Fig. 7 with Fig. 8, where we introduce the mod-
eling for the ceiling. There is now a strong ridge, which crosses
the correct range-elevation value. This is introduced by the re-
flection of the sound source with the ceiling. Note that there is
still ambiguity, as a different elevation coupled with a different
range could produce similar results at the array. Compare these
two figures with Fig. 9, where we introduce a single wall. Note
that it also produces a ridge (similar to the one produced by in-
troducing the ceiling), and the ridge has a different orientation.
Thus, each wall, floor or ceiling produces a ridge, each with
a different orientation. The correct estimate is, as one would
expect, at the intersection of these ridges, as it can be seen in
Fig. 10.

Fig. 9. R-ML-SSL log likelihood for range and elevation, considering only the
closest wall.

Fig. 10. R-ML-SSL log likelihood for range and elevation, considering the
whole room.

B. Parameter Sensitivity

We now investigate how sensitive the algorithm is to errors
in the room model. First, let us look at the sensitivity to the
reflection coefficient estimates. This is particularly important,
since as we mentioned in Section II, many 3-D modeling tools
are based on imaging or ultrasound, and may provide little or no
information about reflection coefficients.

The effect of varying reflection coefficients on the error rates
is shown on Fig. 11, for all values from 0.0 to 1.0 in increments
of 0.1 (the ground truth being 0.77). It is clear that the proposed
algorithm is relatively insensitive to the choice of reflection co-
efficient, as long as it is not too small (which is equivalent to
disregarding reflections) or too large (which leads to a noisy log
likelihood function).

As mentioned previously, the proposed algorithm does not re-
quire knowledge of all walls for good performance. As shown
in the discussion associated with Figs. 7–10, for a given source
location, the position of the ceiling and a dominant wall will
suffice for unambiguous SSL. However, the dominant wall may
not be the same for all source locations. Using a non-dominant
wall will still provide SSL capability, but the method may not
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Fig. 11. Error rates for the proposed method, against increasing reflection co-
efficients, considering all walls, floor, and ceiling.

Fig. 12. Error rates for the proposed method, against increasing reflection co-
efficients, considering only the floor, ceiling, and closest wall.

perform as accurately as with a dominant wall. Fig. 12 presents
error rates considering only the floor, ceiling and closest wall.
One can see that SSL performance degrades very slightly in
comparison with using the full model (plotted in Fig. 11). In
other words, the 3-D room model may be as simplistic as three
reflecting surfaces, with little reduction in performance. This
can look intriguing at first, but remember that we are not in-
terested in predicting the reverberation, but simply in capturing
the extra information embedded in some of the early reflections.

Finally, since the proposed method relies on estimates of wall
positions, incorrect estimates will certainly cause performance
degradation. We now evaluate sensitivity to errors in wall posi-
tion estimates. Performance degradation occurs in two ways: 1)
the peak of the likelihood function becomes less pronounced,
compromising its detection even in the absence of noise and
2) the estimates become biased. In order to perform this anal-
ysis, we consider (19) under a high SNR assumption, i.e., when

Fig. 13. Mean absolute estimation errors against wall distance perturbations,
applied to one wall at a time. Top: azimuth errors, middle: elevation errors,
bottom: range errors. All graphs determined using (20), with � � ���.

Fig. 14. Log likelihood maxima against wall distance perturbations, applied to
one wall at a time, determined using (20), with � � ���.

. In this case, after neglecting multiplicative
constants, (19) reduces to

(20)

which has the form of SRP-PHAT [29], [30], but with
in place of the direct path phase shift .

Simulations show that as a wall estimate deviates from the
ground truth, its corresponding log-likelihood ridge moves and
decreases in height. Thus, for small wall positioning errors (on
the order of a few cm), the increased error rates are mostly due
to bias, since the log likelihood features remain clear, but the
peak is shifted to neighboring coordinates. This effect can be
observed in Fig. 13, which shows how the estimated source lo-
cation shifts due to room modeling errors.

Note, additionally, that even if the initial estimates of wall po-
sitions are not perfect, the received signal can be used to refine
these estimates. More specifically, the peak of the log likelihood
appears due to constructive interference from the contribution of
multiple walls. Thus, as shown in Fig. 14, it increases as the wall
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TABLE V
ERROR RATES FOR REAL-WORLD UTTERANCES RECORDED IN ROOM 1

TABLE VI
ERROR RATES FOR REAL-WORLD UTTERANCES RECORDED IN ROOM 2

Fig. 15. Real conference rooms: room 1 (left), room 2 (right).

estimates improve. By testing wall estimates in a given neigh-
borhood, one can select the wall coordinates which produce the
largest log likelihood value.

C. Results on Real Conference Rooms

In addition to the simulated data, speech was recorded in two
real, fully furnished conference rooms, which we denote Room
1 and Room 2. Room 1 measured m, and the
microphone array was placed on top of a large conference table
at coordinates m. Room 2 measured

m, and the array was again placed on top of a large
conference table, this time at coordinates m.
For both rooms, ms. Diagrams of the rooms are
shown on Fig. 15. For both cases, the SSL algorithm assumed
omnidirectional models for the microphones. The utterances for
Room 1 have approximately a 20-dB SNR, and the utterances
for Room 2 have approximately a 16-dB SNR.

To record all the experiments we used a RoundTable device.
The RoundTable features a six-element uniform circular array
of directional microphones, with a speaker rigidly mounted in its
center and with microphones located 13.5 cm from the center. It

samples audio at a rate of 16 kHz with 16-bit resolution, which
allows the room modeling method detailed in [21] to estimate
wall distances with better than 2-cm accuracy.

For Room 1, distances to the walls were estimated as pre-
scribed in Section II by playing a 3-s linear sine sweep from
30 to 8 kHz through the RoundTable’s internal speaker, and
recorded simultaneously by all six microphones. Particularities
of the device design (which was not originally designed for
this purpose) produce an extremely accurate estimate of the
ceiling, but less reliable estimates of walls, particularly distant
walls. Fortunately, to unambiguously determine range and ele-
vation, two strong reflectors suffice. Since the best reflector pair
can change between source locations, we always used the three
closest reflectors: the ceiling, the wall at 90 and the wall at 0 .

For Room 2, distances to the walls were estimated using an
ultrasonic range finder with a resolution of 1 cm. Reflection co-
efficients were underestimated and set to 0.3 in order to account
for the directivity of the microphones. For all source locations,
the room model considered the ceiling, the wall at 90 and the
wall at 0 .

The algorithm sampled (19) in azimuth from 0 to 359 in
4 increments, in elevation from 0 to 60 in 1 increments,
and in range from 0.5 to 5.0 m in 0.05-m increments, and only
considered grid points which were inside the room. All other
parameters match those of the simulations (error criteria, frame
size, frequency transform and ). Tables V and VI show the
error rates for Room 1 and Room 2, respectively. It is clear that
R-ML-SSL shows much better range estimation than ML-SSL.
It also typically outperforms ML-SSL for elevation estimation,
especially for more difficult estimation problems (for example,
where the source was at 4.00 m from the array, in Room 2).

Note that since the elevation and range estimates depend on
a correct estimation of azimuth, the error percentages for eleva-
tion and range are in practice bounded below by the error per-
centages for azimuth. Furthermore, utterances with a large frac-
tion of anomalous estimates correspond to speaker positions that
are either very close to or very far from the array. Preliminary
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studies in an anechoic chamber showed that the microphones
of the RoundTable device have a very non-smooth directivity
pattern, which can be attributed to the capsule directionality, as-
sembly, and housing. This characteristic affects the performance
of azimuth estimation of close sources using ML-SSL, which in
turn impacts range and elevation estimation using R-ML-SSL.
Distant sources are naturally more difficult to localize due to the
attenuation of the direct path and of the reflections.

V. CONCLUSION

We have proposed R-ML-SSL, an algorithm for sound source
localization which uses strong reflections to estimate elevation
and range in reverberant environments with small arrays, tasks
considered very difficult with previous approaches. It uses a
simple model of the room which requires only knowledge of the
position and reflection coefficients for the walls closest to the
array. The algorithm performs well for a large range of SNRs
and reverberation times and is also robust to device modeling
errors. It can be easily extended to refine previous wall esti-
mates during the SSL step, making it more robust to room mod-
eling errors. We have also shown with simulations that the pro-
posed method is quite insensitive to the modeled reflection co-
efficients, which simplifies the room estimation step.

One of the significant contributions of this work is the incor-
poration of a model for reverberation that requires only knowl-
edge of the room geometry, instead of estimates of the impulse
responses from the speaker to the array. Since this room model
can be obtained offline and the room geometry is assumed to
be invariant, the proposed method does not require blind esti-
mation and tracking of impulse responses, which is typically a
computationally intensive and ill conditioned problem.

The use of a room model makes R-ML-SSL significantly
more robust to reverberation over a large range of scenarios.
Its accuracy is especially noteworthy, because the model of
early reflections provides localization information which would
have not been available in an anechoic environment. Since
R-ML-SSL only models the strongest early reflections and does
not explicitly model the reverberation tail, it is not completely
immune to the effects of increasing reverberation times. Nev-
ertheless, for many localization applications (in particular, for
range discrimination under realistic reverberation times) the
benefits of having strong reflections outweigh the deterioration
due to the reverberation tail.
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