Unsupervised Query Segmentation Using Clickthrough for
Information Retrieval

Yanen Li 1, Bo-June (Paul) Hsu?, ChengXiang Zhai', Kuansan Wang?

!Department of Computer Science, University of lllinois at Urbana-Champaign, Urbana, IL 61801
{yanenli2, czhai}@illinois.edu

2Microsoft Research, One Microsoft Way Redmond, WA 98052
{paulhsu, kuansan.wang}@microsoft.com

ABSTRACT

Query segmentation is an important task toward under-
standing queries accurately, which is essential for improv-
ing search results. Existing segmentation models either use
labeled data to predict the segmentation boundaries, for
which the training data is expensive to collect, or employ
unsupervised strategy based on a large text corpus, which
might be inaccurate because of the lack of relevant infor-
mation. In this paper, we propose a probabilistic model
to exploit clickthrough data for query segmentation, where
the model parameters are estimated via an efficient EM al-
gorithm. We further study how to properly interpret the
segmentation results and utilize them to improve retrieval
accuracy. Specifically, we propose an integrated language
model based on the standard bigram language model to ex-
ploit the probabilistic structure obtained through query seg-
mentation. Experiment results on two datasets show that
our segmentation model outperforms existing segmentation
models. Furthermore, extensive experiments on a large re-
trieval dataset reveals that the results of query segmentation
can be leveraged to improve retrieval relevance by using the
proposed integrated language model.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
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1. INTRODUCTION

Since an accurate understanding of the user’s query is crit-
ical to improving retrieval results, query segmentation is one
of the most important tasks in modern information retrieval.
For example, accurate query segmentation is the prerequi-
site for semantic retrieval models, phrase-based query re-
formulation and automatic relevance feedback. Supervised
techniques have been used to solve the query segmentation
problem in the past [3, 23]. However, they require lots of seg-
mentation labels which are expensive to collect. An unsuper-
vised approach based on a large text corpus and Wikipedia
has been reported to achieve competitive performance [19];
but its accuracy without Wikipedia is still low, partly due
to the lack of relevant information about the query structure.

In a modern search engine, there is a large amount of rel-
evant data in the form of clickthroughs. Such data reflects
users’ implicit preference of documents, and can be lever-
aged to infer the underlying segmentation of the queries. In
this paper, we propose a unsupervised probabilistic model
to exploit user clickthroughs for query segmentation. Model
parameters are estimated by an efficient EM algorithm. Seg-
mentation results on a standard dataset demonstrate that
our model significantly outperforms the EM model in [19]
without the use of Wikipedia. Additionally, by combining
more data from external resources, such as the Microsoft
Web N-gram [22], our model can outperform state-of-the-
art baselines.

One of the most important applications for query seg-
mentation is to improve the retrieval models by incorporat-
ing query segmentation. Most information retrieval tech-
niques, such as vector space models and language modeling
approaches, rely on the bag-of-words assumption that every
query term is independent in the relevance computation.
But this assumption is over simplified; users have an order
in mind when formulating queries to search for information.
One of the reasons why bag-of-words based methods remain
popular is because data sparsity makes it harder to estimate
models imposing term dependencies [4, 5, 18]. Successful
query segmentation has a great potential to lead to better



retrieval models that can utilize higher-order term depen-
dencies.

However, query segmentation is ambiguous in nature — the
same query can be segmented in difference ways by different
people. Although several methods for query segmentation
have been proposed, surprisingly little research has been per-
formed to address the segmentation ambiguity and incorpo-
rate this information into retrieval models. In this paper, we
propose a query segmentation model that quantifies the un-
certainty in segmentation by probabilistically modeling the
query and clicked document pairs. We further incorporate
the probabilistic query segmentation into a unified language
model for information retrieval. Experiments on a large web
search dataset from a major commercial search engine show
that the integrated language model with query segmenta-
tion (QSLM) outperforms both the BM25 model and other
language models.

2. RELATED WORKS

Query segmentation models have been well studied in re-
cent literature [10, 11, 3, 23, 19, 6]. Initially, the mutual
information (MI) between adjacent words in a query is em-
ployed to segment queries with a cutoff [10, 11].The ma-
jor drawback of MI based methods is that they are unable
to detect multi-word or phrase based dependencies. Com-
pared with MI based models, supervised query segmenta-
tion approaches can achieve higher accuracies [3, 23]. For
example, by considering every boundary between two con-
secutive query words as a binary decision variable, Bersgma
and Wang [3] trains the weights of a linear decision func-
tion with a set of syntactic and shallow semantic features
extracted from the labeled data. However, its focus on noun
phrase features may not be appropriate for the segmenta-
tion of web queries. Furthermore, acquiring training labels
demands a great deal of manual effort that may not scale to
the web. As another supervised learning approach, Yu and
Shi [23] applies conditional random fields to obtain good
query segmentation performance. However, it relies on field
information features specific to databases, not available for
general unstructured web queries. Moreover, the evaluation
was conducted only on synthetic data, which is less desirable
than real query data.

Tan and Peng [19] introduce a generative model in the
unsupervised setting by adopting n-gram frequency counts
from a large text corpus and computing the segment scores
via expectation maximization (EM). It also utilizes Wikipedia
as another term in the minimum description length objec-
tive function. Similarly our model in this paper also in-
cludes n-gram statistics and applies the EM algorithm to
estimate the model parameters. However, we employ click-
through query-document pairs to improve segmentation ac-
curacy and further refine the retrieval model by utilizing
probabilistic query segmentation. Similar probabilistic model
is also proposed in [24], but this model focuses in parsing
noun phrases thus not generally applicable to web queries.

This work is also closely related to the retrieval mod-
els that capture higher order dependencies of query terms.
There are several research attempts to incorporate term de-
pendency in query or document to retrieval models [12]. For
example, some attempts have been made to add proximity

286

heuristics to the vector space model or generative query LM
model [13, 20]. However these methods rely on heuristics,
which is not a principled way of incorporating term depen-
dency. More unified higher-order language models have been
studied by Srikanth et al. (Biterm LM) [18]. However, their
assumption that every position is dependent is too strong.
In fact, the word dependency is stronger within a semantic
unit than across the unit, which is what we assume in our
work. LM with query syntactics [5] assumes a structure on
the query, but they are too complex to estimate accurately.
More important, the query syntactic models usually take
only the top (most likely) query structure in the modeling
process. However, it is more appropriate to assess the prob-
ability for all possible segmentation if multiple structures
have comparable probabilities to represent the query.

In addition, search log and clickthrough data have been re-
ported to be able to improve the performance of personalized
search [9, 1, 17]. For example, Joachims [9] first proposes
to improve the retrieval quality of search engines by learn-
ing from the user clickthrough. Shen et al. [17] propose a
decision-theoretic approach to improve search performance
via user feedback. And Agichtein et al. [1] demonstrate that
web search ranking can be improved by considering user be-
havior. We add to this line of work a novel way of exploiting
the clickthrough data for query segmentation.

3. PROBLEM SETUP

The task of query segmentation is to separate the query
words into disjoint segments so that each segment maps to
a semantic unit. Given a query @ = w1, wa, ..., w, of length
n, a segmentation S = 5152...5n of length M is consistent
with the query Q if Sy, = Whyy, Whyyy 41+ Whyp g —1 forl =01 <
ba < ... < bmy1 =n+ 1. We define B = b1,ba,...,bp+1 as
the segmentation partition, independent of the actual query
words, and B,, as the set of all possible segmentation par-
titions consistent with any query of length n. There are a
total of 2" ! segmentation partitions in B,. Note that given
a query @, the segmentation partition B and the query seg-
ments S can be uniquely derived from each other.

Because query segmentation is potentially ambiguous, we
are interested in assessing the probability of a query segmen-
tation under some probability distribution: P(S|0). With
such a probabilistic model, we can then select those seg-
mentations with high probabilities and use them to con-
struct models for information retrieval. For example, for the
query “bank of america online banking”, {[bank of america]
[online banking], 0.502}, {[bank of america online banking],
0.428} and {[bank of] [america online] [banking], 0.001} are
all valid segmentations, where brackets [| are used to in-
dicate segment boundaries and the number at the end is
the probability of that particular segmentation. In this ex-
ample, the first two segmentations are likely segmentations
with high probabilities, whereas the last one is a rare seg-
mentation, as reflected by the low probability. In the next
section, we discuss how to compute the probability P(S|Q)
of a segmentation S given a query Q.

4. QUERY SEGMENTATION

The search log in a modern search engine usually contains
a lot of user clickthrough data, where user-issued queries and



corresponding clicked documents are recorded. This kind of
data contains rich information about users’ preferences for
each query. By carefully modeling the clickthroughs, we can
assess the likelihood of a segmentation structure according
to the collective user behavior. Table 1 shows examples of
the clicked documents for two real-world queries from the
search log. In these examples, although there are variations
in the query words and documents, the sub-sequence “bank
of america” remains intact in all clicked documents. The
evidence strongly suggests that “bank of america” should be
a segment. This observation motivates us to model the query
segmentation using the query and clicked document pairs, a
previously unexplored idea.

Table 1: Examples of Query and Clicked Documents

Clicked document title

1. bank of america associate banking invest-

ments homepage

bank of america investment services inc

investments overview

3. bank of america associate banking invest-
ments banking services

Query

bank of america invesment 2.

1. bank of america credit cards contact
us overview
credit card bank of america 2. secured visa credit card from bank of
america
3. credit cards overview find the right
bank of america credit card for you

‘We now propose an unsupervised query segmentation model

using user clickthroughs. We first describe the model for
generating queries and will later extend it to query-click
document pairs. The process of generating a query can be
described as follows:

1. Pick a query length n under a length distribution.

2. Select a segmentation partition B € B,,, according to
a segmentation partition model P(B|n,y ).

3. Generate query segments Sy, consistent with B, ac-
cording to a segment unigram model P(S;,|0).

Recall that given a query @ of length n, the query seg-
ments S and the segmentation partition B can be derived
from each other. Thus, we can compute the probability of a
segmentation as:

P(51Q,0,4) = P(B|Q,n,0,¢)
> pren, P(Q|B,0) - P(B'Iny)’

(1)

P@Q|B,0) = [T P(Sml6) (2)

where P(Q|B,0) is the probability of generating a query Q
given segmentation partition B. The P(B|n) can be esti-
mated by an expectation maximization algorithm described
in the following section. However, in this paper we set
P(B]n) to a particular form by imposing an infinite strong
prior that penalizes longer segments:

1Y, P(1Sm(B)| |¥)

P(Blna) = :
Spres, LIED P10 (BY)] 1)

®3)

P(ISm(B)| |¢)) = e 1Sm®I (4)
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where | S, (B)| is the length of the m*" segment specified by
B, and f is a factor controlling the segment length penalty.
Note that the denominator is constant for a fixed length n.
Since the probability of a segmentation is the product of all
segment probabilities P(Sn|0) and P(B|n,¢), such a seg-
ment length penalty is crucial to counter the bias for longer
segments as they result in fewer segments and hence fewer
terms in the final product. This need for segment length
penalty is also discussed by Peng et. al in [14].

To extend the model to observed pairs of the query @ and
the clicked document D, we consider @ to be generated from
an interpolated model, consisting of the global component
P(S,|0) and a document-specific component P(S,,|0p). Specif-
ically, we redefine the query probability given a segmenta-
tion partition in Equation (2) as:

P(Q|B,0,0p) x [ P(Sm|0)P(Sm|0p)

m=1

()

Mathematically, this is equivalent to generating each query
segment using a log-linear interpolation of the global and
document-specific models. Figure 1 illustrates the segmen-
tation partition and the process of generating a query given
the model.

bank of america online banking

©
/
ol

O

O

11 1
Ebank of america] [online banking]
A Segmentation

O,
o

N

A Segmentation Partition

Original Query

Figure 1: The Generative Model of Segmentation.
Left: the query segmentation partition; middle: the
process of generating a query Q; right: the process
of generating query ) with clicked document D

For P(Sm|0p), we employ a smoothed bigram language
model trained from the document D and interpolated with
the global document collection statistics ¢ to model the
probability of Sy, = wp,, We,,+1..-Wp,, 1 —1:

m

bin41—1

H P(wi|wi—1,0p)

I=bm

P(Snl0p) (6)

bm41—1

IT 1= YPuiwilwis,0p)

I=bm
+ APy (wi|wi—1,0¢)]

where
fD
fioy_ v, + 1D TRE
Pyi(wi|wi—1,0p) = w
fwl_l + D
e
fucjv, w, T HC L
Poi(wilwi—1,0c) = lél—‘c‘,
fwl,l + uc




A is the mixture weight, pc and up are the bigram backoff
weights, and fu,, fw, ,w, are the n-gram counts in document
D or corpus C. A

Overall, we want to estimate 6 to maximize the log like-
lihood of observing all the query-clicked document pairs in
the dataset:

log P(Q6,0 p) Zlog Z (Blni) (7
[T P(Sm(Q0)16) - P(Sim(@1)[00,)]

With 6, we can compute the most probable segmentations
for any query according to Equation (1).

4.1 Model Parameter Estimation by EM

Since the joint probability in Equation (7) involves the
logarithm of a summation over hidden variables B, there is
no exact analytical solution for . However, we can apply
the expectation maximization (EM) algorithm to maximize
the joint probability of all observed data. In the E-step, we
evaluate the posterior probability of a valid segmentation of
Q given the previous model parameter estimate gr=1,

P(B|Q,0% ", 0p,v)
P(Q|B,0" Y 0p,v) -

(®)
P(Bln,y)

T Y pes, P@QIBLOD,0p,4) - P(B'lng)
where
M
PQ[B,0% Y, 0p,4) = [[IP(Sm|0* ™) - P(Sm|0p)]
m=1

In the M-step, we update the estimate of 6 according to:

P(wi..w, [0™) = Z > PBIQL 0%V, 00, v)- (9)
BEBy,
M,
> 6(Sm(B, Q1) = wi..w,)]
m=1

where Z is the normalization factor and §() is an indicator
function checking if segment Sy, is equal to n-gram wy...wy.
For a query of n keywords, a naive computation for the M-
step requires summing of all 2" ! possible segmentations,
which is computationally impractical for longer queries. For-
tunately, it can be computed efficiently using the Baum-
Welch algorithm [2].

Here we introduce a graph representation for query seg-
mentation. Given a query @ of length n, all segmentations
consistent with @ can be represented by a graph G with
n + 1 nodes. Figure 2 illustrates a graph representation for
two valid segmentations of the query “bank of america on-
line banking”. For a graph with n + 1 nodes, there are a
total of 2"~ ways to connect node 1 to node n + 1, each
corresponding to a valid segmentation. For example, in the
upper panel of Figure 2, there is a connection from node
1 to 4, corresponding to a segmentation boundary between
america and online. In this case, the arc from node 1 to 4
corresponds to the segment “bank of america”.
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( /\
[ bank of america ] [ online banking ]
[ bank of america ] [online | [ banking ]
N 7

Figure 2: Graph Representation of Segmentations

Using this graph representation, Equation (9) in the M-
step can be rewritten as:

22220 &0, 5) - ai(Siey = wr..
Zl Zz Zj 51(1,])

wy)

P(w;..w,|0®) =

(10)

where £(4,j) = P(Si—;|Q,0 (kfl)) is the probability of the
segment S, represented by the arc from node i to node j
for the query @, §(S;—; = wi...wy) is an indicator function
with a value of 1 when S;—.; = wi...w, and 0 otherwise.

In order to compute & (i, j), we introduce
a(i) = P(Q, i\ﬂ(“l)), the probability of observing the query
Q@ from the beginning of the graph to node i, and 3(j) =
P(Q|7,0 *~Y), the probability of observing @ from node j
to the end of the graph:

1Skl

a@) = > alk) - P(S—i0"V) e - Pp(Sk—i),
k:k<i

)= Bk) - P(S;—il0V) e S Pp(S; ),
k:k>j

&(5,7) = (i) - Bi(5) - P(Siesg0 D) - e 15231 P (555

with the initial condition o;(1) =1, £i(n) = 1. Algorithm 1
summarizes the steps for estimating 0. For a set of queries
with equal length, the computation complexity for each it-
eration is O(Ln?), where L is the number of input query-
document pairs and n is the number of words in each query.
Once the optimal 6 is obtained, the probability of a segmen-
tation P(S|Q,0,1) can be computed by Equation (1).

4.2 Utilizing Other Resources

N-gram statistics from a very large scale of text resources
can also be utilized to improve query segmentation. In fact
in [19], the biggest improvement in segmentation accuracy is
achieved by utilizing information from Wikipedia. In addi-
tion, [6] also reports a well-performing naive query segmen-
tation method using Google Web N-gram. Here we propose
a simple approach utilizing the Microsoft Web N-gram ser-
vice. MS Web N-gram is essentially a distribution of n-gram
probability ' over the web. The probability of a segmenta-




Algorithm 1: N-gram concept probability estimation

input : A set of query-clicked document pairs
O0={<Qi, D >}1€[1,N]
output: Optimal estimate of 8 = {P(Sm)}

. 0 Count(Sm .
Init P(Sm|9( )) - Count(total Ngrams (7,71, qLe'ry collection)’
fort+— 1 to T do
P(S]0%") — 0;
ftotal — 0;
for | — 1 to N do
G is a graph representing query @Q;, with n + 1
nodes; ay(1) = 1; Bi(n + 1) = 1;
for node i +— 2 ton+1 do
(i) — Y e cu(k) - P(Sm|007D)-
_ 0 f
i e |Se=al’ . Pp, (Sk—i);
for node 7 «— n to 1 do
Bi(5) = Yooy Bi(k) - P(Sj—re]0"D)-
5. o |f
L e %=kl Pp, (S;—k);
for node i +— 1ton-+1do
for node j —i+1ton+1do
(i, 5) — (i) - Bi(5) - P(Simsl6")-
e 1%l Py (Si-);
P(Sm = Si—j[0®) —
P(Sm = 8i—j|0®)) + &u(i, §);
é’totul — gtota,l + §l (17‘7)’

P(Sm|09) — T
return 6 = {P(Sm)};

P(Sml6™) .

)

tion given @ is defined as:

P(BIQO'. %) x P(QIB.O",¢) - P(BW) (11
=TI P(swle") - P(BI&)

M ,
o [] P(Sml') - e ISm @
m=1

Furthermore, we can combine our query segmentation model

with clickthrough and the simple model with Web N-gram
into an interpolated model:

logP(B|Q,0,0",¢,4') =(1 - w) - logP(B|Q,0,4)  (12)
+w - logP(B|Q.,0',¢")

we find the setting of w = 0.5, f = 2.0, f = 2.0 results in a
model with good segmentation accuracy.

S. SEGMENTATION EXPERIMENTS

In this section we report the query segmentation results
obtained by our model and other baselines on two datasets.
One is from a standard dataset established by previous re-
search, and the other is constructed by ourselves. We also
conduct extensive analysis on several aspects of the results.

5.1 Data Preparation and Evaluation Metrics

We use two sets of queries for evaluating the query seg-
mentation models. The first set (Set 1) is a standard query
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segmentation dataset established by Bergsma and Wang [3],
which is also applied in [19]. In this dataset, annotator A,
B, and C independently segmented 500 queries which are
sampled from the AOL 2006 query log. Among these 500
human queries, the 220 where the 3 judges agree are called
the “Intersection” set.

The above segmentation dataset is focused on noun queries.
But in this work we are also interested in web queries. There-
fore we prepare another set of 1,000 queries sampled from
the search log of a major commercial search engine, which
we name the 1000-query dataset. We invite three domain ex-
perts to segment the queries independently, employing the
same evaluation metrics as Set 1. Besides expert annota-
tions, this dataset also has clickthrough information and
relevance judgments for the top documents, which is used
by subsequent experiments when comparing retrieval mod-
els.

To measure the segmentation effectiveness, we report re-
sults on three evaluation metrics. (1) Query accuracy: the
percentage of queries for which the predicted segmentation
matches the gold standard completely; (2) Classification ac-
curacy: the ratio of correctly predicted boundaries in be-
tween every two consecutive words; (3) Segment accuracy:
how well the predicted segments match the gold standard
under the information retrieval measures of precision, re-
call, and F-score.

As baseline, we include the three models in [19]: Mutual
information, EM + corpus (query log), and EM + corpus
+ Wikipedia. We also include a method using Google Web
N-gram [6] and a simple model with MS Web N-gram, as
defined in Section 4.2. Our model + clickthrough and our
model + clickthrough + MS Web N-gram are included in
the comparison. The parameters of our segmentation model
is trained on a large set of search log containing about 20
millions query-clicked document pairs.

5.2 Query Segmentation Results

Table 2 shows the results of our model as well as the
baseline models on the standard dataset. Columns 3 to 5
represent models without using external data source (ba-
sic models), while columns 6 to 9 are models utilizing large
external sources, such as Wikipedia and web-scale n-gram
(extended models). Among the basic models, our model
performs the best according to annotator A, C and the in-
tersection of these annotators. These results are significantly
better than the corresponding results by the EM + corpus
model in [19]. For the result based on annotator B, our
model is comparable to that of [19] (0.571 vs 0.573 on seg-
ment F score). For the extended models, simple model +
MS Web N-gram performs well, similar to the results for sim-
ple model with Google Web N-gram as reported in [6]. It
indicates the positive impact of n-gram statistics on query
segmentation. However, our model, as well as EM model
+ Wikipedia in [19] outperforms the simple models consis-
tently in all annotators’ judgments; and our extended model
performs better than that of [19]. For example, in the inter-
section judgments, the F score of our model is 0.779, while
model in [19] is 0.774. Compared to the simple model + MS
Web N-gram, whose intersection F score is 0.728, our model
achieves a 7.0% gain on the same measure. It suggests the



Table 3: Results on the 1000-query Dataset
Annotator Measure Our Model Simple Model +
MS Web N-gram

query accuracy 0.386 0.316

classify accuracy 0.631 0.538

A segment precision 0.434 0.368

segment recall 0.540 0.552

segment F 0.481 0.441

query accuracy 0.447 0.403

classify accuracy 0.690 0.619

B segment precision 0.533 0.476

segment recall 0.602 0.648

segment F 0.565 0.549

query accuracy 0.472 0.545

classify accuracy 0.703 0.749

C segment precision 0.670 0.693

segment recall 0.582 0.730

segment F 0.623 0.713

query accuracy 0.624 0.567

classify accuracy 0.761 0.642

Intersection segment precision 0.372 0.301

segment recall 0.405 0.395

segment F 0.388 0.342

effectiveness of our model and the benefit from combining
additional large scale N-gram statistics.

5.3 Results on the 1000-query Dataset

We compare our query segmentation model with the sim-
ple model + MS Web N-gram on the 1000-query dataset.
Table 3 shows the segmentation results on the this set. Al-
though the simple segmentation model with web n-gram
works very well in the standard dataset, it performs infe-
rior to our model in the 1000-query dataset. In 2 out of
3 annotator judgments, our model outperforms the simple
model. And in the intersection judgments our model also
works better than the simple model by 4.6%. Since this
dataset is sampled from a set of web search queries, re-
sults in this experiment indicate that our model fits web
search queries, whose characteristics are different from noun
queries, better.

54 Effect of the Penalty Factor

The factor f in Equation (4), which controls how much
penalty is given to a segment of length |Sy,|, is important to
the our proposed model. We now investigate how the seg-
mentation result changes according to different values of f.
For this purpose, we re-run our model (without web n-gram)
on the standard dataset with f ranging from 1.5 to 3.0 in
steps of 0.25. Figure 3 summarizes the results. There are
common trends across annotator A, B, C and their intersec-
tion. The F score increases when f increases from 1.5 to 2.0,
and decreases afterwards. It suggests that too little penalty
(small f) favors long segments and hurts segmentation accu-
racy, while too much penalty (big f) negatively impacts on
the results since it favors segments with very short length.
It also indicates that a moderate penalty at f = 2.0 is a
reasonable choice for the proposed model.

6. INTEGRATED LANGUAGE MODEL

In this section we will introduce the proposed integrated
language model with query segmentation (QSLM). We first
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Figure 3: Query Segmentation Performance with
Respect to Penalty Factor

motivate QSLM with an oracle experiment, then describe
the derivation of QSLM, and finally conduct extensive ex-
periments on a large scale web search dataset.

6.1 Oracle Ranker

To motivate the formulation of QSLM, we have carried
out an intuitive and interesting experiment. Given an oracle
ranker, we let the ranker choose the bigram or unigram lan-
guage model for each query, whichever gives a better NDCG
score. Table 4 lists the result of the oracle ranker compared
to other models. As such a simple oracle performs signif-
icantly better than either the bigram or unigram language
models, it suggests that it may be possible to improve the
search ranking if one can successfully emulate the behavior
of the Oracle — to accurately predict when to use a unigram
model and when to use a bigram model. We will show that
query segmentation can help achieve a similar effect.

Table 4: Oracle Ranker

Method NDCG@l NDCG@3 NDCG@10
BM25 0.3108 0.3358 0.3986
Unigram LM 0.3117 0.3366 0.3999
Bigram LM 0.3141 0.3380 0.3999
Oracle Ranker 0.3471 0.3628 0.4186

6.2 Integrated Language Model

Given a model for computing the probability of a segmen-
tation S for a query @, we can exploit this information and
develop a new retrieval model incorporating the query seg-
mentation structure. Note that the retrieval model proposed
here is independent of the query segmentation technique.
We start by formulating the integrated language model with
query segmentation based on the probabilistic ranking prin-
ciple [15]. Specifically, we can rewrite the probability that a
document is relevant to a query as follows:



Table 2: Segmentation Performance on the Standard Dataset

Annotator Measure MI [19] EM + Our Model Simple Model + [6] Simple Model + [19] EM + Corpus Our Model +
Corpus MS Web N-gram Google Web N-gram —+ Wiki MS Web N-gram
query accuracy 0.274 0.414 0.440 0.482 0.536 0.526 0.540
classify accuracy 0.693 0.762 0.776 0.782 0.807 0.810 0.803
A segment precision 0.469 0.562 0.598 0.645 0.665 0.657 0.669
segment recall 0.534 0.555 0.639 0.602 0.708 0.657 0.713
segment F 0.499 0.558 0.618 0.622 0.686 0.657 0.690
query accuracy 0.244 0.440 0.410 0.466 0.380 0.494 0.485
classify accuracy 0.634 0.774 0.750 0.777 0.752 0.802 0.776
B segment precision 0.408 0.568 0.521 0.568 0.519 0.623 0.591
segment recall 0.472 0.578 0.631 0.601 0.626 0.640 0.650
segment F 0.438 0.573 0.571 0.584 0.568 0.631 0.619
query accuracy 0.264 0.416 0.402 0.460 0.454 0.494 0.465
classify accuracy 0.666 0.759 0.756 0.772 0.772 0.796 0.803
C segment precision 0.451 0.558 0.548 0.597 0.581 0.634 0.624
segment recall 0.519 0.561 0.619 0.590 0.653 0.642 0.655
segment F 0.483 0.559 0.582 0.594 0.615 0.638 0.639
query accuracy 0.343 0.528 0.586 0.636 0.627 0.671 0.682
classify accuracy 0.728 0.815 0.842 0.847 0.851 0.871 0.855
Intersection segment precision 0.510 0.640 0.681 0.736 0.718 0.767 0.770
segment recall 0.550 0.650 0.747 0.721 0.778 0.782 0.788
segment F 0.530 0.645 0.713 0.728 0.746 0.774 0.779
For irrelevant documents, the query segments are gener-
P(R=1/Q, D) ated from the an n-gram language model trained from the
’ background corpus. For relevant documents, the query seg-
= E P(B|Q,D)P(R=1|B,Q,D) ments are modeled using a smoothed bigram model trained
B from the document, interpolated with the background cor-
P(Q|B,D,R=1)P(R=1|B,D) pus. Specifically:

= 3" P(BIQ, D)

r={0,1}P(Q|B,D,R=

P(Q|B,D,R=1)
P(Q|B,D,R=0)

r)P(R=r|B,D)

> P(BIQ, D)

P(Q|B,D,R=1) , P(R=0|B,D)
B P(QIB.D.RF=0) T P(R=1|B.D)
a
= P(B D
> P(BIQ. D)
B
where:
o= P(Q|B,D,R=1) . P(R:O|B,D)
" P(Q|B,D,R=0)’ " P(R=1|B,D)’

As the query segmentation is performed independently of
the document, P(B|Q,D) = P(B|Q). Furthermore, when
a document is irrelevant, we can approximate the query as
being generated from the background corpus statistics, in-
dependent of the document:

P(Q|B,D,R=1)
P(Q|B,0¢)

Finally, as the relevance of a document is independent of the
segmentation partition without knowing the query, we will
assume that all document has an equal probability of being
relevant. Thus, we can approximate b as the average ratio
of irrelevant to relevant documents over a set of queries.

~ P Q)|
Q)l

In this work, we apply a language model approach to es-
timate the the probability ratio a:
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P(Q|B,0c)
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P(Swl|0c)
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fwi—lwiv
P(wi|lwi-1,0c) = ——— , 13
(wiwi-1, bc) Jwiy,© + pe (13)
fw,
fwf—lwf,DJF/iD\#f)
Py (wi|lwi—1,0p) = — - , 14
b( z| i—1 D) fwi_l,D+,UzD ( )

P(wilwi—1,0p) = (1 — X) Pyi(ws|wi—1,0p) + AP (w;i|wi—1,0¢)
(15)

7. RETRIEVAL EXPERIMENTS

In this section we conduct a set of experiments for the
QSLM model on the web search task. The main reason why
we did not carry out experiments on the TREC datasets
is due to the lack of clickthrough data for TREC queries,
which is important to our study. In the following sections,
we invest several variants of the model and discuss the choice
in model parameters.

7.1 Evaluation Metrics and Baselines

We evaluate the retrieval models on a large-scale real
world dataset, containing 12,064 English queries sampled
from the query log of a major commercial search engine.
On average, each query is associated with 74 web docu-
ments, with each query-document pair manually assigned
a relevance label on a 5-level scale: 0 means that the docu-
ment D is detrimental to query @, 4 means that the docu-
ment D is most relevant to ). For comparison, we include
3 baseline models in the results: BM25 [16], unigram LM
with Dirichlet smoothing [25], and bigram LM as specified
in Equation (15). In order to obtain the optimal parame-
ters in our model as well as in the baselines, we divide the
whole dataset evenly into a training set and a test set, each
containing 6,032 queries, and estimate the parameters from
the training set using grid search, as proposed in [21]. The
optimal parameters of the models are reported in Table 5.
Finally we also list the simple oracle results as reference.
The performance of all the retrieval models is measured by
mean normalized discounted cumulative gain (NDCG) [7] at



truncation levels 1, 3, and 10. We list the dataset statistics
in Figure 4 and report detailed results of the retrieval mod-
els in Table 6. In Table 6, we report the results by query

Table 5: Optimal values of parameters

Model NDCG

Unigram LM | p = 2.702

Bigram LM ue = 425026, up = 0.51, A = 0.681

QSLM we = 500213, up = 0.50, A = 0.90,b = 720
g D

Testset

Query Corpus

. J

Figure 4: Query Distribution in the Datasets

length. For short queries, there are few variations in the
segmentation. Thus, there is little room for improvement by
exploiting segmentation information. However, the effect of
query segmentation is more pronounced when the query con-
tains 4 or more words, which we consider as a long query. In
this case, the NDCGs of BM25 and unigram LM are similar,
both outperformed by the bigram LM. However, QSLM’s
performance (0.3419, 0.3539 and 0.4040) is significantly bet-
ter than all other models at all levels of NDCG truncation.
In fact, we have conducted a paired t-test between QSLM
and the other models. At confidence level a = 0.01, the dif-
ference between QSLM and BM25/unigram LM at all three
levels of NDCG truncation is statistically significant. The
difference between QSLM and bigram LM at both NDCG@1
and NDCG@3 are significant.

Table 6: Results of IR Models on Web Search

Length  #Queries Model NDCG@1 NDCG@3 NDCG@10
1 1012 BM25 0.2515 0.2773 0.3496
1 1012 Unigram LM 0.2515 0.2767 0.3497
1 1012 Bigram LM 0.2462 0.2737 0.3452
1 1012 QSLM 0.2462 0.2737 0.3452
2 1694 BM25 0.3125 0.3391 0.4068
2 1694 Unigram LM 0.3131 0.3393 0.4076
2 1694 Bigram LM 0.3132 0.3392 0.4074
2 1694 QSLM 0.3169 0.3404 0.4078
2 1694 Oracle Ranker  0.3488 0.3656 0.4266
3 1471 BM25 0.3273 0.3603 0.4226
3 1471 Unigram LM 0.3293 0.3607 0.4242
3 1471 Bigram LM 0.3322 0.3617 0.4244
3 1471 QSLM 0.3332 0.3619 0.4251
3 1471 Oracle Ranker  0.3657 0.3877 0.4423

>3 1855 BM25 0.3287 0.3454 0.3988
>3 1855 Unigram LM 0.3294 0.3476 0.4009
>3 1855 Bigram LM 0.3354 0.3500 0.4009
>3 1855 QSLM 0.3419 0.3539 0.4040
>3 1855 Oracle Ranker  0.3651 0.3752 0.4222
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7.2 Alternative Choice of the Bigram Model

As the choice of smoothing methods is critical to language
modeling for information retrieval [25], we also test QSLM
with an alternative form of bigram model (2-stage smoothed
bigram) proposed in [8]:
szaD + N1/|V|

|D] +
Ao Jfa_1a.p+ N2/|V|2
Jar_1.0 + p2
Ja.o+ps/|V]
|C| + u3
5 Jarq.c+ N4/|V|2
Jar_y.c 4 pa

P(glgi-1,0p) = (1 = A)[(1 = A2) (16)

Jr

J

+ A1 = A3)

+ A ]

Ja.c +ps/|V]
|C| + us3
As fqpﬂlyc + /1’4/|V|2
Ja_1.c+ pa
Results in Table 7 show that QSLM with 2-stage smoothed
bigram performs slightly better than the original form of
smoothed bigram (see Equation (15)) on NDCG3 and NDCG10.
However, this smoothed bigram LM has a larger set of pa-
rameters to tune than the original bigram LM, from 3 in the

original to 7. Therefore, the original form of smoothed bi-
gram model might be more generalizable to other scenarios.

P(gilgi—1,0c) = (1 — A3) (17)

+

Table 7: QLSM with Difference Bigram Models

Model NDCG@1l NDCG@3 NDCG@10
QSLM - Bigram Model 1 0.3419 0.3539 0.4040
QSLM - Bigram Model 2 0.3404 0.3549 0.4045

Note: tests are made on 1855 queries of length greater than 3 in the test set.

7.3 Effect of Number of Segmentations

The effectiveness of a retrieval model combined with query
segmentation relies on the ability to properly quantify the
uncertainty of a segmentation. Ambiguous queries tend to
have several segmentations with equal likelihood. So it’s
necessary to explore how the retrieval model performance
changes with respect to the number of segmentations. In
this experiment, we run QSLM on long queries from the web
search test set (1855 queries) and vary the maximum number
of query segmentations from 1 to 10. All segmentations are
sorted by their probability. Figure 5 shows the performance
trends at NDCG@Q1, NDCG@3 and NDCG@10. At all three
levels of NDCG, it follows a common trend: the results do
improve as the number of segmentations increases. In gen-
eral, the NDCG scores reach a max when the number of seg-
mentations reaches 3 or 4. This demonstrates that we should
consider the segmentation probability and incorporate more
than one candidate segmentations into the retrieval model.
It also illustrates that we can achieve a reasonable result by
considering only the top few segmentations.

7.4 Effect of the Penalty Factor on Retrieval

As discussed in Section 5.4, the penalty factor f is im-
portant to query segmentation. Here we investigate how
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this factor impacts the retrieval performance. Towards this
goal, we run QSLM on the long queries from the web search
test set (1855 queries) with f ranging from 1.5 to 3.5 in steps
of 0.25. Figure 6 indicates a very different result from query
segmentation: for our retrieval model with query segmen-
tation, the result is not sensitive to the change in f. For
example, for NDCG@1, the performance of QSLM increases
only slightly from f = 1.5 to f = 2.0, and decreases slowly
afterwards. For NDCG@3 and NDCG@10, the differences
in NDCG scores at difference values of f are negligible. The
results suggest that our integrated retrieval model is robust
to the choice of the penalty factor f.
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Figure 6: Retrieval Performance with Respect to
Penalty Factor

7.5 Comparing to Other Query Segmentation
Methods

The formulation of the QSLM model is not constrained by
our query segmentation model. Theoretically it can work
with query segmentations computed by any other model.
It is thus interesting to know whether different query seg-
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mentation models will lead to different retrieval results. As
mentioned in Section 5.3, we have constructed a 1000-query
dataset with expert-labeled segmentations. More impor-
tantly, this dataset is randomly sampled from our web search
dataset of 12,064 queries. Therefore, there are relevance
judgments on each query. In addition to the baselines BM25,
unigram LM and bigram LM, we report the results of 3 other
models in this experiments: QSLM with query segmenta-
tions labeled by three human experts (QSLM®), QSLM with
segmentations computed by simple model + MS Web N-
gram (QSLM?®), and QSLM with segmentations computed
by our segmentation model with clickthrough only (QSLM?®).
Table 8 summarizes the results of these models on 382 long
queries. In general, the QSLM models work better than the
3 baselines, no matter what query segmentation model is
used. However, the results demonstrate that there are no-
ticeable differences with respect to different segmentation
models. Although the simple segmentation model with web
n-gram works very well for query segmentation, it is infe-
rior to using human-labeled query segmentations. Mean-
while, QSLM, when coupled with our query segmentation
model, works better than the other variants of QSLMs at
all NDCG truncation levels. We believe the superior perfor-
mance of our model is attributed to the appropriate mod-
eling of relevance information in clickthroughs. Such rele-
vance information is embedded in the query segmentations
in the users’ preferences and subsequently exploited by the
integrated language model.

Table 8: IR Models on 1000-query Dataset

Model NDCG@1 NDCG@3 NDCGQ10
BM25 0.3410 0.3525 0.4003
Unigram LM 0.3466 0.3624 0.4057
Bigram LM 0.3626 0.3643 0.4025
QSLM* 0.3649 0.3656 0.4034
QSLM?® 0.3600 0.3619 0.4020
QSLM® 0.3700 0.3684 0.4058
Oracle Ranker 0.3929 0.3934 0.4285

Note: tests are made on 382 queries of length greater than 3.

8. CONCLUSIONS

In this paper we propose a novel unsupervised query seg-
mentation model by jointly modeling the query-clicked doc-
uments from the search log. Experimental results on two
datasets confirm the effectiveness of our model. Further-
more, we develop a unified language model with query seg-
mentation to improve the search ranking. The implicit rele-
vance information in the clickthrough data is the bridge be-
tween our query segmentation model and QSLM. Thorough
experiments on a large-scale web search dataset show that
search relevance can be improved by leveraging the query
segmentations. As there is still a large gap in retrieval per-
formance between the oracle ranker and the QSLM model,
we plan to further refine the model to reduce gap in the fu-
ture. Specifically, we would like to explore the use of QSLM
as features to other advanced retrieval models [12].
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