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ABSTRACT 

Many developing countries are suffering from air pollution 

recently. Governments have built a few air quality monitoring 

stations in cities to inform people the concentration of air 

pollutants. Unfortunately, urban air quality is highly skewed in a 

city, depending on multiple complex factors, such as the 

meteorology, traffic volume, and land uses. Building more 

monitoring stations is very costly in terms of money, land uses, 

and human resources. As a result, people do not really know the 

fine-grained air quality of a location without a monitoring station. 

In this paper, we introduce a cloud-based knowledge discovery 

system that infers the real-time and fine-grained air quality 

information throughout a city based on the (historical and real-

time) air quality data reported by existing monitor stations and a 

variety of data sources observed in the city, such as meteorology, 

traffic flow, human mobility, structure of road networks, and point 

of interests (POIs). The system also provides a mobile client, with 

which a user can monitor the air quality of multiple locations in a 

city (e.g. the current location, home and work places), and a web 

service that allows other applications to call the air quality of any 

location. The system has been evaluated based on the real data 

from 9 cities in China, including Beijing, Shanghai, Guanzhou, 

and Shenzhen, etc. The system is running on Microsoft Azure and 

the mobile client is publicly available in Window Phone App 

Store, entitled Urban Air. Our system gives a cost-efficient 

example for enabling a knowledge discovery prototype involving 

big data on the cloud.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - data 

mining, Spatial databases and GIS; 

General Terms 

Algorithms, Management, Experimentation 

Keywords 

Urban computing, air quality, city dynamics, human mobility. 

1. INTRODUCTION 
Many developing countries, e.g., China, Brazil, and India, are 

suffering from air pollution recently. Many governments have 

built air quality monitoring stations in cities to inform people the 

real-time concentration of air pollutants, such as PM2.5. In reality, 

however, a city has insufficient air quality monitoring stations 

because building and maintaining such a station is very costly in 

terms of money, land uses, and human resources [6]. 

Unfortunately, urban air quality varies by locations significantly 

and is highly skewed in a city, as it depends on multiple complex 

factors, such as meteorology, traffic, land use, and urban 

structures. For instance, Beijing has 22 stations in the urban 

spaces, as depicted in Figure 1 A). However, according to the 

statistics on the air quality index (AQI) recorded from Jan. 1, 

2013 to Jan. 1 2014, the average deviation between the maximum 

and minimum readings of PM2.5 from the 22 stations at the same 

timestamp can easily exceed 120, as shown in Figure 1 B). In 

addition, over 50% of time, the deviation is larger than 100, as 

depicted in Figure 1 C). 100 almost denotes a two-level gap, i.e., 

when the air quality of a location is moderate, another one could 
be unhealthy.  

 
Figure 1. The difference between AQIs from different stations 

Conventional dispersion models proposed in the environmental 

engineering are usually based on empirical assumptions and 

parameters that may not be applicable to different urban 

environments [3]. The crowd sensing-based method [1] could 

work for a very few kinds of gas like CO2 but not applicable to 

aerosols, such as PM2.5 and PM10. The devices for detecting these 

pollutants are not easily portable and usually need a relatively 

long sensing period (e.g., 1~2hours) before generating an accurate 

AQI. Recently, big data reflecting city dynamics have become 

widely available [7], e.g., traffic flow, human mobility, and 

meteorology, enabling us to solve this challenging problem from a 

data perspective.  

In this paper, we present a system that provides people with the 

real-time and fine-grained air quality throughout a city using a 

“cloud + client” architecture. In the system, the cloud infers the 

air quality of a location based on the (historical and real-time) air 

quality data from existing monitor stations and other relevant data 

sets, such as meteorology, traffic flow, structure of road networks, 

and POIs, we observed around the location. Using machine 
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learning and data mining techniques, we build a network between 

air quality labels and features observed across these data sources. 

The system also provides a mobile client, with which a user can 

monitor the air quality of multiple fine-grained locations in a city 

(e.g. the current location, home and work places) on a smart 

phone, and a web service that allows other applications to call the 

air quality of any location. The system can inform people’s 

decision making, e.g., where and when to go jogging, and help 

diagnose the root cause of air pollution. 

This paper introduces the implementation of the system, as the 

inference model of this system has been evaluated in paper [6]. 

The contribution of this paper lies in the following three aspects: 

 We propose a hybrid framework (i.e., local servers + a cloud) 

to quickly enable a research prototype on the cloud in a 

cost-efficient way. This framework leverages the stability of 

a cloud platform to receive instant data, perform inferences, 

and provide online services, while using local servers for 

training models and maintaining data sources that do not 

change frequently. This framework saves storages and CPU 

resources on the cloud tremendously (i.e., lowers the 

monetary cost), while providing a certain flexibility to a 

research prototype’s development (e.g., testing different 

parameters for a model is much more convenient in local 

servers than in the cloud).  Our system has been deployed on 

Azure, a cloud service operated by Microsoft, providing the 

real-time and fine-grained air quality of nine Chinese cities, 

including Beijing, Shanghai, Shenzhen, and Guangzhou, etc.  

 We devise a mobile client and a website that allow a user to 

monitor the air quality of any location. The mobile client 

and website communicate with the cloud via a web service. 

The mobile client (entitled Urban Air) can be installed via 

Window Phone App store. The website is hosted on Azure, 

publicly accessible via http://urbanair.msra.cn/ 

2. FRAMEWORK 
As shown in Figure 2, our system consists of three major parts: 

local servers, the cloud, and consumers (e.g. mobile clients and 

websites), resulting in online and offline data flows, respectively. 

The local servers store static data sets, such as POIs, and train the 

inference model periodically, e.g., every month. The Cloud 

receive instant data, including meteorological and traffic data, 

infers air quality of each location every hour, and serve consumers 

with the inferred results via a web service. The consumers access 

the air quality data, displaying them on mobile clients or websites.     

 
Figure 2. Framework of our system 

2.1 The Cloud 
The cloud crawls air quality readings of existing monitoring 

stations and meteorological data (such as weather conditions, 

humidity, and barometer pressure) from public websites every 

hour. The cloud also continuously receives GPS trajectories of 

taxicabs and then maps each trajectory onto a road network using 

a map-matching algorithm [5]. To save the resource on the cloud 

(more storages call for more expensive payment), we only store 

the recent trajectories in an online trajectory database. Historical 

trajectories can be moved to local servers periodically. The cloud 

extracts meteorological features from the data crawled from the 

web, and human mobility and traffic features from taxi trajectories. 

The taxi trajectory used here is just optional and better to have. 

Without the data, the inference model can still achieve an 

accuracy over 0.75.  

The extracted features are stored in the online feature database. As 

there are different kinds of features, e.g., POI features and 

meteorological features, we need to conduct some feature 

combination for a location before feeding them into the inference 

model. Note that we do not simply put together different features 

into a single feature vector and treat them equally. Instead, they 

will be fed into different parts of our model, and combined in 

different ways (refer to Section 3 for details). Given the features 

of a location, the cloud infers its air quality and then stores the 

results in a database, which will be later accessed by mobile 

clients or websites via a web service.  

We use Azure platform as a service (Paas). Table 1 details the 

Azure resources for our system. The web crawler and inference 

model share a small virtual machine (who has 1 core and 1.75GB 

memory), as they only work for a while in an hour. The website 

and web service share a medium virtual machine (A2), given the 

potential heavy accesses by many consumers. As the hybrid 

framework stores static data (like POIs) and historical trajectory 

data in local servers, 5GB is enough for storing the online features 

and inferred results of 9 cities. The expense for the total cloud 
resources is about 350USD per month. 

Table 1. The Azure resources used for our system 

Components Azure Solution Resources  

Web Crawler & Inferring Worker Role Small (A1) 1 Core, 1.75 GB 

Website & Web service Web Role Medium (A2) 2 Cores, 3.5 GB 

Databases SQL Azure 5GB 

2.2 Local Servers  
Basically, all the jobs can be done in the cloud if we do not 

consider the expenses. However, using cloud services, we need to 

pay for CPU hours, storages, and I/O bandwidths. Saving 

unnecessary cost is vital for a research prototype. Additionally, 

migrating big data from local servers up to the cloud is time-

consuming given the limited network bandwidth. For instance, the 

size of the POIs and road networks data can be hundreds of Giga 

bytes, leading to a very long period of time (e.g., a few weeks) for 

copying the data from local servers to the cloud.  

Given the above mentioned reasons, we propose a hybrid 

framework that combines local servers with the cloud. 

Specifically, we can extract features from POI and road network 

datasets offline and then inset the features into the online feature 

database. As the size of features is much smaller than that of raw 

data, a lot of storage and transferring time can be saved. In 

addition, the value of the two datasets does not change over time 

frequently. Thus, we can update the corresponding features every 

season. Likewise, we can train the inference model offline and 

update the online model periodically, e.g., every month. As the 

dynamic features are extracted in the cloud, we sync up the online 

feature database to local servers before each training process. In 

this way, we are agile to try new ideas (e.g. re-train the model) 

while significantly reducing expense for a research prototype. 

2.3 Consumers 
Figure 3 depicts the user interfaces of the mobile client. As 

demonstrated in Figure 3 A), a user has selected four locations, 

such as home and work places, to monitor on her mobile phone. 
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Here, each banner represents one location and the number shown 

in each banner is the AQI of the location. The color of a banner is 

determined in accordance with its air quality, e.g., “green” means 

a “good” and “yellow” denotes “moderate” in Chinese AQI 

standard. Each location was selected by long pressing the 

corresponding venue on a map, as shown in Figure 3B), where an 

icon stands for a venue that a user has selected. Our mobile client 

will automatically name a selected venue according to the titles of 

POIs and road networks around the venue. Users can then modify 

the name to some semantic title, such as home. By clicking a 

banner in the location list, users can also see the trend of air 

quality of a location, as illustrated in Figure 3 C). Once the air 

quality of these location exceeds a certain threshold, a user will be 

alerted by her mobile phone, hence then call her parents to close 

the windows or turn on air filters. The fine-grained air quality 

information can also inform a user’s decision making on where 

and when to go jogging.   

       
      A) Location list          B) Select a location     C) Trend of air quality 

Figure 3. Mobile User Interface 

Figure 4 presents the user interface of the website, where an icon 

stands for an air quality monitoring station that has been built by 

governments and the number associated with an icon denotes the 

AQI of the station. Likewise, the color of an icon is set in 

accordance with the AQI of the station (refer to the colored bar 

descriptor shown on the bottom right part of Figure 4). The top 

right box of Figure 4 shows the average AQI well as the humidity 

and wind speed of a city. The box also presents the accuracy of 

the inferred AQIs in the city in past 48 hours. To validate the 

accuracy of our inference, we deliberately remove one station 

from the labeled data and predict the air quality of the station with 

our method. The reading from the station is then used as a ground 

truth to measure the inference results. We do such evaluate for 

each station in each hour, finally calculating an average accuracy 

over a period of time. The website covers 9 cities in China (the 

figure after the name of each city is the number of the monitoring 

stations in the city). We can switch between cities by clicking 

cities’ name shown in the list. 

The toolbar floating on the top-left part of Figure 4 helps us 

interact with the map. The most left button turns on and off the 

traffic flow that is overlapped on the map (this is to help diagnose 

the correlation between traffic and air quality through the 

exploratory visualization). The next three buttons respectively 

offer us a capability to see the air quality of a point location, in a 

spatial range, and throughout a city. For instance, as shown in the 

bottom-left part of Figure 4, we can view the air quality of any 

location (marked as a blue balloon icon) by just clicking on the 

map, even if there is no monitoring station. Once clicking on the 

third button, a user will see the results shown in Figure 5. The 

fourth button displays the top 200 locations in a city with the best 

and worst air quality over a period (e.g., in the past year). The 

information can inform a user’s decision making, e.g., when 

purchasing a real estate. Clicking the last button, we will see the 

statistics on the air quality of the recent 60 days, as illustrated in 

Figure 6, where the top-left and top-right diagrams visualize the 

proportion of different AQI classes in daytime and nights, 

respectively. Generally, the air quality in the night is better than 

that of daytime in Beijing, as we can observe more green areas in 

the top-right chart. The bottom three figures presents the average 
AQI of an entire day of three pollutants respectively.  

 
Figure 4. Web user interface 

 
Figure 5. Fine-grained air quality throughout a city  

 
Figure 6. Statistics on the air quality data in recent 60 days 

The mobile clients and website communicate with the cloud via a 

web service, following the data flow shown in Figure 7. To reduce 

the response time to a request, we load the inferred air quality of 

the recent hour from the results database to Azure virtual 

machine’s memory. Two sets of APIs are defined for mobile 

clients and websites, respectively based on SOAP and HTTP 

protocols. An internal interface is designed to receive and answer 

requests through the APIs, retrieving the results according to the 

requests from the memory.  

 
Figure 7. Data flow of the service provider 
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3. Learning and Inference 
The inference model was proposed in our previous publication [4]. 

Here, we just give a very brief introduction to make this demo 

paper self-contained.   

We divide a city into disjointed grids (e.g., 1km×1km), assuming 

the air quality in a grid cell is uniform while that of different grid 

cells may be different. If having an air quality monitor station, a 

grid cell is labeled by the AQIs reported from the station. We 

extract five categories (i.e., traffic, meteorological, human 

mobility, POI, and road network) of features respectively from the 

corresponding data observed in the cell and its eight surrounding 

cells. The output of the model is a class of air quality, consisting 

of good, moderate, unhealthy for sensitive group, unhealthy, very 

unhealthy, and hazardous (we use Chinese AQI standard, e.g., 0-

50 means good). We train the model with labeled data and infer 

the grid cells without a monitoring station. After inferring the AQI 

category of a location, we further interpolate the real AQI value of 

the location based on the readings of the top three monitoring 

stations that are the geospatially closest to the location and have 

the same category of the AQI class as the location.  

As we only have a few air quality stations in a city while there are 

many places to infer, the data with labels are very few. To address 

this issue, we propose a co-training-based semi-supervised 

learning approach, where unlabeled data are used to improve the 

inference accuracy. As shown in figure 8 A), a circle denotes a 

location and a plane means the states of these locations at a 

timestamp. We build two classifiers, a spatial classifier (SC) and a 

temporal classifier (TC), separately modeling the temporal 

dependency of air quality in an individual location and the spatial 

correlation of air quality among different locations. The two 

classifiers have a mutually reinforced learning in the framework 

of co-training [1].  

 

Figure 8. The philosophy of the inference model 

The spatial classifier uses static features (e.g. POIs) to model the 

non-linear spatial correlations among air qualities of different 

locations. As illustrated in Figure 8 B), the SC consists of two 

parts: input generation (in the left box) and an artificial neural 

network, where 𝐹𝑝
𝑘, 𝐹𝑟

𝑘, 𝑙𝑘, and 𝑐𝑘 denotes the POI features, road 

network features, location, and the AQI label of grid k; 𝑥 is the 

grid to be inferred; 𝐷1 is a distance function between features (e.g., 

the Pearson correlation in the experiments) and 𝐷2 calculates the 

geo-distance between the center of two grids. We randomly 

choose 𝑛 grid cells with labels to pair with the cell to be inferred 

(e.g. 𝑛=3 achieves the best accuracy in the experiments). To learn 

the impact of different scales of the distance between grids, we 

perform this pairwise process 𝑚 times to formulate a collection of 

inputs. In the inference process, we also pair a grid to be inferred 

with a certain sets of 𝑛 labeled grids, generating a prediction of 

AQI label for each set. The frequency of each inferred label is 

then used as the probability score of the label, and the most 

frequent label will be selected as the prediction result of 𝑆𝐶.  

The temporal classifier is based on a linear-chain conditional 

random field (CRF), which uses dynamic features (such as 

meteorology) to estimate the temporal transformation of air 

quality in a location. Figure 8 C) shows the graphical structure of 

the temporal classifier, which consists of hidden state variables 𝐘 

and observations 𝐗 (𝑡 is a timestamp by hour, e.g., 8am). At the 

inference time, we apply 𝑆𝐶 and 𝑇𝐶 to the corresponding features 

separately, selecting the most possible AQI class by the product of 

the two probability scores generated by the two classifiers. As 

different air pollutants (e.g., NO2 and PM10) are influenced by 

these factors differently, we build a model for each pollutant.  

Figure 9 shows the performance of our method (U-Air) which 

outperforms six baselines, consisting of linear and Gaussian 

interpolations, classical air pollutant dispersion models, Decision 

Tree, CRF, and ANN. We add an instance into the training data if 

SC or TC predicts it as a class with a probability score over 0.85. 

As a result, as shown in the right part of Figure 9, the unlabeled 

data gradually improves the inference performance. Using a small 

Azure virtual machine, we can infer the air quality of entire 

Beijing in 3 minutes. 

 
Figure 9. Overall results of different methods for PM10  

4. CONCLUSION 
This paper presents a cloud-based system that provide users with 

real-time and fine-grained air quality throughout a city. The 

systems consists of a cloud, local servers, and consumers 

(including a mobile client and website). The hybrid framework 

that combines a cloud platform and local servers significantly 

saves monetary costs for a research project and bring flexibility 

for quickly trying new ideas, therefore can be referenced by other 

research projects if aiming to use a cloud platform as a service. 

Our cloud service is running on Windows Azure; the mobile client 

is available in Window Phone App store; the website is public 

accessible via http://urbanair.msra.cn/.  The finer-grain air quality 

can inform people’s decision making when jogging and cycling, 

and is also a step towards diagnose the root cause of air pollution.  
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