U-Prove Range Proof Extension

Draft Revision 1

Microsoft Research
Author: Mira Belenkiy

June 2014

© 2014 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and views expressed in this
document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. This
document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use
this document for your internal, reference purposes.

Summary

This document extends the U-Prove Cryptographic Specification [UPCS] by specifying set membership proofs.
This allows proving that a committed value is less than, less than or equal to, greater than, or greater than or
equal to another (committed) value.

U-Prove Range Proof Extension June 2014

Contents

R TU T2 0] 10 = T YT TTPFP 1

I 1 1 o Yo 18 o1 o o PP 3
1.1 N\ = o o PSRN 3
1.2 FEATUIE OVEIVIEW ... ettt s e s e s e e e s e e s e e s me e eme e ane s e e smnesmnesnnenne e neenneen 5

2 Lo oTeTol I=Y ol cTo] 1 [or= 4o o [PPSR 5
2.1 COMMON PrOTOCOIS ...ttt s e s n e s s e e ne e s st e s ne e saseesne e saneesneesareesneasane 6
2.2 L5110 €= 1 Ao o [P R 8
2.3 K== 1o T o SR 15

G I T Yo U 11 VA 00 g 1= T =T = [L= 18

ST =T =T TSRS 18

List of Figures

T U =R L0 T (oY o] == = 2 = 7
FIBUIE 21 RANEEPIOVEttt sttt a e s e s ne e s me e s ane e s me e e eneesaseeeeneeeaneesaneeesnseeenneesneasnneesn 8
T =0T = I0C A 00 3 1 11 (=T 9
FIBUIE 4: GEIBITPIOOTS. ..ciiiiieicceiee et e et e e e e s e st e e e et e s e e e e e e ee e e e e ane e e s e aseeeeasseeesaasseesesneeeaanseeesanneesansneeesnsneesnnnn 10
Figure 5: GenerateBitDECOMPOSITIONciiiiiiiii ettt e s s eme e s ene e e e e e s ne e e neeeneas 11
Figure 6: DefaultBitDECOMPOSITIONoiiiiiiiiiiiie et re e s e s e s eme e s ene e s emeeene e e eneesneas 11
T (0TI 00 3 1 11 (=Y 5 12
FIBUIE 81 COMIPULEX. ..eiieieiie ettt e st e e st ea e e st e s ne e e st e s ne e s st e s ne e e st e s ameesneesane e s neesaneesneesaneeeneesannesneas 12
FIBUIE 92 COMPULEE ...t e st e s st e s ne e e st e s ane e s ne e s ne e e neesaneesneesanneeneesennesneis 13
Tt I O Y. o] o oo T SR 14
FIBUre 11: EQUAITYOTDL. .ueiiiieeiie ettt st ae e et e s st e e st e s ne e e se e s meesneesene e s neesanee e st e sanee e st e sennesnees 15

Change history

Version Description
Revision 1 Initial draft

Microsoft Research Page 2

U-Prove Range Proof Extension June 2014

1 Introduction

This document extends the U-Prove Cryptographic Specification [UPCS] by specifying range proofs. The Prover
will prove to the Verifier that a committed value is less than, less than or equal to, greater than, or greater than
or equal to another (committed) value.

The Prover knows a secret value a, and will prove to the Verifier an inequality relation between a and another
value b that may or may not be known to the Verifier. The Prover and Verifier have as common input a pair of
generators g, h € G,. The Prover will create one of the following proofs:

no = PK{a,B,v,8|Cs = g*hY n C5 = gPh% N O B}
or
T = PK{a,y|Cy = g*hY N x© b}
where © € {<, <,>,=}. The Prover knows assignments for (a, 8,v,).

The proof relies on comparing the bit decompositions of a and b. The Prover computes Pedersen commitments
to the bit decompositions and then proves they are formed correctly. Then, the Prover compares each i bit prefix
of a and b; the results of the comparisons are stored in helper commitments D;. The Prover creates an Equality
Proof to show that the D; are computed correctly. The committed value in D,,_, is equal to {—1,0,1} depending
on the relationship between a and b. The Prover adds an aukxiliary proof showing that the committed value in
D,,_, is equal to the appropriate value given ©.

The U-Prove Cryptographic Specification [UPCS] allows the Prover, during the token presentation protocol, to
create a Pedersen Commitment and show that the committed value is the equal to a particular token attribute.
The Prover MAY use this Pedersen Commitment as either C4 or Cz. The Issuance and Token Presentation
protocols are unaffected by this extension. The Prover may choose to create a range proof after these two
protocols complete.

The committed values in C, and Cg MUST NOT be hashed. If any of these values are U-Prove token attributes,
the attributes also MUST NOT be hashed.

The Range Proof protocol makes use of the following U-Prove Extensions: Set Membership Proof Extension
EXSM], Bit Decomposition Extension [EXBD], and Equality Proof Extension [EXEQ].

1.1 Notation

In addition to the notation defined in [UPCS], the following notation is used throughout the document. The range
proof consists of many sub-protocols; local variables are omitted from this list unless they consistently appear
with the same meaning/value.

a Value to be compared to b, known only to Prover.
b Value to be compared to a, MAY be known to Verifier.

C, Pedersen Commitment to a. IOnly Prover knowns opening.
Cp Pedersen Commitment to b, or null if Verifier knows b.

bisKnown True if Verifier knows b.

Microsoft Research Page 3

U-Prove Range Proof Extension

O, proofType
min

max

£

9ij

a= (a1, (ay, 1), ., (@n_1,T-1)

b= (bo, S0), (by1,51) v, (by—1, Sp—1)

¢ = (co,¥0), (€1, ¥1) s (Cn=1,Yn-1)

d= (dy, t1) -, (dy-1, tn-1)
5 = (61, Vl) ey (en_l, Vn_l)

)_é = (Cl,ml) ey (Cn_l,mn_l)

A=Ay Ay, o, Ay

Microsoft Research

June 2014

A value in the set{<, <, >, =} indicating the relationship between a
and b that needs to be proven.
Minimum possible value for a and b.

Maximum possible value for a and b.

An equality map, as defined in U-Prove Equality Proof Extension
EXEQ]. Range proofs require multiple different equality maps; this
document uses local variable M to refer to a map.

The value of a DL Equation, as defined in U-Prove Equality Proof
Extension [EXEQ]. Range proofs create multiple different equality
proofs; this document uses local variable /Tl- to refer to the DL
Equation values.

The bases of a DL Equation, as defined in U-Prove Equality Proof
Extension [EXEQ]. Range proofs create multiple different equality
proofs; this document uses local variable g=i_]-to refer to the DL
Equation bases.

The witnesses (exponents) for a DL Equation, as defined in U-Prove
Equality Proof Extension [EXEQ]. Range proofs create multiple
different equality proofs; this document uses local variable X; ; to
refer to the DL Equation witnesses.

The opening information for Pedersen Commitments A. The a;
contain the bit decomposition of a — min, while the r; are the second
exponent.

The opening information for Pedersen Commitments B. The b;
contain the bit decomposition of b — min, while the s; are the second
exponent. If the Verifier knows b, then s; = 0.

The opening information for Pedersen Commitments C. The ¢

contain the difference between d and b: ¢; = a; — b;, while the y; are
the second exponent.

The opening information for Pedersen Commitments D. Each d;
stores the inequality relationship between the i least significant bits
of a and b, represented as a value in {—1,0,1}. The ¢t; are the second
exponent.

The opening information for Pedersen Commitments E. Each e; is
actually equal to d;_4, while the v; are the second exponent.

The opening information for Pedersen Commitments X. Each ¢ is
actually equal to the ¢; in ¢, while the m; are the second exponent.
Pedersen Commitments to d.

Pedersen Commitments to 5.

Pedersen Commitments to ¢.
Pedersen Commitment to ci.
Pedersen Commitment to é.

Pedersen Commitment to X.

Proof that 4 is a valid commitment to the bit decomposition of a —
min.

Proof that B is a valid commitment to the bit decomposition of b —
min. Null if the Verifier knows b.

Page 4

U-Prove Range Proof Extension June 2014

T Main equality proof showing that D and X are formed correctly.

mp Auxiliary proof showing that D,,_; contains the correct value; either
and equality proof or a set membership proof.

a <« A Choose a uniformly at random from set A.

The key words “MUST”, “MUST NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document
are to be interpreted as described in [REC 2119].

1.2 Feature overview

The Prover knows the opening of a Pedersen Commitments C, = g®h” and Cz = g°h® (optionally, b may be
public knowledge). The Prover needs to show that the relationship a © b holds, where © € {<, <, >, >} is also
known to the Verifier. For efficiency, the Prover and Verifier both know that a and b fall inside the range
[min, max]. The Prover will create a special-honest verifier zero-knowledge proof of knowledge that the Prover
knows a tuple of values (a,r, b, s) such that:

1 CA = gahr.
2 CB = gth.
3 The relationship a © b holds, where © € {<, <, >, >}.

The range proof consists of the following components:

1. Pedersen commitments Ay, A4;,...,A,_1 to the bit decomposition of a —min, as well as a Bit
Decomposition Proof [EXBD] showing the A; are constructed correctly.

2. (Optional) Pedersen commitments By, By, ..., B,,_; to the bit decomposition of b — min, as well as a Bit

Decomposition Proof [EXBD] showing the B; are constructed correctly.

Pedersen commitments Xy, ..., X,,_; to ¢; = (a; — b;)?. These are helper values

4. Pedersen commitments D,...,D,,_; to d; € {—1,0,1}, which represents the inequality relationship
between the i least significant bits of a and b. We compute it as follows:

w

d—{ al-—bl- i=0
" ldis —diq (@ = b)? +(a;—b) i>0

o

An Equality Proof [EXEQ] showing the X; and D; are formed correctly.
6. Anauxiliary proof showing that D,,_, is a commitment to the appropriate value in {—1,0,1} given the type
of inequality relationship the Prover is trying to prove.

2 Protocol specification

As the range proof can be performed independently of the U-Prove token presentation protocols, the common
parameters consist simply of the group G,, two generators g and h, and a cryptographic function 7{. The
commitments C4 and Cz MAY be generated by the Prover.

The remaining parameters may be chosen by either the Prover or Verifier: The values min and max indicate the
maximum span for secret values a and b. The variable blsKnown indicates whether the Verifier knows b. The
proofType indicates the inequality relationship between a and b that the Prover wishes to demonstrate.

Microsoft Research Page 5

U-Prove Range Proof Extension June 2014

2.1 Common Protocols
The main body of the range proof is an Equality Proof defined in the U-Prove Equality Proof Extension [EXEQ
EQProofParams() returns the common parameters for the main proof. It generates an equality map M and sets

ni—1 =Qij

up the DL equations /TL- =]'[j=0 9;; where the Zi and jl-,j are public values returned by this protocol, while the

a; ; are secret values known only to the Prover.

Microsoft Research Page 6

U-Prove Range Proof Extension

June 2014

EQProofParams ()

Input
Parameters: desc(G,),UIDy;, g, h
Commitment to a/b: C= Co,Cqy e Cpq
Commitmentto d: D = Dy, ..,Dp_q
Commitment to (a/b)?: X = Xy, ., Xn_1
Commitment to e: E = Ei,...En_4

Computation
M:=0
eq:=0

// Di = g°t - hri
Fori:= 0ton—1
M. Add(("delta", i), (eq ,0))
Aeq =D,
geq 0=49
g=eq ,1 = h
eq =eq +1
End

// Ai/B; = g*i- hSi
Fori:= 1ton—1
M. Add(("chi", i), (eq ,0))
Aeq =C;
geq 0=4
geq 1= h
eq =eq +1
End

// Xi = (A;/Bp)*t - h#i
Fori:= 1ton—1
M. Add(("chi",), (eq ,0))

Aeq =X
ieq 0= G
1:=nh

eq =eq +1

End

// By = (X701 b
Fori:=0ton—1
ﬂ_/[. Add(("delta",i — 1), (eq ,0))

Aeq =E;
geq 0= Xi_1
geq 1= h
eq =eq +1
End
Output
Return M, 4, §

Figure 1: EQProofParams.

Microsoft Research

Page 7

U-Prove Range Proof Extension

2.2 Presentation

June 2014

The Prover calls RangeProve to generate a range proof. We break up the range proof presentation protocol into
various sub-protocols for ease of exposition. The range proof also requires calling protocols from Bit

Decomposition Proof [EXBD], Set Membership Proof [EXSM], and Equality Proof [EXEQ].

RangeProve()

Input
Parameters: desc(G,), UIDy, g, h, min, max, blsKnown, b, proofType
Commitment to a: C,
Opening information to C,: a,r
Commitment to b: Cp
Opening information to Cg: b, s

Computation
A d,m, B, b, g

C,¢ = ComputeC(4,d, B,b)

D.d:= ComputeD(desc(Gy), g, h, o)

X, %= ComputeX(desc(Gy), g, h, c, 0)

E é:= ComputeE(desc(Gy,), g, h, ¢ éD,dX,

X
]\/[,E,g= = EQProofParams(desc(Gq),g, h, 5, 5,)—f, _))
¢ == MainProof(desc(G,), UIDy, g, h,n, M, A,§,¢,d %8
If proofType is > then

n, = EqualityOfDL(desc(G,), UIDy, g, h, 1, Dy, (dp1, tn1))
Else if proofType is < then

Else if proofType is = then

- = = o
Return A,B,D, X, 4, g, ¢, Tp

:= GetBitProofs (desc(Gq), UIDy, g, h, min, max, bIsKnown, C4, a, 7, Cg, b, s)

Tp = EqualityOfDL(desc(Gq), UIDy, g, h, —1, D1, (dp—1, tno1))

Tp = SetMembershipProve(desc(Gq), UIDy, g, h, {0,1}, Dy _q, (dy_q, tre1))

Else
Tp = SetMembershipProve(desc(Gq), UIDy, g, h, {0,1}, Dyy_q, (dy—1, tr—1))
End
If bIsKnown then
§ = @
End
Output

Figure 2: RangeProve

The range proof requires dividing the bit decomposition of A by the bit decomposition of B to get an array of

Pedersen commitments € and their openings C. This step is performed in the function ComputeC().

Microsoft Research

Page 8

U-Prove Range Proof Extension June 2014

ComputeC ()

Input
Parameters: desc(Gy)
Commitment to a: 4 = Ay, Aq, o Apq
Opening information to A;: d = (ag, 1), (@, 11),) (Qp_1,Tn—1)
Commitmentto b: B = By, By, ..., By
Opening information to B;: b = (b, So), (b1, 51) we» (Pp1, Sn1)

Computation
Fori = 0ton—1

ci=a; —b;
Vi =1 —S5;
CL _Ai/BL

End
5 = CO; Cll (LN C‘I‘L—l
E — (CO’yO)' (C,yl) ey (C:yn—l)

Output
Return C, ¢

Figure 3: ComputeC

The range proof performs bit decompositions of a and b with the help of protocols from U-Prove Bit
Decomposition Extension [EXBD]. For efficiency, it normalizes the range from [min, max] to [0, max — min]. This
step is important since the length of the range proof depends on the length of the bit decomposition. If the value
of b is known to the Verifier, the Prover will generate a default Pedersen Commitments to the bit decomposition

of b and omit the bit decomposition proof.

Microsoft Research Page 9

U-Prove Range Proof Extension

June 2014

GetBitProofs()

Input

Commitment to a: C,
Opening information to C,: a,r
Commitment to b: Cp
Opening information to Cg: b, s

Computation
n := [log,(max — min)]|
a:=a—min
Coi=Cyrg™mn

b:=b—min
If bIsKnown then

- - -
Return A,d, m,, B, b, g

Parameters: desc(Gy), UlDy, g, h, min, max, blsKnown,

A, d = GenerateBitDecomposition(desc(Gq), g, hn, CA, ar)
Ty = BitDecompositionProve(desc(Gq), UIDy, g, h, EA, AT, a)

C~B = gE
§, b= DefaultBitDecomposition(desc(Gq), g, hn, l~))
T[B = @
Else
Cp=Cp-g™™"
§, b= GenerateBitDecomposition(desc(Gq), g, hn, CB, b, s)
Mg = BitDecompositionProve(desc(Gq), UIDy, g, h, Cg, B, B)
End
Output

Figure 4: GetBitProofs.

The following two protocols generate a bit decomposition of an integer x and return Pedersen Commitments and
their openings to this decomposition. GenerateBitDecomposition() generates random Pedersen Commitments,

while DefaultBitDecomposition() sets the second exponent to 0.

Microsoft Research

Page 10

U-Prove Range Proof Extension June 2014

GenerateBitDecomposition()

Input
Parameters: desc(Gy), g, h,n
Commitment to x: C
Opening information to C: x,y

Computation
Xg, X1, -, Xn—q < bit decomposition of x
Yor Voo Yn-1 < Lg
Fori:=0ton—1
Ci = gxihyi
End
5 = Co, Cl’ ey Cn—l
55 = (xo' yO)' (xl' yl)' ey (xn—l' yn—l)

Output
Return C, %

Figure 5: GenerateBitDecomposition

DefaultBitDecomposition()

Input
Parameters: desc(Gg), g, h,n
Integer: x

Computation
Xg, X1, -, Xn_q < bit decomposition of x

yo;y; ---;yn—]_ = 0,0, ,0
Fori:= 0ton—-1
Ci = gxi

E = Co, C]_, ey Cn—l
)-C) = (xo' yO)' (xl' Y1)l T (xn—l' Yn—l)

Output
Return C, %

Figure 6: DefaultBitDecomposition

The range proof compares A to B bit by bit. It does so by computing Pedersen commitments D, ...,D,,_; to d; €

{—1,0,1}, which represents the inequality relationship between the i least significant bits of a and b. We compute
the d; as follows:

d—{ ai—bi i=0
P ldiny —dia(ag = b)* 4 (a;—b) >0

The function ComputeD() takes as input ¢; = a; — b;, which is substituted into the above formula.

Microsoft Research Page 11

U-Prove Range Proof Extension

June 2014

ComputeD ()

Input
Parameters: desc(G,), g, h
Commitment to a/b: C= Co,Cqy ey Cpq
Opening information to C;: ¢ = (¢g, Vo), (¢1, V1)) (Cpe1) Yn-1)

Computation

dy = ¢

Fori:= 1ton—1
di=di_y —di_1c® +¢
ti «— ZZ
Di = gdihti

End

ﬁ = Dl’ ""Dn—l

d = (dlﬂ tl)' LN (dn—lr tn—l)

Output
Return 5, J

Figure 7: ComputeD.

Proving that the D; are formed correctly requires helper values X; = Cic"hmi.

ComputeX()

Input
Parameters: desc(G,), g, h
Commitment to a/b: C= Co,Cqynry Cpqg
Opening information to C;: ¢ = (¢q, Vo), (€1, V1) oy (Cne1, Yn—-1)

Computation
Fori:= 1ton—-1
m; « Ly
X; = C/th™
End

X = Xl’ ""Xn—l
"
X = (x1,Mq), oo, (Xp_1, Mp_1)

Output
Return X, %

Figure 8: ComputeX.

Microsoft Research

Page 12

U-Prove Range Proof Extension June 2014

Proving that the D; are formed correctly also requires helper values E; = (X[1)%-1hVi = D; - (D;_,)~* - (C;))™*.

ComputeE ()

Input
Parameters: desc(G,), g, h
Commitment to a/b: C= Co,Cqy ey Cpq
Opening information to C: & = (co, ¥o), (¢1, ¥1) wrr (Cn1) Yr—1)
Commitment to d: D = Dy,,Dp_4
Opening information to D: d = (dy, t;) ..., (dp_1, ty_1)
Commitment to (a/b)?: X = Xy, ., Xn_1
Opening information to X: % = (¢, my) «.., (Cpey, Mpy—1)

Computation
Fori:= 1ton—1
Vit =ty +(diogyicc) + (dieg - my)
E; = (X7 %
End
E=E, .. E,_,
é = (e, v1), .., (€n_1,Vn-1)

Output
Return E, &

Figure 9: ComputeE

The main body of the range proof is an Equality Proof [EXEQ] showing that 5,)_f, E are formed correctly.

Microsoft Research Page 13

U-Prove Range Proof Extension

June 2014

MainProof ()

Input
Parameters: desc(G,), UIDy, g, h,
EQ Proof parameters: M, /T,g=
Opening information to C: & = (co, ¥o), (¢1, ¥1) wer (Cn1) Yr—1)
Opening information to D: d = (dy, t;) ..., (dp—1, ty_1)
Opening information to X: % = (¢, my) «.., (Cpey, Mpy—1)
Opening information to E: & == (ey, V1), .., (én—1, V1)

Computation

x:=0

eq:=0

// Di = g° - hri

Fori:= 0ton—1
%eq 0 = d;
xeq 1=t
eq =eq +1

End

// Ai/B; = g*i- hSi
Fori:= 1ton—1

xeq 0= Ci
Xeq,1 = Yi
eq —meq +1

End

// Xi = (A;/Bp)*t - h#i
Fori:= 1ton—-1

Xeq 0 = Ci
Xeg,1 =M,
eq =eq +1

End

// By = (X7H)%= - h
Fori:= 0ton—1

feq 0= €;
feq 1=V
eq =eq +1

End
o = EqualityProve(desc(Gq),UID}[, A G, M, %)

Output
Return ¢

Figure 10: MainProof.

EqualityOfDL is a small helper proof that shows that D = g“ - ht is a Pedersen Commitment to some integer x

known to the Verifier. The protocol generates an Equality Proof [EXEQ].

Microsoft Research

Page 14

U-Prove Range Proof Extension June 2014

EqualityOfDL()

Input
Parameters: desc(G,),UIDy;, g, h, x
Commitment to d: D
Opening information to D: (d, t)

Computation
M =

9?0,0 =t
o= EqualityProve(desc(Gq),UIDH, A g, M,x)

Output
Return

Figure 11: EqualityOfDL.

2.3 Verification

The Verifier receives the common parameters, as well as commitments to a and b and the proof. The Verifier
returns true if the verification passes, false otherwise. Verification requires checking the bit decomposition
proofs m, and mg, the main equality proof m, and the auxiliary proof mr;, that depends on the proof type.

Microsoft Research Page 15

U-Prove Range Proof Extension June 2014

RangeVerify()

Input
Parameters: desc(G,), UlDy, g, h, min, max, bIsKnown, b, proofType
Commitment to a: C,
Commitment to b: Cp

Proof: A,B,D, X,y g, ¢, Tp

Computation
P = true
P:= P AND BitDecompositionVerify(desc(Gq), UIDys, g, h, Cq/g™™, A Ty)
If bIsKnown then
§, b= DefaultBitDecomposition(desc(Gq), g, h,n,b —min)
Else
P:= P AND BitDecompositionVerify(desc(G,), UIDy;, g, h, C /g™™, B,)
End

C := ComputeClosedC(desc(G,), 4, B)

E:= ComputeClosedE(desc(G,), D, 5)

M, /T, g:= EQProofParams(desc(Gq), g h, 5, 5,)?, E)

P := P AND EqualityVerify(desc(G,), UIDy, A, §, M, c)

If proofType is > then

P := P AND EqualityOfDLVerify(desc(G,), UIDy;, g, h, Dp,_y, 1,p)
Else if proofType is < then

P := P AND EqualityOfDLVerify(desc(G,), UIDy;, g, h, D_y, —1, 1)
Else if proofType is = then

P := P AND SetMembershipVerify(desc(G,), UIDy, g, h, D4, {0,1}, 7p)

Else
P := P AND SetMembershipProve(desc(Gq), UIDy, g, h, D,,_1,{—1,0},)
End
Output
Return P

The Verifier uses the function ComputeClosedC() to compute C; = A;/B;, which are needed to verify m..

Microsoft Research Page 16

U-Prove Range Proof Extension

June 2014

ComputeClosedC()

Input
Parameters: desc(Gy)
Commitment to a: 4 = Ay, Aq, o Apq
Commitmentto b: B = By, By, ..., By

Computation
Fori:=0ton—1
Ci = A;/B;
End
5 = Co, Cl’ ey Cn—l
Output
Return C

The Verifier calls function ComputeClosedE() to compute E; = D; - (D;_;)~* - €/, which are needed to

verify m.

ComputeClosedE()

Input
Parameters: desc(Gg)
Commitmentto d: D = Dy, .., Dyq
Commitment to b: C = Co, Cqy ey Cq

Computation
Dy = Cy
Fori:= 1ton—1
E;=D;-(Di-)) ™" - C!
End
E = Eo, El' sy En_]_

Output
Return E

The Verifier calls EqualityOfDLVerify to check that D is a Pedersen Commitment to x.

Microsoft Research

Page 17

U-Prove Range Proof Extension

June 2014

EqualityOfDLVerify()

Input
Parameters: desc(G,),UIDy;, g, h, x
Commitmentto d: D
Proof:

Computation
M:=0
fTo =D-g™*
g=0,0 =h _
pass = EqualityVerify(desc(Gq),UID%, A, g, M,m)

Output
Return pass

3 Security Considerations

The range proof invokes protocols from U-Prove Equality Proof Extension [EXEQ], U-Prove Bit Decomposition
Extension [EXBD], and U-Prove Set Membership Proof Extension [EXSM]. Its security relies on their security. The

following restriction apply:

e The Prover and the Verifier MUST NOT know the relative discrete logarithm loggh of the generators g
and h. This is not an issue if the generators are chosen from the list of U-Prove recommended

parameters.

References

[Brands]

[EXBD]

[EXEQ]

[EXSM]

[RFC2119]

[UPCS]

Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates. The MIT Press,
August 2000. http://www.credentica.com/the mit pressbook.html.

Mira Belenkiy. U-Prove Bit Decomposition Extension. Microsoft, June 2014.
http://www.microsoft.com/u-prove.

Mira Belenkiy. U-Prove Equality Proof Extension. Microsoft, June 2014.
http://www.microsoft.com/u-prove.

Mira Belenkiy. U-Prove Set Membership Proof Extension. Microsoft, June 2014.
http://www.microsoft.com/u-prove.

Scott Bradner. RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,
1997. ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt.

Christian Paquin, Greg Zaverucha. U-Prove Cryptographic Specification V1.1 (Revision 3).
Microsoft, December 2013. http://www.microsoft.com/u-prove.

Microsoft Research Page 18

http://www.credentica.com/the_mit_pressbook.html
http://www.rarnonalumber.com/u-prove
http://www.rarnonalumber.com/u-prove
http://www.rarnonalumber.com/u-prove
ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt
http://www.rarnonalumber.com/u-prove

