

U-Prove Equality Proof Extension
Draft Revision 1

Microsoft Research

Author: Mira Belenkiy

June 2014

© 2014 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and views expressed in this

document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. This

document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use

this document for your internal, reference purposes.

Summary
This document extends the U-Prove Cryptographic Specification [UPCS] by specifying equality of discrete

logarithm representation proofs. This allows proving equality between U-Prove attribute values.

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 2

Contents
Summary .. 1

1 Introduction, .. 3

1.1 Notation .. 3

1.2 Feature overview .. 4

2 Protocol specification ... 5

2.1 Equality Map ... 5

2.2 Presentation ... 7

2.3 Verification .. 8

3 Security considerations .. 8

Appendix II Test vectors .. Error! Bookmark not defined.

References ... 9

List of Figures

Figure 1: Equality map grammar .. 5
Figure 2: GetIndex ... 6
Figure 3: EqualityProve .. 7
Figure 4: EqualityVerify .. 8

Change history

Version Description

Revision 1 Initial draft

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 3

1 Introduction
This document extends the U-Prove Cryptographic Specification [UPCS] by specifying equality of discrete

logarithm representation proofs. This allows proving equality between U-Prove attribute values.

The Prover and Verifier have as common input a list of values 𝐴0, 𝐴1, … , 𝐴𝑛−1 ∈ 𝐺𝑞 and a list of generators

𝑔𝑖,0, 𝑔𝑖,1, … , 𝑔𝑖,𝑛𝑖−1 ∈ 𝐺𝑞 corresponding to each 𝐴𝑖. The Prover will create a special-honest verifier zero-knowledge

proof of knowledge of the discrete logarithm representation of all the 𝐴𝑖 in terms of the generators:

𝜋 = 𝑃𝐾 {{𝛼𝑖,𝑗}𝑖∈[0,𝑛−1],𝑗∈[0,𝑛𝑖−1]|∀𝑖 ∈ [0, 𝑛 − 1]: 𝐴𝑖 = ∏ 𝑔
𝑖,𝑗

𝛼𝑖,𝑗𝑛𝑖−1
𝑗=0 }

We will call each statement of the form 𝐴𝑖 = ∏ 𝑔
𝑖,𝑗

𝛼𝑖,𝑗𝑛𝑖−1
𝑗=0 a DL equation. (Pedersen Commitments 𝐴 = 𝑔𝛼ℎ𝛽 are

a special case of DL equations.) The Prover has as input a list of open DL equations; i.e. the Prover knows the

value of all the {𝛼𝑖,𝑗}𝑖∈[0,𝑛−1],𝑗∈[0,𝑛𝑖−1]. The Verifier has as input a list of closed DL equations; i.e. the Verifier only

knows the constants 𝐴0, 𝐴2, … , 𝐴𝑛−1 ∈ 𝐺𝑞 and generators 𝑔𝑖,0, 𝑔𝑖,1, … , 𝑔𝑖,𝑛−1 ∈ 𝐺𝑞 .

The Prover and Verifier also have as common input an equality map ℳ that describes which of the exponents

𝛼𝑖,𝑗 are equal. The equality map consists of a sorted dictionary, keyed by named variables. Each named variable

is associated with a list of exponent indices. For example, the key (𝑏𝑒𝑡𝑎, 1) could be associated with the list

(0,3), (2,4), (5,1). This means that ∝0,3=∝2,4=∝5,1. The name (𝑏𝑒𝑡𝑎, 1) is an arbitrary label for the variable

associated with these exponents.

Suppose the Prover wants to show that the values 𝐴0 and 𝐴1 have the same discrete logarithms

𝜋 = 𝑃𝐾{∝0,0, ∝1,0 |𝐴0 = 𝑔0,0

∝0,0 ∩ 𝐴1 = 𝑔1,0

∝1,0}

The Prover needs to append a map to the proof indicating that ∝0,0=∝1,0. The Prover assigns the name 𝑛𝑎𝑚𝑒 =

(𝑔𝑎𝑚𝑚𝑎, 0) to the variable and places the indices of these two exponents in a list: 𝑙𝑖𝑠𝑡 = ((0,1), (1,1)). The

resulting equality map would contain a single entry: ℳ = ((𝑛𝑎𝑚𝑒, 𝑙𝑖𝑠𝑡)).

The U-Prove Cryptographic Specification [UPCS] allows the Prover, during the token presentation protocol, to

create a Pedersen Commitment and show that the committed value is the equal to a particular token attribute.

The Prover MAY use this Pedersen Commitment as a DL equation for the equality proof. The Issuance and Token

Presentation protocols are unaffected by this extension. The Prover may choose to create an equality proof after

these two protocols complete.

1.1 Notation
In addition to the notation defined in [UPCS], the following notation is used throughout the document.

𝐴𝑖 Value of the ith DL equation

∝𝑖,𝑗 Exponent for the ith DL equation for jth generator 𝑔𝑖,𝑗.

𝑥𝑖,𝑗 Value of ∝𝑖,𝑗 known only to the Prover.

𝑔𝑖,𝑗 The jth generator for the ith DL equation.

ℳ Equality map.

𝑀 Number of entries in equality map.

𝑛𝑎𝑚𝑒𝑚 Name of variable 𝑚 in the equality map.

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 4

𝑙𝑖𝑠𝑡𝑚 List of exponents associated with 𝑛𝑎𝑚𝑒𝑚 in the equality map.

𝑛𝑖 Number of generators/exponents in the ith DL equation.

𝑛 Total number of DL equations.

𝑏𝑖 Part of equality proof: “commitment”.

𝑐 Part of equality proof: “challenge”.

𝑟𝑖 Part of set membership proof: “response”.

The key words “MUST”, “MUST NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document

are to be interpreted as described in [RFC 2119].

1.2 Feature overview
The Prover and Verifier have as common input a list of closed DL equations of the form:

 {{𝛼𝑖,𝑗}𝑖∈[0,𝑛−1],𝑗∈[0,𝑛𝑖−1]|∀𝑖 ∈ [0, 𝑛 − 1]: 𝐴𝑖 = ∏ 𝑔
𝑖,𝑗

𝛼𝑖,𝑗𝑛𝑖−1
𝑗=0 }

They also have as common input an equality map ℳ = ((𝑛𝑎𝑚𝑒0, 𝑙𝑖𝑠𝑡0), … . , (𝑛𝑎𝑚𝑒𝑀−1, 𝑙𝑖𝑠𝑡𝑀−1)). Each 𝑛𝑎𝑚𝑒𝑚

is an arbitrary label for a variable; the equality map is keyed and sorted by the 𝑛𝑎𝑚𝑒𝑚. Each 𝑙𝑖𝑠𝑡𝑚 contains a

sequence of tuples (𝑖, 𝑗) indicating exponents 𝛼𝑖,𝑗. Together, the closed DL equations and equality map constitute

the proof statement.

The Prover knows a witness to the proof statement: a list of values 𝑥𝑖,𝑗 =∝𝑖,𝑗 that would satisfy the DL equations

and equality map.

We quickly overview the equality proof protocol. Suppose the Prover wants to prove the simple statement

𝜋 = 𝑃𝐾{∝0,0, ∝1,0 |𝐴0 = 𝑔0,0

∝0,0 ∩ 𝐴1 = 𝑔1,0

∝1,0}

The Prover knows a pair of witnesses (𝑥0,0, 𝑥1,0) = (𝛼0,0, ∝1,0). The Prover would perform the following steps:

1. Choose random 𝑤0,0, 𝑤1,0 ← ℤ𝑞 and compute commitments 𝑏0: = 𝑔0,0
𝑤0,0 , 𝑏1: = 𝑔1,0

𝑤1,0 .

2. Compute the challenge 𝑐 = 𝐻(𝐴, 𝑔, 𝑏0, 𝑏1).

3. Compute the responses 𝑟0,0 = 𝑤0,0 − 𝑐𝑥0,0 mod 𝑞 and 𝑟1,0 = 𝑤1,0 − 𝑐𝑥1,0 mod 𝑞.

The proof consists of (𝑏0, 𝑏1, 𝑟0,0, 𝑟1,0). The Verifier would check that:

𝑏0 = 𝐴0
𝑐 𝑔0,0

𝑟0,0 ∩ 𝑏1 = 𝐴1
𝑐𝑔1,0

𝑟1,0

Multiple Exponents. If the Prover wishes to prove knowledge of a representation of 𝐴𝑖 using 𝑛 generators and

exponents, the Prover would choose 𝑤𝑖,0, … , 𝑤𝑖,𝑛−1 ← ℤ𝑞 and compute the commitment 𝑏𝑖: = ∏ 𝑔𝑖,𝑗
𝑤𝑖,𝑗

𝑗∈[0,𝑛−1] .

The Prover would compute a separate response 𝑟𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑐𝑥𝑖,𝑗 mod 𝑞 for each exponent. The verification

equations would be modified in the obvious way to include all of the generators and responses.

Equality Map. Suppose the equality map includes an entry 𝑙𝑖𝑠𝑡5 = ((𝑖, 𝑗), (𝑘, 𝑙)). The Prover would choose a

random value 𝑤5 ← ℤ𝑞 and use it to compute the commitments 𝑏𝑖 and 𝑏𝑘 by replacing 𝑤𝑖,𝑗 and 𝑤𝑘,𝑙 with 𝑤5 in

the product. Similarly, instead of computing two separate responses 𝑟𝑖,𝑗 and 𝑟𝑘,𝑙, the Prover would compute a

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 5

single response 𝑟5 = 𝑤5 − 𝑐𝑥𝑖,𝑗 mod 𝑞. The Verifier would use the equality map to determine where to use the

response 𝑟5 in the verification equation.

2 Protocol specification
As the equality proof can be performed independently of the U-Prove token presentation protocols, the common

parameters consist simply of the group 𝐺𝑞 and a cryptographic function ℋ.

2.1 Equality Map
The equality map tells the Prover and Verifier which of the exponents in the proof are equal. The equality map

has the following grammar:

Equality Map Grammar

ℳ ≔ 𝜀|(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ≔ (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒, 𝐼𝑛𝑑𝑒𝑥_𝐿𝑖𝑠𝑡)|(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒, 𝐼𝑛𝑑𝑒𝑥_𝐿𝑖𝑠𝑡), 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝐼𝑛𝑑𝑒𝑥_𝐿𝑖𝑠𝑡 ≔ 𝑖𝑛𝑑𝑒𝑥, 𝑖𝑛𝑑𝑒𝑥|𝑖𝑛𝑑𝑒𝑥, 𝐼𝑛𝑑𝑒𝑥_𝐿𝑖𝑠𝑡
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒 ≔ (string,int)
𝑖𝑛𝑑𝑒𝑥 ≔ (int,int)

Figure 1: Equality map grammar

The equality map is a list of zero, one, or more Variables. Each Variable consists of a variable_name and an

Index_List. The variable_name is a pair consisting of a string and an integer – e.g. (beta, 4). The Index_List is a

list of Index elements indicating which exponents 𝛼𝑖,𝑗 are equal to each other. Each Index is a pair of integers –

e.g. (6,2). The first integer in an Index is the index of a DL Equation while the second integer is the index of the

exponent.

The equality map MUST be sorted lexicographically by variable_name. To compare two variable_names, first

compare the string element and then, if they are equal, compare the integer element. The same variable_name

MUST NOT appear more than once in the equality map.

An Index_List associated with a variable_name must contain at least two elements.

The equality map MUST support a method GetIndex that takes as input an Index (𝑖, 𝑗) and outputs the index of

the variable_name, with -1 on failure. We will use the short-hand (𝑖, 𝑗) ∈ ℳ to indicate GetIndex(ℳ, 𝑖, 𝑗) returns

an answer greater than -1 and (𝑖, 𝑗) ∉ ℳ to indicate GetIndex(ℳ, 𝑖, 𝑗) returns −1. Figure 2 shows a sample

implementation of GetIndex.

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 6

GetIndex()

Input

Equality Map: ℳ

Index: 𝑖, 𝑗

Computation

For all 𝑚 ∈ [0, 𝑀 − 1]
If (𝑖, 𝑗) ∈ 𝑙𝑖𝑠𝑡𝑚 return 𝑚

end

return −1

Output

m

Figure 2: GetIndex

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 7

2.2 Presentation
The Presentation protocol is shown in Figure 3. Note that for efficiency, it is important to compute each 𝑏𝑖 in a

single multi-exponentiation rather than a sequence of 𝑛𝑖 individual exponentiations.

EqualityProve()

Input

Parameters: 𝑑𝑒𝑠𝑐(𝐺𝑞), UIDℋ

List of DL Equations: {𝐴𝑖 , 𝑔𝑖,0, 𝑔𝑖,1, … , 𝑔𝑖,𝑛𝑖−1}
𝑖∈[0,𝑛−1]

Equality Map: ℳ

Witness: {𝑥𝑖,𝑗}
𝑖∈[0,𝑛−1],𝑗∈[0,𝑛𝑖−1]

Computation

Choose random 𝑤0, 𝑤1, … , 𝑤𝑀−1 ← ℤ𝑞
∗

For all 𝑖 ∈ [0, 𝑛 − 1]
For all 𝑗 ∈ [0, 𝑛𝑖 − 1]

𝑚 ≔ GetIndex(ℳ, 𝑖, 𝑗)
If 𝑚 > −1 then

𝑤𝑖,𝑗 ≔ 𝑤𝑚

else

Choose random 𝑤𝑖,𝑗 ← ℤ𝑞
∗

end

end

𝑏𝑖 ≔ ∏ 𝑔
𝑖,𝑗

𝑤𝑖,𝑗

𝑗∈[0,𝑛𝑖−1]

end

𝑐 ≔ ℋ (𝑑𝑒𝑠𝑐(𝐺𝑞), {𝐴𝑖 , 𝑔𝑖,0, 𝑔𝑖,1, … , 𝑔𝑖,𝑛𝑖−1}
𝑖∈[0,𝑛−1]

, {𝑏𝑖}𝑖∈[0,𝑛−1])

For all 𝑖 ∈ [0, 𝑛 − 1]
For all 𝑗 ∈ [0, 𝑛𝑖 − 1]

𝑚 ≔ GetIndex(ℳ, 𝑖, 𝑗)
If 𝑚 > −1 then

𝑟𝑚 ≔ 𝑤𝑚 − 𝑐𝑥𝑖,𝑗 mod 𝑞

else

𝑟𝑖,𝑗 ≔ 𝑤𝑖,𝑗 − 𝑐𝑥𝑖,𝑗 mod 𝑞

end

end

end

Output

Return (𝑏0, … , 𝑏𝑛−1, 𝑟0, … , 𝑟𝑀−1, {𝑟𝑖,𝑗}
(𝑖,𝑗)∉ℳ

)

Figure 3: EqualityProve

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 8

2.3 Verification
The Verification protocol is shown in Figure 4. Note that for efficiency, it is important to compute each 𝑑𝑖 in a

single multi-exponentiation rather than a sequence of 𝑛𝑖 + 1 individual exponentiations.

EqualityVerify()

Input

Parameters: 𝑑𝑒𝑠𝑐(𝐺𝑞), UIDℋ

List of DL Equations: {𝐴𝑖 , 𝑔𝑖,0, 𝑔𝑖,1, … , 𝑔𝑖,𝑛𝑖−1}
𝑖∈[0,𝑛−1]

Equality Map: ℳ

Proof: (𝑏0, … , 𝑏𝑛−1, 𝑟0, … , 𝑟𝑀−1, {𝑟𝑖,𝑗}
(𝑖,𝑗)∉ℳ

)

Computation

𝑐 ≔ ℋ (𝑑𝑒𝑠𝑐(𝐺𝑞), {𝐴𝑖 , 𝑔𝑖,0, 𝑔𝑖,1, … , 𝑔𝑖,𝑛𝑖−1}
𝑖∈[0,𝑛−1]

, {𝑏𝑖}𝑖∈[0,𝑛−1])

𝑝𝑎𝑠𝑠 ≔ 𝑡𝑟𝑢𝑒
For all 𝑖 ∈ [0, 𝑛 − 1]

For all 𝑗 ∈ [0, 𝑛𝑖 − 1]
𝑚 ≔ GetIndex(ℳ, 𝑖, 𝑗)
If 𝑚 > −1 then

𝑣𝑖,𝑗 ≔ 𝑟𝑚

else

𝑣𝑖,𝑗 ≔ 𝑟𝑖,𝑗

end

end

𝑑𝑖 ≔ 𝐴𝑖
𝑐 ∙ ∏ 𝑔

𝑖,𝑗

𝑣𝑖,𝑗

𝑗∈[0,𝑛𝑖−1]

If 𝑏𝑖 ≠ 𝑑𝑖 then 𝑝𝑎𝑠𝑠 ≔ 𝑓𝑎𝑙𝑠𝑒

end

Output

Return pass

Figure 4: EqualityVerify

3 Security considerations
The equality proof protocol is a standard Sigma protocol transformed using the Fiat-Shamir heuristic into a non-

interactive proof. The following restrictions apply:

1. The Prover and the Verifier MUST NOT know the relative discrete logarithm of any of the generators

𝑔𝑖,0, 𝑔𝑖,2, … , 𝑔𝑖,𝑛−0 ∈ 𝐺𝑞 that are part of the same DL equation. The Prover and Verifier MAY know the

relative discrete logarithm of 𝑔𝑖,𝑗 and 𝑔𝑘,𝑙 only if 𝑖 ≠ 𝑘 . This is not an issue if all generators are chosen

from the list of U-Prove recommended parameters. However, the generators MAY be chosen from some

other set (i.e. as part of some greater protocol) or reused for different DL equations.

2. The equality map has following constraints:

a. A tuple (𝑖, 𝑗) MUST NOT appear more than once in ℳ. Specifically, (𝑖, 𝑗) may not be listed as

part of the same 𝑙𝑖𝑠𝑡𝑚 more than once, and (𝑖, 𝑗) may not belong to more than one list.

U-Prove Equality Proof Extension June 2014

Microsoft Research Page 9

b. A tuple (𝑖,∗) MUST NOT appear more than once in the same 𝑙𝑖𝑠𝑡𝑚. Specifically, if (𝑖, 𝑎) ∈ 𝑙𝑖𝑠𝑡𝑚

then (𝑖, 𝑏) ∉ 𝑙𝑖𝑠𝑡𝑚.

References
[RFC2119] Scott Bradner. RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,

1997. ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt.

[UPCS] Christian Paquin, Greg Zaverucha. U-Prove Cryptographic Specification V1.1 (Revision 3).

Microsoft, December 2013. http://www.microsoft.com/u-prove.

ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt
http://www.rarnonalumber.com/u-prove

