
Microsoft®

StreamInsight™



Data sources, assets, feeds, stock tickers, sensors, etc. 

Data Store

In
p

u
t 

S
tr

e
a
m

s

Monitor

Mine

Manage

In
p

u
t 

S
tr

e
a
m

s O
u

tp
u

t S
tre

a
m

s

Common paradigm across scenarios
• Call-center analytics

• Financial risk analysis
• Fraud detection

• Web advertising



Data sources, assets, feeds, stock tickers, sensors, etc. 

Data Store

In
p

u
t 

D
a
ta

 S
tr

e
a
m

s

Monitor

Mine

Manage

In
p

u
t 

D
a
ta

 S
tr

e
a
m

s O
u

tp
u

t D
a
ta

 S
tre

a
m

s

Example: Behavior-targeted Web advertising
• Observe user activity (e.g., searches) & deliver relevant ads

• Example: visit to carfax.com indicates interest in buying cars

(2) Mine
• Build models to relate

recent user activity
to ad click likelihood

• Use map-reduce

(1) Monitor
• User searches

• URLs visited
• Ad clicks

• Ad impressions

(3) Manage
• Maintain real time 

per-user activity info.
• Score user using model

• Deliver relevant ad

That’s three separate pieces of complex custom software
• Transitions between them are not smooth



Aren’t the model and its exploitation 
somehow related?

How can we leverage the commonality?

Core Observations

The input data is temporal

The queries are temporal (time is central)

Example: Generation of training data

<user history, ad click/no click>

True for both manage and mine phases



Mine: Compute the number of clicks (or average 
CTR) for each ad in a 6-hour window, varied over a 
30-day dataset. 

Manage: Report – in real time – the number of clicks 
(or average CTR) for each ad in a 6-hour sliding 
window.

Difference is in setting, not expression

They are both temporal in nature

Mining has all the data available

Mining is more resource intensive



Use a DSMS language to express both
Easier to express time-oriented queries

Processing: use DSMS in manage phase

How to process temporal queries on offline 
data during mine phase?

Build and use a distributed DSMS?
Complicated, solves a much harder problem

Leverage today’s map-reduce systems that 
are perfect for resilient big-data analytics



User writes declarative temporal queries

E.g., StreamInsight LINQ or StreamSQL

TiMR processes queries on offline data

Interface unmodified map-reduce cluster 
and unmodified DSMS

Use M-R for scale-out
Automatically generate M-R jobs

Run DSMS inside reducers, in each data 
partition

Each DSMS runs a part of the original query



Works with today’s infrastructure and software 
artifacts (DSMS, map-reduce)

Language makes temporal reasoning much 
simpler

Time is a first-class citizen: some processing 
becomes more efficient (vs. set-oriented)

Self-join vs. temporal join to correlate clicks with 
corresponding impression

Real-time queries can be back-tested on large 
offline data

Side-effect: Our analytics queries are “real-
time-ready”



Declarative Temporal Query

Annotated Plan

StreamInsight LINQ Query
var clickCount = from e in inputStream

where e.StreamId == 1 // filter on some column

group e by e.AdId into grp // group-by, then window

from w in grp.SlidingWindow(TimeSpan.FromHours(6))

select new Output { ClickCount = w.Count(), .. };



Partitioning by application time

Useful when no grouping key, windowed 
operations by time

Automatically choose partitioning key

{ UserId, Keyword } � { UserId }

Can use Cascades-style query optimizer

Application-time-based stream processing

Real-time & offline queries are “compatible”



We perform a case study for behavioral 
targeted Web advertising

Implemented using ~20 LINQ queries

Easier than customized reducers

User Behavior Profile

Input data

Schema:



Eliminate users with too many clicks or 
keyword searches in a short duration



Preserve relevant keywords w.r.t. ad clicks

We use statistical hypothesis-testing

For each {ad, keyword}, score the relevance 
of keyword for ad

Retain top K keywords for each ad

For each {ad, keyword}, we need 4 counters:
#clicks and #impressions with/without keyword

Easily implemented as temporal queries

Incremental dimensionality reduction





Implemented TiMR to work with

Microsoft StreamInsight DSMS

SCOPE/Cosmos M-R system

One week of logs in Cosmos

Separate into training and test data

Ten ad classes

250M unique users, 50M keywords



Lines of code

Order of magnitude lower than custom code

Declarative & temporal

Performance not affected significantly



Partitions overlap at time-boundaries
Small partitions � too much redundant work

Large partitions � not enough parallelism

Partition Width (minutes)



Ad = Deodorant Ad



Ad = Laptop Ad



Data & queries often temporal in nature

use temporal language for both mining & 
managing

unified user model for temporal analytics

Two main contributions:

TiMR Framework: process temporal queries 
over large offline datasets

uses unmodified DSMS & M-R

Case study for Behavioral Targeted ads
temporal LINQ makes analytics easier




