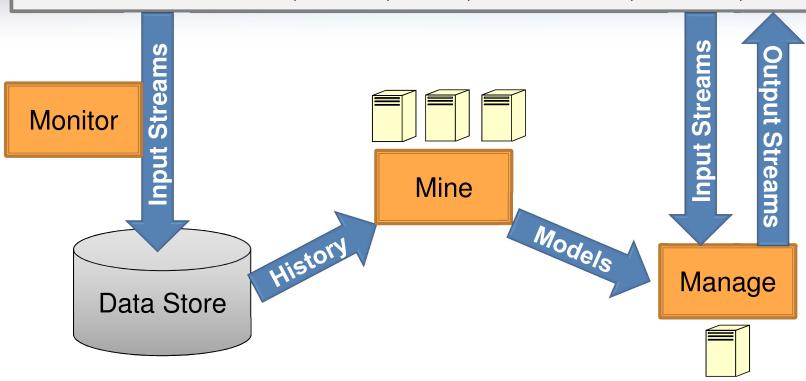
Temporal Analytics on Big Data for Web Advertising

Badrish Chandramouli, Jonathan Goldstein, Songyun Duan

Research

The M3 Cycle

Data sources, assets, feeds, stock tickers, sensors, etc.



Common paradigm across scenarios

- Call-center analytics
- Financial risk analysis
- Fraud detection
- Web advertising

The M3 Cycle

Example: Behavior-targeted Web advertising

- Observe user activity (e.g., searches) & deliver relevant ads
- Example: visit to carfax.com indicates interest in buying cars

ams

(1) Monitor

- User searches
- URLs visited
- Ad clicks
- Ad impressions

(2) Mine

- Build models to relate recent user activity to ad click likelihood
- Use map-reduce

ams

Outp

(3) Manage

- Maintain real time per-user activity info.
- Score user using model
- Deliver relevant ad

That's three separate pieces of complex custom software

Transitions between them are not smooth

What is common?

- Aren't the model and its exploitation somehow related?
 - How can we leverage the commonality?

- Core Observations
 - The input data is temporal
 - The queries are temporal (time is central)
 - Example: Generation of training data
 <user history, ad click/no click>
- True for both manage and mine phases

A Simple Example

- Mine: Compute the number of clicks (or average CTR) for each ad in a 6-hour window, varied over a 30-day dataset.
- Manage: Report in real time the number of clicks (or average CTR) for each ad in a 6-hour sliding window.
- Difference is in setting, not expression
 - They are both temporal in nature
 - Mining has all the data available
 - Mining is more resource intensive

Our Solution

- Use a DSMS language to express both
 - Easier to express time-oriented queries
- Processing: use DSMS in manage phase
- How to process temporal queries on offline data during mine phase?
 - Build and use a distributed DSMS?
 - Complicated, solves a much harder problem
 - Leverage today's map-reduce systems that are perfect for resilient big-data analytics

The TiMR Framework

- User writes declarative temporal queries
 - E.g., StreamInsight LINQ or StreamSQL
- TiMR processes queries on offline data
- Interface unmodified map-reduce cluster and unmodified DSMS
 - Use M-R for scale-out
 - Automatically generate M-R jobs
 - Run DSMS inside reducers, in each data partition
 - Each DSMS runs a part of the original query

Benefits

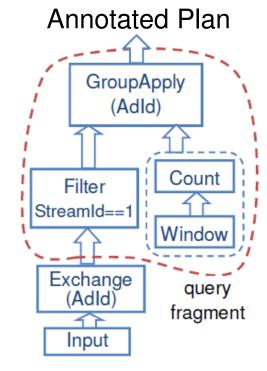
- Works with today's infrastructure and software artifacts (DSMS, map-reduce)
- Language makes temporal reasoning much simpler
- Time is a first-class citizen: some processing becomes more efficient (vs. set-oriented)
 - Self-join vs. temporal join to correlate clicks with corresponding impression
- Real-time queries can be back-tested on large offline data
- Side-effect: Our analytics queries are "realtime-ready"

TiMR Workflow

Declarative Temporal Query Parse query physical plan Annotate plan annotated plan Make fragments DAG of {fragment, key} pairs Convert to M-R stages Generate reducers Reducer_|Embedded| M-R method Pi **DSMS** stages M-R platform ![**CLUSTER**

StreamInsight LINQ Query

var clickCount = from e in inputStream
where e.StreamId == 1 // filter on some column
group e by e.AdId into grp // group-by, then window
from w in grp.SlidingWindow(TimeSpan.FromHours(6))
select new Output { ClickCount = w.Count(), ... };

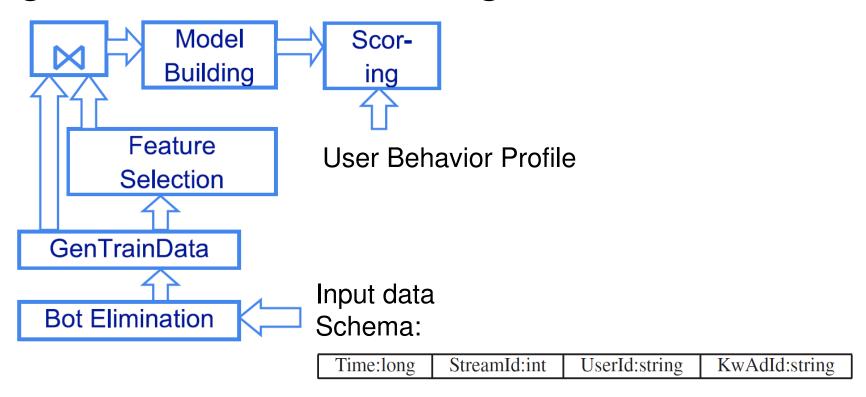


Discussion

- Partitioning by application time
 - Useful when no grouping key, windowed operations by time
- Automatically choose partitioning key
 - { UserId, Keyword } → { UserId }
 - Can use Cascades-style query optimizer
- Application-time-based stream processing
 - Real-time & offline queries are "compatible"

Is this a Practical Solution?

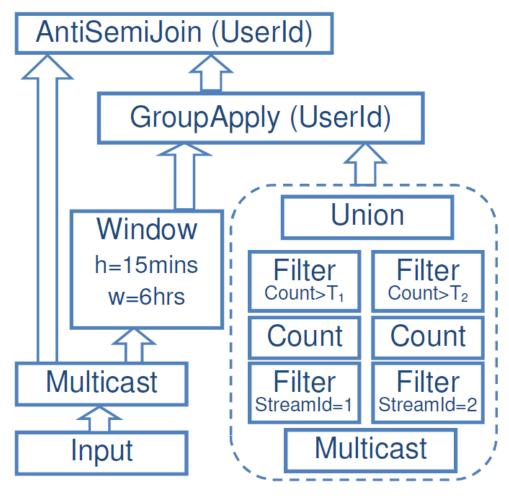
 We perform a case study for behavioral targeted Web advertising



- Implemented using ~20 LINQ queries
 - Easier than customized reducers

Example 1: Bot Elimination

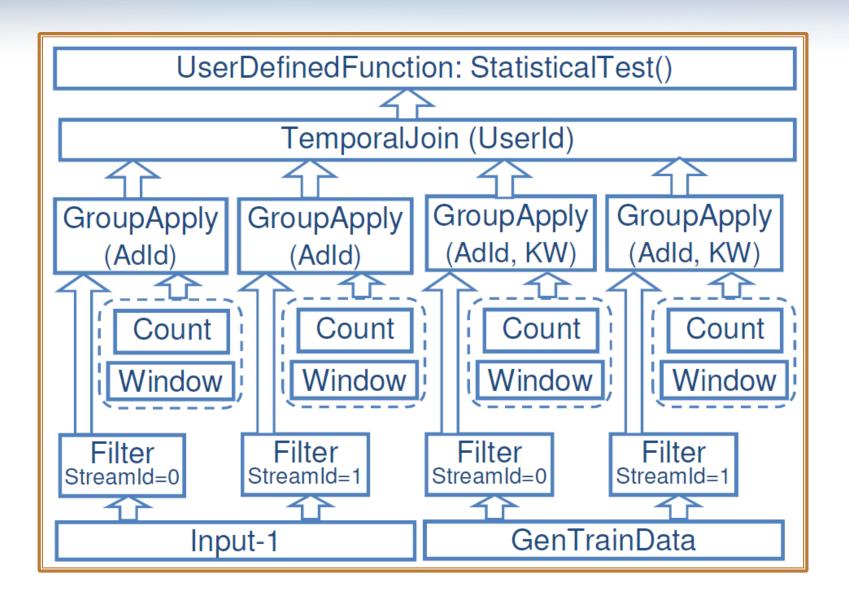
 Eliminate users with too many clicks or keyword searches in a short duration



Example 2: Feature Selection

- Preserve relevant keywords w.r.t. ad clicks
- We use statistical hypothesis-testing
 - For each {ad, keyword}, score the relevance of keyword for ad
 - Retain top K keywords for each ad
 - For each {ad, keyword}, we need 4 counters:
 - #clicks and #impressions with/without keyword
- Easily implemented as temporal queries
 - Incremental dimensionality reduction

Example 2: Feature Selection

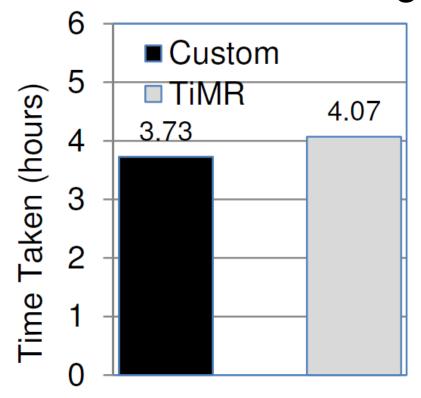


Implementation & Setup

- Implemented TiMR to work with
 - Microsoft StreamInsight DSMS
 - SCOPE/Cosmos M-R system
- One week of logs in Cosmos
 - Separate into training and test data
- Ten ad classes
- 250M unique users, 50M keywords

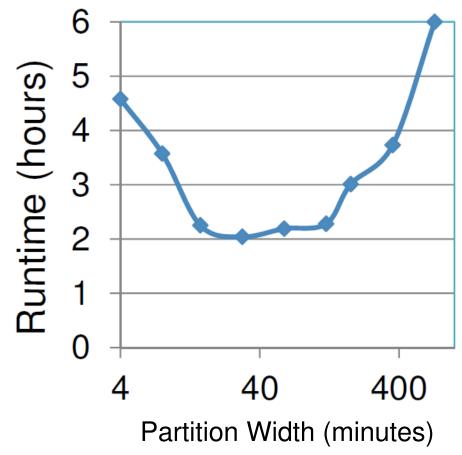
Evaluating TiMR

- Lines of code
 - Order of magnitude lower than custom code
 - Declarative & temporal
- Performance not affected significantly



Time-based Partitioning

- Partitions overlap at time-boundaries
 - Small partitions -> too much redundant work
 - Large partitions -> not enough parallelism



Keyword Elimination: Case I

Highly Positive		Highly Negative	
Keyword	Score	Keyword	Score
celebrity	11.0	verizon	-1.3
icarly	6.7	construct	-1.4
tattoo	8.0	service	-1.5
games	6.5	ford	-1.6
chat	6.5	hotels	-1.8
videos	6.4	jobless	-1.9
hannah	5.4	pilot	-3.1
exam	5.1	credit	-3.6
music	3.3	craigslist	-4.4

Ad = Deodorant Ad

Keyword Elimination: Case II

Highly Positive		Highly Negative	
Keyword	Score	Keyword	Score
dell	28.6	pregnant	-2.9
laptops	22.8	stars	-4.0
computers	22.8	wang	-4.2
Juris	21.5	vera	-4.2
toshiba	12.7	dancing	-4.2
vostro	12.6	myspace	-8.0
hp	9.1	facebook	-8.6

Ad = Laptop Ad

Summary

- Data & queries often temporal in nature
 - use temporal language for both mining & managing
 - unified user model for temporal analytics
- Two main contributions:
 - TiMR Framework: process temporal queries over large offline datasets
 - uses unmodified DSMS & M-R
 - Case study for Behavioral Targeted ads
 - temporal LINQ makes analytics easier

Research

Micresoft

100

Be what's next.