
ThresPassport – A Distributed Single Sign-On Service
∗∗∗∗

Tierui Chen1, Bin B. Zhu
2
, Shipeng Li2, Xueqi Cheng1

1 Inst. of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
chentierui@software.ict.ac.cn, cqx@ict.ac.cn

2 Microsoft Research Asia, Beijing 100080, China
{binzhu, spli}@microsoft.com

Abstract. In this paper, we present ThresPassport (Threshold scheme-based

Passport), a web-based, distributed Single Sign-On (SSO) system which utilizes

a threshold-based secret sharing scheme to split a service provider’s authentica-

tion key into partial shares distributed to authentication servers. Each authenti-

cation server generates a partial authentication token upon request by a legiti-

mate user after proper authentication. Those partial authentication tokens are

combined to compute an authentication token to sign the user on to a service

provider. ThresPassport depends on neither Public Key Infrastructure (PKI) nor

existence of a trustworthy authority. The sign-on process is as transparent to us-

ers as Microsoft’s .NET Passport. ThresPassport offers many significant ad-

vantages over .NET Passport and other SSOs on security, portability, intrusion

and fault tolerance, scalability, reliability, and availability.

1 Introduction

As computer networks and systems proliferate to support more online accesses and

business, a user is typically required to maintain a set of authentication credentials

such as username and password for each service provider he or she is entitled to ac-

cess. A user is facing a dilemma between using different authentication credentials for

each individual service provider for the sake of security, resulting in escalating diffi-

culty in memorizing all those credentials, and using the same credentials for many

service providers for easy memorization at the cost of lowered security. Forcing a user

to enter authentication credentials frequently when the user accesses different service

providers or the same service provider multiple times is also an awkward user experi-

ence. It is desirable to have an authentication service to manage a user’s sign-on cre-

dentials and allow the user to authenticate him or her conveniently to a variety of

service providers.

Single Sign-On (SSO) has been proposed as a potential solution to the implications

of security, credentials management, and usability for the aforementioned applications.

SSO utilizes a centralized credentials management to provide authentication services

for users to access participating service providers. With SSO, a user needs to authenti-

∗ Contact author: Bin B. Zhu, email: binzhu@ieee.org (preferred) or binzhu@microsoft.com.

This work was done when Tierui Chen was an intern at Microsoft Research Asia.

cate him or her to an authentication service only once, which in turn enables him or

her to automatically log into participating service providers he or she has access per-

mission when needed without any further user interactions. Such a system makes the

complexity to log into an increasing number of service providers completely transpar-

ent to a user. From a user’s point of view, there is no difference between logging into

one service provider and into multiple service providers. The complexity is handled

by the SSO system behind scene. In other words, SSO enhances usability in logging

into multiple service providers dramatically with a centralized authentication service.

Several different SSO systems have been proposed. Kerberos [1] is an SSO system

which is widely used when users, authentication servers, and service providers are

under a centralized control such as in the same company. In Kerberos, a user authenti-

cates to an authentication server and obtains a valid Ticket Granting Ticket (TGT)

which is used to authenticate the user to a Ticket Granting Server (TGS) when re-

questing a Service Granting Ticket (SGT). To access a service, a user requests an

SGT from a TGS and presents it to the service provider which checks validity of the

ticket and makes a decision if access is granted or not. Kerberos is not suitable for use

in an untrusted environment such as the Internet [2].

The Liberty Alliance [3], a consortium of over 150 member companies, recently

developed a set of open specifications for web-based SSO. Security Assertions

Markup Language (SAML) [4], a standard, XML-based framework for creating and

exchanging security information between online partners, is used in the specifications.

The most popular and widely deployed web-based SSO should be Microsoft’s .NET

Passport [5] which has provided services since 1999. The core of Passport’s architec-

ture is a centralized database which contains all the registered users and associated

data and credentials. Every account is uniquely identified by a 64-bit number called

the Passport User ID (PUID). Each participating service provider is also assigned a

unique ID, and needs to implement a special component in its web server software and

to share with the Passport server a secret key which is delivered out of band. To log

into a participating service provider, a user’s browser is redirected to the Passport

server which tries to retrieve and verify validity of a Ticket Granting Cookie (TGC)

from the web browser’s cookie cache. If such a cookie is not found, then the user

needs to enter account name and password to authenticate to Passport, which saves a

fresh TGC in the browser’s cookie cache. A TGC is encrypted by a master key known

only to Passport. If everything goes all right, Passport saves in the browser’s cookie

cache a set of cookies encrypted with the secret key shared between Passport and the

specific participating service provider. The set of cookies acts like Kerberos’ SGT and

is used to authenticate the user to the participating service provider. More details of

different SSO architectures can be found in [2].

There are a few major concerns on security and availability of .NET Passport that

prevent users and service providers from widely adopting .NET Passport as a web-

based login service, esp. for accessing web services such as a bank account which

require higher security and contain sensitive private data. These issues are analyzed

and discussed in detail in [6, 7]. In .NET Passport, a user’s authentication information

is centrally managed by the Passport server. Every user has to be identified and au-

thenticated with the help of the data stored in the central database. Every participating

service provider depends on the response of the Passport server and its security. .NET

Passport is not scalable. The Passport server is a single point of failure and a central

point of attacks for the system. It is an attractive target for hackers to paralyze the

whole system through distributed denial-of-service attacks. A single compromise of

the Passport server may endanger the whole system. Passport cookies are the only

authentication proofs in .NET Passport. Unless a user chooses the automatic sign-in

mode which uses persistent cookies, a cookie’s lifetime in .NET Passport is deter-

mined only by the browser’s lifetime and the encrypted cookie’s expiration time. A

user who forgets to log off the Passport account on a public computer could leave

valid authentication tokens for anyone to recover and reuse, which is particularly

dangerous for persistent cookies that are strongly discouraged to use.

Threshold-based secret sharing [8, 9] has been extensively studied in cryptography.

A (k, m) threshold scheme splits a secret into m shares and distributes each share to an

entity. Any k shares can be used to fully recover the secret while any number of shares

less than k will not be able to recover the secret. Threshold-based secret sharing has

recently been proposed to use in CorSSO, a distributed SSO service by Josephson et

al. [10]. CorSSO is used to authenticate users, programs, and services, which are re-

ferred to as principals. In CorSSO, each party has a pair of public and private keys. A

set i of authentication servers create a pair of public and private keys },{ ii kK and

uses a threshold scheme with a threshold t to split the private key ik and stores a dis-

tinct share at each authentication server of the set. The public key iK is sent to and

stored by an application server A which uses the set of authentication servers for

authentication service. The private key ik speaks for the set of the authentication

servers. A principal C also has a pair of public and private keys },{ cc kK where the

private key ck speaks for the principal. When a principal C wants to access an appli-

cation server A , the principal C uses its private key ck to encrypt a fresh challenge

from the application server A , and requests authentication servers to certify its public

key cK . Each authentication server, after proper identity checking, generates for the

principal C a partial certificate which is an encrypted version of the content including

the principal C , its public key cK , valid time of the certificate, etc. with its partial

share of ik . The principal C combines the t partial certificates received from t au-

thentication servers to compute a certificate signed with the authentication private key

ik , which is then sent together with the challenge encrypted with the principal’s pri-

vate key ck to the application server A . The application server A uses the authenti-

cation servers’ public key iK to verify the received certificate, and then extracts the

principal’s public key cK to decrypt the encrypted challenge and compare with the

original challenge it sends to C to decide if the principal is allowed to access the

application server. It is clear that the threshold scheme and authentication servers are

used to replace the conventional Certificate Authority (CA) to certify the public key

for each principal in CorSSO. The requirement of a pair of public and private keys for

each principal renders CorSSO inappropriate for web-based single sign-on authentica-

tion service for users, i.e. the application arena targeted by .NET Passport and the

Liberty Alliance, since CorSSO does not provide any portability in its authentication

service. A user cannot easily use different computers to access a web service the user

has permission to access since it is very inconvenient and insecure to carry his or her

private key around.

In this paper, we present a distributed, user-friendly SSO system based on thresh-

old-based secret sharing. Our SSO system is called ThresPassport – a threshold

scheme-based Passport. In ThresPassport, a participating service provider S selects a

secret key sK and utilizes a threshold scheme to split sK into partial shares, each

partial share is sent to an authentication server out of band during registration of the

service provider. ThresPassport’s client module utilizes a user’s account name and

password to generate a distinct login credential for the user to authenticate to each

authentication server. An authentication server uses its partial share of the secret

key sK to encrypt a challenge from the service provider S passed to it from a user’s

client module. The client module combines t encrypted challengers from t authenti-

cation servers, computes a challenge encrypted by the service provider’s secret key

sK , and passes the result to the service provider, which decrypts the received en-

crypted challenge and compares with the original challenge to decide if the user is

granted access permission. ThresPassport shows many significant advantages

over .NET Passport and CorSSO, which are discussed in detail later in this paper.

The paper is organized as follows. In Section 2 we describe in detail the architec-

ture and protocols of our distributed SSO system, ThresPassport. Security and com-

parison with .NET Passport and CorSSO are then presented in Section 3. The paper

concludes in Section 4.

2 ThresPassport

A ThresPassport SSO system consists of three parties: users who want to access ser-

vice providers, service providers who provide services to users, and authentication

servers which offer single sign-on services for participating users to access participat-

ing service providers. In ThresPassport, a server module is installed in the participat-

ing service provider’s server, and a downloadable web browser’s plug-in is installed

to a user’s client machine. Before going to ThresPassport details, the notation used in

this paper is introduced first.

2.1 Notation

S A participating service provider.

U A participating user.

iA The i-th authentication server.

UID A unique ID for a participating user U .

SID A unique ID for a participating service provider S .

iAID An unique ID for the i-th authentication server iA .

SK A secret key generated by and known only to S .

i
SK The i-th partial share of sK generated by a threshold scheme.

i
UK A secret key for U to authenticate to the i-th authentication server iA .

21, pp Two properly selected prime integers, 12 pp > .

g A generator in *

1pΖ , .22 1 −≤≤ pg

iAUSK , A session key between a user U and the i-th authentication server iA .

km >< A message m encrypted by a symmetric cipher with a key k .

pkm ,
>< It means pm

k mod where
pZm∈ .

Xn Nonce generated by entity X .

Xr A random number generated by entity X .

[x] x is optional in describing a protocol.

2.2 ThresPassport Protocols

ThresPassport is divided into two phases: the setup phase and the authentication phase.

In the setup phase, participating service providers and users register to authentication

servers, and generate and send secret keys securely to authentication servers out of

band. Those keys will be used in the authentication phase to authenticate a user to

authentication servers and to a service provider. In the following, we assume that there

are n authentication servers in total and a (t, n) threshold scheme is used to share a

service provider’s secret key sK .

2.2.1 Setup Protocols for Participating Service Providers and Users

During the setup phase, both participating service providers and users are required to

register with the authentication servers and install a server module on service provid-

ers’ servers and a client web browser plug-in on users’ machines. A participating

service provider S utilizes the following protocol to register securely to authentication

servers.

1. S : Generates a secret key SK , 21 2 −≤≤ pK S , and cal-

culate
1−

SK such that)1(mod1 2
11

−==
−−

pKKKK SSSS .

2. S : Uses a (t, n) threshold scheme to split SK into

n shares niK
i
S ≤≤1, .

3. S→ niAi ≤≤1, : SID ,
i
SK .

4. niAi ≤≤1, → S : Success. iA stores SID and
i
SK for

later usage.

A user U also needs to register with the authentication servers before he or she can

enjoy the authentication service provided by ThresPassport. The following protocol is

used to register a user U to the authentication servers. The registration process must

be secure.

1. U : Generates a unique user name and a good pass-

word. The client program generates a unique UID from

the user name.

2. U : Computes niAPasswordUserNamehashK i
i
U ≤≤= 1),,,(.

3. U → niAi ≤≤1, : UID ,
i
UK .

4. niAi ≤≤1, →U : Success. iA stores UID and
i
UK for

later usage.

2.2.2 User Authentication Protocol to an Authentication Server

If a user U has not authenticated to an authentication server iA yet during a single

sign-on process of ThresPassport, the user is required to authenticate to iA before iA

can help authenticate the user to a service provider S . A challenge-response protocol

such as the following one using the shared key i
UK derived from the user’s password

can serve the purpose and generate a session key for subsequent confidential commu-

nications between the user and the authentication server.

1. U→ iA : Authentication request.

2. iA →U :
iAn .

3. U → iA : UID , i
Ui KAUU nnr >< ,, .

4. iA →U : i
Uii KUAA nnr >< ,, or failure.

In Step 3, U generates the authentication key i
UK from U ’s password with the

equation),,(i
i
U APasswordUserNamehashK = . In Step 4, iA uses the received

UID to extract the corresponding key i
UK to decrypt the received message and en-

crypt the message to be sent. The decrypted nonce
iAn is compared against that sent

in Step 2 to decide what to send in Step 4. If the protocol ends successfully, a session

iAUSK , is generated at both ends by hashing the communicated random numbers Ur

and
iAr :),(, ii AUAU rrhashSK = . This session key is used for subsequent confidential

communications between U and iA for the session. Once the session ends,
iAUSK , is

destroyed and a user has to authenticate to iA again through the above protocol. A

session can be terminated by a user or when the lifetime set by the security policy

expires.

2.2.3 Single Sign-On Protocol

The following protocol is used for a user’s client module to acquire an authentication

token from authentication servers and to gain access to a service provider.

1. U → S : Request access to a service.

2. S→U : SID , Sn ,[1, prSg ><], [a list of t authentica-

tion servers }1,{ tfA
fd ≤≤].

3. For tf ≤≤1

 3.1: U →
fdA :][,, 1, pr

S
UgnSID >< ,[UID]

 3.2:
fdA →U : 21 ,,

][,,,
pKpr

S

fd

SUgnUUID >><<

4. U → S : UID , 21 ,,
][,,,

pKpr
S

SUgnUUID >><< , [kSn ><],

where 1, prr USgk
⋅

>=< .

5. S→U : access is granted or denied.

In Step 2, the service provider picks up t live authentication servers from all avail-

able authentication servers based on workloads, bandwidths, processing power, relia-

bility, etc. and sends to the user’s module. This means that a service provider may

need to monitor status of authentication servers. An alternative solution is that the

client’s module tries to find t live authentication servers from the list of n authenti-

cation servers received from the service provider. If the list of authentication servers is

already known to clients, there is no need to send the list to a client.

In Step 3, if the user has not authenticated to the t authentication servers yet or the

preceding sessions have expired, the user authentication protocol described in Section

2.2.2 is used to authenticate the user to each authentication server
fdA and set up a

secure communication channel between U and
fdA with a session key

fdAUSK ,

before going to Step 3.1. Note that the communications between the user and an au-

thentication server in Steps 3.1 and 3.2 are confidential by using the session key

fdAUSK , obtained when the user is authenticated to the server, although the message

sent in Step 3.2 is not necessary to be confidential since it is already encrypted. The

client in Step 4 computes an authentication token

21 ,,
][,,,

pKpr
S

SUgnUUID >><< from the received t partial authentication token

21 ,,
][,,,

pKpr
S

fd

SUgnUUID >><< . In Step 5, the service provider uses the secret key

1−

SK known only to itself to decrypt the received token:

2
,,

mod])[,,,()])[,,,((1
1

1 pgnUUIDgnUUID
pr

S
KKpr

S
USSU ><=><

−

, and makes a

decision if access is granted or denied. If secure communication is desired after U is

signed to S , the optional items related to the generator g are also communicated in

the protocol. The session key for subsequent confidential communications between

U and S is set to be 1, prr USg
⋅

>< , which is k in Step 4. This session key is in fact

generated with the Diffie-Hellman key agreement [11].

Both the authentication token 21 ,,
][,,,

pKpr
S

SUgnUUID >><< and the partial au-

thentication token 21 ,,
][,,,

pKpr
S

fd

SUgnUUID >><< contain U which is an unique

network ID of the user U ’s client machine such as the network address. Note that

nonce and random numbers in different protocols have no relationship even though we

use the same notation in describing the protocols.

3 Security and Comparison with Other SSOs

3.1 Security of ThresPassport

In ThresPassport, a service provider’s key SK is generated by and known only to the

provider. Authentication servers do not know and cannot deduce this secret key unless

t or more authentication servers collude. This secret key never transfers over a net-

work and is under full control by its rightful owner. Such a design guarantees the secu-

rity of the secret key. On the client side, a user’s password is never used directly in

authentication. Instead it is used with a one-way function to derive the authentication

keys used to authenticate the user to authentication servers. An authentication server

iA cannot use the authentication key i
UK it knows to recover the password or the

user’s authentication keys to other authentication servers without a brute force attack.

Note that the authentication key i
UK is never transferred over a network except during

the setup stage. That said, a user’s password should be complex enough to avoid weak

keys since the authentication keys i
UK are generated from the password, and hence

contain no more entropy than the password.

Since passwords are entered at the client side, certain security and tamper resistance

are required for the client module. Such a requirement is typical in most security soft-

ware at the client side. For example, there should be no malicious module between the

user and the client module to launch a man-in-the-middle attack to impersonate the

user in communicating with the client module. The session keys stored by the client

module during the life of the session should not be examined by untrustworthy pro-

grams. Our design also minimizes such a risk. In ThresPassport, a user’s password is

live in memory in a very short time. It is overwritten once the authentication keys

}{
i
UK are generated. Once the authentication process to authenticate a user to servers

is over, the authentication keys }{ i
UK are overwritten. Only the temporal, one-time

session keys are stored in memory and used in subsequent communications between

the client and authentication servers during the life of the session.

3.2 Comparison with Other SSOs

In this subsection, we would like to compare ThresPassport with .NET Passport [5]

and CorSSO [10]. To an end user, ThresPassport appears the same and as easy to use

as .NET Passport. The complexity to authenticate a user to multiple authentication

servers in ThresPassport is completely hidden inside the protocols and software. On

the other hand, ThresPassport shows several important advantages over .NET Passport.

On the security side, there is no single central point containing all the secret creden-

tials in ThresPassport. All secret credentials are completely controlled by each rightful

owner: a service provider’s key is controlled by and known only to the provider. A

user’s password is controlled by and known only to the user (and to the client’s mod-

ule in a very short time). Hackers have to compromise up to t authentication servers

to incur security damage to ThresPassport, thanks to the (t, n) threshold scheme used

in the system. Since .NET Passport requires SSL/TLS channels to communicate be-

tween the user and the Passport server, an appropriate Public Key Infrastructure (PKI)

must be in place. Like Kerberos, ThresPassport does not depend on any PKI. In

ThresPassport, session keys replace authentication cookies in .NET Passport for au-

thentication, and therefore mitigate the risk that a subsequent user recovers the preced-

ing user’s authentication cookies in .NET Passport to impersonate the preceding user

to illegally access service providers. A user’s privacy is also better protected in

ThresPassport, thanks to the notorious privacy track record of cookies.

On the reliability side, ThresPassport is no longer a system of a single point of

failure like .NET Passport due to its distributed authentication servers. Any t out of

the total n authentication servers can provide authentication services to users in the

system. It is much more difficult to launch a distributed denial-of-service attack to

disable all but 1−t or less authentication servers. On the contrary, a successful denial-

of-service attack to the Passport server would disrupt authentication services com-

pletely in .NET Passport. ThresPassport is also scalable, dealing well with both small

and large systems with a large variety of users and service providers.

ThresPassport also shows several significant advantages over CorSSO. ThresPass-

port enables portability that CorSSO lacks. A user can use any computer (as long as

the ThresPassport’s client module is downloaded and installed) to sign on and access a

service provider in ThresPassport. In CorSSO, a trustworthy authority is assumed,

whose role is to generate a pair of public and private keys },{ ii kK for a set of authen-

tication servers and to use a threshold scheme to split the private key ik into partial

shares distributed to and stored by individual authentication servers. In ThresPassport,

each party controls its own secrets, and there is no dependency on the existence of

such a trustworthy authority. This advantage is extremely attractive when authentica-

tion servers are controlled and administrated by different companies since in this case

federation is needed to achieve a virtual trustworthy authority. A third advantage is

that appropriate PKI is required in CorSSO, recall that each of the three parties in

CorSSO, a principal, a service provider, or a set of authentication servers, has a pair of

public and private keys speaking for itself. As we have just mentioned above,

ThresPassport does not depend on any PKI which dramatically increases its chance to

be widely adopted and employed.

4 Conclusion

In this paper, we have presented ThresPassport, a web-based, distributed single sign-

on system using passwords, threshold-based secret sharing, and encryption-based

authentication tokens. In ThresPassport, critical secrets such as a service provider’s

sign-on key and a user’s password are always controlled by and known only to the

original owner. Every authentication server owns partial authentication information of

a client or a service provider. A threshold number of authentication servers are re-

quired to accomplish an authentication service. ThresPassport depends on neither PKI

nor existence of a trustworthy authority. It is as transparent and easy to use as .NET

Passport. ThresPassport offers many significant advantages over .NET Passport and

other proposed SSOs on security, portability, intrusion and fault tolerance, scalability,

reliability, and availability.

References

1. Internet Engineering Task Force: RFC 1510: The Kerberos Network Authentication Service

(V5) (1993)

2. Pashalidis, A., Mitchell, C. J.: A Taxonomy of Single Sign-On Systems. In Safavi-Naini,

Seberry, J. (eds.): 8th Australasian Conf. Info. Security and Privacy (ACISP) 2003. Wol-

longong, Australia, July 9-11, 2003. Lecture Notes in Computer Science, Vol. 2727,

Springer-Verlag, Berlin Heidelberg New York (2003) 249–264

3. http://www.projectliberty.org

4. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

5. http://www.passport.com

6. Kormann, D. P., Rubin, A. D.: Risks of the Passport Single Signon Protocol. IEEE Com-

puter Networks, 33 (2000) 51–58

7. Oppliger, R.: Microsoft .NET Passport: A Security Analysis. IEEE Computer Magazine, 36

(7) (2003) 29–35

8. Shamir, A.: How to Share a Secret. Communications of ACM, 24 (11) (1979) 612–613

9. Shoup, V.: Practical Threshold Signatures. Proc. EUROCRPT’00, Lecture Notes in Com-

puter Science, Vol. 1807, Springer-Verlag, Berlin Heidelberg New York (2000) 207–220

10. Josephson, W. K., Sirer, E. G., Schneider, F. B.: Peer-to-Peer Authentication with a

Distributed Single Sign-On Service. 3rd Int. Workshop on Peer-to-Peer Systems

(IPTPS’04), San Diego, USA (2004)

11. Menezes, A. J., van Oorschot, P. C., Vanstone, S. A.: Handbook of Applied Cryptography,

CRC Press, London, New York (1997)

