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Concurrent with numerous theoretical results on metric embeddings, a growing body of research in the net-
working community has studied the distance matrix defined by node-to-node latencies in the Internet, result-
ing in a number of recent approaches that approximately embed this distance matrix into low-dimensional
Euclidean space. A fundamental distinction between the theoretical approaches to embeddings and this re-
cent Internet-related work is that the latter operates under the additional constraint that it is only feasible to
measure a linear number of node pairs, and typically in a highly structured way. Indeed, the most common
framework here is a beacon-based approach: one randomly chooses a small number of nodes (’beacons’) in
the network, and each node measures its distance to these beacons only. Moreover, beacon-based algorithms
are also designed for the more basic problem of triangulation, in which one uses the triangle inequality to
infer the distances that have not been measured.

We give algorithms with provable performance guarantees for triangulation and embedding. We show
that in addition to multiplicative error in the distances, performance guarantees for beacon-based algorithms
typically must include a notion of ”slack” – a certain fraction of all distances may be arbitrarily distorted.

For arbitrary metrics, we give a beacon-based embedding algorithm that achieves constant distortion
on a (1 − ε)-fraction of distances; this provides some theoretical justification for the success of the recent
networking algorithms, and forms an interesting contrast with lower bounds showing that it is not possible
to embed all distances with constant distortion. For doubling metrics (which have been proposed as a
reasonable abstraction of Internet latencies), we show that triangulation with a constant number of beacons
can achieve multiplicative error 1 + δ on a (1− ε)-fraction of distances, for arbitrarily small constants ε, δ.

We extend these results in a number of directions: embeddings with slack that work for all ε at once;
distributed algorithms for triangulation and embedding with low overhead on all participating nodes; dis-
tributed triangulation with guarantees for all node pairs; node-labeling problems for graphs and metrics;
systems project on location-aware node selection in a large-scale distributed network.



Biographical Sketch

Aleksandrs Slivkins was born December 1, 1978 in Riga, Latvia (then Soviet Union). He lived in Riga until
he finished high school in August 1996. Then he went to California Institute of Technology; he graduated
in June 2000 with B.S. in Mathematics. From August 2000 till present Alex has been a graduate student
with the Computer Science department of Cornell University. Following his candidacy exam, he received a
M.S. in Computer Science in 2004. He expects to graduate with a Ph.D. in August 2006. After Cornell he
is going for a one-year postdoc at Brown University. He has accepted a research staff position at Microsoft
Research, Silicon Valley Center starting from July 2007.

iii



Acknowledgements

First of all, I would like to thank my thesis advisor Jon Kleinberg for his invaluable support and mentorship
in both research- and career-related issues. I have benefited tremendously from interacting with my other
two thesis committee members, Eva Tardos and Emin Gün Sirer. I additionally thank Jon, Eva and Gun for
their advice during the job search process.

Throughout my graduate career I have been fortunate to collaborate with many wonderful researchers.
It is my pleasure to acknowledge my faculty coauthors (Jon Kleinberg and Gun Sirer from Cornell, Matthew
Andrews from Bell Labs, Shuki Bruck from Caltech, and Anupam Gupta from Carnegie Mellon), and thank
them for their guidance and collegiality. Furthermore, I would like to thank Shuki Bruck for being my
undergraduate research mentor.

I thank graduate students at Cornell Computer Science department for creating a fruitful academic en-
vironment. I will try to avoid listing too many names here, but I would like to mention Elliot Anshelevich,
Anirban Dasgupta, Ara Hayrapetyan, Martin Pal, Mark Sandler, Zoya Svitkina, and Tom Wexler, as well as
several older students: Aaron Archer, David Kempe, Tim Roughgarden, and Chaitanya Swamy.

Finally, I thank my parents and grandparents for supporting and motivating me throughout my entire
life, and my fiancee Koralai for making me happy.

iv



Table of Contents

1 Introduction 1
1.1 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Definitions and theorems: embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Definitions and theorems: distributed algorithms . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and preliminaries 11
2.1 Expander graphs and Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Metric embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Relations between different `p norms . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Embeddings of finite metrics into `p spaces . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Embeddings into tree metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Low dimensionality in metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Growth-constrained metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Doubling metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Decomposable metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Triangulation and Embedding using Small Sets of Beacons 20
3.1 Beacon-based triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Beacon-based embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Beacon-based approaches: further results . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Black-box GNP-style embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Strong triangulation with a constant number of beacons . . . . . . . . . . . . . . . . 29
3.3.3 Infinite metrics and arbitrary measures . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Fully distributed approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Improved embeddings for growth-constrained metrics . . . . . . . . . . . . . . . . . . . . . 35
3.6 Lower bounds on embeddings with slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 General lower-bounding technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Lower bounds for contracting embeddings . . . . . . . . . . . . . . . . . . . . . . . 42

4 Gracefully Degrading Distortion for Decomposable Metrics 44
4.1 Distance scales and scale bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 The embedding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Analysis: proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



4.5 Analysis: tools from Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Analysis: maps fij and g(i, j, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 A Bourgain-style proof of Lemma 4.2 for doubling metrics. . . . . . . . . . . . . . . . . . . 52
4.8 An extension to arbitrary metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Network Triangulation via Rings of Neighbors 55
5.1 Framework and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Tools: distributed random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Randomized Rings of Neighbors: Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . 60
5.4 Network Triangulation: Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Location-aware node selection via Rings of Neighbors 66
6.1 Meridian: a framework for location-aware node selection . . . . . . . . . . . . . . . . . . . 66
6.2 Analysis of scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Formal description of the Meridian framework . . . . . . . . . . . . . . . . . . . . 73
6.2.2 Quality of the Meridian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 Nearest neighbors and central leaders . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.4 Extensions: exact nearest neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.5 Extensions: load-balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.6 Fine-tuned versions of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Full proof of Theorem 6.6 on central leader election . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Full proof of Theorem 6.7 on exact nearest neighbors . . . . . . . . . . . . . . . . . . . . . 81
6.5 Full proof of Theorem 6.9 on load-balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 Setup: Meridian rings and the search algorithm . . . . . . . . . . . . . . . . . . . . 83
6.5.2 Setup: randomization and random variables . . . . . . . . . . . . . . . . . . . . . . 84
6.5.3 The actual proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Distance Estimation and Object Location via Rings of Neighbors 88
7.1 The four problems and relevant background . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 A low-stretch routing scheme for doubling metrics . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Triangulation and distance labeling schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Low-stretch routing schemes, revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4.1 Routing schemes on metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5 Searchable small-world networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5.1 Full proof of Theorem 7.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5.2 Comparison with Kleinberg’s small worlds . . . . . . . . . . . . . . . . . . . . . . 106
7.5.3 Comparison with the single-link-per-node model . . . . . . . . . . . . . . . . . . . 107

7.6 Full proof of Theorem 7.12 on routing schemes . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Conclusions and further directions 114

Bibliography 117

vi



List of Tables

1.1 Lower bounds for embeddings with slack . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Lower bounds for embeddings with slack . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 Low-stretch routing schemes for doubling graphs . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Low-stretch routing schemes for doubling metrics . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Theorem 7.12: space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vii



List of Figures

3.1 Triangulation in doubling metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Perfect triangulation for dense point sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Meridian: multi-resolution rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Meridian: closest node discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Meridian: multi-constraint queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Meridian:progress at each hop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5 Meridian:trade-off between performance and accuracy . . . . . . . . . . . . . . . . . . . . 76
6.6 Meridian:the in-degree ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1 Interconnections between various results in this chapter . . . . . . . . . . . . . . . . . . . 93
7.2 Proof of Theorem 7.1: A routing scheme on doubling metrics . . . . . . . . . . . . . . . . 96

viii



Chapter 1

Introduction

The past decade has seen many significant and elegant results in the theory of metric embeddings (for recent
surveys, see [Ind01, Lin02, Mat02a, IM04]). Embedding techniques have been valuable in the design and
analysis of algorithms that operate on an underlying metric; many optimization problems become more
tractable when the given metric is embedded into one that is structurally simpler.

Meanwhile, an active line of research in the networking community has studied the distance matrix de-
fined by node-to-node latencies in the Internet [FJJ+01, GSG02, GS95, HFP+02, KSB01, VPSV02], result-
ing in a number of recent approaches that approximately embed this distance matrix into low-dimensional
Euclidean space [DCKM04, NZ02, PCW+03, ST03].1 However, there is a fundamental distinction between
this Internet-related work and the large body of theoretical work on embedding, due to the following intrin-
sic problem: in any analysis of the distance matrix of the Internet, most distances are not available. The
cost of measuring all node-to-node distances is simply too expensive; instead, we have a setting where it is
generally feasible to measure the distances among only a linear (or near-linear) number of node pairs, and
typically in a highly structured way. Indeed, the most common framework for Internet measurements of this
type is a beacon-based approach: one chooses uniformly at random a constant number of nodes (‘beacons’)
in the network, each node measures its distance to all beacons, and one then has access to only these O(n)

measurements for the remainder of the algorithm. (For example, the data can be shared among the beacons,
who then perform computations on the data locally.)

This inability to measure most distances is the inherent obstacle that stands in the way of applying
algorithms developed from the theory of metric embeddings, which assume (and use) access to the full
distance matrix. Thus, to obtain insight at a theoretical level into recent Internet measurement studies, we
need to consider problems in following two genres.

(i) What performance guarantees can be achieved by metric embedding algorithms when only a sparse
(beacon-based) subset of the distances can be measured?

(ii) At an even more fundamental level, many Internet measurement algorithms are seeking not to em-
bed but simply to reconstruct the unobserved distances with reasonable accuracy (see e.g. [FJJ+01,
GSG02, GS95, KSB01]). Can we give provable guarantees for this type of reconstruction task?

Reconstruction via triangulation. Within this framework, we discuss the reconstruction problem (ii)
first, as it is a more basic concern. Motivated by the research of Francis et al. on IDMaps [FJJ+01], and

1We speak of Internet latencies as defining as a “distance matrix” rather than a metric, since the triangle inequality is not always
observed; however, one can view the recent networking research as indicating that severe triangle inequality violations are not
widespread enough to prevent the matrix of node-to-node latencies from being usefully modeled using notions from metric spaces.

1
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subsequent work, we formalize the reconstruction problem here as follows. Let S be the set of beacons; and
suppose for each node u, and each beacon b ∈ S, we know the distance d(u, b). What can we infer from
this data about the remaining unobserved distances d(u, v) (when neither v nor v is a beacon), assuming we
know only that we have points in an arbitrary metric space? The triangle inequality implies that

max
b∈S
|d(u, b)− d(v, b)| ≤ d(u, v) ≤ min

b∈S
d(u, b) + d(v, b), (1.1)

and it is easy to see that these are the tightest bounds that can be provided on d(u, v) if we assume only that
the underlying metric is arbitrary subject to the given distances. We will say that d(u, v) is reconstructed by
triangulation2, with distortion ∆ ≥ 1, if the ratio between the upper and lower bounds in (1.1) is at most ∆.
Since it is much cheaper for nodes to exchange messages than to actually estimate their round-trip distance
on the Internet (the latter typically requires a significant measurement period to produce a stable estimate),
triangulation can be valuable as a way to assign each node a short label — its distances to all beacons — in
such a way that the distance d(u, v) can later be estimated by a third party (or by one of v or v) just from
their labels. This can be viewed as a kind of distance labeling, and we discuss related work on this topic
(e.g. [GPPR04]) below.

To give performance guarantees for triangulation, we also need a notion of slack. Even in very simple
metrics, there will be some distance pairs that cannot be reconstructed well using only a constant number
of beacons. Consider for example a set of regularly spaced points on a line (or in a d-dimensional lattice);
points u and v that are very close together will have a distance d(u, v) that is much smaller than the distance
to the nearest beacon, rendering the upper bound obtainable from (1.1) useless. We therefore say that a set
of beacons achieves a triangulation with distortion ∆ and slack ε if all but an ε fraction of node pairs in the
metric are reconstructed with distortion ∆.

A fundamental question is then the following. Suppose we have an underlying metric space M , and
desired levels of precision ε > 0 and δ > 0. Is there a function f(·, ·) (independent of the size ofM ) so that
f(ε, δ) beacons suffice to achieve a triangulation with distortion 1 + δ and slack ε? Clearly such a guarantee
is not possible for every metric; in the n-point uniform metric, with all distances equal to 1, any distance that
is not directly measured will have a lower bound from (1.1) equal to 0. Thus we ask: are there are natural
classes of metrics that are triangulable in this way?

Beacon-based embedding. The recent work of Ng and Zhang on Global Network Positioning (GNP)
[NZ02] showed how a beacon-based set of measurements could embed all but a small fraction of Internet
distances with constant distortion in low-dimensional Euclidean space, and this result touched off an active
line of follow-up embedding studies in the networking literature (e.g. [DCKM04, PCW+03, ST03]). Note
that the empirical guarantee for GNP naturally defines a notion of ε slack for embeddings: an ε fraction
of all node pairs may have their distances arbitrarily distorted. Again, it is easy to see that this notion of
slack is necessary for a beacon-based approach. The GNP algorithm forms an interesting contrast with
the algorithms of Bourgain and Linial, London, and Rabinovich [Bou85, LLR95] for embedding arbitrary
metrics. These latter algorithms use access to the full distance matrix and build coordinates in the embedding
by measuring the distance from a point to a set — in effect, sets that can be as large as a constant fraction of
the space thus act as “super-beacons” in a way that would not be feasible to implement for all nodes in the
context of Internet measurement.

In order to understand why beacon-based approaches in general, or the GNP algorithm in particular,
achieve good performance for Internet embedding in practice, a basic question is the following: are there
natural classes of metrics that are embeddable with constant distortion and slack ε, using a constant number
of beacons?

2Note that this is one of several standard uses of the term “triangulation” in the literature; it should not be confused with the
process of dividing up a region into simplices, which goes by the same name.
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1.1 Overview of results

In this dissertation we provide a theoretical foundation for distributed distance reconstruction approaches.
We begin by showing that distances in a metric space M whose doubling dimension is bounded by k can
be reconstructed by triangulation with distortion 1 + δ and slack ε, using a number of beacons that de-
pends only on δ, ε, and dimension k, independent of the size of M . We define the doubling dimension
here to be the smallest k such that every ball can be covered by at most 2k balls of half the radius (see
Section 2.3.2 for more background); we also call such a metric 2k-doubling. The point here is that we are
not assuming a reconstruction method that explicitly knows anything about the doubling properties of M ;
rather, as long as the number of beacons is simply large enough relative to the doubling dimension, one
obtains accurate reconstruction using upper and lower bounds obtained from the triangle inequality alone.
Doubling metrics, which generalize the distance matrices of finite d-dimensional point sets, have been the
subject of recent theoretical interest in the context of embedding, nearest-neighbor search, and other prob-
lems [GKL03, KR02, GKL03, KL04, Tal04]; and an increasing amount of work in the networking com-
munity has suggested that the bounded growth rate of balls may be a useful way to capture the structural
properties of the Internet distance matrix (see e.g. [FkcHM01, NZ02, PV03, ZHR+04]). Thus, given that
strong triangulation performance guarantees are not possible for general metrics (as noted above via the
uniform metric), this positive result for doubling metrics serves as a plausible theoretical underpinning for
the success of beacon-based triangulation in practice.

Certain non-trivial metrics exhibit a stronger phenomenon that we term perfect triangulation: on all but
an ε-fraction of node pairs, the upper and lower bounds from the triangle inequality agree exactly (i.e. with
distortion 1). For example, one can show that f(d, ε) beacons suffice to achieve perfect triangulation with
slack ε on the points of a d-dimensional lattice under the `1 metric. It is thus natural to ask how generally
this phenomenon holds. Perfect triangulation turns out not be possible for all point sets in the `1 metric, but
we show that it can be achieved for all dense point sets in `1; by a dense point set we mean an n-point subset
of R

d in which the ratio of the largest to the smallest distance is Θ(n1/d).
We next move on to results for beacon-based embedding. We show that every metric can be embedded

into `p (for any p ≥ 1) with constant distortion and slack ε, using a constant number of beacons, where
the constants here depend only on ε. Moreover, for doubling metrics we show that an embedding with
these properties can be achieved by a close analog of the actual GNP algorithm of Ng and Zhang, providing
further theoretical explanation for its success in practice. It is interesting to note that arbitrary metrics (and
even arbitrary doubling metrics) cannot be embedded into Euclidean space (or into `p for any p ≥ 2) with
constant distortion (see Chapter 2 for more background), so this is a case where allowing slack leads to a
qualitatively different result.

While beacon-based algorithms perform a manageable set of measurements, they do so by choosing a
small set of nodes and placing a large computational and measurement load on them. Several recent net-
working papers [DCKM04, PCW+03, ST03] address the unbalanced load of beacon-based methods using
uniform probing: each node selects a small number of virtual ‘neighbors’ uniformly at random and measures
distances to them; all nodes then run a distributed algorithm that uses the measured distances. We show how
an extension of our techniques here can be used to give performance guarantees for distributed algorithms
such as these.

In particular, to analyze these uniform-probing embedding algorithms, we build on the techniques we
develop for reasoning about triangulation. We consider subgraphs G′ on the set of nodes with the property
that embeddings that approximately preserve all edge lengths inG′ must have constant distortion with slack
ε for the full distance matrix. This is a kind of “rigidity” property (with slack) that follows naturally from
the analysis of triangulation, and we can show that subgraphs consisting of node-to-beacon measurements,
as well as subgraphs built in a more distributed fashion, can be usefully analyzed in terms of this property.



4

We then simulate a beacon-based algorithm: instead of measuring distances to beacons directly, nodes
cooperatively infer them from the probed distances via an appropriate distributed algorithm. The inferred
distances to beacons are in fact upper and lower bounds on the true distances that are sufficiently precise to
yield a good triangulation. To obtain an embedding from these bounds, one needs somewhat more elaborate
technique than the one for the ’pure’ beacon-based result; this is because the inferred distances do not quite
obey the triangle inequality.

We show that stronger guarantees can be obtained in the more restrictive class of growth-constrained
metrics, in which doubling the radius of a ball increases its cardinality by at most a constant factor. We
obtain an embedding with a more “gracefully degrading” notion of slack: all but an ε-fraction of distances
are embedded with distortion ∆ = O(log 1

ε ); all but an ε-fraction of the remainder are embedded with
distortion 2∆; and in general, all but an εj fraction are embedded with distortion j∆. We also show that
the following simple nearest-beacon embedding is effective in strongly doubling metrics: select k beacons
uniformly at random, embed the beacons, and then simply position each other node at the embedded location
of its nearest beacon.

Finally, we derive lower bounds on embeddings with slack, showing that our embedding result for ar-
bitrary metrics is essentially optimal in terms of distortion. Moreover, we give a very general theorem that
allows us to convert the previously known lower bounds on distortion and dimension of embeddings into
lower bounds in terms of the slack parameter ε. This result works under very mild conditions, and in par-
ticular allows us to prove matching or nearly matching lower bounds for our further results on embeddings
with slack (see Section 1.1.1).

1.1.1 Extensions

Our results on triangulation and embeddings described above are gathered in Chapter 3. We extend these
results in several directions, each direction constituting a separate chapter.

Embeddings with gracefully degrading distortion. Recall that in our result on embeddings with slack
ε we provide a different embedding for each ε. A much more flexible and powerful alternative would be
one embedding that works for all ε at once; informally, say that such embedding has gracefully degrading
distortion. We obtained gracefully degrading distortion for growth-constrained metrics as an elaboration of
Bourgain’s embedding. Extending it to more general metrics is much more challenging. In Chapter 4 we
present such embedding for decomposable metrics, a notion from previous work on embeddings that we
specify precisely in Section 2.3.3; this includes several well-studied classes of metrics including doubling
metrics and shortest-paths metrics of planar graphs. The proof of this result is technically the most involved
part of this thesis; at a high level, we develop a set of scale-based embeddings which are then combined
together (as in most previous embeddings)—however, since the existing ways to perform this do not seem
to guarantee gracefully degrading distortion, we construct new ways of defining distance scales.

We further show that gracefully degrading distortion can be achieved for all metrics; however, this result
only works for embeddings into `1 (as opposed to an arbitrary `p, p ≥ 1 space), and the resulting embed-
ding is high-dimensional. This question has been subsequently solved in full by Abraham et al. [ABN06],
providing, for an arbitrary target space `p, p ≥ 1, a low-dimensional embedding with gracefully degrading
distortion. It is interesting to note that we provide essentially matching lower bounds for all these embed-
dings.

Triangulation with guarantees for all node pairs. In Chapter 5 we obtain improvements for distributed
algorithms that induce low load on all participating nodes: specifically, we obtain triangulation with distor-
tion 1 + δ for all node pairs. To achieve such a result, we need to elaborate both the way we take measure-
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ments and the way we handle beacons: neither the uniform probing nor using a single global set of beacons
are adequate for the task at hand. Instead, we use a hierarchical approach, whereby each node probes its
immediate neighborhood more densely than the faraway regions. A crucial obstacle is that the nodes do not
know any distance information in advance (and they are allowed only a poly-logarithmic storage throughout
the algorithm), so they have to cooperatively infer this throughout the algorithm.

A crucial element of our construction is rings of neighbors, a sparse distributed data structure which
captures the distance information in the network. This is also (essentially) the data structure that underlies
Meridian, a network positioning system described in Chapter 6. The idea is that every node u stores pointers
to some nodes called ’neighbors’; these pointers are partitioned into several ’rings’ so that the neighbors in
the i-th ring are selected near-uniformly in a ball of radius 2i around u. In effect, rings of neighbors form an
overlay network with a certain structure imposed by the rings.3

The beacon selection is also hierarchical. First each node selects itself (independently at random) as a
level-i beacon; we make sure that level-i beacons are sufficiently dense on the distance scale of ∆/2i (where
∆ is the maximal distance in the metric) and yet sufficiently sparse for the purposes of load-balancing. Then
level-i beacons declare themselves to other nodes via a special broadcast, so that each node finds out about
the nearby level-i beacons, and also forms upper and lower bounds on distances to these beacons. With
some more fine-tuning, these bounds give rise to a triangulation with good guarantees for all node pairs. We
conjecture that this approach can lead to an embedding with a similar property.

Meridian: a framework for location-aware node selection. In Chapter 6 we address similar issues
in the context of a systems project on location-aware node selection in a large-scale distributed network.
Specifically, we discuss our work on Meridian [WSS05], a framework for performing node selection based
on network location. Meridian is a lightweight, scalable, and accurate system for keeping track of location
information for participating nodes that does not require computing a network embedding as in [NZ02,
DCKM04]; in effect, here we explore an approach which is alternative to the work on network embeddings.
Our system is simple, loosely-structured, and entails modest resources for maintenance. It can efficiently
find the closest node to a target, the latency minimizing node to a given set of nodes, and the set of nodes that
lie in a region defined by latency constraints, which are frequently encountered building block operations in
many location-sensitive distributed systems. Although less general than virtual coordinates, Meridian incurs
significantly less error.

In this thesis we outline the system, and then proceed with the analysis that shows that Meridian provides
robust performance, high scalability and good load balancing. This analysis focuses on doubling and growth-
constrained metrics, and uses some of the techniques from our work on triangulation. For a large body of
experimental results and further work on this system see the original paper [WSS05].

Node labeling problems. In Chapter 7, we interpret triangulation as a problem of assigning short informa-
tive labels to nodes, and provide near-optimal constructions for doubling metrics. We extend our techniques
to other node labeling problems, where one needs to assign short labels to nodes of a graph so that they
capture some (problem-specific) global information about distances and routes in the graph. Specifically,
we consider three types of node-labeling problems: low-stretch routing schemes [PU89], distance label-
ing [GPPR04], and searchable small worlds [Kle00b]. We focus on weighted graphs that induce a doubling
metric. The concrete problems, specific results and relevant background are discussed further in Section 7.1.

We approach triangulation and the three node-labeling problems mentioned above with a common tech-
nique: each construction is based on a version of rings of neighbors, a sparse distributed data structure
described earlier. Recall that in rings of neighbors, the i-ring neighbors of a given node u lie in a ball Bi

3Note that the term ’neighbor’ here refers to the adjacency in this overlay network, not to the proximity in the input graph.
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around u, for some increasing sequence of balls {Bi}. Here the radii of these balls and the distribution
of neighbors in a given ring are crucial and depend on the specific application. One trick that has been
particularly useful in our proofs is to combine the following two collections of rings of neighbors. In the
first collection, the cardinalities of the balls Bi grow exponentially, and the i-ring neighbors are distributed
uniformly on the node set of Bi. In the second collection, the radii of the Bi’s grow exponentially, and
(if one draws on the analogy between doubling metrics and low-dimensional Euclidean metrics) the i-ring
neighbors are distributed uniformly in the space region that corresponds to Bi. For some applications the
second collection alone suffices.

In a more abstract view, a collection of rings of neighbors is a tractable representation for the fine
structure of the underlying graph. The idea of using a tractable structure-preserving representation as a
unifying technique for various problems on graphs is not new; several representations have been suggested
in the literature, e.g. [AGLP89, ABNLP90] for general graphs and [Tal04, MHP05] for doubling graphs.
Rings of neighbors seems to be a particularly suitable representation for the types of problems that we
consider here.

1.1.2 Related work

To understand the technical contents of this dissertation, a reader needs to be familiar with the basic con-
cepts of metrics and metric embeddings, as well as with some tools from probability and graph theory; see
Chapter 2 for self-contained background on those.

As discussed above, the questions we consider here differ from the bulk of algorithmic embedding
research (as surveyed in [Ind01, Lin02, Mat02a, IM04]) because we are able to measure only a small subset
of the distances, and we allow a notion of slack in the performance guarantee. Indeed the whole problem
of triangulation, which seeks simply to reconstruct the distances, would not be of interest if we already had
access to all distances. Allowing slack changes the kinds of performance guarantees one can achieve; for
example, as mentioned above, doubling metrics become embeddable with constant distortion in Euclidean
space once a small slack is allowed. At the same time, we find that techniques from the body of previous
work on embedding, combined with our results on triangulation, are useful in designing algorithms under
these new constraints.

Work on distance labeling [GPPR04] seeks to assign a short label to each node in a graph so that the
distance between u and v can be (approximately) determined from their labels alone. This is of course
analogous to our goals in triangulation. In the most closely related work in this vein, Talwar investigated
distance labels for doubling metrics [Tal04]. Both the objective and the techniques in [Tal04] differ consid-
erably from our work on network triangulation here, however: in [Tal04], the concern is with labels of low
bit complexity, but the encoding of distances into short labels there makes extensive use of the full distance
matrix, and it is thus not adaptable to our setting in which distances to only a few beacons can be measured.
The more extensive use of the distance matrix in [Tal04] comes in pursuit of a stricter goal: distance labels
in which there is no notion of slack in the performance guarantee. We also consider this type of problems
(in Chapter 7), and in particular improve over the result of [Tal04].

Work on property testing [GGR98] makes use of a somewhat different notion of slack in its performance
guarantees: can an ε-fraction of the input be changed so that a given property holds? There has been some
research on property testing in metric spaces (see e.g. [KS03, PR03], and related work on sampling for
approximating metric properties in [Ind99]), but this work has considered problems quite different from
what study here, and makes use of different sampling models and objective functions. Metric Ramsey
theory [BLMN05] also seeks subsets of a metric satisfying specific properties, but it tends to operate in a
qualitatively different part of the parameter space, exploring properties that hold on the sub-metric induced
by relatively small subsets of the nodes, rather than properties that hold on a large fraction of the edges.
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Finally, distance geometry [CH88] is a large area concerned with reconstructing point sets from sparse
and imprecise distance measurements; our use of triangulation here corresponds to the notion of triangle
inequality bounds smoothing in [CH88], but beyond this connection we are not aware of closely related
work in the distance geometry literature.

1.2 Definitions and theorems: embeddings

Before we formally present our results, let us present some of the notions that will be used throughout
the thesis. We will assume that the metric (V, d) is also represented as a graph on the nodes V , with the
length of edge (u, v) being d(u, v) = duv . We imagine this graph as having n2 edges, one for each pair
u, v ∈ V × V ; this makes the exposition cleaner and does not change the results in any significant way. For
a map ϕ : V → V ′ let us define the notion of the distortion of a set S of edges under embedding ϕ as the
smallestD ≥ 1 such that for some positive constantK and all edges (u, v) ∈ S we have

d(u, v)≤ d′(ϕ(u), ϕ(v))/K ≤ D · d(u, v).

Note that the distortion of ϕ is the same as the distortion of the set of all edges.

Definition (ε-slack distortion). Given ε, an embedding ϕ : V → V ′ has distortionD with ε-slack if a set
of all but an ε-fraction of edges has distortion at most D under ϕ.

We will also consider a stronger notion of slack, for which we need the following definition. Let ru(ε)

be the radius of the smallest ball around u that contains at least εn nodes. Call an edge uv ε-long if d(u, v) ≥
min(ru(ε), rv(ε)). Note that there are at least (1− ε)n2 edges that are ε-long. For any such edge (u, v), at
least one endpoint u is at least as far from the other endpoint v as the (εn)-th closest neighbor of v.

Definition (ε-uniform slack distortion). Given ε, an embedding ϕ : V → V ′ has distortion D with ε-
uniform slack if the set of all ε-long edges has distortion at most D.

While the above notions of embeddings with slack allow the map ϕ to depend on the slack ε, the follow-
ing notion asks for a single map that is good for all ε simultaneously.

Definition (gracefully degrading distortion). An embedding ψ : V → V ′ has a gracefully degrading
distortionD(e) if for each ε > 0, the distortion of the set of all ε-long edges is at mostD(ε).

We now make precise the main results described above, and also describe some further results in the
thesis. Our first result shows that if we are allowed constant slack, we can embed any metric into constant
dimensions with constant distortion:

Theorem 1.1. For any source metric (V, d), any target metric `p, p ≥ 1 and any parameter ε > 0, we give
the following two O(log 1

ε )-distortion embeddings:
(a) with ε-slack intoO(log2 1

ε ) dimensions, and
(b) with ε-uniform slack intoO(logn log 1

ε ) dimensions.
Both embeddings can be computed with high probability by randomized beacon-based algorithms.

These results extend Bourgain’s theorem on embedding arbitrary metrics into `p, p ≥ 1 with distortion
O(log2 n) [Bou85], and are proved in a similar manner.

Note that the bounds on both the distortion as well as the dimension in part (a) of the above theorem
are independent of the number of nodes n, which suggests that they could be extended to infinite metrics;
this is further discussed in Section 3.3.3. In part (b), the dimension is proportional to logn; we show that,
for arbitrary metrics, this dependence on n is indeed inevitable. Let us mention that doubling metrics do
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not need such a dependence on n: in Section 3.3.2, these metrics are embedded into any `p, p ≥ 1 with
ε-uniform slack, distortionO(log 1

ε log log 1
ε ) and dimension (log 1

ε )
O(log 1

ε
).

We then study embeddings into trees. We extend the known results of probabilistic embedding into trees
[Bar96, Bar98, FRT04] to obtain embeddings with slack. In particular, we use the technique of Fakcharoen-
phol et al. [FRT04] to obtain the following two results:

Theorem 1.2. For any input metric (V, d) and any parameter ε > 0 there exists an embedding into a tree
metric with ε-uniform slack and distortionO(1

ε log 1
ε ).

In fact, the tree metric in Theorem 1.2 is induced by a Hierarchically Separated Tree (HST) [Bar96],
which is a rooted tree with edge-weightswe such that we < we′/2 whenever edge e′ is on the path from the
root to edge e.

Theorem 1.3. For any input metric (V, d), the randomized embedding of [FRT04] into tree metrics has
expected gracefully degrading distortionD(ε) = O(log 1

ε ). It follows that we can embed any metric into `1
with gracefully degrading distortionD(ε) = O(log 1

ε ).

However, the dimension of the above embedding into L1 may be prohibitively large. To overcome this
hurdle, and to extend this embedding to `p, p > 1, we explore a different approach:

Theorem 1.4. Consider a metric (V, d) which admits β-padded decompositions. Then it can be embedded
into `p, p ≥ 1 with O(log2 n) dimensions and gracefully degrading distortionD(ε) = O(β)(log 1

ε )
1/p.

For the reader unfamiliar with padded decompositions, let us mention that doubling metrics and metrics
induced by planar graphs have β = O(1) (refer to Section 2.3 for more background); hence Theorem 1.4
implies that such metrics admit embeddings into `p, p ≥ 1 with gracefully degrading distortionO(log 1

ε )
1/p.

Note that for p > 1 this result can be seen as a strengthening of Theorem 1.1(b) on embeddings with
ε-uniform slack.

Finally, we prove lower bounds on embeddings with slack: we give a very general theorem that allows
us to convert lower bounds on distortion and dimension of embeddings that depend only on n into lower
bounds in terms of the slack parameter ε.

Theorem 1.5. Suppose for each k there exists a k-node metricHk such that any (probabilistic) embedding
ofHk into trees has distortion at leastD(k). Then for an arbitrarily small positive ε there exist finite metrics
M , M∗ on arbitrarily large number of nodes such that:

(a) any (probabilistic) embedding of M into trees has ε-slack distortion Ω(D( 1
3
√

ε
)).

(b) any (probabilistic) embedding of M∗ into trees has ε-uniform slack distortion Ω(D( 1
3ε)).

Moreover, if metrics {Hk} are planar (resp. Kr-minor-free, doubling, `dp) then so are M and M∗.

A very similar result applies to (probabilistic) embeddings into trees. These two results allow us to prove
a number of lower bounds; some of them are summarized in Table 1.1 on page 9. In particular, we obtain
matching or nearly matching lower bounds for all our results on ε-slack embeddings.

1.3 Definitions and theorems: distributed algorithms

Let us state our results on distributed triangulation and embedding. We start with our main result on beacon-
based triangulation:
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Type of Embedding Our Lower Bound Original Example
All metrics into `p, p ≥ 1 Ω(1

p)(log 1
ε ) Constant-degree expanders [Mat97]

F into `p, p ∈ (1, 2] Ω(1− p)
√

log 1/ε Laakso fractal [LMN04]
Growth-constrained `1-metrics into `d1 Ω(

√

logd 1/ε) Laakso fractal [LMN04]
F into distributions of dominating trees Ω(log 1

ε ) n× n grid [AKPW95]
All metrics into tree metrics Ω(1/

√
ε ) n-cycle [RR98, Gup01]

`2m+1
2 into `2m

2 Ω(1/
√
ε )1/m [Mat90]

Here F is the family of doubling metrics that are shortest-paths metrics of planar graphs.
In the last two lines, bounds for ε-uniform slack can be obtained by replacing

√
ε by ε.

Table 1.1: Embeddings with slack ε: lower bounds on distortion

Theorem 1.6. In any doubling metric M , a constant number of randomly selected beacons achieves an
(ε, δ)-triangulation with probability 1 − γ, where the constant depends on δ, ε, and γ. Moreover, for any
metric a constant number of randomly selected beacons achieves an upper bound estimateD+

uv ≤ 3duv for
all but an ε-fraction of pairs (u, v) with probability at least 1− γ, where the constant depends on ε and γ.

To formulate our result on perfect triangulation, we use the following notion of a dense point set as a
generalization of the d-dimensional lattice: We say that a finite subset of R

d under the `1 metric is dense if
the coordinates of all points lie in the interval [0, kn1/d] for a constant k, and the minimum distance between
each pair of points is 1. (We will refer to k as the density parameter.)

Theorem 1.7. In any dense point set M under the L1 metric, a constant number of randomly selected
beacons achieves a perfect triangulation with ε slack and with probability 1−γ, where the constant depends
on ε, γ, the dimension, and the density parameter.

In addition to the result on beacon-based embeddings from Section 1.2, we provide a result that follows
more closely the framework from the GNP algorithm [NZ02]. Let us say that a beacon-based algorithm
is GNP-type if it conforms to the following framework: beacons are embedded first (by inspecting only
the distances between the beacons), and then the coordinates of every non-beacon node u are computed
separately by some black-box procedure that inspects the distances from u to the beacons and minimizes
distortion on these distances.

Theorem 1.8. For any doubling metric and any slack parameter ε > 0 there exists a GNP-type algorithm
that uses k = O(1/ε)O(log log1/ε) beacons and computes an embedding into `p, p ≥ 1 with dimension
O(k log k) and ε-slack distortionO(logk).

To state our further results on triangulation, we need to provide a more general definition thereof. A
triangulation of order k is a labeling of nodes such that a label of a given node u consists of upper and
lower bounds on distances from u to each node in a set Su of at most k other nodes; for each b ∈ Su we
denote these bounds by D+

ub and D−
ub. Then any two nodes (u, v) can exchange their labels and use the

triangle inequality to upper-bound the (u, v)-distance by D+
uv = min(D+

ub + D+
vb), and lower-bound it by

D−
uv = max(D−

ub − D+
vb, D

−
vb −D+

ub), where the max and min are taken over all b ∈ Su ∩ Sv . An (ε, δ)-
triangulation is a triangulation such that D+

uv ≤ (1 + δ)D−
uv for all but an ε-fraction of node pairs (u, v).

Note that either bound can be seen as a (1 + δ)-approximate estimate on the (u, v)-distance, and, moreover,
these bounds provide a ”quality certificate” for the estimate.

The following is our main result on fully distributed triangulation and embedding:
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Theorem 1.9. Let M be a doubling metric, and suppose that every node has k = (2 logn)Ω(1) neighbors
chosen independently and uniformly at random. Then for any ε and δ that are each at least (logn)−O(1)

there exist a fully distributed algorithm that with high probability constructs an (ε, δ)-triangulation and an
O(k log k)-dimensional embedding into `p, p ≥ 1 which has distortion O(logk) with ε-uniform slack. In
this algorithm the per-node load and the total completion time are poly-logarithmic in n.

For growth-constrained metrics we can obtain a triangulation with guarantees for all node pairs:

Theorem 1.10. Consider a growth-constrained metric with polynomially bounded aspect ratio. Suppose
each node has links to 3 nodes sampled independently at random in the network. Then for any δ > 0 there
exists a fully distributed algorithm that computes a (0, δ)-triangulation of degree (1/δ)O(1) (log2 n). The
running time and per-node load is (1/δ)O(1) (log7 n).

In a centralized setting, we can extend this result to doubling metrics:

Theorem 1.11. For any δ ∈ (0, 1) any doubling metric has a (0, δ)-triangulation of order (1/δ)O(1) (logn).
Moreover, such triangulation can be efficiently computed.

1.4 Bibliographic notes

This dissertation is based on a line of work that has been started by [KSW04] and includes three other
theoretical papers [Sli05b, CDG+05, Sli05a], an unpublished manuscript [Sli06], and a collaboration on a
related systems project [WSS05]. All above papers have appeared in conferences; their journal versions are
forthcoming (that of [Sli05a] has been accepted to Distributed Computing and is currently under revision,
and the other papers will be submitted to journals in the very near future).

The results in [CDG+05] have been obtained independently by I. Abraham, Y. Bartal and O. Neiman,
which lead to a merged conference publication [ABC+05]. The results on lower bounds and on embeddings
into trees (respectively, Section 3.6 and Section 4.8 in this thesis) were proved similarly by both groups. For
the rest of the results in this paper, the techniques are quite different. The two groups of authors has agreed
to write up the full versions of their results separately.

Chapters in this thesis correspond to publications as follows. Chapter 3 is mainly based on [KSW04]
but includes portions of [Sli05b] and [CDG+05]; this chapter has given me an opportunity to better organize
the results on network triangulation and embedding from the above three papers. Chapter 4 is based entirely
on [CDG+05]. Chapter 5 represents a very recent work [Sli06] that has not yet been published. Chapter 6
is adapted from [WSS05], and Chapter 7 is from [Sli05a].



Chapter 2

Background and preliminaries

In order to understand the technical contents of this dissertation, a reader needs to be familiar with the basic
concepts of metrics and metric embeddings, as well as with some tools from probability and graph theory; in
this chapter we give a self-contained background on those. We include proofs whenever they are sufficiently
short; we provide references for more complicated results.

Let us start with some notation that will be used throughout the thesis. Unless specified otherwise, we
denote the underlying metric by (V, d), so that d(u, v) denotes the distance between nodes u and v; we also
use duv whenever typographically convenient. Let Bu(r) be the closed ball of radius r around node u, i.e.
Bu(r) = {v ∈ V : duv ≤ r}. Let ru(ε) be the radius of the smallest closed ball around u that contains at
least εn nodes. The open ball of radius r around node u is the set of all nodes within distance strictly less
than r from u. The term ball in a metric refers to a closed ball unless specified otherwise.

For k ∈ N define [k] as the set {0, 1 . . .k − 1}. Throughout the paper, n denotes the number of nodes
in the input graph or metric, and ∆ denotes the aspect ratio, which is the largest distance divided by the
smallest distance.

2.1 Expander graphs and Probability

Throughout the thesis we use Chernoff Bounds, a standard result which says that the sum of bounded
independent random variables is close to its expectation with high probability (e.g. see the textbook of
Motwani and Raghavan [MR95] for the proof).
Theorem 2.1 (Chernoff Bounds). Consider the sumX of n independent random variablesXi ∈ [0, y].

(a) for any µ ≤ E(X) and any ε ∈ (0, 1) we have Pr[X < (1− ε)µ] ≤ exp(−ε2µ/2y).

(b) for any µ ≥ E(X) and any β ≥ 1 we have Pr[X > βµ] ≤
[

1
e (e/β)β

]µ/y
.

For an undirected graph, the expansion is defined as min |∂(S)|
|S| , where the minimum is over all nonempty

sets S of at most n/2 vertices, and ∂(S) stands for the set of edges with exactly one endpoint in S. We
can generalize this definition to weighted undirected graphs, or, equivalently, to symmetric non-negative
matrices: we just define ∂(S) to be the total weight of all edges with exactly one endpoint in S. We can
further extend this definition to directed graphs (non-symmetric matrices) by considering the weight of all
edges leaving S.

For a pre-defined absolute constant, an expander is an undirected graph whose expansion is at least this
constant. Expanders are well-studied and have rich applications, see [LW02, AS00, MR95, Xia03] for more
background. We will use the following two standard results:

11



12

Theorem 2.2 (Folklore). An undirected graph of degree d and expansion γ has diameter at most 2d
γ logn.

Proof. Let x = 1 + γ
d . Fix any node u. We claim that |Bu(k)| ≥ xk for any integer k such that the ball

Bu(k− 1) contains at most n/2 nodes. Indeed, let us use induction on k: suppose that xk ≤ |Bu(k)| ≤ n/2
for some integer k. Then by definition of expansion there are at least γ|Bu(k)| edges with exactly one end
in Bu(k). Since the degree of the graph is d, these edges go to at least γ

d |Bu(k)| distinct nodes outside of
Bu(k). It follows that the ball Bu(k+ 1)| contains at least x |Bu(k)| ≥ xk+1 nodes, claim proved.

Note that γ ≤ d. This is because for any set S ⊂ V there are at most d|S| edges with at least one end in
S. It follows that for y = d/γ we have (1 + 1/y)y ≥ 2, so xk ≥ 2k/y . Therefore for k = y logn the ball
Bu(k) contains at least n

2 + 1 nodes. So for any two nodes u, v the balls Bu(k) and Bv(k) overlap, hence
the two nodes are connected by a path of length at most 2k.

Theorem 2.3 (Folklore). Fix node set V . Suppose for each node u we choose three nodes independently
and uniformly at random from V , and create undirected links between u and these three nodes. Then the
resulting graph is an expander with high probability.

See e.g. page 10 of [GMS04] for the proof. We will actually need a slightly stronger version where we
select nodes from (and construct an expander on) any given subsetQ of nodes, whereas we need the failure
probability to be low in terms of n, not the size of Q. Hence we create O(logn) links per node instead of
just three.

Theorem 2.4. Fix node set V of n nodes, and a subset Q ⊂ V . Suppose for each node u ∈ Q we choose
at least 3 logn nodes independently from a near-uniform distribution on Q, and create undirected links
between u and these nodes. Then the induced graph on Q is an expander with high probability.

In Theorem 2.3 and Theorem 2.4 expanders have degree at most O(logn). We note in passing that for
many applications it is useful to have constant-degree expanders. Indeed, such graphs exist; for instance, for
large enough d a random d-regular graph is an expander with high probability [Fri03].

A graph (V,E) induces a Markov chain on V as follows: for any edge (u, v) ∈ E, the transition
probability u → v is set as 1/ deg(u). In particular, undirected graphs with low degree and high expansion
gives rise to a Markov chains whose transition matrix has high expansion.

The following seminal result connects the mixing time of a Markov chain with the expansion of its
transition matrix; we state it in a somewhat simplified form which is suitable for the purposes of this chapter.

Theorem 2.5 (Rapid mixing, Sinclair and Jerrum [SJ89]). Consider an ergodic time-reversible n-state
Markov chain with a uniform stationary distribution. Suppose that for every node the probability of stalling
is at least 1

2 . Let γ be the expansion of the transition matrix. Then for any k ≥ O(γ−2)(logn) and any
initial distribution the k-step distribution of this Markov chain is near-uniform.

The phenomenon when an n-state Markov chain achieves a near-stationary distribution in O(logn)

steps is known as rapid mixing. In fact, the original formulation of the above theorem extends to arbitrary
stationary distributions.

2.2 Metric embeddings

Metric space. A metric space is a pair (V, d), where V is a set of nodes, and d is a metric, i.e. a symmetric
non-negative mapping V × V → R which satisfies the triangle inequality:

d(x, y)≤ d(x, z) + d(y, z) for any three nodes x, y, z ∈ V . (2.1)
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Let us define the distance from node u to subset S ⊂ V as d(u, S) = infv∈S d(u, v). Let us rewrite the
triangle inequality as d(x, y) ≥ |d(x, z)−d(y, z)|. In this formulation, we can replace d(·, z) by the distance
to an arbitrary set:

Lemma 2.6. In any metric, for any two nodes (x, y) and any set S we have d(x, y) ≥ |d(x, S)− d(y, S)|.

Proof. We will only use this lemma for finite S. In this case we can pick node u ∈ S such that d(x, S) =

d(x, u), and node v ∈ S such that d(y, S) = d(y, v). Then

d(x, y) ≥ d(u, y)− d(u, x) ≥ d(v, y)− d(u, x) = d(y, S)− d(x, S),

and similarly d(x, y) ≥ d(x, S)− d(y, S).
For the sake of completeness, let us consider the case of infinite S. Then there exists a sequence {ui} of

nodes such that d(x, ui)→ d(x, S) and a sequence {vi} of nodes such that d(y, vi)→ d(y, S). In the latter
sequence, let us choose a subsequence {v∗i } such that d(y, ui) ≥ d(y, v∗i ). for each i. Then

d(x, y) ≥ d(ui, y)− d(ui, x) ≥ d(v∗i , y)− d(ui, x)→ d(y, S)− d(x, S),

and similarly d(x, y) ≥ d(x, S)− d(y, S).

Metric embeddings. An embedding of a finite metric space (V, d) into a target metric space (V ∗, d∗)
is a map ϕ : V → V ∗. Ideally, such map would preserve distances exactly, although this is typically
not possible; see a book by Deza and Laurent [DL97] for more background on isometric (exact distance
preserving) embeddings.

Recent work on embeddings has used distortion as the fundamental measure of quality; the distortion
of an embedding is the worst multiplicative factor by which distances are increased by the embedding.
Formally, for an embedding ϕ : V → V ∗, the distortion is the smallest D so that for some constant C we
have d(x, y) ≤ C d∗(ϕ(x), ϕ(y))≤ Dd(x, y) for all pairs x, y ∈ V ×V . Note that this definition is invariant
under arbitrary scaling. The popularity of distortion has been driven by its applicability to approximation
algorithms: informally, if the embedding ϕ : V → V ∗ has distortionD, then the cost of solutions to some
optimization problems on (V, d) and on (ϕ(V ), d∗) can only differ by some function of D.

Typically, the goal of a metric embedding is to map a ”complicated” metric space into a ”simpler” one.
The most popular target spaces in the literature are `p spaces and distributions over tree metrics. We will
mainly focus on the former, as it is more relevant to this dissertation.

`p spaces. For any p ≥ 1, let dp be the metric induced by the p-norm: for any d ≤ ∞ and x, y ∈ Rd,

dp(x, y) := ‖x− y‖p :=

(

d
∑

i=1

(xi − yi)
p

)1/p

.

For any d ∈ N, a d-dimensional `p space (denoted `dp) is a metric space (Rd, dp). An infinite-dimensional
`p space (just denoted `p) is a metric space (V, dp), where V is the set of all vectors in R∞ that have a finite
p-norm. Note that every finite-dimensional `p space can be cast as a sub-space of `p. For applications, the
most useful `p spaces are `1 and `2; note that `2 is the familiar Euclidean space.
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2.2.1 Relations between different `p norms

Let us give some background on how different p-norms relate to one another. In many cases, one can switch
between different p-norms, or reduce the dimension, incurring arbitrarily low distortion; typically in such
results `2 is the easiest space to embed from, and `1 is the easiest space to embed into. We state all such
results as two theorems. In the first theorem, the source space is infinite, yet the target dimension is finite:

Theorem 2.7. Let p, q ∈ [1,∞). An `dp space can be embedded into `d
∗

q with distortion 1 + ε if:
(a) [BS82] q < p ≤ 2 and d∗ = c(ε) d,
(b) [Dvo59] p = 2 and d∗ = 2O(d/ε2).

The second theorem shows that a finite `2 metric can be approximated, to a fixed arbitrary precision,
in `1 and `2 using only O(logn) dimensions [FLM77, JL84]. However, a similar dimension reduction is
impossible for `1 metrics [BC03, LN04].

Theorem 2.8 (Dimension reduction). Any n-node subset of `2 can be embedded into `q, q ∈ {1, 2} with
distortion 1 + ε and dimension O(1

ε logn). However, there exist arbitrarily large n-point subsets of `1 for

which any embedding into `1 with distortionD requires nΩ(1/D2)dimensions.

2.2.2 Embeddings of finite metrics into `p spaces

The following seminal result is due to Bourgain [Bou85] and Linial et al. [LLR95].1

Theorem 2.9 (Bourgain’s embedding). Any n-node metric can be embedded into `p, p ≥ 1 space with
dimensionO(log2 n) and distortionO(logn). Moreover, such embedding can be efficiently computed.

Bourgain’s embedding technique is essential to this thesis. Accordingly, we will give a complete proof
of the above theorem. We start with a sampling lemma which is implicitly used in [LLR95], but neither
proved nor explicitly stated. We state and prove it here for the sake of completeness.

Lemma 2.10. Consider disjoint events E and E ′ such that Pr[E] ≥ γ and Pr[E ′] ≤ 2γ. Let S be a set of
1/γ points sampled independently from this probability distribution. Then S hits E and misses E ′ with at
least a constant probability c = (e− 1) e−1.5.

Proof. Let p = Pr[E] and p′ = Pr[E ′]. Treat sampling a given point as two independent random events:
first it misses E ′ with probability 1 − p′, and then (if it indeed misses) it hits E with probability p

1−p′ .
Without loss of generality let us rearrange the order of events: first for each point we choose whether it
misses E ′, so that

Pr[all points miss E ′] = (1− p′)1/γ ≈ e−p′/γ ≥ e−1/2.

Then upon success choose whether each point hitsE. Then at least one point hitsE with probability at least
1− (1− p)1/γ ≥ 1− e−1. So the total success probability is at least c = (1− e−1) e−1/2.

Proof of Theorem 2.9: Let us fix k = c logn, for a constant c to be determined later. For each i ∈ [logn]
and j ∈ [k], let Sij be the set of n/2i nodes chosen independently and uniformly at random.

We define an embedding f : V → `p with k logn dimensions, indexed by pairs (i, j) as above, so
that for each node u and each set Sij the corresponding coordinate is fij(u) = k−1/p d(u, Sij), where
d(u, S) = minv∈S d(u, v) is the distance between node u and set S.

1The original result in Bourgain [Bou85] was a (high-dimensional and non-algorithmic) embedding into `2; Linial et al. [LLR95]
fine-tuned Bourgain’s technique to yield the present formulation.
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Let us fix a node pair (u, v). Let d = d(u, v) be the original (u, v)-distance, and let d∗ = ‖f(u)−f(v)‖p
be the embedded (u, v)-distance. For simplicity we will consider the case p = 1 first. Let

xij = |d(u, Sij)− d(v, Sij)|

be the contribution to d∗ of the ij-th coordinate. By Lemma 2.6 this contribution is upper-bounded by d, so
d∗ ≤ O(d logn). The hard part is the lower bound: d∗ ≥ Ω(d).

For each i ∈ [logn], let
ρi = min(d/2, ru(2i/n), rv(2

i/n)).

Note that the sequence {ρi} is increasing with ρ0 = 0 and ρi0 = d/2 for some i0.

Claim 2.11. For each i with high probability we have
∑

j∈[k] xij ≥ Ω(k)(ρi+1 − ρi).

Proof. Fix i and γ = 2i/n. Without loss of generality let us assume that the ball around u reaches size γn
before the ball around v does: ρi = ru(γ) ≤ rv(γ). A given set Sij contributes xij ≥ ρi+1 − ρi as long as
it has the following property: it hits the ballB = Bu(ρi) and misses the open ballB∗ of radius ρi+1 around
v. By Lemma 2.10 the probability of this happening is at least a positive constant c0 (since the two balls
are disjoint, |B| ≥ γn and |B∗| ≤ 2γn). Thus the expected number of sets Sij with this property is c0k,
so applying the Chernoff bound, for big enough k = O(1/c0)(logn) with high probability at least c0k/2 of
sets Sij have this property.

Now with high probability the sum
∑

xij telescopes:

d∗ = 1
k

∑

ij xij ≥
∑

i Ω(ρi+1 − ρi) ≥ Ω(ρi0 − ρ0) = Ω(d).

This completes the proof for the case p = 1.
To extend the theorem to general p ≥ 1, let d∗p be the embedded (u, v)-distance and let x = logn. Then

d∗p = x1/p





1

xk

∑

ij

xp
ij





1/p

≥ x1/p





1

xk

∑

ij

xij



 = x1/p−1 d1
uv = x1/p−1 Ω(d).

For a lower bound, recall that xij ≤ d, so d∗p ≤
(

1
k

∑

ij d
p
)1/p

= x1/p d.

In the above theorem, the distortion is optimal up to a constant factor [LLR95, Mat97]:

Theorem 2.12. Let M be the shortest-paths metric of any constant-degree expander graph. Then for any
p ≥ 1, any embedding ofM into `p space has distortion Ω(1/p)(logn).

Several results on embeddings into `p with sub-logarithmic distortion are known for restricted families
of metrics. For instance, shortest-paths metrics of planar graphs can be embedded into `2 with distortion
O(
√

logn) [Rao99]; shortest-paths metrics of series-parallel graphs can be embedded into `1 with constant
distortion [GNRS04].

For more background on metric embeddings and their algorithmic applications refer to a number of
recent surveys [Ind01, Lin02, Mat02a, IM04].
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2.2.3 Embeddings into tree metrics

A tree metric is a shortest-paths metric of a (positive-weighted) tree.

Lemma 2.13 (Folklore). Tree metrics are isometrically embeddable into `n−1
1 .

Proof Sketch. Consider a tree T = (V,E) with positive edge-weightswe, e ∈ E. Let us number edges from
1 to n − 1: let ei be the i-th edge. Fix any node r ∈ V as a root. We define the embedding into `n−1

1 as
follows: for each node u ∈ V , the i-th coordinate is equal to we if edge e = ei lies on the path from u to r,
and 0 otherwise.

Moreover, tree metrics are embeddable into `2 with distortionO(
√

log logn), and this is optimal up to
constant factors [Bou86, Mat99]. Recall that by the dimension reduction result (Theorem 2.8) the dimension
can be made as small as O(logn). For a constant target dimension, the best known result is an O(n1/d)-
distortion embedding into `d+1

2 , for any constant d [Gup00].
Tree metrics are very tractable algorithmically, but are not rich enough to accommodate even very simple

metrics: e.g. a cycle on n nodes needs distortion Ω(n) to be embedded into trees metrics. However, the
following approach has been very fruitful: embed into distributions over tree metrics, so that the original
distance is approximated by the expected embedded distance; this is known as probabilistic embedding. For
instance, for an n-node cycle consider a uniform distribution over the n line metrics produced by cutting
some edge; then for any given edge the expected embedded distance is 2(1 − 1

n). It is known that for any
metric space on n nodes there exists anO(logn)-distortion probabilistic embedding into trees. This result is
a culmination of a line of work in [AKPW95, Bar96, Bar98, FRT04]; it is optimal up to constant factors, the
counterexample being constant-degree expanders. Probabilistic embeddings into trees has led to numerous
approximation algorithms, see e.g. [Ind01] for a survey.

2.3 Combinatorial notions of low dimensionality in metrics

In this section we describe three combinatorial notions of low dimensionality in metrics: grid dimension,
doubling dimension, and decomposability parameter. These notions of low dimensionality induce three
families of metrics that are instrumental to our results: respectively, growth-constrained metrics, doubling
metrics, and decomposable metrics (growth-constrained metrics are metrics of constant grid dimension,
etc.). These families of metrics are nesting, decomposable metrics being the most general.

2.3.1 Growth-constrained metrics

For n-dimensional grid and α = n+O(1), the following property holds: for any x ≥ 2 the cardinality of any
ball is at most xα times smaller than the cardinality of a ball with the same center and x times the radius.2
This motivates the following definition: the grid dimension of a metric is the infimum of all α such that the
above property holds. Clearly, grid dimension of any n-node metric is at most logn. Growth-constrained
metrics are metrics of bounded (and, intuitively, low) grid dimension.

Growth-constrained metrics can be seen as generalized grids; they have been used as a reasonable ab-
straction of Internet latencies in the long line of work on DHTs started by Plaxton et al. [PRR99] (see the
intro of [HKMR04] for a short survey). Growth-constrained metrics have also been considered in the theoret-
ical computer science literature in the context of compact data structures [KR02], routing schemes [AM05],
dimensionality in graphs [KL03], and gossiping protocols [KKD04].

We will use the grid dimension via the following simple corollary:
2In the literature this property is often defined for x = 2 only. This is essentially equivalent but slightly less convenient

technically because in order to use this property one needs to round x up to the nearest power of two.
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Lemma 2.14. Suppose dM is a metric with grid dimension α. Fix any two nodes u, v and let d = dM(u, v).
Then for any positive r, r∗ such that d+r

r∗ ≥ 2 we have |Bu(r)| ≤ (d+r
r∗ )α|Bv(r

∗)|.

Proof. Since Bu(r) ⊂ Bv(d+ r), we have |Bu(r)| ≤ Bv(d+ r) ≤ |Bv(r
∗)| (d+r

r∗ )α.

Grid dimension is a useful notion of low-dimensionality. However, it is not robust, in the sense that the
dimension of a subset can be larger than the dimension of the entire metric. For a simple example, consider
the set [n] with a standard metric d(x, y) = |x − y|. The grid dimension of such set is 1, but for a subset
[n/2]∪ {n − 1} the grid dimension is Ω(logn).

2.3.2 Doubling metrics

Doubling metrics is a combinatorial (non-geometric) notion of low dimensionality that has recently become
popular in the theoretical computer science literature [GKL03, KL04, KLMN05, Tal04, CGMZ05] in many
different contexts, including metric embeddings, traveling salesman and compact data structures.

Any point set in a k-dimensional `p metric has the following property, called the doubling property [Ass83]:
for some α = k+O(1) ∈ N every set of diameter d can be covered by 2α sets of diameter d/2. (The diam-
eter of a set is the maximal distance between any two points in it.) This motivates the following definition:
doubling dimension is the smallest α such that the above property holds. Clearly, doubling dimension of
any n-node metric is at most logn. Doubling metrics are defined as metrics of bounded (and, intuitively,
low) doubling dimension.

By definition, doubling metrics generalize constant-dimensional `p metrics. Doubling metrics is a much
wider class of metrics: in particular, there exist doubling metrics on n nodes that need distortion Ω(

√
logn)

to embed into any `p, p ≥ 2 [Sem96, Laa02, LP01, GKL03].3 Moreover, doubling metrics subsume growth-
constrained metrics:

Lemma 2.15. For any metric, the doubling dimension is at most 4.1 times the grid dimension.

Proof. Consider a metric with grid dimension α. Fix a set S of diameter d. We need to show that this set
can be covered with 28α sets of diameter d/2. Specifically, we fix some node u ∈ S, and cover the ball
B = Bu(d) with 24.1α balls of radius d/4. We do it in a greedy fashion: while there exists a node in B
which is not covered, pick any such node v and add a ballBv(d/4) to the cover.

Let F be the cover thus constructed; let C be the set of centers of balls in F . Note that the distance
between any two nodes in C is at least d/4, so the balls with centers in C and radius d/8 are pairwise
disjoint. Furthermore, each such ball lies insideB∗ = Bu(11

8 d) and by Lemma 2.14 has cardinality at least
1/17α that of B∗. Therefore C contains at most 17α ≤ 24.1α nodes.

However, doubling metrics is a much wider class of metrics: as an example of a doubling metric with
high (super-constant) grid dimension, consider the set {1, 2, 4, . . . , 2n} equipped with the standard distance
function d(x, y) = |x− y|. Furthermore, unlike grid dimension, the doubling dimension is robust:

Lemma 2.16. The doubling dimension of a subset is no larger than that of the entire metric.

Proof. Let α be the doubling dimension of a metric on node set V , and let S be a subset. Then any subset
S ′ ⊂ S can be covered by 2α subsets S1, S2, S3, . . . ⊂ V , each of diameter d/2. To obtain the desired
covering by 2α subsets of S, just intersect each of the Si’s with S.

3In fact, the example in these papers – the shortest-paths metric of the Laakso fractal – is growth-constrained, so it yields the
corresponding non-embeddability result for growth-constrained metrics.



18

Recall that the defining property of a doubling metric is that any set of diameter d can be covered by a
constant number of sets of diameter at most d/2. We will use this property via a more concrete corollary
where we cover with a constant number of balls:
Lemma 2.17. In a metric of doubling dimension α, any set of diameter d can be covered by 2αk balls of
radius d/2k, for any integer k ≥ 1. The desired cover can be efficiently constructed.

Proof. Let α be the doubling dimension. Consider a set S of diameter d and apply the definition of the
doubling dimension recursively k times. It follows that S can be covered by 2αk sets of diameter at most
d/2k. Pick any one point from each of these sets. Then S can be covered with 2αk balls of radius d/2k

centered in the selected points. Moreover, it follows that the desired cover can be efficiently constructed by
a simple greedy algorithm select any node u ∈ S, add the ball around u to the cover, delete from S all nodes
within distance d/2k from u, repeat until S is empty.

In fact, for all our applications it suffices to redefine the doubling property in terms of covering a large
ball with balls of half the radius. Moreover, it is slightly more convenient technically; in particular, the proof
of Lemma 2.17 simplifies, and in Lemma 2.15 the constant factor is improved from 4.1 to 3.2. However,
under this definition we no longer have the appealing robustness property (Lemma 2.16).

Note that the aspect ratio ∆ can be arbitrarily large with respect to the number of nodes n and doubling
dimension α. For instance, consider a 3-node metric space {1, 2,∆}, equipped with the natural distance
function d(x, y) = |x− y|. However, it is easy to bound the aspect ratio from below:
Lemma 2.18. 1 + log ∆ ≥ 1

α logn, for any metric with aspect ratio ∆ and doubling dimension α.

Proof. For simplicity let us divide all distances by the smallest distance. Then the smallest distance is 1,
and the diameter is ∆. Recursively applying the definition of the doubling dimension k times, it follows that
we can cover the metric with 2αk sets of diameter at most ∆/2k. Taking k = 1 + blog ∆c, we can cover the
metric with 2αk sets of diameter less than 1. Each of these balls contains at most one node, so 2αk ≥ n.

Say a measure is s-doubling if for any ball Bu(r) its measure is at most s times larger than that of
Bu(r/2). Intuitively, a doubling measure µ is an assignment of weights to nodes that makes a metric look
growth-constrained; in particular, for the n-node exponential line, a one-dimensional set {2i : i ∈ [n]},
we have µ(2i) = 2i−n. For any finite doubling metric, a doubling measure exists and can be constructed
efficiently. Moreover, the existence result extends to complete (possibly infinite) metrics.
Theorem 2.19. For any complete metric of doubling dimensionα there exists a 2α-doubling measure. If the
metric is finite, such measure can be constructed efficiently, in timeO(2O(α)n logn).

The original existence result for finite metrics (and, in fact, for compact metrics) is due to [ALV75]. The
proof has been simplified by [Wu98] and extended to complete metrics in [LS98]. The algorithmic result
builds on the construction from [Wu98] and is due to [MHP05].

For r > 0 an r-net on a metric is a set S such that any point of the metric is at distance at most r from
S, and any two points in S are at distance at least r. It is easy to see that for a finite metric such set exists
and can be constructed greedily, starting from any (possibly empty) set of points that are at distance at least
r from each other. It is often useful to consider r-nets in conjunction with doubling metrics, because of the
following simple fact:
Lemma 2.20. Any r-net has at most (4r′/r)α elements in any ball of radius r′ ≥ r.

Proof. Let S be an r-net, and let B be a ball of radius r′ ≥ r. Recursively applying the definition of
doubling dimension 2 + blog r′/rc times, we cover B with at most (4r′/r)α sets of diameter less than r.
Each of these sets contains at most one node of S.

For a more complete mathematical treatment of doubling metrics refer to the book by Heinonen [Hei01].
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2.3.3 Decomposable metrics

Let us state the definition of a padded decomposition (see e.g. [GKL03, KLMN05]).

Definition 2.21. Given a finite metric space (V, d), a positive parameter ∆ > 0 and a mapping β : V →
R, a ∆-bounded β-padded decomposition is a distribution Π over partitions of V such that the following
conditions hold:

(a) For each partition P in the support of Π, the diameter of every cluster in P is at most ∆.
(b) If P is sampled from Π, then each ball Bx( ∆

β(x)
) is partitioned by P with probability at most 1

2 .

Say that a metric admits β-padded decompositions (where β is a number called decomposability param-
eter) if for every ∆ > 0 it admits a ∆-bounded β-padded decomposition. It is known that any finite metric
space admits O(logn)-padded decomposition [Bar96]. Moreover, metrics of doubling dimension α admit
O(α)-padded decompositions [GKL03]. Furthermore, if a complete graph on r nodes is not a minor of a
given graph G (e.g. if it has treewidth at most r) then the shortest-paths metric of G admits O(r2)-padded
decompositions [KPR93, Rao99, FT03].

For the sake of completeness, let us take a brief detour and overview graph minors and tree-width.
A graph H is called a minor of an (undirected) graph G if H can be obtained from G by first deleting
some vertices and edges, and then contracting some further edges. Graph minors have a rich theory, see an
excellent book by Diestel [Die97] for more background. In particular, a seminal Kuratowsky theorem says
that a graph can be drawn on a plane if and only if it does not have K5 and K3,3 as a minor; here Kr is a
complete graph on r nodes, and Ka,b is a complete bi-partite graph with a nodes in one part and b nodes
in another. Moreover, for any given surface S there is an integer r(S) such that if graph can be drawn on
S then it cannot have Kr(S) as a minor (and hence admits an O(r2(S))-padded decomposition). This is a
corollary of a deep result that for any given surface S there exists a finite listL of graphs such that any graph
G can be drawn on S if and only if no graph in L is a minor of G. This result comes from a long line of
work on graph minors, mainly due to Robertson and Seymour; see [Die97] for background, proof outline,
and full bibliographical information.

It is known that a graph does not have Kr as a minor if it has tree-width at most r. Tree-width is a
positive number which quantifies how close a graph is to being a tree; we omit the exact definition here.
Tree-width is a major tool in the theory of graph minors. Besides, it has rich algorithmic applications: many
problems admit much more efficient algorithms on (tree-like) graphs of low tree-width. See the books by
Diestel [Die97] and Downey and Fellows [DF98] for more background. This is the end of our detour.

Let us define decomposable metrics as metrics that admit β-padded decomposition, for a constant β.
Decomposable metrics are useful as a common generalization of doubling metrics and shortest-paths metrics
of minor-excluding graphs. In particular, by [KLMN05] decomposable metrics can be embedded into `2
with distortionO(

√
β logn), and more generally into `p, p ≥ 1 with distortionO(β1−1/p) (logn)1/p.

In this thesis decomposable metrics appear in Chapter 4 on gracefully degrading distortion.



Chapter 3

Triangulation and Embedding using Small
Sets of Beacons

In this chapter we discuss our results on network triangulation and embedding. This chapter is mainly based
on [KSW04], the paper that started this line of work; it also includes relevant results from two follow-up
papers, [Sli05b] and [ABC+05]. Specifically, our main result on beacon-based embeddings (Section 3.2)
and the lower bounds (Section 3.6) are from [ABC+05, CDG+05]. The last two subsections of Section 3.3,
and Theorem 3.27 on fully distributed embeddings are from [Sli05b].

Our results in this chapter will generally involve showing that a large enough set of beacons sampled
uniformly at random from the metric space will have a certain desired property. (For brevity, we will refer
to such a sampled subset of the space as “a constant number of randomly selected beacons.”) Because we
will be working in many cases with constant-size samples, our properties will typically hold with a constant
probability that can be made arbitrarily close to 1. Hence, in this context, we will sometimes use the phrase
“with probability close to 1” as an informal short-hand for: with a probability that can be made arbitrarily
close to 1 by increasing the sample size by a constant factor.

3.1 Beacon-based triangulation

We start by defining a notion of beacon-based distance estimation via triangle inequality.

Definition 3.1. Given a set S of beacons, we define lower and upper distance bounds for each pair (u, v)
of points: D−

uv = maxb∈S |dub − dvb| and D+
uv = minb∈S(dub + dbv). We say that S achieves an (ε, δ)-

triangulation if for all but an ε fraction of the pairs (u, v), we have D−
uv ≤ (1 + δ)D+

uv.

As noted in the introduction, good triangulation bounds cannot be obtained for all metrics since, for
example, non-trivial lower bound valuesD−

uv cannot be achieved in the uniform metric in which all distances
are 1. However, it is interesting to note that in every metric space, the upper boundD+

uv actually does come
within a constant factor of the true distance on all but an ε fraction of pairs.

Theorem 3.2. IfM is an arbitrary finite metric space, then a constant number of randomly selected beacons
achieves an upper bound estimate D+

uv ≤ 3duv for all but an ε-fraction of pairs (u, v) with probability at
least 1− γ, where the constant depends on ε and γ.

Proof. LetBu be the smallest ball around u containing at least εn/2 nodes. For each point u inM , and with
enough beacons, at least one point inBu will be selected as a beacon with probability close to 1. Suppose this
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happens, and let b be a beacon in Bu. Then all but at most εn/2 points v lie outsideBu or on its boundary;
for any such point, we have dvb ≤ dub +duv ≤ 2duv and henceD+

uv ≤ dub +dvb ≤ duv +2duv = 3duv .

The upper bound of 3 in Theorem 3.2 is tight, as shown by the shortest-path metric of the complete
bipartite graph G = Kn,n with unit-distance edges. For all non-beacon pairs (u, v) on opposite sides of
G, we have D+

uv = 3duv. With a modification of this example, we can in fact show that no algorithm
given access to each node’s distances to all beacons can estimate duv to within a factor better than 3 for a
large fraction of pairs (u, v). Specifically, we randomly generate a graph G′ by deleting each edge from
G = Kn,n with probability 1

2 . If u and v are on opposite sides of G′, then duv = 1 if the edge (u, v) is
present, and otherwise duv = 3 with probability 1 − o(1). But if neither u nor v is a beacon, the full set of
node-to-beacon distances gives no information about the presence or absence of the edge (u, v), and hence
one cannot resolve whether this distance is 1 or 3.

For metrics of bounded doubling dimension, we have a much stronger result.

Theorem 3.3. In any s-doubling metric M , a constant number of randomly selected beacons achieves an
(ε, δ)-triangulation with probability 1− γ, where the constant depends on δ, ε, γ, and s.

r u 2r/δ

b

v

ruB

vr '

(a) (b)

Balls of radius r '

with > εn/3s' points.

Figure 3.1: Triangulation in doubling metrics.

Proof. Fix any point u. Let r = ru(ε/3), and consider a large ball B = Bu(2r/δ). By our definition of
r, there are only a small number of points at distance strictly less than r from u, and we will ignore our
estimated distances to these points. By selecting enough beacons, we can ensure that with probability close
to 1 at least one beacon b lies in Bu(r). Consider any point v /∈ B. Since b is close to u and relatively very
far from v, we can argue that the upper and lower bound provided by b on the distance from u to v will be
good (see Figure 3.1a). In particular, if d = duv then dvb + dub ≤ d + 2dub ≤ d + 2r = (1 + δ)d, and
similarly dvb − dub ≥ (1− δ)d.

It remains to consider the possibly large set of points in the annulus B − Bu(r). For these points, a
beacon inBu(r) will not necessarily suffice to give the desired bound. Instead, we need to use the doubling
property to show that the points in the annulus can be covered with a bounded number of very small balls,
and with probability close to 1 we can ensure beacons lie in most of these. In other words, to estimate the
distance duv for v ∈ B −Bu(r), we will find a beacon close to v rather than close to u.

We would like to cover the annulus with balls of small radius r′ = δr/2. By the doubling property, B
(and hence B − Bu(r)) can be covered by s′ = (2/δ)2log s balls of radius r′, as shown in Figure 3.1(b).
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Disregarding balls containing fewer than εn/3s′ points throws out at most εn/3 points. Again, if we know
that each of the remaining balls contains a beacon, then all points in these balls will have upper and lower
bounds that are within a 1± δ factor of their respective distances to u.

Thus, we conclude by arguing that if we chose a sufficiently large (constant) number k of beacons,
namely k = O(s′/ε)(log 1

ε ), then with probability close to 1 a beacon will be selected in all but an ε/3
fraction of balls containing εn/3s′ or more points. Combining these results shows that all but 1

3εn points
have good estimated distances to all but 2

3εn points. This is the desired result.

Remark. The above argument uses O(1
ε log 1

ε ) (2/δ)2log s beacons to obtain an (ε, δ)-triangulation with
high probability. Note that a similar argument with O(1

ε logn) (2/δ)2log s beacons yields a strong (ε, δ)-
triangulation. In Section 3.3 we obtain a strong (ε, δ)-triangulation using a number of beacons that depends
only on s, ε and δ.

The following lemma is implicit in the proof of Theorem 3.3, and it will be very useful in our subsequent
discussion of doubling metrics. To state the lemma, we introduce the following definitions. If E is a set of
pairs of points inM , we say thatE is an ε-dense set if it includes all but an ε fraction of all pairs, and we say
that it is a strong ε-dense set if it includes all but an ε fraction of all pairs of the form (u, v) for each point u.

Lemma 3.4. Consider an s-doubling metric (V, d), fix ε, δ ∈ (0, 1), and let εδ = ε
2

(

δ
2

)2 log s
. Then for a

strong ε-dense set of node pairs (u, v) we have min(ru(ε), rv(εδ)) ≤ δduv.

Perfect triangulation As mentioned in the introduction, the stronger notion of perfect triangulation is
sometimes achievable, when D−

uv = D+
uv = duv for all but an ε-fraction of node pairs, using only a constant

number of beacons. A natural example where this occurs is for the points of a finite d-dimensional lattice
under the L1 metric (this is a consequence of Theorem 3.5 below). It is natural to ask whether perfect
triangulation is possible for all finite point sets in the L1 metric, but this is too strong; consider for example
the union of the points {(i, n− i) : i ∈ [n]} and {−i,−(n− i) : i ∈ [n]} in the plane.

As a way to understand how general this phenomenon is, we use the following notion of a dense point
set as a generalization of the d-dimensional lattice: We say that a finite subset of <d under the L1 metric is
dense if the coordinates of all points lie in the interval [0, kn1/d] for a constant k, and the minimum distance
between each pair of points is 1. (We will refer to k as the density parameter.)

Theorem 3.5. In any dense point set M under the L1 metric, a constant number of randomly selected
beacons achieves a perfect triangulation with ε slack and with probability 1−γ, where the constant depends
on ε, γ, the dimension, and the density parameter.

We start with a proof sketch and follow up with the full proof. For ease of exposition we assume that
d = 2, but the same techniques extend naturally to any constant dimension.

Proof Sketch. Given a dense point setM in [0,
√
kn]2, we divideM into square cells with width and height

δ
√
kn, for a small constant δ. We partition these cells into two types: heavy and light, where roughly

speaking the heavy cells are those that contain at least Ω(δ2n) points. We argue that with probability close
to 1, each heavy cell will contain a beacon. Also, we can ignore errors on pairs that involve points in light
cells, or that involve two points in the same heavy cell, since there are relatively few pairs like this. Thus,
we only need to consider pairs of points that belong to distinct heavy cells.

We then argue that for most heavy cells C, there are heavy cells K1, K2, K3, K4 in each of the four
“quadrants” of the square [0,

√
kn]2 defined by treating C as the origin. This requires a geometric argument

based on the density property; however, once the existence of K1, K2, K3, K4 is established, one beacon in
eachKi is sufficient to provide a tight lower bound on any distance pair involving a point inC. Analogously,
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for the upper bound, we show by another application of the density property that for most pairs of heavy
cells C and C ′, there is a heavy cell K in the rectangle with corners at C and C ′; one beacon in K is
sufficient to provide a tight upper bound on distances between points in C and C ′.

Proof of Theorem 3.5: Consider a dense point set M in [0,
√
kn]2. Divide M into cells with width and

height δ
√
kn, for some δ to be chosen later. There will be 1

δ2 cells. Let xC and yC denote the row and
column of cell C. Define h = min(δ2n/4k, δ2nε/3), and call a cell C heavy if it contains at least h points,
and light otherwise. The idea is that we will be able to ensure that with high probability, nearly all heavy
cells will contain beacons, and that a negligible number of points fall outside of the heavy cells. We will
then argue that for most pairs of points that lie in heavy cells, triangulation will give matching upper and
lower bounds.

(a) (b)

C

C1 C2

C4 C3

1 2 1/δ

2

1

1/δ

Figure 3.2: Dense point sets: (a) a cell C, AC in gray, and corresp. quadrants; (b) a band of bad heavy cells.

Since no two points in M are within a distance of 1, no cell can have more than 4δ2nk points. So if we
let α be the fraction of cells that are heavy, then (omitting some easy arithmetic) α ≥ 1/(4k+ 1).

We will begin by proving that the lower bound is correct for most pairs. Say two cells C,D are aligned
if xC = xD or yC = yD . Let AC be the set of cells aligned with C. Note that the removal of AC partitions
the area into four quadrants, which we label C1, C2, C3, and C4, as shown in Figure 3.2(a). Say a dense cell
C is good if each of its four quadrants contain at least one heavy cell, and bad otherwise. Observe that if C
is good, and all dense cells contain beacons, then all points in C will have correct lower bounds to all points
in M −AC .

We now need to show that most dense cells are good. Any dense cell that is not good can attribute its
badness to one of its quadrants. Define Bi for 1 ≤ i ≤ 4 to be the set of heavy cells lacking a heavy cell
in their ith quadrant. Consider cells C,D ∈ B1 and note that xC + yC 6= xD + yD, since otherwise one of
these cells would be to the upper-left of the other, violating our assumption. Therefore |B1| ≤ 2

δ (see Figure
3.2(b) for a possible B1 set). The argument is symmetric for all four quadrants, so in total, there can be no
more than 8

δ bad cells. Since any cell contains at most 4δ2nk points, the total number of points in bad cells
is at most 32δnk. Choosing δ = ε

96k ensures that only ε
3n points are in bad cells.

By our definition of h, the total number of points that are in light cells is also at most ε
3n. Lastly, for

those points in any good cell C, we have no guarantee about the lower bound to points in AC . But this set
contains 2

δ−2 cells, and hence fewer than ε
3n points. Hence, by selecting a large enough number of beacons,

we can ensure with high probability that all but an ε fraction of distances have correct lower bounds.



24

The same general idea works for the upper bound as well. The primary difference is we need the idea of
a heavy cellD being bad relative to some cell C, meaning there are no heavy cells in the rectangular region
bounded by C and D. It is this region that needs to contain a beacon for us to have a good upper bound on
distances from C to D. As before, we can show that only a small number of cells are bad relative to any
other cell, and for all other cells, the calculated upper bound will be correct. The same choice of δ used
above gives the desired result.

3.2 Beacon-based embeddings

In this section we prove our main result on beacon-based embeddings. The result is two-fold. On one
hand, we show that using a small number of beacons it is possible to embed an arbitrary metric into low-
dimensional `p, p ≥ 1 space with low distortion (and slack). On the other hand, for any ε > 0 we achieve
an embedding with ε-slack and distortion that depends only on ε, which is a novel result for traditional
(non-distributed) embeddings.

Let us fix ε > 0 and write ρu = ρu(ε). Recall that an edge (u, v) is ε-long if duv ≥ min(ρu, ρv); call
it ε-good if duv ≥ 4 min(ρu, ρv). We partition all the ε-long edges into two groups, namely those which
are ε-good and those which are not, and use a separate embedding (i.e. a separate block of coordinates) to
handle each of the groups. Specifically, we handle ε-good edges using a Bourgain-style embedding, and
for the rest of the ε-long edges we use an auxiliary embedding such that for any edge (u, v), the embedded
(u, v)-distance is Θ(ρu + ρv). The combined embedding has dimension O(log2 1

ε ) and achieves distortion
O(log 1

ε ) on a set of all but an ε-fraction of edges.
There are several ways in which this result can be refined. First, we can ask for low ε-uniform-slack

distortion, and require distortion O(log 1
ε ) on the set of all ε-long edges; we can indeed obtain this, but

have to boost the number of dimensions to O(logn log 1
ε ). As Theorem 3.10 shows, this increase is indeed

required. We note that this logarithmic increase in the number of dimensions is not the case for doubling
metrics: in Section 3.3.2 we embed doubling metrics into any `p, p ≥ 1 with ε-uniform slack, distortion
O(log 1

ε log log 1
ε ) and dimension (log 1

ε )
O(log 1

ε
)

Second, this embedding can be computed in a distributed beacon-based framework. Here a small num-
ber of nodes are selected independently and uniformly at random, and designated as beacons. Then the
coordinates of each node are computed as a (possibly randomized) function of its distances to the beacons.

Third, note that for the ε-slack result, the target dimension is independent of n, which suggests that this
result can be extended to infinite metrics. We discuss this further in Section 3.3.3.

Theorem 3.6. For any source metric (V, d), any target metric `p, p ≥ 1 and any parameter ε > 0, we give
the following two O(log 1

ε )-distortion embeddings:
(a) with ε-slack intoO(log2 1

ε ) dimensions, and
(b) with ε-uniform slack intoO(logn log 1

ε ) dimensions.
These embeddings can be computed with high probability by randomized beacon-based algorithms that use,
respectively, onlyO(1

ε log 1
ε ) and O(1

ε logn) beacons.

The proof will use a sampling lemma (Lemma 2.10 in Section 2.2) which is implicitly used in [LLR95]
but neither proved nor explicitely stated.

Proof. Let δ > 0 be the desired total failure probability. The embedding algorithm is essentially the same
for both parts, with one difference: we let k = O(log 1

δ + log 1
ε ) for part (a), and k = O(log 1

δ + logn) for
part (b). We describe a centralized algorithm first, and prove that it indeed constructs the desired embedding.
Then we show how to make this algorithm beacon-based.
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We use two blocks of coordinates, of size kt and k, respectively, where t = dlog 1
ε e. The first block

comes from a Bourgain-style embedding without the smaller distance scales. For each i ∈ [t] choose k
independent random subsets of V of size 2i each, call them Sij , j ∈ [k]. The first-block coordinates of a
given node u are

fij(u) = (kt)−1/p d(u, Sij), where i ∈ [t], j ∈ [k].

For every node u and every j ∈ [k], choose a number βui ∈ {−1, 1} independently and uniformly at
random. The second-block coordinates of u are gj(u) = k−1/p ρu βuj , where j ∈ [k]. This completes the
embedding.

For an edge uv, let f(uv) and g(uv) denote the `p-distance between u and v in the first and the second
block of coordinates, respectively. By construction, f(uv) ≤ duv and g(uv) ≤ ρu + ρv. Moreover:

Lemma 3.7. For every ε-good edge uv, f(uv) ≥ Ω(duv/t) with failure probability at most t/2Ω(k).

Let us prove this Lemma. Let us fix an ε-good edge uv and let d = duv . Let αi be the minimum of
the following three quantities: ρu(2−i), ρv(2

−i) and d/2. The numbers αi are non-increasing; α0 = d/2.
Moreover, since edge uv is ε-good we have αt ≤ min(ρu, ρv, d/2) ≤ d/4.

Claim 3.8. For each i with failure probability at most 1/2Ω(k) we have the event

∑

j∈[k]

|d(u, Sij)− d(v, Sij)| ≥ Ω(k)(αi − αi+1) (3.1)

Proof. We use a standard Bourgain-style argument. Let us fix i and let γ = 2iε. Without loss of generality
let us assume that the ball around u reaches size γn before the ball around v does: αi = ρu(γ) ≤ ρv(γ).
A given set Sij contributes at least 1

k (αi+1 − αi) to d∗uv as long as it has the following property: it hits
B = Bu(αi) and misses the open ball B′ of radius αi+1 around v. By Lemma 2.10 the probability of this
happening is at least a constant c (since the two balls are disjoint, |B| ≥ γn and |B′| ≤ 2γn). Thus the
expected number of Sij’s with this property is ck, so by Chernoff bounds with failure probability at most
1/2Ω(k) it is the case that at least ck/2 of Sij’s do have this property, thus ensuring (3.1).

Therefore, with failure probability at most t/2Ω(k), the event (3.1) happens for all i ∈ [t] simultaneously,
in which case

∑

i∈[t], j∈[k]

|d(u, Sij)− d(v, Sij)| ≥
∑

i∈[t]

Ω(k)(αi − αi+1) = Ω(k)(α0 − αt) ≥ Ω(kd), (3.2)

which proves Lemma 3.7 for the case p = 1. We extend this to p ≥ 1 using a standard inequality. Let
fp(uv) be the value of f(u, v) for a given p ≥ 1. Let

xij = |d(u, Sij)− d(v, Sij)|

be the contribution to f(u, v) of the set Sij . Then

fp(uv) =





1

tk

∑

ij

xp
ij





1/p

≥





1

tk

∑

ij

xij



 = f1(u, v) ≥ Ω(d/t).

This proves Lemma 3.7.

Claim 3.9. For each edge uv, g(uv) = Ω(ρu + ρv) with failure probability at most 1/2Ω(k).
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Proof. Let Nj be the indicator random variable for the event βuj 6= βvj . Since Nj’s are independent and
their sum N has expectation k/2, by Chernoff Bounds N ≥ k/4 with the desired failure probability.

Now fix an ε-long edge uv and let d = duv. Without loss of generality assume ρu ≤ ρv; note that ρu ≤ d.
Since Bu(ρu) ⊂ Bv(ρu + d), the cardinality of the latter ball is at least εn. It follows that ρv ≤ ρu + d, so
g(uv) ≤ ρu + ρv ≤ 3d. Since f(uv) ≤ d, the embedded uv-distance isO(d).

To lower-bound the embedded uv-distance, note that with failure probability at most t/2Ω(k) the follow-
ing happens: if edge uv is ε-good then this distance is Ω(d/t) due to f(uv); else it is Ω(d) due to g(uv). For
part (a) we use Markov inequality to show that with failure probability at most δ this happens for all but an
ε-fraction of ε-long edges. For part (b) we take a Union Bound to show that with failure probability at most
δ this happens for all ε-long edges. This completes the proof of correctness for the centralized embedding.

It remains to provide the beacon-based version of the algorithm. Let S be the union of all sets Sij . The
Bourgain-style part of the algorithm depends only on distances to the Θ(k/ε) nodes in S, so it can be seen
as beacon-based, with all nodes in S acting as beacons. To define the second block of coordinates we need
to know the ρu’s, which we do not. However, we will estimate them using the same set S of beacons.

Fix a node u. LetB be the open ball around u of radius ρu, i.e. the set of all nodes v such that duv < ρu.
Let B′ be the smallest ball around u that contains at least 4εn nodes. Note that S is a set of ck/ε beacons
chosen independently and uniformly at random, for some constant c.

In expectation at most ck beacons land in B, and at least 4ck beacons land in B′. By Chernoff Bounds
with failure probability at most 1/2Ω(k) the following event Eu happens: at most 2ck beacons land in B,
and at least 2ck beacons land in B′. Rank the beacons according to its distance from u, and let w be the
(2ck)-th closest beacon. Define our estimate of ρu as ρ′u = duw. Note that if eventEu happens, then ρ′u lies
between ρu and ρu(4ε).

Consider a 4ε-good edge uv such that both Eu and Ev happen. Then (as in the non-beacon-based
proof) we can upper-bound the embedded uv-distance by O(duv), and lower-bound it by Ω(duv/t) with
high probability. For part (a) we use Markov inequality to show that with failure probability at most δ event
Eu happens for all but an ε-fraction of nodes. For part (b) we take a Union Bound to show that with failure
probability at most δ this event happens for all nodes.

The following theorem lower-bounds the target dimension required for ε-uniform slack, essentially
showing that in part (b) of Theorem 3.6 the dependence of dimension on logn is indeed necessary.

Theorem 3.10. For any ε < 1
2 there is a metric (V, d) such that any ε-uniform slack embedding into lp,

p ≥ 1 with distortionD requires Ω(logD n) dimensions.

Proof. Take a clique on ε n red and (1− ε)n blue nodes, assign length two to each of the blue-blue edges,
and assign unit lengths to all the remaining edges. Consider the metric generated by this graph. Now all
the blue-blue edges are ε-long, and thus any distortion-D ε-uniform-slack embedding must maintain all the
distances between the blue vertices. But this is just a uniform metric on (1−ε)n nodes, and the lower bound
follows by a simple volume argument.

Theorem 3.6 suggests a trade-off between distortion and slack. It turns out that O(log 1
ε ), the trade-off

in the theorem, is optimal up to a constant factor. This is further discussed in Section 3.6.

3.3 Beacon-based approaches: further results

In this section we discuss further results for beacon-based approaches on doubling metrics. Firstly, we
obtain a beacon-based embedding with a novel black-box flavor (Theorem 3.17) which closely mimics the
behavior of GNP: essentially, the coordinates of every non-beacon node u can be computed separately by
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any black-box procedure that minimizes distortion on distances from u to the beacons. Secondly, we get
rid of the dependency of n in our results on strong triangulation and on embeddings with uniform slack
(Theorem 3.18). Thirdly, in Section 3.3.3 we extend our results to infinite metrics and to a version of ε-slack
defined with respect to an arbitrary underlying measure on nodes.

The subsections in this section build on one another. Moreover, the embedding technique from this
section is used in the next section (Section 3.4 on fully distributed approaches), and the structural lemma on
(ε, µ)-packings (Lemma 3.19) is used later in Chapter 7.

3.3.1 Black-box GNP-style embedding

We will use our triangulation analysis via the following definition. Consider a set S ⊂ V of beacons. Let us
call S a (strong) (ε, δ)-base if for a (strong) ε-dense set of node pairs (u, v) there is a beacon b ∈ S which
lies within distance δduv from u or v. Note that any such set achieves a (strong) (ε, 3δ)-triangulation. Let
us restate the conclusions from the proof of Theorem 3.3 as follows:

Theorem 3.11. Consider an s-doubling metric on n nodes. Let k0 = O(1
ε ) (2/δ)2log s. Then:

(a) (k0 log 1
ε ) randomly selected nodes form an (ε, δ)-base with probability close to 1.

(b) (k0 logn) randomly selected nodes form a strong (ε, δ)-base with high probability.

For a set S of beacons, let ES be the set of all node pairs (u, v) where at least one of u or v belongs
to S. We show that if beacons form an (ε, δ)-base, for a sufficiently small δ, then in order to guarantee a
low-distortion embedding with slack it suffices to achieve low distortion on ES .

Lemma 3.12. Consider a metric M with an (ε, δ)-base S, and suppose an embedding f : M → X has
non-contracting distortion ∆ onES , where ∆ ≤ 1

4δ . Then the embedding has distortionO(∆) with slack ε.
Furthermore, if S is a strong (ε, δ)-base, then the embedding has distortionO(∆) with ε-uniform slack.

Proof. This lemma is subsumed by Lemma 3.21 in Section 3.4. This is because in the terminology of that
section, the edge setES is an (ε, δ)-frame.

In fact, for any beacon set S we are be able to guarantee distortion ∆ = O(log |S|) on ES .

Lemma 3.13. Consider a metric (V, d) and a set S ⊂ V of k beacons. Then there exists a constant c0
and an embedding into `p, p ≥ 1 withO(k logk) dimensions that achieves distortion (c0 logk) on the edge
set ES . Moreover, in this embedding the coordinates of every given node u are defined as a function of its
distances to the nodes in S, and can be efficiently computed.

Proof Sketch. We first embed S using the algorithm of Bourgain [Bou85, LLR95]. Recall that this involves
choosing, for each i = 1, 2, . . . , blogkc, a collection of x subsets ofB of size 2i, each uniformly at random.
Let Sij denote the jth of these. We assign each node b ∈ S a coordinate corresponding to each set Sij ,
defined to be d(b, Sij), the minimum distance between b and any point in Sij .

Having embedded the beacons, we then embed every other node u using these same sets {Sij}; for each
Sij , node u constructs a coordinate of value d(u, Sij). In the approach of Linial et al., x = O(logk) sets
of each size are chosen. Here, by way of contrast, we take x = Θ(k); we claim that with this choice of
random sets {Sij} in the embedding, the set of node-beacon pairs is embedded with distortionO(logk) with
probability close to 1.

To establish this claim, we give upper and lower bounds on the embedded distances; the calculations
here differ from [Bou85, LLR95] in that we will be taking a union bound over subsets of beacons, rather
than over the much larger set of all node pairs. The upper bound is straightforward, so we focus on the lower
bound. Here, we fix i and let A and A′ be two disjoint subsets of S of size k/2i and 2k/2i respectively.
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One can show there is a constant c so with probability at least c, a given Sij has the property that it hits A
and missesA′. Thus the expected number of Sij’s with this property is ck, so applying the Chernoff bound,
for large enough x = Θ(k) the probability that at most cx/2 of Sij’s do not have this property is at most
e−cx/8 ≤ 2−2k. Therefore with probability close to 1 for all i, for every pair A,A′ of disjoint subsets of S
of the right size, this property holds for Ω(k) sets Sij . Once this is true, consider embedding any given node
u, separately from all other non-beacon nodes; an analog of the telescoping-sum argument from [LLR95]
gives the desired lower bound with probability close to 1.

Let us say that a (strong) ε-base is a (strong)
(

ε, 1
4∆

)

-base S such that ∆ = c0 log |S|. Combining the
previous two lemmas, we obtain a beacon-based embedding whenever the beacons form an ε-base.

Theorem 3.14. Consider a metric space (V, d) and a set S ⊂ V of k beacons. If S is a (strong) ε-base,
then there is a O(k log k)-dimensional embedding into `p which has distortion O(logk) with ε-(uniform)
slack. In this embedding, the coordinates of every given node u are defined as a function of its distances to
the beacons in S, and can be efficiently computed.

We will use this theorem to obtain improved embeddings with uniform slack (Theorem 3.18); moreover,
this embedding technique will be essential for our result on fully distributed embeddings in the next section.

In view of the above theorem, we need to make sure that a small set of beacons forms a (strong) ε-base.
Indeed, by Theorem 3.11 such beacon sets exist and can be constructed via random node selection:

Corollary 3.15. Consider an s-doubling metric on n nodes. Let S be the set of k ≥ 4 randomly selected
nodes. Then there exists a constant c such that:

(a) if k ≥ (s/ε) c log log(s/ε) then S is an ε-base with probability close to 1.
(b) if k ≥ x c log log x, x = s

ε logn, then S is a strong ε-base with high probability.

Proof Sketch. Let c0 be the constant from Lemma 3.13. We start with k and define δ = (4c0 logk)−1. Take
k0 = O(1

ε ) (2/δ)2log s from Theorem 3.11. Then it suffices to check that k ≥ k0 log 1
ε for part (a), and that

k ≥ k0 logn for part (b).

Theorem 3.14 does not quite capture the full power of Lemma 3.12 and Lemma 3.13. We can further
exploit these two lemmas to obtain a beacon-based embedding with a novel black-box flavor: beacons are
embedded first (by inspecting only the distances between the beacons), and then the coordinates of every
non-beacon node u can be computed separately by any black-box procedure that inspects the distances from
u to the beacons and minimizes distortion on these distances. This closely mimics the behavior of GNP.

Definition 3.16. Consider a metric (V, d), node set S ⊂ V , an embedding f : S → X , and a node u 6∈ S.
Then a (u,∆)-extension of f is an embedding g : S ∪ {u} → X that coincides with f on S and has
distortion ∆ on node pairs (u, v), v ∈ S.

Theorem 3.17. Fix p ≥ 1 and let c0 be the constant from Lemma 3.13. For any metric (S, d) there exists an

embedding f(S,d) : S → `
Θ(|S| log |S|)
p with distortion c0 log |S| and the following property (*):

Property (*). Consider a metric (V, d) and a beacon set S ⊂ V . Let f = f(S,d) and let ∆ = c0 log |S|.
(a) For each node u 6∈ S there exists a (u,∆)-extension of f . Let gu be any such extension.
(b) Let g : V → `p be an embedding that coincides with f on S, and equals to gu(u) for every node
u 6∈ S. If S is a (strong)

(

ε, 1
4∆

)

-base, then g achieves distortionO(∆) with ε-(uniform) slack.

Remark. In part (a), in order to construct a suitable gu it suffices to inspect only the coordinates of the
beacons under f and the distances from u to the beacons. A key feature of this theorem is that it does not
require neither any specific embedding gu nor any specific procedure to compute it: any black-box procedure
that computes a (u,∆)-extension of f would work.
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3.3.2 Strong triangulation and uniform slack with a constant number of beacons

Recall our results on strong triangulation and on embeddings with uniform slack required the number of
beacons which was proportional to logn. It turns out that for doubling metrics we can get rid of this
dependency on n.

Theorem 3.18. Consider an s-doubling metric space and fix ε > 0.

(a) For any δ > 0 there exists a strong (ε, δ)-base of size k = 2
ε [O(1

δ )]log s. Moreover, a set ofO(k logk)

randomly chosen nodes forms a strong (ε, δ)-base with probability close to 1. Recall that using any
(ε, δ)-base as a set of beacons leads to a strong (ε, δ)-triangulation.

(b) There exists an embedding into `O(k logk)
p , p ≥ 1 with distortionO(logk) and ε-uniform slack, where

k = ( s
ε )

O(log log(s/ε)); such embedding can be computed with high probability by a beacon-based
algorithm with k beacons selected uniformly at random.

The key to this theorem is the following lemma on the structure of doubling metrics. We will also use
this lemma in the next subsection and also in Chapter 7.

Lemma 3.19. Consider a (possibly infinite) complete metric space of doubling dimension α, equipped with
a probability measure µ. Let ru(ε, µ) be the radius of the smallest ball around u that has measure ε. Then
for any ε > 0 there exists an (ε, µ)-packing: a family F of disjoint balls of measure at least ε/16α each,
such that for any node u there exists a ball Bv(r) ∈ F such that duv + r ≤ 6ru(ε, µ). Moreover, if the
metric is finite then such F can be efficiently computed.

It is easy to see that if µ is a doubling measure then for every node u this (ε, µ)-packing F has the two
useful local properties of an r-net, r = 6ru(ε, µ): firstly, the ball Bu(r) contains at least one element of F ,
and secondly, for any k the ballBu(kr) contains at most kO(α) elements of F . The notion of (ε, µ)-packing
allows us to state these properties in terms of the underlying doubling measure, and, moreover, to generalize
them to arbitrary probability measures. In this subsection we will use (ε, µ)-packings such that µ is the
counting probability measure (a measure µ such that µ(u) = 1/n for every node u). We will use the full
generality of this lemma in the next subsection.

Proof of Lemma 3.19: Let us fix ε and let ru = ru(ε, µ). For a given node u, say a ballBv(r) is u-zooming
if it is a subset of Bu(3ru), has measure at least ε/16α, andBv(4r) has measure at most ε. We claim that for
every node u either there exists a u-zooming ball, or there exists a node bu ∈ Bu(2ru) of measure at least ε.

Suppose not. Let r = ru. By the doubling property of the metric (see Lemma 2.17), Bu(r) can be
covered by 16α balls of radius r/8. At least one of these balls, say Bv(r/8), has cardinality at least ε/16α;
since without loss of generality Bv(r/8) overlaps with Bu(r), it follows that duv ≤ 9

8r and Bv(r/2) ⊂
Bu(2r). Since there is no u-zooming ball, in particular the ball Bv(r/8) is not u-zooming, so Bv(r/2) has
measure at least ε.

Iterating this argument i times, we come up with a node vi such that d(vi−1, vi) ≤ 9
8r/2

i and the ball
Bvi(r/2

i) has cardinality at least ε. If the metric is finite, then for large enough i this ball consists of only
one node vi, which therefore has measure at least ε. This is a contradiction since d(u, vi) ≤ 9

8r(2− 2−i).
Now if the metric is infinite, then we have an infinite Cauchy sequence of nodes {vi}. Since the metric
is complete, this sequence has a limit, call it v; note that v ∈ Bu(2r). Then for each i the ball Bv(3r/2

i)

contains ballBvi(r/2
i), hence has measure at least ε. Therefore node v has measure at least ε, contradiction.

Claim proved.
In accordance with the above claim, for every given node u we define Bu to be a u-zooming ball if such

ball exists, or else we define Bu = {bu} where bu is a node inBu(2ru) that has measure at least ε. Note that
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a suitable Bu can be efficiently computed by simply checking each ball whether it is u-zooming, and then
checking each node in Bu(2ru).

Let F be a maximal collection of disjoint balls Bu. Note that such F can be efficiently computed by
consecutively going through all ballsBu, and including a givenBu in F if it is disjoint with other balls that
are already in F . We will show that F is the desired (ε, µ)-packing. It suffices to prove the following claim:
for each node v some ball Bu ∈ F lies withinBv(6rv).

Suppose that for a given v the claim is false. Since by definition of a v-zooming ball Bv ⊂ Bv(3rv),
it follows that Bv 6∈ F . Since F is maximal, Bv overlaps with some ball Bu ∈ F . If Bu = {bu} then it
trivially lies inBv(3rv), contradiction. SoBu is a u-zooming ball; say w is its center, and r is its radius. By
definition of a u-zooming ball, Bw(4r) has measure at most ε. If 4r ≥ dvw + rv, then ballBw(4r) contains
ball Bv(rv); as the latter ball has measure at least ε, the two balls coincide, and thus Bu lies in Bv(rv),
contradiction. Therefore 4r < dvw + rv.

Recall that ball Bu overlaps with ball Bv ; let x be a node that lies in both balls. Since Bv ⊂ Bv(3rv),
applying triangle inequality to the triple (u, v, x) we get dvw ≤ 3rv + r. Plugging this into the previous
inequality, we obtain 3r < 4rv. It follows that r + dvw < 6rv. Consequently, ball Bu = Bw(r) lies in the
ball Bv(6rv), contradiction. Claim proved.

Proof Sketch of Theorem 3.18: For part (a), let us fix ε, δ and take εδ = 1
2 ε (δ/2)2log s as in Lemma 3.4.

Let µ be the counting probability measure, and letFδ be an (εδ, µ)-packing guaranteed by Lemma 3.19. Say
S ⊂ V is a δ-hitting set if it hits a ball of radius 6ru(εδ) around every node u. Note that S is δ-hitting if it
hits every ball in Fδ. Moreover, since the balls in Fδ are disjoint and have measure at least ε∗ = εδ/s

4 each,
it follows that O(1/ε∗) log(1/ε∗) randomly chosen nodes suffices to form a δ-hitting set with probability
close to 1.

Let Hδ be a δ-hitting set. We claim that Hδ/6 is a strong (ε, δ)-base. Indeed, recall that by Lemma 3.4
for each node u there exists a set Su of measure at least 1 − ε which has the following property: for every
v ∈ Su a ball around u or v of radius δduv has cardinality at least εδ . Therefore for every v ∈ Su some node
inHδ lies within distance 6δduv from u or v. Claim proved. It immediately follows that we can useHδ/6 as
the beacon set to obtain the desired strong (ε, δ)-triangulation.

For part (b), we claim that a set S of k = ( s
ε )

O(log log(s/ε)) randomly selected beacons is an ε-base with
probability close to 1. Indeed, we need to use part (a) to check that S is an (ε, δ)-base for δ = (4c0 log k)−1,
where c0 is the constant from Lemma 3.13; we omit the details. Now part (b) follows by Theorem 3.14.

3.3.3 Infinite metrics and arbitrary measures

In the previous sections, our results for beacon-based approaches are defined for finite metrics; ε-dense sets
are (essentially) defined with respect to the counting measure. Here we extend them to infinite metrics
and arbitrary probability measures. Specifically, suppose we are given a probability measure µ on V . This
measure induces a product measure on node pairs. We can define an (ε, δ, µ)-triangulation and embeddings
with a (ε, µ)-slack, where the desired properties hold for a set of edges of measure at least 1 − ε. Also,
we can define a strong (ε, δ, µ)-triangulation and embeddings with a (ε, µ)-uniform slack; here the desired
properties hold for all node pairs (u, v), v ∈ Su where µ(Su) ≥ 1− ε.

Our result on beacon-based embeddings for arbitrary metrics (Theorem 3.6) extends to the (strong)
(ε, µ)-slack setting in a straightforward way. In the embedding algorithm, instead of selecting beacons
uniformly at random (i.e. with respect to the counting measure) we select them with respect to measure µ;
the proof carries over without much modification. Moreover, part (a) (the part about (ε, µ)-slack) extends to
infinite metrics.
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In order to achieve similar extensions for triangulation and for embeddings with ε-uniform slack, we
need the machinery in this section. Specifically, for any probability measure µ on V we can prove the
analog of Theorem 3.18 with (ε, δ, µ)-base instead of (ε, δ)-base, strong (ε, δ, µ)-triangulation instead of
strong (ε, δ)-triangulation, and (ε, µ)-uniform slack instead of ε-uniform slack.

In a sketch, we can prove such theorem proceeds as follows. First we note that Lemma 3.12 extends
to the new setting: it suffices to guarantee low distortion on distances to beacons as long as they form an
(ε, δ, µ)-base for a sufficiently small δ. Consequently Theorem 3.14 extends to the new setting, too. Then
we just mimic the proof of Theorem 3.18 using (the full generality of) Lemma 3.19.

3.4 Fully distributed approaches

Recent work in the networking literature has considered so-called ‘fully distributed’ approaches to triangu-
lation and embedding problems, in which no single node has to perform a large number of measurements
[DCKM04, PCW+03, ST03]. Instead, for a relatively small parameter k, each node selects k virtual ‘neigh-
bors’ uniformly at random and measures distances to them; let Ek denote the set of all pairs (u, v) where
v is one of the selected neighbors of u. All nodes then run a distributed algorithm that uses the measured
distances on the pairs Ek to embed the full metric. The distributed algorithms in these papers are based
on different heuristics: Vivaldi [DCKM04] simulates a network of physical springs, Lighthouse [PCW+03]
uses global-local coordinates, and [ST03] claims to simulate the Big Bang explosion. They offer no proofs,
but their experimental results are quite strong. In particular, Vivaldi [DCKM04] uses the testbed from the
GNP algorithm [NZ02] and claims slightly better performance. Here we consider what kinds of theoretical
guarantees can be obtained for algorithms of this type; as in previous sections, we focus on doubling metrics.

First, suppose we view the distributed embedding heuristic as a black box that embeds the nodes with
distortion at most ∆ on the pairsEk. Is this enough to provide a guarantee for the full metric?

Definition 3.20. Given a setE of node pairs in a metric, we can consider the weighted graphG(E) in which
these pairs form the edges, and each edge (u, v) is labeled with the distance duv. We say that a uv-path P
in G(E) is δ-skewed if for some e ∈ P , the total edge weight of P \ {e} is at most δduv, and e is incident
to one of u or v — in other words, P consists of an initial “long hop” followed by a number of short ones.
Finally, we say that the set of pairs E is a (strong) (ε, δ)-frame if G(E) contains a δ-skewed path for all
pairs in a (strong) ε-dense set. We will assume throughout this section that δ is sufficiently small: δ < 1/4.

Frames E as defined here have a useful “rigidity” property, as the following result shows: an embedding
with bounded distortion on the pairs inE must also have bounded distortion on all but an ε-fraction of node
pairs. In this sense, frames have a similar flavor to spanners, but they include a slack parameter and also
require the approximately distance-preserving paths to have a particular “skewed” structure.

Lemma 3.21. Consider a metric M with a (ε, δ)-frame E, and suppose an embedding f : M → X has
non-contracting distortion ∆ on E, where ∆ ≤ 1

4δ . Then the embedding has distortionO(∆) with slack ε.
Furthermore, if E is a strong (ε, δ)-frame, then the embedding has this distortion with ε-uniform slack.

Proof. Let dX be the distance function on X ; for nodes u, v ∈M , let us write d∗uv for dX
f(u),f(v).

Suppose the pair (u, v) has a δ-skewed path P in G(E), with long edge (u, p). By the definition of a
frame combined with the triangle inequality, we have (1− δ)duv ≤ dup ≤ (1+ δ)duv. Since the embedding
has non-contracting distortion ∆ on E, we have (1− δ) ≤ d∗up/duv ≤ ∆(1 + δ) and dvp ≤ ∆δduv; hence,
using the assumptions thatX is a metric and that δ < 1/4, we have

d∗uv ∈ [d∗up − d∗vp, d
∗
up + d∗vp] ⊆ duv [1− δ −∆δ, ∆(1 + 2δ)] ⊆ duv [12 ,

3
2∆].

It follows that the distortion of f isO(∆) on the set of all pairs that have a δ-skewed path.
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By Lemma 3.21, it suffices to show that the set of pairs Ek forms an (ε, δ)-frame for δ ≤ 1
4∆ ; then we

have an embedding of the full metric with distortionO(∆) and slack ε.

Theorem 3.22. Let M be a doubling metric. There exists k = (2 logn)O(1) such that for any ε and δ that
are each at least Ω(1/ logO(1)n), the set Ek of probed edges is a strong (ε, δ)-frame with high probability.

Proof. Let the doubling dimension ofM be 2s. For some constant c to be defined later, set δ∗ = δ/(c log2 n)

and ε∗ = ε
2(δ∗/2)2log s. By Chernoff bounds taking

k = O( 1
ε∗ logn) = O(1

ε ) (1
δ)

2 log s sO(1) (logn)1+4 log s (3.3)

suffices to make sure that with high probability each node has at least 3 logn neighbors in a ball of size ε∗n
around every other node. By Lemma 3.4, for a strong ε-set of node pairs uv, a ball of size ε∗n around one of
the nodes (say v) has radius at most δ∗duv. As we argued, u has a neighbor in this ball, call it w. Now, each
node in this ball has at least 3 logn neighbors in it, chosen uniformly at random. Therefore by Theorem 2.4
the graph induced by this ball in Ek contains an O(logn)-degree expander, and hence by Theorem 2.2 has
diameter at most c log2 n for some constant c. This is the c that we use in the definition of δ∗ and ε∗. In
particular, Ek contains a vw-path with at most c logn hops, each of length at most δ∗duv , so the metric
length of this path is at most δduv. Therefore the edge set Ek is a strong (ε, δ)-frame.

Theorem 3.22 already helps provide some underpinning for the success of distributed embedding heuris-
tics in recent networking research. But to go beyond this black-box result to concrete distributed algorithms,
we need to think about techniques for triangulation and embedding that operate in a decentralized fashion
on the graph G(Ek). In this section, we focus on the problem of distributed triangulation in particular.

Here’s a schematic description of a distributed triangulation algorithm. First, a (small) number of nodes
S declare themselves to be beacons. Messages are then passed over the edges of the graph G(Ek), at the
end of which each node u has, for each beacon b, a pair of upper and lower boundsD−

ub ≤ dub ≤ D+
ub. This

is the crux: unlike standard beacon-based algorithms, node u never actually measures its distance to beacon
b (unless they happen to be neighbors inG(Ek)), so it must infer bounds on the distance from the distributed
algorithm. Finally, the distance between two non-beacon nodes u and v can be estimated via

max
b∈S

(

|D+
ub −D−

vb|, |D+
vb −D−

ub|
)

≤ duv ≤ min
b∈S

(

D+
ub +D+

vb

)

.

We denote the left-hand and the right-hand sides by D−
uv and D+

uv , respectively, and say such process is
a (strong) (ε, δ)-triangulation if D+

uv ≤ (1 + δ)D−
uv for a (strong) ε-dense set of node pairs. Note that

this definition of triangulation generalizes the one for the beacon-based triangulation in Section 3.1: if we
measure the distance between node u and beacon b, then we just set D+

ub = D−
ub = dub.

Given a set Ek of measured distances as in Theorem 3.22, our goal is to perform triangulation with only
a small number of messages passed between nodes.

Theorem 3.23. Let M be a doubling metric, and suppose that every node has k = (2 logn)Ω(1) neighbors
chosen independently and uniformly at random.1 Then for any ε and δ that are each at least Ω(1/ logO(1) n),
an (ε, δ)-triangulation can be achieved with high probability in time polylogarithmic in n, with only a
polylogarithmic load per node, taking into account the work for distance measurements, storage, and the
number of bits sent and received.

Proof. We will use the following multi-stage algorithm:

Algorithm 3.24. Suppose each node knows (ε, δ, n) and chooses (ε∗, k, c) as in Theorem 3.22.

1The value of k in terms of (ε, δ) and the doubling dimension 2s is given in (3.3).
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1. Each node selects k neighbors2 uniformly at random, measures distances to them, and decides (inde-
pendently, with probability k/n) whether it is a beacon.

2. Beacons announce themselves to their neighbors. Specifically, each beacon b sorts its measurements
from low to high and estimates rb(ε∗) by the measurement ranked 2ε∗k. Call this measurement rb.
Then it sends a messageM(b, rb, i) to all its neighbors, where i is the number of hops that the message
has traversed, initially set to 0.

3. When node u receives M(b, rb, i) from v, node u updates its existing bounds on dub using the new
bounds duv ± 2irb. Say the message is new if u does not already store M(b, rb, i

′) with i′ ≤ i. If
so and moreover duv ≤ 2rb and i < c logn, then u stores it and forwards M(b, rb, i+ 1) to all its
neighbors but v.

We now analyze this algorithm. Let K = c logn. Each message is forwarded at mostK times, yielding
the claimed running time. A given node can broadcast the message from a given beacon at most K times,
yielding the claimed number of messages per node. When M(b, rb, i) is forwarded, all hops but possibly
the last one have length at most rb, so the distance bounds in step 3 are valid.

By a straightforward application of Chernoff bounds, it holds with high probability for every beacon b
that at most 2ε∗k neighbors lie within distance rb(ε∗) from b, and at least 2ε∗k neighbors lie within distance
rb(4ε

∗) from b, so rb(ε∗) ≤ rb ≤ rb(4ε∗).
Let b be a beacon, and let Bb be the smallest ball around b that has size at least ε∗n. In the proof of

Theorem 3.22 we saw that the graph induced by this ball in the edge set Ek has diameter at most K. Since
rb ≥ rb(ε

∗), each w ∈ Bb will receive a message from b via a path of at most K hops of length at most
2rb each, so w will upper-bound dwb by D+

wb ≤ 2rbK. Moreover, since (by the proof of Theorem 3.22)
every node u has a neighbor w ∈ Bb, node u will receive a message from beacon b via this node w, and
consequently bound dub by duw ±D+

wb, which is (at worst) dub ± 3rbK. We have proved the following:

Claim 3.25. With high probability for each node u and beacon b boundsD±
ub lie within dub ±O(rb logn).

Now, by Lemma 3.4 there exists an ε-set of node pairs (u, v) such that the ballB around u or v of radius
r = O(δduv/ logn) has at least 4ε∗n points. With high probability, each such ballB contains a beacon, call
it b. Since Bb(2r) containsB, rb ≤ rb(4ε∗) ≤ 2r. We have proved the following:

Claim 3.26. With high probability for each node pair (u, v) in a strong ε-dense edge-set, there exists a
beacon b such that min(dub, dvb) ≤ r and rb ≤ r, for some r = O(δduv/ logn).

It is easy to see that such beacon b yields bounds on duv that are within duv (1±O(δ)).

Now let us extend the above algorithm for triangulation to a fully distributed algorithm that computes a
low-dimensional embedding into `p, p ≥ 1 which has low distortion with slack. In fact, for any given ε > 0
we compute an embedding with ε-slack that has dimension and distortion that depend only on the doubling
dimension and the parameter ε, not on the number of nodes in the system.

Theorem 3.27. Let M be a doubling metric, and suppose that every node has k = (2 logn)Ω(1) neighbors
chosen independently and uniformly at random. Then there exists a fully distributed algorithm that given
ε ≥ (logn)−O(1) with high probability constructs aO(k logk)-dimensional embedding into `p, p ≥ 1 which
has distortionO(logk) with ε-uniform slack. In this algorithm the per-node load and the total completion
time are at mostO(k2 log3 n).

2Neighbors are undirected, in the sense that if u selects v as a neighbor, then u becomes a neighbor of v, too.
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In the remainder of this section we prove Theorem 3.27.
Let 2s be the doubling dimension of M . Let us fix (ε, s) and assume that they are known to the partici-

pating nodes. Take δ = c/ logn, where c is a constant to be specified later, and let k be defined by (3.3).
The high-level algorithm is simple. First the nodes compute an (ε, δ)-triangulationusing Algorithm 3.24;

note that such triangulation uses at most k and at least Ω(k) beacons. Then the beacons measure distances
to one another and broadcast them to the entire network using a uniform gossip [Pit87]; in this phase each
beacon broadcasts one message of size O(k), the total per-node load being at most O(k2 logn). Upon
receiving this information nodes update the boundsD+ on their distances to beacons accordingly, by running
a shortest-paths algorithm on the available distances. (Note that in this step D+ can only decrease, but not
below the true distance; in particular, Claim 3.25 still holds.) Finally, nodes run the embedding algorithm in
Theorem 3.14 with the same beacon set, using the upper bounds D+ instead of the latent true distances to
the beacons.

Our proof outline follows that of Theorem 3.14, but the details are quite different and significantly more
complicated. As in Theorem 3.14, first we bound the distortion on node-to-beacon distances, then use those
to bound distances between other node pairs. However, we need to compensate for the fact that D+, the
distance function that we are actually embedding, is not necessarily a metric. In particular, in our proof
D+ is more than just a function that approximately obeys the triangle inequality: it is essential that D+

is close to a specific metric, as expressed by Claim 3.25 and Claim 3.26. We will use these two claims to
reason about the embedded distances to beacons, which is why we use the same set of beacons for both
triangulation and embedding.

For completeness let’s restate the embedding algorithm. Let Sbeac be the beacon set from the (ε, δ)-
triangulation; for simplicity assume there are exactly k beacons. For each i ∈ [logk] choose Θ(k) random
subsets of Sbeac of size 2i each; let Sij be the j-th of those. These subsets are broadcasted to the entire
network using a uniform gossip [Pit87]: one message of size O(k2) is broadcasted, incurring a per-node
load at most O(k2 logn). Then every node u embeds itself into `p so that each dimension ij is defined as
D+(u, Sij)/Θ(k), where D+(u, S) is the smallest D+

uv such that v ∈ S. Recall that we use Θ(k) beacon
sets of each size scale, not Θ(logk) as [LLR95], in order to guarantee the following claim from the proof of
Lemma 3.13:

Claim 3.28. With high probability for any i ∈ [logk] and any pair of disjoint subsets S, S ′ ⊂ Sbeac of size
at least k/2i and at most 2k/2i, respectively, it is the case that at least Ω(k) sets Sij hit S and miss S ′.

Then, letting d∗uv be the uv-distance in the embedding, we can bound the embedded node-to-beacon
distances:

Claim 3.29. Whp for each node u and every beacon b we have dub ≤ d∗ub ≤ O(logk)D+
ub.

Now by Claim 3.26 with high probability for an ε-dense set of node pairs (u, v) there is a beacon
b within distance O(r) from u or v (say, from v) such that rb ≤ O(r), for some r = O(δduv/ logn).
Therefore Claim 3.25 for any such node pair (u, v) we have

(1−O(δ))duv ≤ d∗ub ≤ O(logk)duv

and d∗vb ≤ O(logk)δduv, so it follows that

duv/2 ≤ d∗ub − d∗vb ≤ d∗uv ≤ d∗ub + d∗vb ≤ O(logk)duv

as long as the constant c that defines δ is small enough.
To complete the proof of Theorem 3.27 it remains to prove Claim 3.29. For simplicity consider the case

p = 1 first. For a node set S and any pair uv of nodes define D+
uv(S) = |D+(u, S)−D+(v, S)|. Then the
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embedded uv-distance d∗uv is equal to the sum
∑

D+
uv(Sij) over all beacon sets Sij . In order to establish the

desired upper bound on d∗ub it suffices to prove that if u is a node, b is a beacon and S is a set of beacons then
D+

ub(S) ≤ 2D+
ub. It will follow by a standard argument from the following claim: |D+

ub′ −D+
bb′ | ≤ 2D+

ub for
any two beacons b, b′.

Let’s prove this claim. Consider the beacon bu that is closest to u with respect toD+; let x = D+(u, bu)

and y = d(b′, bu). The beacons measure distances to each other, so D+
bb′ = dbb′ . Node u has updated D+

ub′

according to these measurements, so it is at most x+y; obviously, it is at least dub′ , which is lower-bounded
by y − x. Therefore |D+

ub′ − y| ≤ x, so, completing the proof,

|D+
ub′ −D+

bb′ | ≤ |y − dbb′ |+ |D+
ub′ − y| ≤ d(b, bu) + x ≤ dbu + 2x ≤ 3D+

ub.

It remains to establish the lower bound in Claim 3.29, which we will accomplish by a version of Bour-
gain’s telescoping sum argument. Let Su(r) be the set of beacons b such that D+

ub ≤ r. For a fixed node u
and beacon b, let ρi = min(ρu(i), ρv(i), dub/2), where ρu(i) is the smallest r such that Su(r) contains at
least k/2i beacons.

We claim that for each given i the sumXi =
∑

j D
+
ub(Sij) is at least Ω(k)(ρi−1− ρi). Indeed, fix i and

without loss of generality assume that ρu(i) ≤ ρb(i). Note that the sets S = Su(ρi) and the interior S ′ of
Sb(ρi−1) are disjoint since if a node v belongs to both S and S ′ then

dub ≤ duv + dbv ≤ D+
uv +D+

bv < ρi + ρi−1 ≤ dub,

contradiction. Therefore by Claim 3.28 with high probability for each i at least Ω(k) sets Sij hit S and miss
S ′, thus contributing at least ρi−1 − ρi each to Xi. This proves the claim.

Let t = blogkc and note that by definition ρb(t) = 0 (since Sb(0) contains at one beacon, namely b
itself), so ρt = 0. Summing up the Xi’s we get d∗ub ≥ Ω(k)(ρ1 − ρt) = Ω(k)dub as desired, as long as
ρ1 ≥ dub/4. Now suppose ρ1 < dub/4 and assume that ρu(1) < ρb(1) (the case ρu(1) ≥ ρb(1) is treated
similarly). Then the sets S = Su(dub/4) and S ′ = Sbeac \ S are disjoint and have size at least n/2 and at
most n/2, respectively. Therefore by Claim 3.28 with high probability at least Ω(k) sets S1j hit S and miss
S ′, thus contributing at leastD+

ub/2 = Ω(dub) each toXi, so that d∗ub ≥ Ω(k)dub as desired. This completes
the proof of Claim 3.29 for p = 1. We can extend it to general p ≥ 1 following [LLR95]; we omit the
details. This completes the proof of Theorem 3.27.

3.5 Improved embeddings for growth-constrained metrics

We can obtain a number of improvements to our results when a given metric is growth-constrained.
Firstly, we show that the following simple nearest-beacon embedding is effective in growth-constrained

metrics: select k beacons uniformly at random, embed the beacons with distortion O(logk) (e.g. using
the Bourgain’s algorithm), and then simply position each non-beacon node at the embedded location of its
nearest beacon. The sufficient number of beacons is then a function of grid dimension and slack ε.

Theorem 3.30. Consider a metric d with grid dimension α. Then for any ε > 0 the nearest-beacon embed-
ding with k = O(4α)(1

ε log 1
ε ) beacons has distortionO(α+ log 1

ε ) with slack ε.

We defer the proof till later in this section. Combined with the fully distributed triangulation from
Section 3.4, the nearest-beacon embedding yields a fully distributed (Vivaldi-style) embedding for growth-
constrained metrics. Specifically, fix ε > 0, choose k as in the above theorem, set δ = 1/Θ(logk) and
perform a fully distributed (ε, δ)-triangulation from Theorem 3.23. Then for each non-beacon node u,
choose the nearest beacon with respect to the triangulation (say, with respect to the upper bound D+), and
position u at the embedded location of this beacon. The proof proceeds similarly.
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It is worth noting, on the other hand, that there are doubling metrics in which this nearest-beacon em-
bedding does not yield good results. Specifically, consider the exponential line, which is the point set
V = {2i : i ∈ [n]} equipped with the one-dimensional distance function d(x, y) = |x − y|. Recall
from Section 2.3 that this is a standard example of a doubling metric that is very far from being growth-
constrained. Suppose we choose a set S of beacons in this metric. Then for any node u ∈ V the nearest
beacon is minB, so all non-beacon nodes are mapped to the same beacon.

Our second result is an embedding with gracefully degrading distortion. Qualitatively this is a special
case of a much more complicated embedding in Chapter 4 (the quantitative guarantees are slightly different).

Theorem 3.31. Consider a metric with grid dimension α. Then it can be embedded into `p, p ≥ 1 with
O(log2 n) dimensions and gracefully degrading distortionO(α+ log 1

ε ). In particular, such embedding is
achieved by Bourgain’s algorithm.

A beacon-based version of the above theorem produces ”gracefully degrading distortion with slack”:

Theorem 3.32. Consider a metric with grid dimension α. For any ε∗ > 0 there exists a beacon-based
algorithm which usesO( 1

ε∗ logn) beacons and computes an embedding into `p, p ≥ 1 withO(logn)(log 1
ε∗ )

dimensions and the following property: for any ε ≥ ε∗, distortion on all ε-long edges is O(α + log 1
ε ). In

particular, such embedding is achieved by Bourgain’s algorithm with O(log 1
ε∗ ) higher distance scales.

Let us proceed to the proofs.
First we use the basic structural property of growth-constrained metrics (expressed by Lemma 2.14) to

derive some further structural properties which will be essential to our results. Recall that for a node u and
ε ∈ (0, 1] we let ru(ε) denote the smallest radius of a ball around u that contains at least εn nodes. For
brevity, let us denote r+uv(ε) = max(ru(ε), rv(ε)).

Lemma 3.33. Consider a metric d with grid dimension α, and fix positive ε > 0. Then:
(a) for any δ ∈ (0, 1] there exists an ε-dense set of node pairs (u, v) such that r+uv(ε δ

α) ≤ δduv .
(b) for any (ε 2α)-long edge (u, v) we have r+uv(ε) ≤ duv .
(c) for any x ≥ 1 it is the case that ru(εx) ≥ x1/α ru(ε).

Proof. For part (a), fix node u and let r = ru(ε δα). Let B be the open ball around u of radius r/δ.
To prove the lemma, it suffices to prove that there exist at least (1 − ε)n nodes v such that duv ≥ r/δ.

Equivalently, we show |B| ≤ εn. Indeed, by Lemma 2.14 for any x > 0 we have

|Bu(r/δ − x)| ≤ (1
δ )α|Bu(r − x/δ)| ≤ (1

δ )α|Bu(r)| ≤ εn.

It follows that |B| = limx→+0 |Bu(r/δ − x)| ≤ εn. This proves part (a).
For part (b), let us fix a (ε 2α)-long edge (u, v), let d = duv and r = ru(ε 2α). Note that without loss of

generality d ≥ r. In particular, d ≥ ru(ε). It remains to show that d ≥ rv(ε). Suppose not. Then the ball
Bv(d) contains less than εn nodes. By Lemma 2.14 it follows that

(ε 2α)n ≤ |Bu(r)| ≤ |Bv(d)| (d+r
d )α < (ε 2α)n,

contradiction. This proves part (b).
For part (c), let r = ru(ε). Note that by Lemma 2.14 for any y > 0 we have

|Bu(r x1/α)| ≤ |Bu(r − y)|
(

r x1/α

r−y

)α
< εxn

(

r
r−y

)α
.

By taking the limit y → +0 we have |Bu(r x1/α)| ≤ (εx)n, which proves part (c).
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Proof of Theorem 3.30 on the nearest-beacon embedding: Let us fix ε > 0 and set ε∗ = ε/4α. Suppose
we choose k = O( 1

ε∗ log 1
ε ) beacons uniformly at random. If the constant in O(·) is sufficiently large, then

with probability close to 1 it is the case that for at least (1 − ε)n nodes u, there is a beacon among the ε∗n
nodes closest to u.

Now Lemma 3.33(a) there exists an ε-dense set of node pairs (u, v) such that r+uv(ε
∗) ≤ duv/4 and

moreover there are beacons among the ε∗n nodes closest to u and among the ε∗n nodes closest to v. Let bu
and bv be the beacons closest to u and v, respectively. It follows that d(bu, bv) = Θ(duv). So, letting d∗ be
the distance in the nearest-beacon embedding, we have

Ω(duv) ≤ d∗(u, v) = d∗(bu, bv) ≤ O(duv logk)

(without loss of generality we assume that we embed the beacons using a non-contracting embedding).

Proof of Theorem 3.31 on gracefully degrading distortion: Recall that Bourgain’s algorithm uses ran-
dom sets Sij of size 2i, for each i ∈ [logn] and j ∈ [k], k = O(logn). Denote the contribution of the
set Sij by xij = |d(u, Sij)− d(v, Sij)|. For normalization purposes divide all coordinates by k1/p, so that
the embedded uv-distance is

fp(u, v) =
(

1
k

∑

ij x
p
ij

)1/p
.

For simplicity consider the case p = 1 first.
Fix ε ∈ (0, 1] and let x = log 1

ε . Let us consider an (ε 2α)-long node pair (u, v); let d and d∗ be the true
and embedded (u, v)-distances, respectively. By the original Bourgain’s proof we have d∗ ≥ Ω(d). Since
xij ≤ d, the Bourgain’s upper bound is d∗ = O(d logn). Here we improve it to d∗ = O(d)(α + x) by
showing that

∑

i>x

∑

j

xij ≤ O(dkα). (3.4)

Once we show (3.4), it would follow that distortion on edge (u, v) is at mostO(α+ x), which for ε∗ = ε 2α

is at most O(α+ log 1
ε∗ ) as required by the theorem. Therefore it remains to prove (3.4).

Note that by Lemma 3.33(b) we have duv ≥ r+uv(ε). Fix i > x. Let β = 21/α and t = i−x
2 . Let Xju be

a 0-1 random variable that is equal to 1 if and only if d(u, Sij) > dβ−t.

Claim 3.34. Pr[Xju = 1] ≤ exp(−2t).

Proof. Consider l such that i ≥ l ≥ x and let r = ru(2−l). By Lemma 3.33(c) we have

d > ru(2−x) = ru(2−l 2l−x) ≥ βl−x r.

So d βx−l ≥ r. Therefore

Pr
[

d(u, Sij) > dβx−l
]

≤ Pr[Sij missesBu(r)] =
(

1− 2−l
)2i

< exp
(

−2i−l
)

.

The claim follows if we take l = i+x
2 .

We would like to upper-bound
∑

j Xju by a constant times the expectation, but for large enough t the
expectation is too small to give small enough failure probability via Chernoff bounds. However, if we give
up a factor of 22t

/2t, then the Chernoff bound (Lemma 3.35 with l = 2t) gives
∑

j Xju = O(k2−t) with a
sufficiently small failure probability to make sure that this happens for all u simultaneously.

Note that xij > 2dβ−t only if Yj = 1, where Yj = Xju ∨Xjv . So
∑

j

xij ≤ O(d)
∑

j

(β−t + Yj) = O(dk)(β−t + 2−t).
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Summing this over all i > x we obtain the desired upper bound (3.4) since 1
1−1/β = O(α).

To extend this theorem to a general p ≤ 1 we need a more complicated calculation than the one
in [LLR95]. As before, consider a fixed i > x. Let S be the set of all j such that Yj = 1. Recall that
with high probability it is the case that for all pairs (u, v) the size of S is at most O(k2−t). Therefore

∑

j

xp
ij =

∑

j∈S

xp
ij +

∑

i6∈S

xp
ij ≤ |S|fp + k(2dβ−t)1/p

= O(k)(2d)p(2−t + β−tp)

1

k

∑

i>x

∑

j

xp
ij ≤ (2d)p

∑

i>x

O(β−ip + 2−i) ≤ O
(

(2d)p

1− β−p

)

≤ (2d)pO(α/p)

fp(u, v) =





1

k

∑

i>x

∑

j

xp
ij +

1

k

∑

i≤x

∑

j

xp
ij





1/p

≤ O(d)(x+ α/p)1/p

For a lower bound, let us denote l = x+ 2s. We claim that r+uv(2
−l) ≤ d/4. Indeed, by Lemma 2.14

εn ≤ |Bu(ru(ε))| ≤ 4α |Bu(ru(ε)/4)| ≤ 4α |Bu(d/4)|.

So ball Bu(d/4) contains at least (ε/4α)n nodes, so ru(ε/4α) ≤ d/4. We prove this for node v similarly.
Claim proved.

Now, in the proof of Theorem 3.6 (see (3.2)) we essentially show that
∑

i≤l

∑

j xij ≥ Ω(kd). Therefore,

fp(u, v) ≥





1

k

∑

i≤l

∑

j

xp
ij





1/p

= l1/p





1

kl

∑

i≤l

∑

j

xp
ij





1/p

≥ l1/p





1

kl

∑

i≤l

∑

j

xij





≥ Ω(d)(x+ α)1/p−1

So the total (two-sided) distortion is at most O(x+ α) as required.

In the proof of the above theorem, we have used the following version of Chernoff bounds:

Lemma 3.35. Let Xj , j ∈ [8 logn] be independent 0-1 random variables such that Pr[Xj = 1] = e−l

where l > 16. Then
∑

Xj <
8
l logn with probability at least 1− n−4.

Proof. Let X =
∑

Xj and µ = E(X). Let 1 + δ = el/l. Then using Chernoff Bounds we get

Pr[X > 8l−1 logn] = Pr[X > (1 + δ)µ] < e−µ

(

e

1 + δ

)(1+δ)µ

<

(

(el)1/l

e

)8 logn

<
1

n4

since (el)1/l <
√
e for any l > 16.

Proof of Theorem 3.32 proceeds similarly to that of Theorem 3.31; we omit the details.
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Type of Embedding Our Lower Bound Original Example
All metrics into `p, p ≥ 1 Ω(1

p)(log 1
ε ) Constant-degree expanders [Mat97]

F into `p, p ∈ (1, 2] Ω(1− p)
√

log 1/ε Laakso fractal [LMN04]
Growth-constrained `1-metrics into `d1 Ω(

√

logd 1/ε) Laakso fractal [LMN04]
F into distributions of dominating trees Ω(log 1

ε ) n× n grid [AKPW95]
All metrics into tree metrics Ω(1/

√
ε ) n-cycle [RR98, Gup01]

`2m+1
2 into `2m

2 Ω(1/
√
ε )1/m [Mat90]

Here F is the family of doubling metrics that are shortest-paths metrics of planar graphs.
In the last two lines, bounds for ε-uniform slack can be obtained by replacing

√
ε by ε.

Table 3.1: Embeddings with slack ε: lower bounds on distortion

3.6 Lower bounds on embeddings with slack

In this section, we describe a general technique to derive lower bounds for ε-slack embeddings from lower
bounds for ordinary embeddings. For simplicity of exposition, we will first give a concrete example proving
lower bounds for ε-slack embeddings into `p (which will follow from a lower bound for embedding ex-
panders into `p [Mat97]). Then we provide the general technique; the bounds obtained by this technique are
given in Table 3.1. Let us mention that allowing arbitrary expansions is crucial to our results: if we insisted
that none of the pairwise distances should increase, the lower bound of Ω(1

p logn) distortion [Mat97] for
embeddings into `p holds even with ε-slack (see Section 3.6.2 for more details).

Theorem 3.36. For an arbitrarily small positive ε there exists a finite metric on arbitrarily many nodes that
requires distortion Ω(1

p log 1
ε ) to embed into `p, p ≥ 1 with ε-slack.

Proof. Given an ε such that 0 < ε ≤ 1/12, let k = 1/(3
√
ε). Suppose every finite metric can be embedded

into `p with distortionD and ε-slack.
Consider a constant degree expander graph H on k vertices. Let (H, d) be the shortest path metric

defined by H . For each vertex s ∈ H , let Ls be a path containing n/k vertices. Attach the path Ls to s at
one of its endpoints. The length of each edge of Ls is small enough so that if δ is the length of path Ls, then
δ · D ≤ 1/2. Let the new graph be G and the shortest path metric defined on it be (G, d). We now prove
that if (G, d) can be embedded into `p with distortionD and ε-slack, then H can be embedded into `p with
distortion 4D without any slack.

Let ϕ : G→ `p be the embedding of (G, d) into `p with distortionD and ε-slack. Let E denote the set
of ignored pairs, i.e. let us assume that the complement of E incurs distortion at most D. Note that ε-slack
means that |E| ≤ εn22. We delete all the vertices that participate in more than

√
εn pairs in E. By a simple

counting argument, at most
√
εn vertices of G can be deleted. Therefore, at least one point from each path

survives. For each s ∈ H , let vs denote a survived vertex from the path Ls. We define an embedding ψ of
H into `p as ψ(s) = ϕ(vs).

We now bound the distortion of the embedding ψ by 4D. Let x, y be two vertices inH . Then vx and vy

are the survivors inLx and Ly respectively. Note that vx and vy participate in at most
√
εn pairs inE. Since

|Ly| = 3
√
εn, it follows that there is another survivor t ∈ Ly such that neither {t, vx} nor {t, vy} is in E.

Since the distortion of the map ϕ isD, we can assume that for edge (u, v) 6∈ E,

d(u, v)≤ ‖ϕ(u)− ϕ(v)‖p ≤ D · d(u, v).
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Now we can bound ψ(xy) := ‖ψ(x)− ψ(y)‖p as follows:

ψ(xy) = ‖ϕ(vx)− ϕ(vy)‖p
≤ ‖ϕ(vx)− ϕ(t)‖+ ‖ϕ(t)− ϕ(vy)‖
≤ D (d(vx, t) + d(t, vy))

≤ D (1 + 3δ) d(x, y)≤ 2Dd(x, y).

Similarly,

ψ(xy) ≥ ‖ϕ(vx)− ϕ(t)‖p − ‖ϕ(t)− ϕ(vy)‖p
≥ d(vx, t)−Dd(t, vy) ≥ (1−Dδ)d(x, y)
≥ d(x, y)/2.

Hence 1
2d(u, v) ≤ ψ(uv)≤ 2D · d(u, v), and so ψ is a map from H to `p with distortion 4D.

To finish the proof of the theorem, we note that a constant-degree expander on k vertices requires
Ω(logk/p) distortion to embed into `p [Mat97].

3.6.1 General lower-bounding technique

The technique used in Theorem 3.36 of starting with a O(1)-degree expander Hk on k vertices, replacing
each vertex with a path on n/k vertices to get G, and for suitable k ≈ O(1/

√
ε) arguing that ε-slack

embeddings of Gn give us slack-less embeddings of Hk with (roughly) the same distortion is quite general.
In fact, we use it to obtain lower bounds on both the distortion and dimensions of embeddings into `p from
similar lower bounds for slack-less embeddings; similar results can be obtained for embeddings into trees,
or distributions of trees. We summarize these results in Table 3.1.

Theorem 3.37. Suppose for each k there exists a k-node metric Hk such that any embedding ofHk into `p
with L(k) dimensions has distortion at leastD(k). Then for an arbitrarily small positive ε there exist finite
metricsM , M∗ on arbitrarily large number of nodes such that:

(a) any embedding of M into `p with L( 1
3
√

ε
) dimensions has ε-slack distortion Ω(D( 1

3
√

ε
)).

(b) any embedding of M∗ into `p with L( 1
3ε) dimensions has ε-uniform slack distortion Ω(D( 1

3ε)).

Moreover, if metrics {Hk} are planar (resp. Kr-minor-free, doubling, `dp) then so are M and M∗.

Note that this result can be used to translate, for instance, the lower bound for dimensionality reduction
in `1 (Theorem 2.8) into the realm of ε-slack as well.

Similarly, we provide a lower bound theorem for (probabilistic) embeddings into trees:

Theorem 3.38. Suppose for each k there exists a k-node metricHk such that any (probabilistic) embedding
ofHk into trees has distortion at leastD(k). Then for an arbitrarily small positive ε there exist finite metrics
M , M∗ on arbitrarily large number of nodes such that:

(a) any (probabilistic) embedding of M into trees has ε-slack distortion Ω(D( 1
3
√

ε
)).

(b) any (probabilistic) embedding of M∗ into trees has ε-uniform slack distortion Ω(D( 1
3ε)).

Moreover, if metrics {Hk} are planar (resp. Kr-minor-free, doubling, `dp) then so are M and M∗.

For instance, we can now derive a lower bound of Ω(1/
√
ε) on the distortion incurred when embedding

the n-cycle into a single tree.
The proofs of the two above theorems are based on the following lemma:
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Lemma 3.39 (Master Lemma). Suppose H is a metric on k points and T is a collection of metrics on
k points, such that any embedding of H into T incurs a distortion at least D. Suppose S is a collection
of metrics such that every subset of k points in each metric in S embeds into T with distortion at most ρ.
Setting ε = 1/9k2, there exist arbitrarily large metrics that embed into S with ε-slack distortion Ω(D

ρ ).

Remark. In order to obtain lower bounds for ε-uniform slack embeddings instead of ε-slack embeddings, we
need to set ε = 1/3k instead of ε = 1/9k2; the rest of the proof remains essentially unchanged.

Before we prove Lemma 3.39, let us show how to derive the above results from it.

Proof of Theorem 3.37: Suppose {Hk} is the given family of metrics. Let us fix a large enough k such
that ε = 1/9k2 is small enough. Now in Lemma 3.39, let us set H to be Hk and T to be the collection of
metrics with k points in `p with at most L(k) dimensions. Hence, H embeds into T with distortion at least
D(k) = D( 1

3
√

ε
). We set S to be the family of metrics in `p with at most L(k) = L( 1

3
√

ε
) dimensions. It

follows that any subset of k points in any metric in S embeds into T with distortion 1. Hence, we conclude
that there exists a family of metrics, each of which embeds into `p with at most L( 1

3
√

ε
) dimensions with

ε-slack distortion at least Ω(D( 1
3
√

ε
)).

The application of Lemma 3.39 to prove the lower bounds for embeddings into trees is very similar; we
sketch it here to emphasize the general patterns, as well as the slight changes required.

Proof of Theorem 3.38: Again, we large enough k, and set ε = 1/9k2. As before, H is set to be Hk.
We set T to be the family of tree metrics on k points (or distribution of tree metrics on k points). Again,
H embeds into T with distortion at least D(k) = D( 1

3
√

ε
). We set S to be the family of tree metrics (or

distribution of tree metrics). Note that by a result of Gupta [Gup01], any subset of k points in any metric in
S embeds into T with distortion at most 8. Now the result of Theorem 3.38 follows from Lemma 3.39 as
before.

Let us now prove the Lemma 3.39: first we show how to construct a family of metrics with the desired
properties. Suppose H = (S, d) is a metric such that |S| = k. Moreover, H embeds into T with distortion
at least D. Without loss of generality, assume that the pairwise distance in H is at least 1. For each n that
is a multiple of 3k, we define a metric Ĥ with n points in the following way. These would be the family of
metrics that exhibits the lower bound for slack embeddings.

Consider a uniform line metric with point setL of size n
k such that the two terminal points are at distance

δ away from each other, where δ is small and whose value will be specified later. For each s ∈ S, we identify
s with a terminal point of a copy Ls of the line metric L. We call the augmented metric Ĥ = (V, d) with
point set V = ∪s∈SLs. IfH is already in some host spaceX , we just need the condition that for each s ∈ S,
we can embed a copy of L of length δ isomorphically intoX that identifies one end point with s. Common
metric spaces like `p certainly satisfy this condition. (Note that to avoid too many symbols, we use d for the
various metrics.) Hence, for u ∈ Lx and v ∈ Ly, |d(u, v)− d(x, y)| ≤ 2δ.

Proposition 3.40. Let H and Ĥ be metrics defined as above. Then, (a) if H is a metric induced by a
Kr-minor free graph, then so is Ĥ, and (b) if H is a doubling metric, then so is Ĥ.

The next lemma states a crucial property of the edges that are ignored by any ε-slack embedding.

Lemma 3.41. Suppose an ε-slack embedding of some metric (V, d) ignores the set of edges E. Then, there
exists a subset T ⊆ V of size at least (1 − √ε)n such that each vertex in T intersects with at most

√
εn

edges in E.
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Proof. It suffices to show that it is impossible to have a subset S ⊆ V of size greater than
√
εn such that

each vertex in S intersects more than
√
εn edges inE. Otherwise, the total number of edges ignored would

be greater than (
√
εn)2/2 > εn2/2 > ε

(n
2

)

.

Note that for an ε-uniform slack embedding, the number of ignored edges incident on any node is at
most εn by definition; this is one place in the proof which changes when considering uniform slack.

The following lemma implies Lemma 3.39:

Lemma 3.42. Let H = (S, d) be a metric on k points. Suppose T and S are families of metrics such that
H embeds into T with distortion at leastD, and every subset of k points in each metric in S embeds into T
with distortion at most ρ.

Suppose δ is small enough such that ( D
4ρ + 2)δ ≤ 1

2 . Let Ĥ = (V, d) be the metric be defined as above.

Let ε := 1/9k2. Then, Ĥ embeds into S with ε-slack distortion at leastD/4ρ.

Proof. Suppose, on the contrary, ϕ is an embedding of Ĥ into S with ε-slack distortion R < D/4ρ that
ignores the set E of edges. Then by Lemma 3.41, there exists a subset T of V such that |T | ≥ (1− √ε)n
and for all v ∈ T , v intersects at most

√
εn edges in E.

For each s ∈ S, the setLs contains n
k = 3

√
εn points and hence there exists some point in T ∩Ls, which

we call vs. We define an embedding ψ of H into S given by ψ(s) := ϕ(vs). We next bound the distortion
of the embedding ψ. Let x, y ∈ S. Since vx and vy are in T , each of them has at most

√
εn neighbors.

Observing that |Ly| = 3
√
εn, it follows that there exists a point t ∈ Ly such that neither {vx, t} nor {vy , t}

is contained inE. We can assume that for {u, v} 6∈ E, d(u, v) ≤ ||ϕ(u)− ϕ(v)|| ≤ Rd(u, v).
Hence, it follows that

‖ψ(x)− ψ(y)‖ =‖ϕ(vx)− ϕ(vy)‖
≤‖ϕ(vx)− ϕ(t)‖+ ‖ϕ(t)− ϕ(vy)‖
≤R(d(vx, t) + d(t, vy)) ≤ R(d(x, y) + 3δ)

≤R(1 + 3δ)d(x, y)≤ 2Rd(x, y),

and similarly,

‖ψ(x)− ψ(y)‖ ≥‖ϕ(vx)− ϕ(t)‖ − ‖ϕ(t)− ϕ(vy)‖
≥d(vx, t)− Rd(t, vy) ≥ d(x, y)− 2δ − Rδ
≥(1− (R+ 2)δ)d(x, y)≥ d(x, y)/2,

where the last inequality follows from the fact that (R + 2)δ ≤ 1/2. It then follows that ψ embeds H
into S with distortion at most 4R. However, since any metric in S embeds into T with distortion at most
ρ, it follows that H embeds into T with distortion at most 4ρR < D, from which we obtain the desired
contradiction.

3.6.2 Lower bounds for contracting embeddings

Let us consider contracting embeddings with slack. Formally, a contracting embedding has distortion D
with ε-slack if no pairwise distance expands and all but ε-fraction of the pairs contract by no more than D.
We show that such embeddings incur an Ω(logn) distortion in order to embed constant-degree expander
graphs into `p, p ≥ 1.

Theorem 3.43. For the shortest-paths metric of a bounded-degree expander on n vertices, distortion of any
contracting embedding into `p, p ≥ 1 is Ω(1

p logn) even if we allow slack ε < 1
2 .
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Proof. Let G = (V,E) be a bounded-degree expander on n vertices, and let ρ denote its shortest path
metric. Let ϕ be a contracting embedding of this metric to `p, p ≥ 1 with distortionD and slack ε < 1

2 . Let
σ denote the metric on `p; to simplify the notation, we will denote ϕ(V ) ⊆ `p by V . Define

R(σ) =
√

σ2(V × V )/σ2(E) , where
σ2(S) =

∑

(x,y)∈S σ(x, y)2 for any set S ⊆ V × V .

First we show that R(σ) ≤ O(
√
n). The proof is exactly the same as that of Theorem 15.5.1 in Ma-

tousek [Mat02b] and works despite the fact that we allow ε · n2 pairwise distances to be as low as 0. Note
that

σ2(E) =
∑

(x,y)∈E σ(x, y)2 ≤∑(x,y)∈E ρ(x, y)
2 = O(n)

Now, we bound σ2(V ×V ) from below. If all n2 pairs were contracted by at mostD, then we would get

σ2(V × V ) ≥∑(u,v)

(

ρ(u,v)
D

)2
≥ n2 log2 n

D2

However, we need to take into account the fact that ε ·n2 pairs of vertices could have distance 0 between
them. Therefore, σ2(V × V ) is at least (n/D)2(log2 n) minus the loss due to the slack. To upper-bound
this loss, consider a pair (x, y) of nodes for which the distortion is bigger thanD. The pair will contribute 0

instead of ρ(x, y)/D. Thus the loss due to the pair (x, y) is at most (logn)/D. Therefore, the total loss due
to the slack is at most ε(n/D)2(log2 n). Therefore, sinceR(σ) ≤ O(

√
n), it follows thatD = Ω(logn).



Chapter 4

Gracefully Degrading Distortion for
Decomposable Metrics

In this chapter we prove our result from [ABC+05, CDG+05] on low-dimensional embeddings into `p,
p ≥ 1 with gracefully degrading distortion:

Theorem 4.1. Consider a metric (V, d) which admits β-padded decompositions. Then it can be embed-
ded into `p, p ≥ 1 with O(log2 n) dimensions and gracefully degrading distortion O(β)(log 1

ε )
1/p. The

embedding procedure is given as a randomized algorithm which succeeds with high probability.

Furthermore, in Section 4.8 we discuss the extensions to arbitrary metrics (via probabilistic embeddings
into trees).

The proof of Theorem 4.1 builds on the well-known embedding algorithms of Bourgain [Bou85] and
Linial et al. [LLR95], and combines ideas from Chapter 3 and [Rao99, GKL03, KLMN05] with some novel
ones. To the best of our understanding, the embeddings given in the previous papers do not directly give us
gracefully degrading distortion, and hence the additional machinery indeed seems to be required.

Let us fix k = O(logn), where the constant will be specified later. We will construct an embedding
ϕ : V → `p with 7k2 dimensions; the coordinates of ϕ will be indexed by triples (i, j, l) ∈ [k]× [k]× [7].

We will show how to construct the map ϕ in rest of this section, which has the following conceptual
steps. We first define a concrete notion of “distance scales” in Section 4.1, in terms of which we can cast
many previous embeddings, and specify the desired properties for the distance scales in our embedding. We
then show how to construct the distance scales as well as the claimed embeddingϕ in Section 4.2, and show
that it has gracefully degrading distortion in Section 4.3.

4.1 Distance scales and scale bundles

Our algorithm, just like the algorithms in [Bou85, LLR95, Rao99, GKL03, KSW04, KLMN05, Lee05],
operates on distance scales that start around the diameter of the metric, and go all the way down to the
smallest distance in the metric. Informally, the embedding ϕ has block of coordinates for each distance
scale, such that if the true uv-distance for some edge uv is within this scale, then the uv-distance in these
coordinates of ϕ is roughly equal to the true distance. These blocks of coordinates are then combined into
an embedding that works for all scales simultaneously.

Different embeddings use very different notions of distance scales; in cases like the Rao-style embed-
dings, there are clear coordinates for each distance that is a power of 2—but in Bourgain-style embeddings,
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this is not the case. To be able to give a unified picture, let us formally define a distance scale f to be a
coordinate map f : V → R. A scale bundle {fij} is then a collection of coordinate maps fij , such that for
every fixed index j and node u, the values fij(u) are decreasing with i.

We can now cast and interpret previous embeddings in this language: in the Bourgain-style embed-
dings [Bou85, LLR95], fij(u) is the radius of the smallest ball around u containing 2n−i nodes, and hence
the cardinality of Bu(fij(u)) halves as we increase i. In the Rao-style embeddings [Rao99, GKL03], the
scales are fij(u) = diameter(V )/2i, and hence the distance scales halve as we increase i. The measured
descent embedding in [KLMN05] essentially ensures a judicious mixture of the above two properties: as we
increase i, the ball Bu(fij(u)) either halves in radius, or halves in cardinality, whichever comes first.

For our embedding, we need both the radius and the cardinality of Bu(fij(u)) to halve—and hence
have to define the scale-bundles accordingly. This would be easy to achieve by itself; however, to give good
upper bounds on the embedded distance, we also need each distance scale to be sufficiently smooth, by
which we mean that all the distance scales fij must themselves be 1-Lipschitz. In other words, we want that
|fij(u) − fij(v)| ≤ d(u, v). The construction of the scale bundle {fij} with both halving and smoothness
properties turns out to be a bit non-trivial, the details of which are given in the next section.

4.2 The embedding algorithm

Let us construct the embedding for Theorem 4.1. We have not attempted to optimize the multiplicative
constant for distortion, having chosen the constants for ease of exposition whilst ensuring that the proofs
work.

First we will construct a scale bundle {fij : i, j ∈ [k]}. For a fixed j, the maps fij are constructed by
an independent random process, inductively from i = 0 to i = k − 1. We start with f(0,j)(·) equal to the
diameter Φd of the metric. Given fij , we construct f(i+1,j) as follows. Let Uij be a random set such that
each node u is included independently with probability 1/|Bu(4fij(u))|. Define f(i+1,j)(u) as the minimum
of d(u, Uij) and fij(u)/2. This completes the construction of the scale bundle.

To proceed, let us state a lemma that captures, for our purposes, the structure of the metric.

Lemma 4.2. Consider a metric (V, d) which admits β-padded decompositions. Then for any 1-Lipschitz
coordinate map f there is a randomized embedding g into `p, p ≥ 1 with t = 6 dimensions so that

(a) each coordinate of g is 1-Lipschitz and upper-bounded by f ; and
(b) if f(u)/duv ∈ [14 ; 4] for some edge uv then, with probabilityΩ(1), ‖g(u)−g(v)‖p ≥ Ω(duv t

1/p/β).

Section 4.4 and Appendix 4.7 contain two different proofs of this lemma; the first one uses padded
decomposition techniques from [GKL03, KLMN05], and the other uses some Bourgain-style ideas [Bou85,
LLR95] which we believe are novel and possibly of independent interest.1

Fix a pair i, j ∈ [k]. Apply Lemma 4.2 to the map fij and obtain a 6-dimensional embedding; denote
these 6 coordinates as g(i, j, l), 1 ≤ l ≤ 6. Let Wij be a random set such that each node u is included inde-
pendently with probability 1/|Bu(fij(u)/2)|. Define g(i, j, 0)(u) as the minimum of fij(u) and d(u,Wij).
Finally, we set ϕ(i, j, l) = k−1/p g(i, j, l).

Lemma 4.3. The maps fij , gij and ϕ(i, j, l) are 1-Lipschitz.

Proof. Indeed, f(0,j) is 1-Lipschitz by definition, and the inductive step follows since the min of two 1-
Lipschitz maps is 1-Lipschitz. For the same reason, the maps g(i, j, l) are 1-Lipschitz as well, and therefore
so are the maps ϕ(i, j, l).

1More precisely, the second proof is for the important special case when β is the doubling dimension. In this proof the target
dimension becomes t = O(β log β), which results in target dimension O(log2 n)(β log β) in Theorem 4.1.
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Since k = O(logn), it immediately follows that the embedded distance is at most O(logn) times the
true distance. In the next section, we will prove a sharper upper bound of O(duv)(log 1

ε )
1/p for any ε-long

edge uv, and a lower bound Ω(duv/β) for any edge.

4.3 Analysis

Let us prove Theorem 4.1 by giving bounds on the stretch and contraction of the embedding ϕ. The follow-
ing definition will be useful: for a node u, an interval [a, b] is u-broad if a or b is equal to duv for some v,
a ≤ b/4 and |Bu(a)| ≤ 1

32 |Bu(b)|.
Let us state two lemmas that capture the useful properties of the maps fij and g(i, j, 0), respectively; note

that these properties hold for an arbitrary input metric. The proofs are deferred to Section 4.6.

Lemma 4.4. With high probability it is the case that:
(a) for any 1-Lipschitz maps f ′ij ≤ fij and any ε-long edge uv

∑

ij f
′
ij(uv) ≤ O(kduv log 1

ε ).
(b) for each node u, each u-broad interval contains values fij for Ω(k) different j’s.

Lemma 4.5. Fix edge uv and indices ij; letR = fij(u) and d = duv. Given thatR ≥ 4d and |Bu(d/4)| =
c |Bu(R)|, the event g(i, j, 0)(uv) ≥ Ω(d) happens with conditional probability Ω(c).

Proof of Theorem 4.1: Fix an ε-long edge uv and let d = duv . Since g(i, j, l) ≤ fij for each l, by
Lemma 4.4a the embedded uv-distance is upper-bounded by O(d log 1

ε ) for p = 1; the same argument
gives an upper bound of O(d)(log 1

ε )
1/p for p > 1.

It remains to lower-bound the embedded uv-distance by Ω(d/β), where β is the parameter in Theo-
rem 4.1 and Lemma 4.2. Denote by gij(uv) the total `p-distance between u and v in the coordinates g(i, j, l),
l ≥ 1. Denote by Eij the event that g(i, j, 0)(uv) or gij(uv) is at least Ω(d/β). It suffices to prove that
with high probability events Eij happen for at least Ω(k) (i, j)-pairs. We consider two cases, depending on
whether ρu(ε/32) ≥ d/4.

Case (a). If ρu(ε/32) ≥ d/4 then the interval I = [d/4; d] is u-broad, so by Lemma 4.4b there are Ω(k)
different j’s such that fij(u) ∈ I for some i. By Lemma 4.2 and Chernoff bounds (Lemma 2.1a) for Ω(k)
of these ij pairs we have gij(uv) ≥ Ω(d/β), case (a) complete.

Case (b). Assume ρu(ε/32) < d/4; consider the interval I = [d; max[4d, ρu(32ε)]]. We claim that

Pr [Eij | fij(u) ∈ I ] ≥ Ω(1), for each (i, j)-pair. (4.1)

Indeed, fix ij and suppose f = fij(u) ∈ I . There are two cases, f ∈ [d; 4d] and f ∈ (4d; ρu(32ε)]. In the
first case by Lemma 4.2 gij(uv) ≥ Ω(d/β) with conditional probability at least Ω(1). In the second case

|Bu(d/4)| ≥ εn/32 ≥ 2−10 (32εn) ≥ 2−10 |Bu(f)|,

so by Lemma 4.5 g(i, j, 0)(uv) ≥ Ω(d) with conditional probability Ω(1). This proves (4.1). Since the
interval I is u-broad, by Lemma 4.4b there are Ω(k) different j’s such that fij(u) ∈ I for some i. Since for
different j’s the events in (4.1) are independent, case (b) follows by Chernoff bounds (Lemma 2.1a).

4.4 Analysis: proof of Lemma 4.2

In this section we use padded decomposition techniques from [GKL03, KLMN05] to prove Lemma 4.2. Let
us recall the definitions of a padded decomposition and a decomposition bundle from [GKL03, KLMN05].

Definition 4.6. Given a finite metric space (V, d), a positive parameter ∆ > 0 and a mapping β : V →
R, a ∆-bounded β-padded decomposition is a distribution Π over partitions of V such that the following
conditions hold:
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(a) For each partition P in the support of Π, the diameter of every cluster in P is at most ∆.
(b) If P is sampled from Π, then each ball Bx(∆/β(x)) is partitioned by P with probability< 1

2 .
Given a function β : V ×Z→ R, a β-padded decomposition bundle on V is a set of padded decompositions
{η(i) : i ∈ Z} such that each η(i) is a 2i-bounded β(·, i)-padded decomposition of V .

If a metric admits a β-padded decomposition bundle such that β is constant, we simply say that this
metric admits β-padded decompositions.

The randomized construction. Let η be a β-padded decomposition bundle. For each u ∈ Z, let the
decomposition Pu be chosen according to the distribution η(u). We denote Pu(x) to be the unique cluster
in Pu containing x.

Moreover, for u ∈ Z, let {σu(C) : C ⊆ V } be i.i.d. unbiased {0, 1}-random variables. Let T =
{0, 1, . . . , 5}. Let u(x) := dlog2 f(x)e. For each t ∈ T , we define a (random) subset

W t := {x ∈ V : σu(x)−t(Pu(x)−t(x)) = 0}, (4.2)

from which we obtain gt(·) = min{d(·,W t), f(·)}.

Bounding the contraction of the embedding. We fix vertices x, y ∈ V and let d = d(x, y). Consider the
embedded distance between them. The aim is to show that under some condition, there exists t such that
|gt(x) − gt(y)| ≥ ρd happens with constant probability, where ρ depends on the β-padded decomposition
bundle.

Lemma 4.7. Suppose f(x) ∈ [d
4 , 4d] and t ∈ T is the integer such that û := u(x) − t satisfies 2û ∈

[d/8, d/4). Let J := {−1, 0, 1} and ρ := min{ 1
32β(x,u) : u ∈ û+ J}. Then the event |gt(x)− gt(y)| ≥ ρd

happens with probability at least 1/64.

Proof. Consider the random process that determine the coordinate gt. We like to show that the union of
the following two disjoint events happens with constant probability, which implies our goal. There are two
cases:

Case 1 The set W t contains x but is disjoint withBy(ρd).

Case 2 The set W t contains no points from Bx(2ρd) but at least one point from By(ρd).

Let us define the following auxiliary events.

• Event E1 occurs when x is contained in W t.
• Event E2 occurs when W t is disjoint withBy(ρd).
• Event E3 occurs when for all z ∈ Bx(2ρd) and u ∈ û+ J , x and z are in the same cluster in η(u).
• Event E4 occurs if for all u ∈ û+ J , σu(Pu(x)) = 1.

Observe that the event E1 ∩ E2 implies the event in Case 1. Note that given a decomposition η(û), the
point x lies in a cluster different from those intersecting By(ρd), because 2û < d

4 < (1 − ρ)d. Hence the
events E1 and E2 are conditionally independent, given η(û); this in turn implies that

Pr [E1 ∩ E2| η(û)] = Pr [E1| η(û)] Pr [E2| η(û)] = 1
2 Pr [E2| η(û)] .

Since this fact holds for all decompositions η(û), it follows that Pr[E1 ∩ E2] = 1
2Pr[E2]
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Observe that the event E3 ∩ E4 ∩ E2 implies the event in Case 2. This follows from the fact that |u(x)−
u(z)| ∈ J . Since f(x) ≥ d

4 , f is 1-Lipschitz and d(x, z) ≤ 2ρd ≤ d
8 , it follows f(x) and f(z) are within

a multiplicative factor of 2 from each other. Hence u(x) and u(z) differ by at most one. Again, given the
decompositions η(u), u ∈ û+ J , the event E4 is independent of the event E3 ∩ E2. Hence,

Pr
[

E3 ∩ E4 ∩ E2
]

= Pr [E4] Pr
[

E3 ∩ E2
]

= 1
8Pr

[

E3 ∩ E2
]

.

Finally, it follows that the union of the events in cases 1 and 2 happens with probability at least
1
2Pr[E2] + 1

8Pr[E3 ∩ E2] ≥ 1
8Pr[E3 ∩ E2] + 1

8Pr[E3 ∩ E2] = 1
8Pr[E3].

In order to show that E3 happens with constant probability, we make use of the properties of β-padded
decomposition bundle. Since for all u ∈ û + J we have

2ρd ≤ 2/32β(x, u) · d ≤ 2u/β(x, u),

it follows that E3 happens with probability at least 1/8. Therefore, it follows the desired event happens with
probability at least 1/64.

4.5 Analysis: tools from Probability

Here we state some tools from Probability Theory that we will use to prove Lemma 4.4 and Lemma 4.5.
For a random variableX define the distribution functionFX(t) = Pr[X < t]. For two random variables

X and Y , say Y stochastically dominatesX (written as Y � X , orX � Y ) if FY (t) ≤ FX(t) for all t ∈ R.

Lemma 4.8. Consider two sequences of independent random variables, {Xi} and {Yi}, such that all Xi

and Yi have finite domains and Xi � Yi for each i. Then for each k we have
∑k

i=1Xi �
∑k

i=1 Yi.

Lemma 4.9. Consider two sequences of Bernoulli random variables, {Xi} and {Yi}, such that variables
{Yi} are independent and

Pr[Xi = 1 | Xj , j < i] ≥ Pr[Yi = 1]

for each i. Then
∑k

i=1Xi �
∑k

i=1 Yi for each k.

Proof. We first show that for all t ∈ [T ],

Pr

[

t
∑

r=1

Xr +

T
∑

r=t+1

Yr ≤ m
]

≤ Pr

[

t−1
∑

r=1

Xr +

T
∑

r=t

Yr ≤ m
]

, (4.3)

which would immediately imply the lemma. Observe that for any fixed number a (or in general any random
variable that is measurable in the σ-field generated by the random variables {Xr : r < t}), we have

Pr [Xt ≤ a|Xr, r < t] ≤ Pr[Yt ≤ a] = Pr [Yt ≤ a|Xr, r < t] .

Note that the interesting case is when a ∈ [0, 1). The inequality comes from the assumption concerning the
conditional probabilities of the sequence {Xr}, and the equality comes from the fact that Yt is independent
of the sequence {Xr}.

Since bothXt and Yt are independent of {Yr : r > t}, the above inequality would still hold if we further
condition on the random variables {Yr : r > t}. Finally, setting a = m −∑i<tXr −

∑

i>t Yr, which is
measurable in the σ-field generated by J := {Xr : r < t} ∪ {Yr : r > t}, we obtain

Pr

[

t
∑

r=1

Xr +
T
∑

r=t+1

Yr ≤ m | J
]

≤ Pr

[

t−1
∑

r=1

Xr +
T
∑

r=t

Yr ≤ m | J
]

.

Taking expectation on both sides gives (4.3).
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Lemma 4.10. Consider a sequence of i.i.d. Bernoulli random variables {Yi} with success probability q.
Let Zr be the number of trials between the (r− 1)-th success and the r-th success. Then

Pr

[

k
∑

r=1

Zr > 2k/q

]

≤ (0.782)k. (4.4)

Proof. Each Zr has a geometric distribution with parameter q, so its moment generating function is

E
[

etZr
]

=
qet

q − (1− q)et .

Let Z =
∑k

r=1Zr. Since Zr’s are i.i.d, it follows thatE
[

etZ
]

= E
[
∏

r e
tZr
]

=
(

E
[

etZ1

])k
.

By Markov inequality for any t > 0 we have

Pr[Z > 2k/q] = Pr
[

etZ > e2tk/q
]

≤ E
[

etZ
]

e−2tk/q ≤
(

qet

(1− (1− q)et)e2t/q

)k

.

Plugging in q = 1− 1/
√
e and t = q we have (4.4).

4.6 Analysis: maps fij and g(i, j, 0)

Here we prove Lemma 4.4 and Lemma 4.5. First we prove part (a) of Lemma 4.4, which is essentially the
upper bound on the embedded distance for the case p = 1. We start with a local smoothness property of the
sets Uij .

Claim 4.11. Fix i, j ∈ [k] and an edge uv. Condition on the map fij , i.e. pause our embedding algorithm
right after fij is constructed; let r = fij(u). If duv ≤ r/4 then

Pr[v ∈ Uij ] ≤ 1/|Bu(r)| ≤ Pr
[

v ∈ U(i+3,j)

]

.

Proof. Let B = Bu(r). For the RHS inequality, letting r′ = f(i+3,j)(v) we have

4r′ ≤ fij(v)/2 ≤ (r+ duv)/2 ≤ 17r/32,

so duv + 4r′ < r. It follows that Bv(r
′) ⊂ B, so v ∈ U(i+3,j) with probability 1/|Bv(4r

′)| ≥ |B|.
For the LHS inequality, letting r′ = fij(v) we have

4r′ ≥ 4(r− duv) ≥ r + duv,

so B ⊂ Bv(4r
′). Therefore v ∈ Uij with probability 1/|Bv(4r

′)| ≤ 1/|B|.

Fix a node u; for simplicity assume k = 4k0+1. LetBij = Bu(fij) and letXij be the indicator random
variable for the event that |B(4i+4, j)| ≤ |B(4i, j)|/2. Note that for a fixed j, the random variables Xij are
not independent. However, we can show that given all previous history, the ij-th event happens with at least
a constant probability.

Claim 4.12. For each i ∈ [k0], j ∈ [k] and q = 1− e−1/2 we have Pr[Xij = 1 | flj, l < i] ≥ q.

Proof. Indeed, fix ij, let f = f(4i,j)(u) and f ′ = f(4i+4,j)(u), and let B = Bu(r) be the smallest ball
around u that contains at least |B(4i, j)|/2 nodes. Clearly, Xij = 1 if and only if f ′ ≤ r. By definition of
fij ’s we have f ′ ≤ f/16, so we are done if r ≥ f/16. Else by Claim 4.11 any node v ∈ B included into
the set U(4i+3,j) with probability at least 1/2|B|, so the probability of including at least one node in B into
this set (in which case f ′ ≤ r) is at least 1− (1− 1/2|B|)|B| ≥ q.
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For a random variableX define the distribution functionFX(t) = Pr[X < t]. For two random variables
X and Y , say Y stochastically dominates X (written as Y � X , or X � Y ) if FY (t) ≤ FX(t) for all
t ∈ R. Note that if X ≥ Y then X � Y . Consider a sequence of i.i.d. Bernoulli random variables {Yi}
with success probability q. By Claim 4.12 and Lemma 4.9 we have the following:

t
∑

i=0

Xij �
t
∑

i=0

Yi, for any t ∈ [k0] and each j ∈ [k]. (4.5)

We will use (4.5) to prove the following crucial claim:

Claim 4.13. Fix ε > 0; for each j let Tj be the smallest i such that fij(u) ≤ ρu(ε), or k if no such i exists.
Then

∑

j Tj = O(k log 1
ε ) with high probability.

Proof. Let α = dlog 1
ε e. Let Lj be the smallest t such that

∑t
i=0Xij ≥ α, or k0 if such t does not exist;

note that Tj ≤ 4Lj . For the sequence {Yi}, let Zr be the number of trials between the (r − 1)-th success
and the r-th success. Let Aj =

∑jα
r=(j−1)α+1 Zr and Z =

∑kα
r=1 Zr. By (4.5) for any integer t ∈ [k0]

Pr[Lj > t] = Pr

[

t
∑

i=0

Xij < α

]

≤ Pr

[

t
∑

i=0

Yi < α

]

= Pr

[

α
∑

r=1

Zr > t

]

= Pr[A1 > t] (4.6)

Since {Aj} are i.i.d., by (4.6) and Lemma 4.8 it follows that
∑

j Lj �
∑

j Aj = Z. Therefore by
Lemma 4.10

Pr
[

∑

Tj > 8kα/q
]

≤ Pr
[

∑

Lj > 2kα/q
]

≤ Pr[Z > 2kα/q] < (0.782)kα,

which is at most 1/n3 when k = O(logn) with large enough constant.

Now we have all tools to prove Lemma 4.4a.

Proof of Lemma 4.4a: Use Tj = Tj(u) from Claim 4.13. Fix some ε-long edge uv and let d = duv. Let
tj = max(Tj(u), Tj(v)). Then since by the 1-Lipschitz property f ′ij(uv) ≤ d for all ij; moreover, for any
ij such that i ≥ tj both fij(u) and fij(v) are at most d/2i−tj . Then f ′ij(uv) is at most twice that much
(since f ′ij ≤ fij ), so taking the sum of the geometric series we see that

∑

ij

f ′ij(uv) ≤
∑

j

(

dtj +
∑

i≥tj
d/2i−tj

)

≤∑j O(dtj) = O
(

kd log 1
ε

)

,

where the last inequality follows by Claim 4.13.

To prove part (b) Lemma 4.4, let us recall the definition of a u-broad interval: for a node u, an interval
[a, b] is u-broad if a or b is equal to duv for some v, a ≤ b/4 and |Bu(a)| ≤ 1

32 |Bu(b)|.

Proof of Lemma 4.4b: It suffices to consider the u-broad intervals [a, b] such that one of the endpoints is
equal to duv for some v, and the other is the largest b or the smallest a, respectively, such that the interval is
u-broad. Call these intervals u-interesting; note that there are at most 2n such intervals for each u.

Fix node u and a u-broad interval I = [a, b], fix j and let ri = fij(u). It suffices to show that with
constant probability some ri lands in I . Indeed, then we can use Chernoff bounds (Lemma 2.1a), and then
we can take the Union Bound over all nodes u and all u-interesting intervals.

Denote by Ei the event that ri > b and ri+1 < a; note that these events are disjoint. Since some ri lands
in I if and only if none of the Ei’s happen, we need to bound the probability of ∪Ei away from 1.
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For each integer l ≥ 0 define the interval

Il =
[

ρu

(

ε 2l
)

, ρu

(

ε 2l+1
))

, where εn = |Bu(b)|.

For each α ∈ {0, 1, 2, 3} letN(l,α) be the number of i’s such that r4i+α ∈ Il. We claim thatE[N(l,α)] ≤ 1/q.
Consider the case α = 0; other cases are similar. Let Nl = N(l,α) and suppose Nl ≥ 1. Let i0 be the

smallest i such that r4i ≤ Il. Then Nl ≥ t implies Xij = 0 for each i ∈ [i0; i0 + t − 2]. Recall that the
construction of the maps fij starts with f(0,j). Given the specific map f = f(i0,j), the construction of the
maps fij , i > i0 is equivalent to a similarly defined construction that starts with f(i0 ,j) = f . Therefore, by
(4.5) (applied to this modified construction) we have

Pr[Nl ≥ t] ≤ Pr
[

∑t−2
β=0X(i0+β, j) = 0

]

≤ Pr
[

∑t−2
β=0 Yβ = 0

]

= (1− q)t−1;

E[Nl] =
∑∞

t=1 Pr [Nl ≥ t] ≤
∑∞

t=1(1− q)t−1 = 1
q ,

claim proved. For simplicity assume k = 4k0 + 1; it follows that
∑k−1

i=0 Pr[ri ∈ Il] =
∑3

α=0

∑k0−1
i=0 Pr[r4i+α ∈ Il] =

∑3
α=0E

[

N(l,α)

]

≤ 4/q. (4.7)

By Claim 4.11 if ri ∈ Il then ri+1 ≤ a with conditional probability at most |Bu(a)|/|Bu(ru)| ≤
2−l/32. Therefore, Pr[Ei | ri ∈ Il] ≤ 2−l/32. By (4.7) it follows that

Pr[∪Ei] =

k−1
∑

i=0

Pr[Ei] =

k−1
∑

i=0

∞
∑

l=0

Pr [ri ∈ Il and Ei] ≤
k−1
∑

i=0

∞
∑

l=0

Pr[ri ∈ Il]× 2−l/32

=
1

32

∞
∑

l=0

2−l
k−1
∑

i=0

Pr[ri ∈ Il] ≤
1

8q

∞
∑

l=0

2−l =
1

4q
< 1,

so some ri lands in I with at least a constant probability.

It remains to prove Lemma 4.5 about the maps g(i, j, 0).

Proof of Lemma 4.5: Let’s pause our embedding algorithm right after the map fij is chosen, and consider
the probability space induced by the forthcoming random choices. Let Xw = fij(w). First we claim that

Pr
[

g(i, j,0)(u) ≤ r | r ≤ X/8
]

≥ Ω(βr), (4.8)

where βr = |Bu(r)|/|Bu(X)|. Indeed, suppose r ≤ X/8, let B = Bu(r) and consider any w ∈ B. Then
by (4.11):

Pr[w ∈ Wij ] = 1/|Bw(Xw/2)| ≥ 1/|Bu(X)| ≥ βr|B|
Pr
[

g(i, j, 0)(u) ≤ r
]

= Pr[Wij hitsB] ≥ 1− (1− βr|B|)|B| ≥ 1− e−βr ≥ Ω(βr),

proving (4.8). Now let B = Bv(Xv/8); then by (4.11) any w ∈ B is included into the set Wij with
probability at most 1/B, so

Pr
[

g(i, j, 0)(v) ≥ Xv/8
]

= Pr[Wij misses B] ≥ (1− 1/|B|)|B| ≥ 1/4. (4.9)

Finally, let’s combine (4.8) and (4.9) to prove the claim. Let r = d/4 and suppose X ≥ 4d. Since
Xv ≥ X − duv ≥ 3d, by (4.9) event g(i, j, 0)(v) ≥ 3d/8 happens with probability at least 1/4. This event
and the one in (4.8) are independent since they depend only on what happens in the balls Bu(d/4) and
Bv(3d/8), respectively, which are disjoint. Therefore with probability at least Ω(βr) both events happen, in
which case g(i,j,0)(uv) ≥ d/8.
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4.7 A Bourgain-style proof of Lemma 4.2 for doubling metrics.

In this section we use the ideas of [Bou85, LLR95] to derive an alternative proof of Lemma 4.2 for the
important special case when β is the doubling dimension. In this proof the target dimension becomes
t = O(β log β), which results in target dimensionO(log2 n)(β logβ) in Theorem 4.1.

Let us note that in the well-known embedding algorithms of Bourgain [Bou85] and Linial et al. [LLR95]
any two nodes are sampled with the same probability, i.e. with respect to the counting measure. Here use
a non-trivial extension of the Bourgain’s technique where we sample with respect to a doubling measure
transformed with respect to a given 1-Lipschitz map.

We state our result as follows:

Lemma 4.14. Consider a finite metric (V, d) equipped with a non-degenerate measure µ and a 1-Lipschitz
coordinate map f ; write fu = f(u). For every node u let

βµ(u) = 2µ[Bu(fu) ] / µ[Bu(fu/16) ].

Then for any k, t ∈ N there is a randomized embedding g into `p, p ≥ 1 with dimension kt so that:
(a) each coordinate map of g is 1-Lipschitz and upper-bounded by f ; and
(b) ‖g(u) − g(v)‖p ≥ Ω(duv/t)(kt)

1/p with failure probability at most < t/2Ω(k) for any edge uv
such that

f(u)/duv ∈ [1/4; 4] and max
w∈{u,v}

βµ(w) ≤ 2t. (4.10)

To prove Lemma 4.2 for a metric of doubling dimension β, recall that for any such metric there exists a
2β-doubling measure µ. Plug this measure in Lemma 4.14, with t = 4β + 1 and k = O(logβ); note that
βµ(u) ≤ 2t for every node u. We get the embedding in `p with O(β logβ) dimensions that satisfies the
conditions in Lemma 4.2.

We will need the following simple fact:

If duv ≤ f(u)/8 for some edge uv, then Bu(f(u)/8) ⊂ Bv(f(v)/2)⊂ Bu(f(u)) (4.11)

Indeed, letting fu = f(u) the first inclusion follows since fv/2 ≥ (fu − duv)/2 ≥ fu/8 + duv, and the
second one holds since duv + fv/2 ≤ duv + (fu + duv)/2 < fu.

Proof of Lemma 4.14: Define the transformation of µ with respect to f as µf (u) = µ(u)/2µ(B), where
B = Bu(fu/2). Fix k = c logn where c is an absolute constants to be specified later. The coordinates
are indexed by ij, where i ∈ [t] and j ∈ [k]. For each (i, j)-pair construct a random set Uij by selecting
d2iµf (V )e nodes independently according to the probability distribution µf (·)/µf(V ). Let us define the
ij-th coordinate of u as gij(u) = min (fu, d(u, Uij)).

Note that each map gij is 1-Lipschitz as the minimum of two 1-Lipschitz maps. Therefore part (a) holds
trivially. The hard part is part (b). Fix an edge uv; let d = duv. For any node w let αw(ε) be the smallest
radius r such that µf [Bw(r)] ≥ ε, and let

ρi = max[ψu(2−i), ψv(2
−i)], where ψw(ε) = min[αw(ε), d/2, fw].

Claim 4.15. For each i ≥ 1 and each j ∈ [k] with probability Ω(1) we have

gij(uv) := |gij(u)− gij(v)| ≥ ρi − ρi+1.

Then by Chernoff bounds (Lemma 2.1(a)) w.h.p. we have

∑

ij

gij(uv) ≥
t
∑

i=1

Ω(k)(ρi − ρi+1) = Ω(k)(ρ1 − ρt). (4.12)



53

Proof of Claim 4.15: Fix i ≥ 1 and j, and note that if ρi+1 = d/2 then ρi = d/2, in which case the claim
is trivial. So let’s assume ρi+1 < d/2 and without loss of generality supposeψu(2−i) ≥ ψv(2

−i). Consider
the open ball B of radius ρi around u. Since ρi = ψu(2−i) ≤ αu(2−i), it follows that µf (B) ≤ 2−i. Now
there are two cases:
• If ρi+1 = fv then the desired event gij(uv) ≥ ρi − ρi+1 happens whenever Uij misses B, which

happens with at least a constant probability since µf (B) ≤ 2−i.

• If ρi+1 < fv then the desired event happens whenever Uij misses B and hits B′ = Bv(ρi+1). This
happens with at least a constant probability by Claim 4.17 since ρi+1 ≥ ψv(1/2

i+1) ≥ αv(1/2
i+1)

and therefore µf (B′) ≥ 1/2i+1, and the two ballsB and B′ are disjoint.
Claim 4.16. For any node w we have αw(1

2) ≥ fw/8 and αw(1/βµ(w)) ≤ fw/16.

Proof. Let B = Bw(fw/8). By (4.11) for any w′ ∈ B
µ(w) / 2µ[Bw(fw) ] ≤ µf (w′) ≤ µ(w)/2µ(B),

so µf (B) ≤ 1
2 and µf [Bw(fw/16) ]≥ 1/βµ(w).

Suppose (4.10) holds; let x = max(fu, fv). Then by Claim 4.16 and the definitions of ρi and ψw we
have:

ρ1 ≥ max
w∈{u,v}

min(fw/8, d/2)≥ min(x/8, d/2),

ρt ≤ max
w∈{u,v}

αw(2−t) ≤ max
w∈{u,v}

αw (1/βµ(w)) ≤ max
w∈{u,v}

fw/16 ≤ x/16.

By (4.12) for p = 1 it remains to show that ρ1 − ρt ≥ Ω(d). There are two cases:
• if fv ≤ 4d then ρ1 ≥ x/8, so ρ1 − ρt ≥ x/16 ≥ Ω(d).

• if fv > 4d then ρ1 ≥ d/2 and (since f is 1-Lipschitz)

ρt ≤ fv/16 ≤ (fu + d)/16 ≤ 5d/16,

so ρ1 − ρt ≥ 3d/16.
This completes the proof for the case p = 1. To extend it to p > 1, note that the embedded uv-distance is
(

∑

ij gij(uv)
p
)1/p

= (kt)1/p
(

1
kt

∑

ij gij(uv)
p
)1/p

≥ (kt)1/p
(

1
kt

∑

ij gij(uv)
)

≥ Ω(d/t) (kt)1/p.

In the above proof we used the following claim which is implicit in [LLR95] and also stated in [KSW04];
we prove it here for the sake of completeness.
Claim 4.17. Let µ be a probability measure on a finite set V . Consider disjoint events E,E ′ ⊂ V such
that µ(E) ≥ q and µ(E ′) ≤ 2q < 1/2 for some number q > 0. Let S be a set of d1/qe points sampled
independently from V according to µ. Then S hitsE and missesE ′ with at least a constant probability.

Proof. Obviously, the probability that S hits E and misses E ′ can only increase if we set Pr[E] = q and
Pr[E ′] = 2q. Treat sampling a given point as two independent random events: first it misses E ′ with
probability 1 − 2q, and then (if it indeed misses) it hits E with probability q′ = q

1−2q ≤ 2q. Without
loss of generality rearrange the order of events: first we choose whether all points miss E ′, and then upon
success choose whether at least one point hitsE. These two events happen independently with probabilities,
respectively, (1− 2q)1/q ≥ 2−1/2 and

1− (1− q′)1/q ≥ 1− (1− 2q)1/q ≥ 1− e−2.

So the total success probability is at least c = (1− e−2)/
√

2, which is an absolute constant as required.
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4.8 An extension to arbitrary metrics

In this section we consider probabilistic embeddings of arbitrary metrics into trees, which extend to (high-
dimensional) embeddings into `1. We exploit the technique of [FRT04] to obtain embeddings with slack.
First we show that it gives a probabilistic embedding of arbitrary metrics into tree metrics with expected
gracefully degrading distortionD(ε) = O(log 1/ε). For technical convenience, we will treat n-point metrics
as functions from [n] × [n] to reals. Note that all metrics dT generated by the algorithm in [FRT04] are
dominating, i.e. for any edge uv we have d(u, v) ≤ dT (u, v).

Theorem 4.18. For any input metric (V, d), let dT be the dominating HST metric on V constructed by the
randomized algorithm in Fakcharoenphol et al. [FRT04]. Then the embedding from (V, d) to (V, dT) has
expected gracefully degrading distortionD(ε) = O(log 1/ε). Specifically, for any parameter ε > 0 and any
ε-long edge uv we have

duv ≤ Eϕ[dT(u, v)] ≤ O(log 1/ε) duv. (4.13)

Since tree metrics are isometrically embeddable into L1, it follows that we can embed any metric into L1

with gracefully degrading distortionD(ε) = O(log 1
ε ).

Proof. For simplicity let us assume that all distances in (V, d) are distinct; otherwise we can perturb them a
little bit and make them distinct, without violating the triangle inequality; see the full version of this paper
for details. In what follows we will assume a working knowledge of the decomposition scheme in [FRT04].

Let us fix the parameter ε > 0 and an ε-long edge uv, and let d = d(u, v). Let us assume without loss
of generality that ρu(ε) ≤ ρv(ε). Then ρu(ε) ≤ d, so |Bu(d)| ≤ εn.

Run the randomized algorithm of [FRT04] to build a tree T and the associated tree metric dT . The
decomposition scheme will separate u and v at some distance scale 2i ≥ d/2. Let ∆ be the maximum
distance in the input metric. Under the distribution over tree metrics dT that is induced by the algorithm, the
expected distance E[dT(u, v)] between u and v in tree T is equal to the sum

∑log ∆
i≥log d−1 4 · 2i × Pr[(u, v) first separated at level 2i].

Look at the sum for i such that d/2 ≤ 2i < 4d: this is at most 48d. By the analysis of [FRT04], the rest of
the sum, i.e. the sum for i ≥ log 4d, is at most

∑log∆
i≥log 4d 4 · 2i × 2d

2i log
|Bu,2i)|

|Bu,2i−2)|

Since the above sum telescopes, it is at most

8d · 2 log (n/|Bu(d)|) ≤ O(d log1/ε),

which proves the second inequality in (4.13). The first inequality in (4.13) holds trivially because all metrics
dT generated by the algorithm in [FRT04] are dominating.

The above embedding into `1 can be made algorithmic by sampling from the distribution and embedding
each sampled tree into `1 using a fresh set of coordinates; however, the number of trees now needed to give
a small distortion may be as large as Ω(n logn). We also note in passing that a slightly modified analysis
yields an embedding into a single tree; we omit the details.

Theorem 4.19. For any source metric (V, d) and any parameter ε > 0 there exists an embedding into a
dominating HST metric with ε-uniform slack and distortionO(1

ε log 1
ε ).



Chapter 5

Network Triangulation via Rings of
Neighbors

In this chapter we consider growth-constrained metrics and construct triangulation with guarantees for all
node pairs. This is our main result:

Theorem 5.1. Consider a metric with grid dimension α and polynomially bounded aspect ratio. Suppose
each node has links to 3 nodes sampled independently at random in the network. Then for any δ > 0 there
exists a fully distributed algorithm that computes a (0, δ)-triangulation of degree (O(1/δ))α(log2 n). The
running time and per-node load is (O(1/δ))α(log7 n).

A crucial element of our construction is rings of neighbors, a sparse distributed data structure which cap-
tures the distance information in the network. This is essentially the data structure that underlies Meridian,
a network positioning system described in Chapter 6.

The results in this chapter represent a very recent work [Sli06] that has not yet been published.

5.1 Framework and results

Let us properly formulate our results. Since our construction is a fairly involved distributed algorithm, we
need to put forward a precise model of distributed computation. Then we give describe and define rings of
neighbors, and then we state our results.

Model of distributed computation. Nodes do not share data and communicate via messages. Specifically,
each node follows the following cycle: receive a message, do local computation, (possibly) send messages
to other nodes, wait for the next message received. We assume that some nodes initiate the algorithm by
sending messages without receiving someone else’s message first. These nodes are called a starting nodes;
we assume that they start sending all at the same time.

Each node has an address that other nodes need to know in order to contact this node. These addresses
cannot be guessed; they can either be given in advance or passed from one node to another. In particular,
initially every node is given a (possibly empty) list of addresses. Later in the algorithm, a node may delete
some addresses from its list, or may add some new addresses received from other nodes. The nodes whose
addresses are currently in the list of node u are called the neighbors of u. For simplicity we assume that
each address takes O(1) space.

Let V be the set of all nodes; let S ⊂ V and letG = (V,E) be a graph, directed or undirected, possibly
with multiple edges and self-loops. Say an algorithm is (S,G)-distributed if it conforms to the above model
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so that S is the set of starting nodes, and initially every node u is given the addresses of all its G-out-
neighbors (if G is directed) or of all its G-neighbors (if G is undirected), together with the corresponding
multiplicities. If S = {u}, say the algorithm is (u,G)-distributed. If S = V , say the algorithm is G-
distributed.

The load on a given node includes computation, storage, and communication. For simplicity the load is
defined as a sum x+ y + z, where x is the number of CPU cycles, y is the number of bytes used for storage,
and z is the number of bits sent and received; we will use theO(·) notation, so the exact units do not matter.
The load of an algorithm is the maximal load on a node.

We also interested in the per-node space requirement. For clarity, we do not count the size of the message
queue towards this requirement (but note that the number of messages sent and received does count towards
the load). We assume that each node processes messages sequentially, and that the message is in the network
until the node is ready to process it.

If the algorithm starts at time 0, and terminates at time τu on each node u, then the total running time
is defined as max τu. Note that it can be very different from the load, since the latter in general does not
include the idle time.

Node selection in a metric space. Say a set of nodes supports a metric dM if any two nodes u, v in this set
can measure dM(u, v) at a unit cost once they communicate. Intuitively, any such dM is a notion of distance
between the nodes.

In what follows, let us fix a metric dM which is supported on V . LetBu(r) be the closed ball of radius r
around node u, i.e. Bu(r) = {v ∈ V : dM(u, v) ≤ r}. Without loss of generality assume that the minimal
distance is 1; let ∆ be the diameter of the metric. Denote Bui = Bu(∆/2i).

We seek to construct a distributed data structure that we call rings of neighbors. In this data structure,
for each i ∈ [log∆] each node u stores addresses of k other nodes in Bui. We denote these k nodes as
X

(i)
u =

{

X
(i)
uj : j ∈ [k]

}

and call X(i)
u the i-th ring of neighbors of node u. Here k is a small number, e.g.

k = Θ(logn), which we call ring cardinality.
Suppose we have a randomized algorithm which constructs the rings of neighbors and, consequently,

induces a joint probability distribution on random variables
{

X
(i)
uj

}

. Intuitively, we would like these random
variables to be independent and uniformly distributed on the respective balls Bui. We will construct a
slightly weaker version.

Let n be the cardinality of V , and let σunif be the uniform distribution on V . Say a distribution τ on
V is near-uniform if ‖σunif − τ‖∞ ≤ 1

2n . We can define near-uniform distributions on any given subset of
nodes in a similar fashion. Let Fi, i ∈ [log∆] be the collection of random variables from the i-th rings of
neighbors of all nodes:

Fi =
{

X
(i)
uj : u ∈ V, j ∈ [k]

}

. (5.1)

For notational convenience, define F−1 to be empty. We will construct rings of neighbors such that given
∪l<i Fl all random variables in Fi are conditionally independent and near-uniformly distributed. More
formally:

Definition 5.2. Consider a metric space (V, dM) on n nodes, with aspect ratio ∆. Randomized Rings of
Neighbors (RRN) on this metric space is a joint distribution on V -valued random variables

{

X
(i)
uj : u ∈ V, i ∈ [log∆], j ∈ [k]

}

such that with high probability the following two properties hold for each i < dlog ∆e:

(P1) given ∪l<i Fl, random variables in Fi are conditionally independent.
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(P2) given ∪l<i Fl, each random variableX(i)
uj ∈ Fi has a near-uniform distribution on Bui.

Here k is a fixed parameter called ring cardinality, and Fi is defined by (5.1).

Our results We provide a distributed and load-balanced construction for Randomized Rings of Neighbors
on a growth-constrained metric. We need the initial communication graph to have low degree-expansion
ratio.

Theorem 5.3. Let G = (V,E) be an undirected graph on n nodes. Suppose that G is an O(logn)-degree
expander and that V supports a metric dM of polynomially-bounded aspect ratio and grid dimension α.
Assume that each node knows (the same) constant-factor approximate upper bounds on the following: logn,
degree and expansion of G, aspect ratio and grid dimension of dM.

Then for any given constant c ≥ 1 there exists a randomizedG-distributed algorithm with running time
and load O(c4) 2O(α)(log7 n) which with high probability constructs Randomized Rings of Neighbors on
(V, dM) with ring cardinality Ω(c 4α logn).

The quantitative assumption that G is a O(logn)-degree expander is there for numerical convenience
only. It can be replaced by a low degree-expansion ratio, using the following relatively simple pre-processing
step:

Lemma 5.4. Let G = (V,E) be a connected undirected graph on n nodes, of expansion γ. Suppose the
numbers d ≥ deg(G) and t ≥ (d/γ)2 (logn) are known to all nodes.

Then there exists a randomized G-distributed algorithm whereby every node acquires the addresses of
three nodes in V so that with high probability the induced undirected graph on V is an O(logn)-degree
expander. The running time and (with high probability) the per-node load are O(t logn); the per-node
storage is O(d).

We use the construction in Theorem 5.3 to construct the desired triangulation for Theorem 5.1. Let us
restate the latter theorem in a slightly more general form.

Theorem 5.5. In the setting of Theorem 5.3, for any given δ ∈ (0, 1) there exists a randomizedG-distributed
algorithm with running time and loadO(1/δ)α O(log7 n) which with high probability constructs a (1+ δ)-
approximate network triangulation of degree O(1/δ)α O(log2 n).

Off-line network measurements. The above results are also meaningful in a setting where the network
measurements are reported to and processed in a central location. In this setting treat the network as an
oracle which for any given node pair uv returns dM(u, v) at unit cost to both u and v. We (essentially)
do not need to worry about communication and processing, yet it is still desirable, and quite non-trivial, to
reduce the measurement load on nodes.

Notation. Say random variables X1 . . .Xk are Q-nice if their joint distribution is that of k independent
random variables with a near-uniform distribution onQ.

5.2 Tools: distributed random walks

In this section we discuss load-balanced random node selection via distributed random walks. Note that we
do not introduce the metric space until the next section.
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Consider an undirected graphG = (V,E). Let λuv be the multiplicity of edge uv, and let du =
∑

v λuv

be the degree of node u. For any d ≥ deg(G) let us define the Markov chain M(G,d) as follows:

M(G,d)(u, v) =

{

λuv/2d if u 6= v
1− (du − λuv)/2d otherwise (5.2)

It is easy to see that this Markov chain has a uniform stationary distribution. Moreover, by Theorem 2.5 for
graphs of low expansion-degree ratio it has a rapid mixing property:

Lemma 5.6. LetG be a connected undirected graph (possibly with loops and parallel edges) with expansion
γ. Then for any d ≥ deg(G) and k ≥ O(d/γ)2(logn) the k-step distribution of M(G,d) is near-uniform for
any initial distribution.

Proof. Let M = M(G,d). Note that M is irreducible since G is connected, and M is aperiodic since every
node has a positive stalling probability. Therefore M is ergodic. M is time-reversible since M(u, v) =
M(v, u) holds for all node pairs. Since M(u, v) ≥ λuv/2d for all node pairs, the expansion of M (as an
edge-weighted graph) is γ/d. Now the Lemma follows from Theorem 2.5.

Using Theorem 2.3, Lemma 5.4 is a simple corollary of a more general fact:

Lemma 5.7. In the setting of Lemma 5.4, for any k ∈ N there exists a randomizedG-distributed algorithm
whereby every node u acquires k addresses Xuj , j ∈ [k], such that {Xuj : u ∈ V, j ∈ [k]} are V -
nice random variables in the probability space induced by the algorithm. The running time and (with high
probability) the load are O(t×max(k, logn)); the per-node storage is O(k + d).

Proof. By abuse of notation, let us fix some enumeration f of V and treat each node u as a unit vector in
the f(u)-th dimension. Let σunif be the uniform distribution on V .

For a node v, let Av = Av(G, d) be a v-distributed algorithm that starts at v and simulates the Markov
chainM(G,d) for t steps. Specifically, at every step i the Markov chain visits some nodeXi, which means the
following: nodeXi selects one of itsG-neighbors (or itself) according to the distribution (5.2) and forwards
the Markov chain to this node. The process starts at X0 = v, and terminates at step t by returning Xt to
node v.

Note that by Lemma 5.6 Xt is a random variable with a near-uniform distribution. For simplicity let us
assume that at each step i nodes v and Xi experience a unit load each. It follows that for a given node w the
expected load induced by algorithmAv , v 6= w is equal to

Pr[Xi = w] =
(

M
(i)
(G,d)v

)

· w. (5.3)

The overall algorithm is simple: every node u initiates k independent copies of algorithm Au. In the
course of this algorithm, each message processed by a given node u is related to a certain step of some Av .
To simplify the analysis of the total running time, let us assume that whenever there is contention, messages
from earlier steps are given higher priority.

First, note that the per-node storage requirement is O(k + d), since at any point in time a given node u
needs to store only the addresses of all hisG-neighbors, the current step for each of the k copies of algorithm
Au.

Let us fix a node w and a step i ∈ [t]. Let Yvj be the load induced on w by the j-th copy of algorithm
Av . Then by (5.3) we have

∑

v 6=w

E (Yvj) =
∑

v 6=w

(

M
(i)
(G,d)

v
)

·w ≤ n
(

M
(i)
(G,d)

σunif
)

· w = O(n σunif · w) = O(1).
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Since {Yvj} is a family of bounded independent random variables, by Chernoff Bounds (Theorem 2.1b)
with µ = Θ(max(k, logn)) it follows that

∑

all (v, j) Yvj ≤ 2µ with high probability. In particular, the total
load on any given node (over all steps) is O(tµ) with high probability.

To bound the total running time, we claim that the processing of each step i completes, for all nodes, by
timeO(iµ) with high probability. Indeed, suppose a given step i is complete by timeO(iµ). Since with high
probability every given node u needs to process at most O(µ) messages for step i+ 1, and these messages
have priority over those from later steps, processing them will take at most O(µ) time. Claim proved.

The above construction is also used as the first step for the algorithm in Theorem 5.3, to construct the
out-most rings of neighbors. To construct all other rings, we need a more general version of Lemma 5.7,
where each node u wants to gather several independent near-uniform samples of some subset Qu. The
crucial difference is that in this case the subsetsQu are different, e.g. Qu = Bui for some fixed i. We state
this result for a single node, call it u. To make this result useful, we need to bound the expected load on all
nodes in Qu \ {u} by a small multiple of 1/|Qu|.

Lemma 5.8. Let G = (V,E) be an undirected graph on n nodes. Fix node u and consider a subsetQ ⊂ V
such that the graphG|Q has expansion γ. Suppose that:

• after pinging any node v ∈ V , node u can, at unit cost, determine whether v ∈ Q.
• node u knows numbers d ≥ deg(G), dQ ≥ deg(G|Q) and t ≥ (dQ/γ)2 (logn),
• node u is given a random seed: an address of some node.

Then for any k ∈ N there exists a randomized (u,G)-distributed algorithm such that:

(a) node u acquires addresses of k nodes Xi ∈ Q, where the Xi’s are Q-nice random variables. The
running time and the load on node u are O(kdt).

(b) The load on every other node w is at most O
(
∑

wv∈G Zv

)

, where Zv is the number of times node v
is ”visited” by the algorithm,1 which is at most kt for all v ∈ Q, and 0 otherwise. If the random seed
was selected independently from a near-uniform distribution τ on Q, then in the probability space
induced by the algorithm and τ , E(Zv) = O(kt/|Q|) for each v ∈ Q.

Proof. We use algorithm Av(G|Q, d) defined in the proof of Lemma 5.7, in a slightly modified form.
Specifically, at each step i of this algorithm node u communicates with some node Xi ∈ Q, asks this node
for a list of itsG- neighbors, determines which of these neighbors lie inQ, and chooses the next nodeXi+1

among those according to the distributionM(G|Q, d), see (5.2). The process starts at X0 = v, and terminates
at step t by returning Xt to node u. During each step node u incurs load O(d), and node Xi incurs load
O(1).2

The overall algorithm is simple: node u initiates k independent copies of algorithmAw(G|Q, d), where
w is the given random seed.

Parts (a) is trivial. For part (b), we define Zv to be the number of times some copy of algorithm
Av(G|Q, d) selects node v as the next step. Let us fix some node v ∈ Q \ {u}, and let Yij be the number
of times node v is visited by the i-th step of the j-th copy of the random walk. Let σunif be the uniform
distribution onQ, and letM = M

(i)
(G|Q, d) be the i-th power of the corresponding transition matrix. Note that

Mσunif = σunif, so rows of M have unit sums, so ‖Mτ‖∞ ≤ ‖τ‖∞ = O(1/|Q|). Consider the probability
space induced by the algorithm and τ . Then

E[Yij] = O
(

Pr
τ

[Xi = v]
)

= O ((M τ) · v) = O(1/|Q|).

1For each node v, the algorithm either does not touch the list of G-neighbors of v, or reads the entire list at once. In the latter
case we say that the algorithm visits node v.

2Node Xi sends a list of d addresses. However, in practice this list should fit in a very small number of packets.
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We get E(Zv) = O(kt/|Q|) by summing over all i ∈ [t] and j ∈ [k].

Lemma 5.7 and Lemma 5.8 are of independent interest in the context where for each node it is desirable
to have a small random sample of the entire network or an ”interesting” subset thereof.

5.3 Randomized Rings of Neighbors: Proof of Theorem 5.3

In this section we bring in the metric space dM and use Lemma 5.7 and Lemma 5.8 in a black-box way in
order to construct the Randomized Rings of Neighbors.

Overview of the algorithm. Our construction proceeds in dlog∆e stages. A given stage i ∈ [log∆] handles
distances on the scale of ∆/2i: this is when all (i+ 1)-th ring neighbors are constructed. Specifically, at the
beginning of stage i, the i-th ring neighbors of all nodes have already been constructed. For each node u,
they induce a low-degree expander Q on the ball B(u,i+1); this is essentially because they are conditionally
independent and distributed near-uniformly on the corresponding balls of radius ∆/2i. Node u selects its
(i+ 1)-th ring neighbors by executing independent random walks on Q; by the expansion property of Q in
order to guarantee near-uniformity it suffices to run these random walks for poly-log many steps. In fact,
we use Lemma 5.8 for the random walks. Note that we need to be careful to separate the random seeds used
in this lemma from the graph on which we do the random walk. For every node a large portion of the load
comes from helping other nodes choose their neighbors; one needs to be very careful to guarantee that no
node is overloaded by helping others.

Recall that V supports a metric dM of grid dimension α. For simplicity, let us assume that each node
knows exact values (not just constant-factor approximate upper bounds) for the following quantities: degree
of G, expansion of G, aspect ratio of dM, grid dimension of dM, and logn.

Let us set k = c 4αdlogne to be the ring cardinality, where the constant c is chosen at least large enough
so that the following property holds:

(P3) Consider any ball Bui and any ball B(v, i+1) ⊂ Bui. Suppose k nodes are chosen independently
from a near-uniform distribution on Bui. Then at least 3 logn of them land in B(v, i+1), with failure
probability at most 1/n4.

Note that in (P3) |Bui| ≤ 4α|B(v, i+1)| by Lemma 2.14, so c = O(1) does indeed suffice.
Recall that the rings of neighbors are described by random variables X(i)

ui , which are grouped in col-
lections Fi, see (5.1). We start by constructing F0 using Lemma 5.7 applied to the original connectivity
graph G. Such F0 clearly satisfies conditions (P1) and (P2). Since G is a O(logn)-degree expander, in
Lemma 5.7 we take t = O(log3 n), so for stage 0 the running time and (with high probability) the load are
2O(α)(log4 n), and the storage requirement isO(k).

The rest of the construction proceeds in stages, so that in stage i ≥ 0 we construct Fi+1 assuming
that we have already constructed Fi that satisfies (P1) and (P2). Let us partition the family Fi of random
variables into two subfamilies:

Fwalk
i =

{

X
(i)
uj : u ∈ V, j ∈ [k/2]

}

and F seed
i = Fi \ Fwalk

i .

We will invoke Lemma 5.8, independently for every node u. The underlying graph for the random walks
will come from Fwalk

i , and the random seeds will come from F seed
i . It is important that the random seed is

independent of Fwalk
i (conditionally, given Fi−1).

Let us define G∗
i to be the directed graph induced by Fwalk

i , namely a directed graph on V , possibly
with self-loops and multiple edges, which contains an edge uv whenever v = X

(i)
uj for some j ∈ [k/2].
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Let Gi be the undirected version of G∗
i . In proactive, to construct Gi each node u just contacts all of its

Fwalk
i -neighbors to let them know that they should store a link to u. Note thatGi has a low degree:

Claim 5.9. deg(Gi) ≤ O(k 2α) with high probability.

Proof. Condition on Fi−1 and consider the probability space induced by Fwalk
i . For a given node u, it

suffices to bound its in-degree in G∗
i . Note that vu ∈ G∗

i only if u ∈ Bvi or, equivalently, v ∈ Bui. Each
node v ∈ Bui has k links distributed near-uniformly on Bvi. Each of these links lands in u with probability
at most 2/|Bvi|, which is at most 2α/|Bui| by Lemma 2.14. The expected in-degree of u in G∗

i is thus
at most k 2α. The claim follows by Chernoff Bounds since by (P1) all links in G∗

i are independent given
Fi−1.

For a given node u, let us define Qu = B(u, i+1). We analyze the induced graph Gi|Qu:

Claim 5.10. The induced graphGi|Qu is an O(k)-degree expander with high probability.

Proof. Condition on Fi−1 and consider the probability space induced by Fwalk
i . Each node v ∈ Qu has

k out-links in G∗
i . Since Qu ⊂ Bvi, by (P2) each of these links lands into a given node w ∈ Qu with

probability at most 2/|Qu|. The expected in-degree of w in G∗
i |Qu is thus O(k). Since by (P1) all links

in G∗
i are independent given Fi−1, by Chernoff Bounds the in-degree of G∗

i |Qu is at most O(k) with high
probability, and consequently so is the degree of Gi|Qu. Moreover, by (P3) with high probability the out-
degree ofG∗

i |Qu is at least 3 logn, so by Theorem 2.4 with high probability graphGi|Qu is an expander.

By (P3) with high probability for each node u at least 3 logn nodes in F seed
i lie inside Qu. Pick one

such node at random, denote it Yu. For a given node u, let Au be the construction in Lemma 5.8 whereby
node u acquires the addresses of k near-random nodes. Specifically, we invoke this construction for subset
Q = Qu, underlying graph Gi, random seed Yu, and (by Claims 5.9 and 5.10) upper bounds

d = O(k 2α) and dQ = O(k) and t = O(k2 logn).

The overall construction for stage i is simple: each node u invokes algorithm Au and thereby acquires
the addresses of k nodes inQu, not necessarily distinct. Define X(i+1)

uj to be the j-th of these nodes. Clearly
properties (P1) and (P2) are satisfied. It remains to bound the per-node load.

Let Zvu be the quantity from Lemma 5.8(b), the number of times node v is ”visited” by algorithm Au.
Recall that Zvu = 0 whenever v 6∈ Qu or, equivalently, when u 6∈ Qv. Let us define Zv =

∑

u∈V Zvu, the
total number of times node v is visited by some Au. Let us bound Zv:

Claim 5.11. Zv is at mostO(kt 2α) in expectation, and at mostO(kt 2α logn) with high probability.3

Proof. Let us condition on Fi−1 and Fwalk
i (i.e. let us assume that those are fixed), and let us consider

the probability space induced by the random choices in F seed
i and in algorithms {Au : u ∈ V }. By

Lemmas 5.8(b) and 2.14, for each u ∈ Qv we have

E(Zvu) ≤ O(kt/|Qu|) ≤ O(kt 2α)/|Qv|,

so E(Zv) ≤ O(kt 2α). Since the random variables {Zvu : u ∈ Qv} are independent, the claim follows by
Chernoff Bounds.

3It seems we can shave off this factor of log n via a more careful analysis using the variance of Zvu.
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Let us fix some node w and partition the total load experienced by node w in a given stage into direct
load induced on w by algorithms Aw , and indirect load induced on w by algorithms Au, u 6= w. By
Lemma 5.8(b) the direct load on node w is O(kdt), and the indirect load on w is O

(∑

wv∈Gi
Zv

)

. By
Claims 5.9 and 5.11, the latter is at most O(k2t 4α) in expectation, and at most

T = O(k2t 4α logn) = O(210α log6 n)

with high probability. Summing over all stages, the total load isO(T logn) with high probability.
Let us bound the running time for a given stage. Recall that each message belongs to a particular step

of one of the random walks. To simplify the analysis, let us assume that whenever there is contention,
messages from earlier steps are given higher priority, and among messages from the same step, a given node
u gives higher priority to messages related to algorithm Au. Via the same analysis as above we can show
that during each step a given node receives at most T/t messages. It follows that in time O(T/t) a given
node u receives ”answers” to all messages sent by a given step of algorithmAu. Therefore the total running
time for a given stage is at most O(T ), as required. This completes the proof of Theorem 5.3.

5.4 Network Triangulation: Proof of Theorem 5.5

In this section we prove Theorem 5.5: we will use RRN to provide load-balanced constructions for (0, δ)-
triangulation on growth-constrained metrics.

Overview of the algorithm. As in the previous section, our construction proceeds in dlog ∆e stages so that
each stage i ∈ [log∆] handles distances on the scale of ∆/2i. First each node selects itself (independently
at random) as a level-i beacon; we make sure that level-i beacons are sufficiently dense on the scale of δr,
and yet sufficiently sparse on the scale of r. Then level-i beacons declare themselves to other nodes via
a special broadcast, so that each node (a) finds out about the nearby level-i beacons, (b) forms upper and
lower bounds on distances to these beacons. These bounds are not necessarily precise enough to guarantee
a sufficiently accurate triangulation. Thus we need an essential update step where each level-i beacon b
updates the distance estimates to all level j ≤ i− 2 beacons that it knows; this is accomplished by querying
all level-(i− 1) beacons that b is aware of. For every node a large portion of the load comes from helping
other nodes form their estimates. As in the previous section, one needs to be very careful to guarantee that
no node is overloaded by helping others.

For this section, we need the ring cardinality k to satisfy the following additional properties:

(P4) Consider some radius r and two nodes u, v at distance at most 4
3 r from each other. Suppose k nodes

are chosen independently from a near-uniform distribution onBu(2r). Then at least one of them lands
inBv(

2
3 r), with failure probability at most 1/n4.

(P5) Consider node u and radius r. Suppose each node v ∈ Bu(r) is selected k times, independently, with
probability at least 1/2|Bv(r)|. Then at least one node in Bu(r) is selected, with failure probability
at most 1/n4.

These properties is very similar to (P3), but are slightly different quantitatively. By Lemma 2.14
in (P5) we have |Bv(r)| ≤ 2α|Bu(r)|, so by Chernoff bounds the minimal k such that (P5) holds is
kb = O(2α logn); we will use this quantity kb later in the proof. Similarly, in (P4) we have |Bv(

2
3 r)| ≤

5α|Bu(4
3 r)|, so k = O(5α logn) suffices.

Consider the construction of RRN in Theorem 5.3, for the ring cardinality k = c 5αdlogne, where the
constant c is chosen at least large enough so that all three properties (P3), (P4) and (P5) hold. We describe
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the RRN by a collection of directed graphs G∗
i , i ∈ [log∆]: we define G∗

i to be the directed graph induced
by Fi, namely a directed graph on V , possibly with self-loops and multiple edges, which contains an edge
uv, of length dM(u, v), whenever v = X

(i)
uj for some j ∈ [k].

For two nodes u, v and i ∈ [log∆], a uv-path is i-telescoping if it consists of at most dlog ∆e edges
such that (for every j) the j-th edge of this path is in graphG∗

i+j and takes us within distance 4
3∆/2i+j from

v. The reason we introduced (P4) is the following simple corollary:

Claim 5.12. For any r = ∆/2i, i ∈ [log∆] and any two nodes u, v at distance at most 4
3 r from each other,

there exists an i-telescoping uv-path with high probability.

The algorithm proceeds in stages i = 0, 1, 2 , . . . , dlog∆e. Informally, a given stage i handles distance
scale r = ∆/2i. without loss of generality assume δ ≤ 2

9 , let δ be an integer power of two, and let
i0 = i− log δ. Each stage consists of three steps.

First step. In the first step, beacons are selected: each node u selects itself as an level-i beacon indepen-
dently with probability close to kb/|Bu(δr)|. Selection is implemented via random walks: we piggy-back
on the construction of RRN. Specifically, we set aside kb neighbors X(i0)

uj in the i0-th ring of u, and we
’select’ if and only if one of these neighbor is u itself.

The sole objective of beacon selection is to ensure that level-i beacons provide a good coverage on the
scale of δr, and yet are relatively sparse on the scale of r; the former is used to prove accuracy, and the latter
is used to bound load.

Claim 5.13. For each node u, with high probability (a) there is at least one level-i beacon in Bu(δr), and
(b) there are at most O(kb) (8/δ)α level-i beacons in Bu(4r).

Proof. Part (a) follows by (P5). Part (b) follows by Chernoff bounds since by Lemma 2.14 for any node
v ∈ Bu(2r) we have |Bu(2r)| ≤ (4/δ)α |Bv(δr)|.

Second step. In the second step, level-i beacons declare themselves to other nodes via a special broadcast.
This broadcast will involve at most 1 + dlog ∆e types of packets, numbered from 0 to dlog ∆e. Let Pb(j)

be a type-j broadcast packet from the special broadcast initiated by beacon b. Each beacon b initiates
his broadcast by sending packet Pb(i) to all its ring-(i− 1) neighbors. Each node stores a list of received
broadcast packets (without duplicates). Suppose a given node receives a type-j packet Pb(j). If j < dlog ∆e
and this node has not seen such packet before, it sends packet Pb(j + 1) to all its ring-j neighbors; else it
does nothing.

As a result of these broadcasts, each node u acquires the list Sui of i-level beacons whose broadcasts
it has received. For each beacon b ∈ Sui node u maintains upper and lower bounds on dM(u, b), denoted
D+(u, b) and D−(u, b), and initialized to, respectively,∞ and 0. They are updated in the third step using
distances between beacons. We will show that eventually we construct good estimates on distances to all
i-level beacons within distance (1 + δ) r from u.

The special broadcast described above has the following properties:

Claim 5.14. Consider the broadcast started by a level-i beacon b. This broadcast (a) reaches all nodes in
Bb(

4
3 r), (b) stays inside the ballBb(4r), (c) induces per-node load at mostO(k 2α logn).

Proof. For part (a) note that for each node u ∈ Bb(
4
3 r) the broadcast from beacon b follows each i-

telescoping bu-path; by Claim 5.12 at least one such path exists. For part (b), we prove by induction on
j that packet Pb(j) stays within distance 4r(1 − 2i−j−1) from beacon b. For part (c), recall that the in-
degree of G∗

j is O(k 2α) (see the proof of Claim 5.9), and note that a given node can receive a given packet
Pb(j) only from its in-neighbors inG∗

j−1, and only once from each.
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Claim 5.15. Consider the special broadcasts from all level-i beacons. The per-node load is at most
O(log4 n)(80/δ)α, and the total running time is at mostO(log5 n)(80/δ)α.

Proof. By Claim 5.14(b) a given node u receives broadcasts only from beacons within distance 4r from u.
By Claim 5.13 there are at most O(kb) (8/δ)α such beacons, so by Claim 5.14(c) the load on node u is at
most

L = O(k kb logn)(16/δ)α = O(log4 n)(80/δ)α.

Let us bound the running time by O(L logn) via the following rather crude argument. Recall that a given
node sends a given packet Pb(j) at most once. Say the special broadcasts start at time 0. By induction on j,
we claim that by time tj = O(L)(j − i + 1) all packets Pb(j) are sent and received. Indeed, if this is true
for some j, then after time tj a given node knows all packets Pb(j + 1) that it needs to send out, so it keeps
sending them unless it needs to pause and receive some other packet. It will be done by time tj + O(L)
since it can receive at most L packets.

Remark. Assuming a minimal synchronization, namely that first all packets Pb(i) are sent and received,
then all packets Pb(i+1), then all packets Pb(i+2) and so on, a given node can aggregate all packets Pb(j)

that it sends (for a given j) into a very small number of packets. Then both the load and the running time
become O(k 2α logn) = O(10α log2 n).

Third step. In the third step (for i > 0), each level-i beacon b measures distances to all level-(i − 1)

beacons that it knows, and for each j ≤ i− 2 updates distance estimates to all level-j beacons that it knows.
Specifically, each beacon b′ ∈ S(b, i−1) beacon b measures distance to b′, and receives from b′ its distance
estimates D±(b′, b∗) for each level-j beacon b∗ ∈ S(b′, j). Then whenever this level-j beacon b∗ also lies in
S(b, j), beacon b updates its distance estimatesD±(b, b∗):

{

D+(b, b∗) ← min (D+(b, b∗), D+(b′, b∗) + dM(b, b′))
D−(b, b∗) ← max (D−(b, b∗), D−(b′, b∗)− dM(b, b′)) .

(5.4)

This completes the description of the algorithm.
A straightforward corollary of the update rule (5.4) is that D± are indeed upper/lower bounds:

Claim 5.16. For any two nodes u, v we haveD−(u, v) ≤ dM(u, v) ≤ D+(u, v) at any point in the execution
of the algorithm.

Note that in the last stage, every node is a level-dlog∆e beacon with high probability. In particular, each
node u forms boundsD±(u, b) for every beacon b ∈ ∪jSuj , which form the node label in triangulation. By
Claim 5.14(b) and 5.13 the degree of this triangulation is

| ∪j Suj | ≤ O(kb logn)(8/δ)α = O(log2 n) (16/δ)α.

It remains to show that our triangulation obtains the desired precision. To this end, let us first consider the
distances to beacons:

Lemma 5.17. Fix level i ∈ [log∆] and let r = ∆/2i. Then for each node u and each level-i beacon
b ∈ Bu((1 + δ) r) the boundsD±(u, b) are off from dM(u, b) by at most the additive factor of 2δr.

Proof. By Claim 5.13(a) for every level j ∈ [log∆] there exists a level-j beacon bj ∈ Bu(δr/2j−i).
First, recall that we assume δ ≤ 2/9, and so for each j > i we have

dM(b, bj) ≤ dM(u, b) + dM(u, bj) = r(1 + δ) + δr/2 ≤ 4r/3.
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By Claim 5.14(a) it follows that each bj, j > i receives the broadcast from beacon b. In particular, beacon
bi+1 measures the distance to b.

Second, note that for each j

dM(bj, bj+1) ≤ dM(u, bj) + dM(u, bj+1) ≤ 3δr/2j+1−i ≤ r/2j−i,

so by Claim 5.14(a) beacon bj+1 receives the broadcast from bj and, consequently, measures the distance to
bj . Now by induction on j we can show that each beacon bj , j ≥ i+ 1 forms bounds D±(bj , b) that are at
least as good as

D±(bj, b) = dM(b, bi+1)±
j−1
∑

l=i+1

dM(bl, bl+1).

Finally, recall that with high probability node u is a level-j beacon for j = dlog∆e. By the above
equation,

D+(u, b)≤ dM(u, b) + 2

j
∑

l=i+1

dM(u, bl) ≤ dM(u, b) + 2

j
∑

l=i+1

δ∆/2l ≤ dM(u, b) + 2δr,

and similarlyD−(u, b) ≥ dM(u, b)− 2δr as required.

Now we use Claim 5.14(a) and Lemma 5.17 to prove the desired accuracy.

Lemma 5.18. For any two nodes u, v we have D+(u, v)/D−(u, v) ≤ 1 +O(δ).

Proof. Let us consider the distance scale i defined as the smallest i such that r := ∆/2i ≥ dM(u, v). By
Claim 5.14(a) there exists an i-level beacon b ∈ Bv(δr). Then dM(u, b)≤ r(1+δ), so by Lemma 5.17 both
D±(u, b) and D±(v, b) are off from their respective true values by no more than the additive factor of 2δr.
It follows that

D+(u, v) ≤ D+(u, b) +D+(v, b)≤ dM(u, b) + dM(v, b) + 4δr ≤ dM(u, v) + 6δr,

and similarlyD−(u, v) ≥ dM(u, v)− 6δr.

This completes the proof of Theorem 5.5.



Chapter 6

Location-aware node selection via Rings of
Neighbors

In this chapter we discuss our work on Meridian [WSS05], a framework for performing node selection
based on network location.1 Meridian is a lightweight, scalable, and accurate system for keeping track of
location information for participating nodes that does not require computing virtual coordinates a la [NZ02,
DCKM04]. The system is simple, loosely-structured, and entails modest resources for maintenance. It can
efficiently find the closest node to a target, the latency minimizing node to a given set of nodes, and the set
of nodes that lie in a region defined by latency constraints, which are frequently encountered building block
operations in many location-sensitive distributed systems. Although less general than virtual coordinates,
Meridian is significantly more accurate.

In Section 6.1 we outline the system, and then proceed with the analysis that shows that Meridian
provides robust performance, high scalability and good load balance. We include several figures describing
the functioning of the system and some of the experimental results, but for a much more comprehensive
description of the system and experimental results, see the original paper [WSS05] and the forthcoming
thesis work of Bernard Wong.

6.1 Meridian: a framework for location-aware node selection

Selecting nodes based on their location in the network is a basic building block for many high-performance
distributed systems. In small systems, it is possible to perform extensive measurements and make decisions
based on global information. For instance, in an online game with few servers, a client can simply measure
its latency to all servers and bind to the closest one for minimal response time. However, collecting global
information is infeasible for a significant set of recently emerging large-scale distributed applications, where
global information is unwieldy and lack of centralized servers makes it difficult to find nodes that fit selection
criteria. Yet many distributed applications, such as filesharing networks, content distribution networks,
backup systems, anonymous communication networks, pub-sub systems, discovery services, and multi-
player online games could benefit substantially from selecting nodes based on their location in the network.

A general technique for finding nodes that optimize a given network metric is to perform a network
embedding, that is, to map high-dimensional network measurements into a location in a smaller Euclidean

1We use the term “location” to refer to a node’s placement in the Internet as defined by its round-trip latency to other nodes.
While we do not assume that there is a well-defined location for any node, our illustrations depict a single point in a two-dimensional
space for clarity.
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space. For instance, recent work in network positioning [NZ02, NZ04, DCKM04, LHC03, TC03, ST03,
PCW+03, CCRK04, LL04] uses large vectors of node-to-node latency measurements on the Internet to
determine a corresponding single point in a d-dimensional space for each node. The resulting embedded
address, a virtual coordinate, can be used to select nodes.

While the network embedding approach is applicable for a wide range of applications, it is neither accu-
rate nor complete. The embedding process typically introduces significant errors. Selection of parameters,
such as the constant d, the set of measurements taken to perform the embedding, the landmarks used for
measurement, and the timing interval in which measurements are taken, is nontrivial and has a significant
impact on the accuracy of the approach. Further, coordinates need to be recomputed as network latencies
fluctuate. In addition, complex mechanisms besides virtual coordinates are required to support large-scale
applications. Simple schemes, such as centralized servers that retain O(N) state or naive algorithms with
O(N) running time, are unsuitable for large-scale networks. Peer-to-peer substrates that can naturally work
with Euclidean coordinates and support range queries, such as CAN [RFH+01], Mercury [BAS04] and P-
Trees [CLGS04], can reduce the state requirements per node; however, these systems introduce substantial
complexity and bandwidth overhead in addition to the overhead of network embedding. The simulation
results in [WSS05] show that, even with a P2P substrate that always finds the best node based on virtual
coordinates, the embedding error leads to a suboptimal choice.

In [WSS05] we introduce a lightweight, scalable and accurate framework, called Meridian, for perform-
ing node selection based on network location. Meridian forms a loosely-structured overlay network, uses
direct latency measurements instead of latency estimates from virtual coordinates, and can solve spatial
queries without an absolute coordinate space.

The basic Meridian framework is based around three mechanisms: a loose routing system based on
multi-resolution rings on each node, an adaptive ring membership replacement scheme that maximizes the
usefulness of the nodes populating each ring, and a gossip protocol for node discovery and dissemination.

Multi-resolution rings. Each Meridian node keeps track of a small, fixed number of other nodes in the
system, and organizes this list of peers into concentric, non-overlapping rings. The ith ring has inner radius
ri = αsi−1 and outer radius Ri = αsi, for i > 0, where α is a constant, s is the multiplicative increase
factor, and r0 = 0, R0 = α for the innermost ring. Each node keeps track of a finite number of rings; all
rings i > i∗ for a system-wide constant i∗ are collapsed into a single, outermost ring that spans the range
[αsi

∗

,∞].
Meridian nodes measure the distance dj to a peer j, and place that peer in the corresponding ring i such

that ri < dj ≤ Ri. This sorting of neighbors into concentric rings is performed independently at each node
and requires no fixed landmarks or distributed coordination. Each node keeps track of at most k nodes in
each ring and drops peers from overpopulated rings. Consequently, Meridian’s space requirement per node
is proportional to k. We later show in the analysis that a choice of k = O(logN) can resolve queries in
O(logN) lookups; the simulations verify that a small k suffices. We assume that every participating node
has a rough estimate of logN .

The ring structure with its exponentially increasing ring radii favors nearby neighbors, enabling each
node to retain a relatively large number of pointers to nodes in their immediate vicinity. This allows a
node to authoritatively answer geographic queries for its region of the network. At the same time, the ring
structure ensures that each node retains a sufficient number of pointers to remote regions, and can therefore
dispatch queries towards nodes that specialize in those regions. An exponentially increasing radius also
makes the total number of rings per node manageably small.

Ring membership management. The number of nodes per ring, k, represents an inherent tradeoff be-
tween accuracy and overhead. A large k increases a node’s information about its peers and helps it make
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Figure 6.1: Each Meridian node keeps track of a fixed number of other nodes and organizes these nodes into
concentric, non-overlapping rings of exponentially increasing radii.

better choices when routing queries. On the other hand, a large k also entails more state, more memory and
more bandwidth at each node.

Within a given ring, node choice can have a significant effect on the performance of the system. A set
of ring members that are geographically distributed provides much greater utility than a set of ring members
that are clustered together, as shown in Figure 6.1. Intuitively, nodes that are geographically diverse instead
of clustered together enable a node to forward a query to a greater region. Consequently, Meridian strives to
promote geographic diversity within each ring.

Meridian achieves geographic diversity by periodically reassessing ring membership decisions and re-
placing ring members with alternatives that provide greater diversity. Within each ring, a Meridian node not
only keeps track of the k primary ring members, but also a constant number l of secondary ring members,
which serve as a FIFO pool of candidates for primary ring membership.

We quantify geographic diversity through the hypervolume of the k-polytope formed by the selected
nodes. To compute the hypervolume, each node defines a local, non-exported coordinate space. A node
i will periodically measure its distance di

j to another node j in the same ring, for all 0 ≤ i, j ≤ k + l.
The coordinates of node i consist of the tuple 〈di

1, d
i
2, ..., d

i
k+l〉, where di

i = 0. This embedding is trivial
to construct and does not require a potentially error-introducing mapping from high-dimensional data to a
lower number of dimensions.

Having computed the coordinates for all of its members in a ring, Meridian nodes then determine the
subset of k nodes that provide the polytope with the largest hypervolume. For small k, it is possible to
determine the maximal hypervolume polytope by considering all possible polytopes from the set of k + l

nodes. For large k + l, evaluating all subsets is infeasible. Instead, Meridian uses a greedy algorithm: A
node starts out with the k+l polytope, and iteratively drops the vertex (and corresponding dimension) whose
absence leads to the smallest reduction in hypervolume until k vertices remain. The remaining vertices are
designated the new primary members for that ring, while the remaining l nodes become secondaries. This
computation can be performed in linear time using standard computational geometry tools [BDH96]. The
ring membership management occurs in the background and its latency is not critical to the correct operation
of Meridian. Note that the coordinates computed for ring member selection are used only to select a diverse
set of ring members; they are not exported by Meridian nodes and play no role in query routing.

Churn in the system can be handled gracefully by the ring membership management system due to the
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loose structure of the Meridian overlay. If a node is discovered to be unreachable during the replacement
process, it is dropped from the ring and removed as a secondary candidate. If a peer node is discovered to
be unreachable during gossip or the actual query routing, it is removed from the ring, and replaced with a
random secondary candidate node. The quality of the ring set may suffer temporarily, but will be corrected
by the next ring replacement. Discovering a peer node failure during a routing query can reduce query
performance; k can be increased to compensate for this expected rate of failure.

Gossip-based node discovery. The use of a gossip protocol to perform node discovery allows the Merid-
ian overlay to be loosely connected, highly robust and inexpensively kept up-to-date of membership changes.
Our gossip protocol is based on an anti-entropy push protocol [DGH+87] that implements a membership
service. The central goal of our gossip protocol is for each node to discover and maintain a small set of
pointers to a sufficiently diverse set of nodes in the network. Our gossip protocol works as follows:

1. Each nodeA randomly picks a nodeB from each of its rings and sends a gossip packet toB containing
a randomly chosen node from each of its rings.

2. On receiving the packet, node B determines through direct probes its latency to A and to each of the
nodes contained in the gossip packet from A.

3. After sending a gossip packet to a node in each of its rings, node A waits until the start of its next
gossip period and then begins again from step 1.

In step 2, node B sends probes to A and to the nodes in the gossip packet from A regardless of whether
B has already discovered these nodes. This re-pinging ensures that stale latency information is updated, as
latency between nodes on the Internet can change dynamically. The newly discovered nodes are placed on
B’s rings as secondary members.

For a node to initially join the system, it needs to know the IP address of one of the nodes in the Meridian
overlay. The newly joining node contacts the Meridian node and acquires its entire list of ring members. It
then measures its latency to these nodes and places them on its own rings; these nodes will likely be binned
into different rings on the newly joining node. From there, the new node participates in the gossip protocol
as usual.

The period between gossip cycles is initially set to a small value in order for new nodes to quickly
propagate their arrival to the existing nodes. The new nodes gradually increase their gossip period to the
same length as the existing nodes. The choice of a gossip period depends on the expected rate of latency
change between nodes and expected churn in the system.

Maintenance overhead. The average bandwidth overhead to maintain the multi-resolution rings of a
Meridian node is modest. The number of gossip packets a node receives is equal to the number of neighbors
(m logN) multiplied by the probability of being chosen as a gossip target by one of the neighbors ( 1

logN ),
wherem is the number of rings in the ring-set. A node should therefore expect to send and receive m gossip
packets and to initiate m2 probes per gossip period. A node is also the recipient of probes from neighbors
of its neighbors. Since it has m logN neighbors, each of which sendsm gossip packets, there are m2 logN
gossip packets with a 1

log N probability of containing a reference to it. Therefore, a node expects to receive
m2 probes from neighbors of its neighbors. Assuming m = 9, a probe packet size of 50 bytes, two packets
per probe, and a gossip packet size of 100 bytes, membership dissemination consumes an average of 20.7
KB/period of bandwidth per node. For a gossip period of 60 seconds, the average overhead associated with
gossip is 345 B/s, and is independent of system size.
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Figure 6.2: A client sends a “closest node discovery to target T” request to a Meridian node A, which
determines its latency d to T and probes its ring members between (1− β) · d and (1 + β) · d to determine
their distances to the target. The request is forwarded to the closest node thus discovered, and the process
continues until no closer node is detected.

There is also maintenance overhead for performing ring management. In every ring management period
where the membership of one ring is re-evaluated, 2 logN requests are sent, 2 logN are received, 4 log2N
probes are sent, and 4 log2N are received. Assuming two packets are necessary per request and per probe,
the size of a probe request packet is 100 bytes and a probe packet is 50 bytes, and a 2000 node system with 16
nodes per ring, ring management consumes an average of 218 KB/period. For a ring management period of
5 minutes, the average overhead associated with ring management is 727 B/s. This analysis conservatively
assumes that all primary and secondary rings of all nodes are full, which is unlikely in practice.

Application: closest node discovery. Meridian locates the closest node by performing a multi-hop search
where each hop exponentially reduces the distance to the target. This is similar to searching in structured
peer-to-peer networks such as Chord [SMK+01], Pastry [RD01] and Tapestry [ZHR+04], where each hop
brings the query exponentially closer to the destination, though in Meridian the routing is performed using
physical latencies instead of numerical distances in a virtual identifier space. Another important distinction
that Meridian holds over the structured peer-to-peer networks is the target node need not be part of the
Meridian overlay. The only requirement is that the latencies between the nodes in the overlay and the target
node are measurable. This enables applications such as finding the closest node to a public web server,
where the web server is not directly controlled by the distributed application and only responds to HTTP
queries.

When a Meridian node receives a request to find the closest node to a target, it determines the latency
d between itself and the target. Once this latency is determined, the Meridian node simultaneously queries
all of its ring members whose distances are within (1 − β) · d to (1 + β) · d. These nodes measure their
distance to the target and report the result back to the Meridian node. Nodes that take more than (2β+1) ·d
to provide an answer are ignored, as they are more than βd away from the target.

Meridian uses an acceptance threshold β, which determines the reduction in distance at each hop. The
route acceptance threshold is met if one or more of the queried peers is closer than β times the distance to
the target, and the client request is forwarded to the closest node. If no peers meet the acceptance threshold,
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Figure 6.3: A multi-constraint query consisting of targets A,B, C with respective latency constraints of
αa, αb, αC . The shaded area represents the solution space.

then routing stops and the closest node currently known is chosen. Figure 6.2 illustrates the process.
Meridian is agnostic to the choice of a route acceptance threshold β, where 0 ≤ β < 1. A small β value

reduces the total number of hops, as fewer peers can satisfy the requirement, but introduces additional error
as the route may be prematurely stopped before converging to the closest node. A large β reduces error at
the expense of increased hop count.

Application: central leader election. Another frequently encountered problem in distributed systems is
to locate a node that is “centrally situated” with respect to a set of other nodes. Typically, such a node
plays a specialized role in the network that requires frequent communication with the other members of the
set; selecting a centrally located node minimizes both latency and network load. An example application
is leader election, which itself is a building block for higher level applications such as clustering and low
latency multicast trees.

The central leader election application can be implemented by extending the closest node discovery
protocol. We replace d in the single target closest node selection protocol with davg for central leader
election. When a Meridian node receives a client request to find the closest node to the target set T , it
determines the latency set {d1, ..., d|T |} between itself and the targets through direct measurements, and
computes the average latency davg = (

∑|T |
i=1 di)/|T |. It selects ring members that have latency between

(1− β) ∗min{d1, ..., d|T |} and (1 + β) ∗max{d1, ..., d|T |} to itself, and requests these peers to.determine
their respective average latency to the targets. The remaining part of the central leader election application
follows exactly from the closest node discovery protocol.

Changing the latency aggregation function from taking the average of the latencies to the highest latency
target is a useful variation to the protocol, as it reduces the difference in latency between the targets to the
chosen node. This is useful in multi-player online games, as a player with a significantly lower latency to
the game server than the others has an unfair advantage because it is the first to receive and react on game
events.
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Application: multi-constraint queries. Another frequent operation in distributed systems is to find a set
of nodes satisfying constraints on the network geography. For instance, an ISP or a web hosting service is
typically bound by a service level agreement (SLA) to satisfy latency requirements to well-known peering
locations when hosting services for clients. A geographically distributed ISP may have thousands of nodes
at its disposal, and finding the right set of nodes that satisfy the given constraints may be necessary for
fulfilling an SLA. Latency constraints are also important for grid based distributed computation applications,
where the latency between nodes working together on a problem is often the main efficiency bottleneck. A
customer may want to specify that ∀q, p ∈ P where P is the set of grid nodes, dq,p < γ for some desired
latency γ.

Finding a node that satisfies multiple constraints can be viewed as a node selection problem, where the
constraints define the boundaries of a region in space (the solution space), as illustrated in Figure 6.3. A
constraint is specified as a target and a latency bound around that target. When a Meridian node receives
a multi-constraint query with u constraints specified as 〈targeti, rangei〉, for all 0 < i ≤ u, it measures its
latency di to the target nodes and calculates its distance to the solution space as

s =

u
∑

i=1

max(0, di− rangei)
2

If s is 0, then the current node satisfies all the constraints, and it returns itself as the solution to the
client. Otherwise, it iterates through all its peers, and simultaneously queries all peers j that are within
max(0, (1− β) · (di − rangei)) to (1 + β) · (di + rangei) from itself, for all 0 < i ≤ u. These nodes
include all the peers that lie within the range of at least one of the constraints, and possibly other peers
that do not satisfy any of the constraints, but are nevertheless close to the solution space. These peer nodes
measure their distance to the u targets and report the results back to the source. Nodes that take longer than
max0<i≤u((2β + 1) · (di + rangei)) to provide an answer are ignored.

The distance sj of each node j to the solution space is calculated using the metric s defined above. If sj
is 0, then node j satisfies all the constraints and is returned as a solution to the client. If no zero valued sj
is returned, the client determines whether there is an sj < β · s, where β is the route acceptance threshold.
If the route acceptance threshold is met, the client request is forwarded to the peer closest to the solution
space. A larger β may increase the success rate, at the expense of increased hops.

6.2 Analysis of scalability

In this section we argue analytically that Meridian scales well with the size of the system. Our contribu-
tions are three-fold. First, we put forward a rigorous definition that captures the quality of Meridian ring
sets, and prove that under certain reasonable assumptions small ring cardinalities suffice to ensure good
quality. Second, we show that with these good-quality rings, our algorithms for nearest neighbor selection
and central leader election work well, returning near-exact neighbors and central leaders respectively. We
provide further results on exact nearest neighbors. Finally, we argue that if the ring sets of different nodes
are stochastically independent then the system is load-balanced.

We model the matrix of Internet latencies as a metric, i.e. a symmetric function obeying the triangle
inequality. We should not hope to achieve theoretical guarantees for arbitrary metrics; we need some rea-
sonable assumptions to capture the properties of real-life latencies. We avoid assumptions on the geometry
of the metric such as assuming it is Euclidean for two reasons. Firstly, recent experimental results suggest
that approximating Internet latencies by Euclidean metrics, although a useful heuristic in some cases, in-
curs significant relative errors [NZ02, DCKM04, LHC03, TC03, ST03, PCW+03, CCRK04, NZ04, LL04].
Secondly, and perhaps more importantly, even if we assume that the metric is Euclidean our algorithm is
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not allowed to use the coordinates since one of the goals of this work is precisely to avoid heavy-weight
embedding-based approaches.

We will consider two families of metrics that have been popular in the recent theoretical literature as
non-geometric notions of low-dimensionality: growth-constrained metrics and doubling metrics.

We focus on the case when the rate of churn and fluctuations in Internet latencies is sufficiently low so
that Meridian has ample time to adjust. So for the purposes of this analysis we assume that the node set and
the latency matrix do not change with time.

This section is organized as follows. We start with a formal description of the Meridian framework
(Section 6.2.1). We proceed with a section on the quality of Meridian rings (Section 6.2.2). Then we
analyze the performance our search algorithms (Section 6.2.3), with extensions to exact nearest neighbors
(Section 6.2.4) and load-balancing (Section 6.2.5). We conclude with some directions in which our results
can be fine-tuned (Section 6.2.6). To improve the flow of the section, some of the more involved proofs are
moved to the next three sections.

6.2.1 Formal description of the Meridian framework

Let V be the set of all nodes in the system. Nodes running Meridian are called Meridian nodes. Let SM ⊂ V
be the set of Meridian nodes, of size N . Let d be the distance function on V induced by the node-to-node
latencies: d(u, v) is the uv-distance, i.e. the latency between nodes u and v. Sometimes, when this is
typographically convenient, we may also denote it as duv .

Let Bu(r) denote the closed ball in SM of radius r around node u, i.e. the set of all Meridian nodes
within distance r from u. DefineBui = Bu(2i) andRui = Bui\B(u,i−1). ThenRui’s are disjoint concentric
rings around u. Without loss of generality let the smallest distance be 1; denote the maximal distance by ∆.

Throughout this section we will denote the maximal number of nodes in a Meridian ring by k. Formally,
for some fixed k every node u maintains log(∆) sets Sui ⊂ Bui, 0 ≤ i ≤ dlog ∆e of at most k nodes
each. These sets are called m-rings of u (‘m’ stands for ‘Meridian’), and the nodes in these sets are called
Meridian neighbors of u. If |Rui| ≥ k then the corresponding m-ring Sui consists of exactly k nodes that
lie in ring Rui. If |Rui| < k < |Bui| then Sui consists of all nodes in Rui. Finally, if |Bui| ≤ k then Sui

consists of all nodes in ball Bui.
Let us make some remarks about the above definition. Note that each m-ring Sui contains all Meridian

neighbors of u that lie in ring Rui. For a fixed Meridian node u, let i0 be the largest i such that Bui ≤ k,
and let i1 be the largest i such that Rui ≤ k. Then the m-rings Sui, i ≤ i1 are fixed by the above definition,
whereas the m-rings Sui, i > i1 are not. Also, in the implementation we do not need to maintain m-rings
Sui, i ≤ i0 explicitely; we define them here for the convenience of the analysis.

Let us formally define the nearest-neighbor search algorithm used in Meridian. Suppose a node u re-
ceives a query to a target node t. Then u measures the distance dut and looks at the three m-rings S(u,i−1),
Sui and S(u,i+1), where i = dlogdute; let S be the union of these rings. All nodes in S measure their dis-
tance to t and report their measurements to u. Then u forwards the query to the node w ∈ S that is closest
to the target t subject to the constraint that dut/dwt ≤ β0. This constitutes one step of the algorithm.

If such w does not exist, the algorithm chooses the node in S ∪ {u} that is closest to t, call it w′, reports
this node to the node that initiated the query, and stops; in this case we say that as a result of the query, our
algorithm finds w′. Here β0 > 1 is a parameter that is the same for all nodes that handle a given query. We
denote this algorithm by A(β0).

For the sake of the analysis we will also consider a version of A(β0) where instead of looking at three
m-rings we look at all m-rings Sui, i ≤ 1 + dlogdute. We denote this version by A∗(β0).

Let us define the approximation ratio γ for nearest neighbor selection algorithms. Consider a node t
and let v be its nearest neighbor. Say node u is a γ-approximate nearest neighbor of t if dut/dvt ≤ γ. An
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Figure 6.4: The efficiency of ring member selection can be measured through latency ratio: for a given
ordered pair (u, v) of Meridian nodes, this ratio is defined as d(w, v)/d(u, v), where w is the Meridian
neighbor of u that is closest to v. In particular, for 80% node pairs the latency ratio is less than .5.

algorithm is γ-approximate if for any target it finds a γ-approximate nearest neighbor.
It is straightforward to generalize the algorithms A(·) and A∗(·) to the central leader election problem.

Namely, given a set T of targets, we simply replace dut, the distance to from the current node u to target
t, by the average distance from u to targets in T . Note that we are back to the nearest neighbor selection
problem if |T | = 1. The concept of approximation ratio generalizes similarly.

6.2.2 Quality of the Meridian rings

Intuitively, we want each m-ring Sui to cover the corresponding ring Rui reasonably well: we want each
node in Rui to be within a small distance from some node in Sui. For technical reasons in order to cover
Rui we might also need some Meridian neighbors from S(u,i−1) or S(u,i+1). We formalize the ’goodness’
of m-rings is as follows:

Definition 6.1. Say the Meridian rings are ε-nice, ε < 1, if for any two Meridian nodes u, v ∈ SM node u
has a Meridian neighbor w such that d(w, v)≤ ε d(u, v).

In the above definition v ∈ Rui for i = dlog duve. Since 2i−2 < duw < 2i+1, nodew is indeed contained
in one of the three m-rings S(u,i−1), Sui, S(u,i+1) that are considered by algorithmA(·).

In Section 6.2.3 we will how that under Definition 6.1, the Meridian search algorithm achieves good
approximation guarantees. Later in this section we show that even for small cardinalities of m-rings it is
possible to make them ε-nice; this is confirmed by the empirical evidence (see Figure 6.4).

Probabilistic interpretation. To show that the m-rings are indeed ε-nice, recall that the m-rings are con-
structed by an underlying randomized gossiping protocol. For each m-ring Sui, this protocol induces a
probability distribution over subsets of SM , so we can treat Sui as a random variable (whose values are
subsets of SM ). In particular, we can talk about the distribution of a given m-ring. A natural and intuitively
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appealing distribution for an m-ring Sui is that of a random k-node subset of the corresponding ring Rui.
Let us formalize this:

Definition 6.2. Sui is well-formed if its distribution is that of a random k-node subset ofRui, or if |Rui| ≤ k.

We proceed to show that if the m-rings are well-formed then even for a small value of k they are ε-nice;
we model Internet latencies by growth-constrained metrics. Furthermore, we achieve a similar conclusion
for a much more general family of doubling metrics.

Growth-constrained metrics. We show that even with small ring cardinalities it is possible to make the
rings ε-nice. We consider a model where the metric on the Meridian nodes is growth-constrained, but
we make no such assumption about the non-Meridian nodes. This is important because even in a quite
unfriendly metric we might be able to choose a relatively well-behaved subset of (Meridian) nodes. We will
also assume that the rings are well-formed. Intuitively, this is desirable since in a growth-constrained metric
the density is approximately uniform.

Theorem 6.3. Let the metric on SM have grid dimension α. Fix δ ∈ (0, 1) and ε ≤ 1; let the cardinality
of a Meridian ring be k = O(1

ε )
α log(N/δ). Suppose the Meridian rings are created by a random process

and are well-formed (but not necessarily independent). Then with probability at least 1− δ they are ε-nice.

Proof. Fix two Meridian nodes u, v. Recall that we are looking for a Meridian neighbor w of node u such
that dvw ≤ duv . Let r = εduv and pick the smallest i such that duv + r ≤ 2i. Then

Bui ⊂ Bv(2
i + duv) ⊂ Bv(2

i+1 − r) = Bv(γr), (6.1)

where γ = 4 + 3/ε. By definition of the grid dimension

|Bui| ≤ |Bv(γr)| ≤ γα|Bv(r)|. (6.2)

Since Bu(r) lies in Rui ∪ R(u,i−1), and the corresponding m-rings Sui and S(u,i−1) are well-formed, at
least one node from these two m-rings lands inBv(r) with some (small) failure probability p. We claim that
p is very small, namely p < δ/N2. Indeed, note that p is upper-bounded by the probability of not hitting
Bv(r) if we select k nodes uniformly at random from a larger set Bui. By (6.2) and the Chernoff Bounds
the latter probability is at most δ/N2, claim proved.

Recall that p is a failure probability for a given ordered node pair. By Union Bound, the probability that
any node pair fails is at most p ·N2 < δ, as required.

Doubling metrics. For doubling metrics the notion of well-formed rings is no longer adequate, since we
might need to boost the probability of selecting a node from a sparser region. In fact, this is precisely the
goal of our ring-membership management in Section 6.1. Fortunately, mathematical literature provides a
natural way to formalize this intuition.

Recall that a measure is s-doubling [Hei01] if for any ballB, the measure of B is at most s times larger
than that of a ball with the same center and half the radius. Intuitively, a doubling measure is an assignment
of weights to nodes that makes a metric look growth-constrained; for instance, for an N -node exponential
line the node with coordinate 2i will have weight 2i−N . It is known [Hei01] that for any metric of doubling
dimension α there exists a 2O(α)-doubling measure µ.

With a doubling measure in mind, we extend Definition 6.2 (of well-formed m-rings) as follows:

Definition 6.4. Consider a measure µ on nodes that assigns a finite non-zero probability to every node.
Say than an m-ring Sui is µ-well-formed if its distribution is that of a random k-node subset of Rui drawn
according to the measure µ(·)/µ(Rui), or if |Rui| ≤ k.
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Figure 6.5: An increase in β := 1/β0 significantly improves accuracy for β ≤ 0.5. The average query
latency increases with increasing β, as a bigger β increases the average number of hops taken in a query.

Now we obtain the guarantee in Theorem 6.3 (via a similar proof technique), where instead of well-
formed m-rings we use µ-well-formed m-rings, and instead of the grid dimension we plug in a potentially
much smaller doubling dimension of SM .

Theorem 6.5. Suppose the metric on SM has doubling dimensionα, and let µ be a 2α-doubling measure on
SM . Fix δ ∈ (0, 1) and ε ≤ 1; let the cardinality of a Meridian ring be k = (1

ε )
O(α) log(N/δ). Suppose the

Meridian rings are created by a random process and are µ-well-formed (but not necessarily independent).
Then with probability at least 1− δ they are ε-nice.

Proof. Fix two Meridian nodes uv and let r = εduv . Pick the smallest i such that duv + r ≤ 2i. By (6.1),
applying the definition of a doubling measure logγ times gives

µ[Bui ]/µ[Bv(r)] ≤ 2O(α logγ) = γO(α). (6.3)

In the proof of Theorem 6.3, we essentially consider the special case when µ is the uniform measure,
and use (6.2) to show that at least one node from Sui or S(u,i−1) lands in Bv(r), with failure probability
at most δ/N2 (and then the theorem follows by the Union Bound). Using (6.3) instead of (6.2), this proof
trivially generalizes to any µ.

6.2.3 Nearest neighbors and central leaders

We prove that the Meridian algorithm for nearest neighbor selection and (more generally) for central leader
election achieves good approximation ratios, under the assumption that the Meridian rings are ε-nice. Specif-
ically, algorithmA(2) is 3-approximate, for any ε ≤ 1

8 . A better approximation ratio can be proved for algo-
rithmA∗(β0); the provable accuracy of this algorithm tends to improve as β0 and ε get smaller. The tradeoff
between β0 and the approximation ratio matches our simulation results (see Figure 6.5). We summarize
these results as follows:

Theorem 6.6. Suppose the Meridian rings are ε-nice, for some ε ≤ 1
4 . Consider Meridian algorithmsA(2)

and A∗(·) for nearest-neighbor search and, more generally, for central leader election. Then:
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(a) algorithmA(2) is 3-approximate, for any ε ≤ 1
8 ; completes in dlog ∆e steps.

(b) algorithmA∗(1 + ε2) is (1 + 3ε)-approximate; completes in dlog(∆/ε2)e steps.

(c) algorithmA∗(1 + γ) is (1 + 3ε+ γ)-approximate, for any γ ∈
[

ε2; 2
5

]

;
completes in dlog(∆/γ)e steps.

Proof Sketch. Let T be the set of targets, and let dT (u) be the average distance from node u to the targets
in T . Let v∗ be the central leader, i.e. the Meridian node that minimizes dT . For a node u, let r(u) =

dT (u)/dT(v∗) be the approximation ratio. If the query is forwarded from node u to node v, we say that the
progress at u is dT (u)/dT(v).

For part (a) we show that the progress is at least 2 at every node u such that r(u) ≥ 3, so in at most
log∆ steps we reach some node v such that r(v) < 3.

For parts (bc) we define a function f(x) which is continuously increasing from f(1) < 1+3ε to infinity,
and show that algorithm A(β0) achieves progress x ≥ β0 at any node u such that r(u) = f(x). The query
is thus forwarded from node u to some node v such that dT (v) ≤ dT (u)/x; it follows that r(v) ≤ f(x)/x.

The query proceeds in two stages. In the first stage the progress at each node is x ≥ 2; in at most log∆

steps we reach some node u such that r(u) < f(2). For the second stage, the progress can be less that 2.
The crucial observation is that f(1 + y)/(1 + y) ≤ f(1 + y/2) for any y ≤ 1. Therefore if for the current
node r(·) is f(1 + y), then for the next node it is at most f(1 + y/2).

If β0 = 1 + γ then iterating this log 1
γ times we reach a node such that r(·) ≤ f(1 + γ/2). For part (c)

we note that f(1+γ/2)< 1+3ε+γ. For part (b) we take γ = ε2 and note that f(1+ ε2/2) ≤ 1+3ε.

6.2.4 Extensions: exact nearest neighbors

We extend our result on growth-constrained metrics (Theorem 6.3 in conjunction with Theorem 6.6) to show
that a version of algorithmA(2) finds exact nearest neighbors.

We will use a somewhat more restrictive model: in addition to assuming that the metric on the set
SM of Meridian nodes is growth-constrained, we will need a similar assumption about the set Q ⊂ V

of potential targets. Specifically, we consider two settings. In one setting, we assume that the metric on
Q is growth-constrained, and that the set SM of Meridian nodes is chosen uniformly at random from Q.
In the other setting we make a more fine-grained assumption: we assume that the metric on SM ∪ {q} is
growth-constrained, for any target q ∈ Q. Note that here we do not assume that the metric on all of Q is
growth-constrained; in particular, very dense clusters of potential targets are allowed.

We will show that for any query to a target in Q algorithm A(2) finds an exact nearest neighbor, and
does so in at most log(∆) steps; if this is the case, we say that algorithmA(2) isQ-exact.
Theorem 6.7. Consider a set Q ⊂ V of potential targets. Assume either of:

(a) the metric on Q has grid dimension α, and SM is a randomN -node subset of Q, or
(b) the metric on SM ∪ {q} has grid dimension α, for any node q ∈ Q.

Let k = 2O(α) log
(

1
δ N |Q| log∆

)

be the cardinality of each Meridian ring, for a given parameter
δ > 0. Suppose the Meridian rings are created by a random process and are well-formed (but not necessarily
independent). Then with probability at least 1−δ the nearest-neighbor selection algorithmA(2) isQ-exact.

Proof Sketch. Using the technique from Theorem 6.6(a), we prove that the distance to target decreases by a
factor of at least 2 on each step except maybe the last one. We have to be careful about this last step, since in
general the target is not a Meridian node and therefore not a member of any ring. In particular, this is why
bounded grid dimension on just SM does not suffice.

Part (b) is easier; some extra computation is needed in part (a) due to the fact that here instead of a hard
bound on the grid dimension of SM we need to use the assumption that SM is a random subset of Q.
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Figure 6.6: The in-degree ratio shows the average imbalance in incoming links within spherical regions.
More than 90% of regions have a ratio less than 2.

6.2.5 Extensions: load-balancing

Ideally, the algorithm for nearest neighbor selection would balance the load among participating nodes.
Intuitively, if Nqy(A) is the maximal number of packets exchanged by a given algorithm A on a single
query, then for m random queries we do not want any node to send or receive much more than m

NNqy(A)

packets.
We make it precise as follows. Fix some setQ ⊂ V and suppose each Meridian node u receives a query

for a random target tu ∈ Q. Say algorithmA is (γ,Q)-balanced if in this scenario under this algorithm any
given node sends and receives at most γNqy(A) packets.

We will use the setting of Theorem 6.7(a), with a further assumption that the m-rings are (stochastically)
independent from each other:
Definition 6.8. Say that the Meridian rings are independent if the collection of all m-rings is a collection of
independent random variables.

In simulations in [WSS05], this property has been verified indirectly by measuring the in-degree ratio
of the nodes in the system. The in-degree ratio is defined as the number of incoming links to a node u
over the average number of incoming links to nodes within a ball of radius r around u. If the ring sets are
independent, then the in-degree ratio should be close to one; a ratio of one indicates that links to the region
bounded by radius r around A are distributed uniformly across the nodes in the area. Figure 6.6 shows that
Meridian distributes load evenly.
Theorem 6.9. Consider a set Q ⊂ V of nodes and assume that the metric on Q has grid dimension α. Let
the set SM of Meridian nodes be a randomN -node subset of Q. For a parameter δ > 0, let the cardinality
of a Meridian ring be equal to

k = 2O(α) log(|Q|/δ) log(N) log(∆).

Let γ = 2O(α) log(N∆/δ). Suppose the Meridian rings are created by a random process and are well-
formed and independent. Then with probability at least 1− δ the nearest neighbor selection algorithmA(2)
is (γ,Q)-balanced. Recall that it isQ-exact by Theorem 6.7(a).
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Proof Sketch. This result is much harder to prove than all other results in this paper, essentially because we
need to bound, over all nodes, not only the expected load (which is relatively easy), but also the actual load.
We consider the probability space where the randomness comes from choosing Meridian nodes, Meridian
neighbors, and the query targets tu, u ∈ SM . In this space, we consider the N nearest-neighbor queries
propagating through the Meridian network. Ideally, we’d like to express the contribution of a given query
i to the load on a given node u as a random variable Lui, and use Chernoff Bounds to show that with high
probability the sum

∑

i Lui does not deviate too much from its expectation. However, Chernoff Bounds
only apply to independent random variables, which the Lui’s are not. To remedy this, we need to be a lot
more careful in splitting the load on u into a sum of random variables; see Section 6.5 for the full proof.

6.2.6 Fine-tuned versions of the results

Our provable guarantees can be fine-tuned in two directions: to use relaxed versions of the grid dimension,
and to rely on average (vs worst-case) guarantees.

First, our results hold under a less restrictive definition of the grid-dimension that only applies to balls
that contain sufficiently many nodes: at least log(n) nodes in Theorem 6.6, and at least log(n|Q|) nodes in
Theorem 6.7 and Theorem 6.9.

Second, the vicinity of a given node u could be significantly more ’well-behaved’ than guaranteed by the
(global) concept of grid dimension. We can show that in this case some of this node’s m-rings can be made
smaller. We would like the size of each m-ring Sui to depend only on what happens in the corresponding
ball Bui. Specifically, let r = ε 2i−3 and choose a Meridian node v within distance 2i − r from u such that
the ballBv(r) has the smallest cardinality. Note thatBv(r) ⊂ Bui. Define

σui = |Bui|/|Bv(r)|.

Now we can use this ratio, instead of the doubling dimension, to express the ’goodness’ of ball Bui. In
particular, Theorem 6.3 it suffices to assume that the cardinality of each ring Sui is at least 2.2 σui ln(n2/δ).

Third, our guarantees are worst-case; on average it suffices to query only a fraction of neighbors of a
given ring. To take advantage of this observation, we need a minor modification to the search algorithm.
Recall that on every step in algorithm A(β0) we look at a subset S of neighbors and forward the query to
the node w ∈ S that is closest to the target t subject to the constraint that the progress of w, defined as the
ratio dut/dwt, is at least β0. For β0 ≤ 2, suppose instead we forward the query to an arbitrary progress-2
node in S if such node exists. It is easy to check that all our results for A(β0) carry over to this modified
algorithm.

Now in Theorem 6.6(a) (used in conjunction with Theorem 6.3) instead of asking all neighbors of a
given ring at once, we can ask them in random batches of size k0 = O(1)α; then in expectation one such
batch will suffice to find a progress-2 neighbor. Therefore on average on every step (except the last one)
we will use only k0 randomly selected neighbors from a given ring. Similarly, we can take k0 = O(1

ε )
α

for Theorem 6.6(bc) (used in conjunction with Theorem 6.3), and k0 = O(1)α for Theorem 6.7. We obtain
similar improvements for Theorem 6.6 used in conjuction with Theorem 6.5 for doubling metrics.

6.3 Full proof of Theorem 6.6 on central leader election

Let us recap the definitions from the proof sketch. Let use fix the set of targets T , and let dT (u) be the
average distance from node u to the targets in T . Let v∗ be the central leader, i.e. the Meridian node that
minimizes dT . For a node u, let r(u) = dT (u)/dT(v∗) be the approximation ratio.

Recall that if the query is forwarded from node u to node v, we say that the progress at u is dT (u)/dT (v).
More generally, if node v is a Meridian neighbor of node u, say that v is a progress-β neighbor, for β =
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dT (u)/dT(v). We will use a function

fε(β) = β(1 + ε)/(1− βε).

Note that for β ∈ (1, 1/ε) this function is continuously increasing to infinity.
The following claim captures the performance of a single step of the central leader election algorithm.

Claim 6.10. Assume the rings are ε-nice, ε ≤ 1/3. Let u be any Meridian node, and suppose rT (u) = fε(β)

for some β ∈ (1, 1
ε ). Then a progress-β neighbor of u exists and is found by the algorithmA∗(β). Moreover,

if β = 2 then such neighbor is found by algorithmA(2) as well.

Proof. First we claim that such neighbor exists. Indeed, pick the smallest i such that d(u, v∗)(1 + ε) ≤ 2i.
Since the rings are ε-nice, node u has a Meridian neighborw within distance ε d(u, v∗) from node v∗. Then

dT (w) ≤ dT (v∗) + d(w, v∗) ≤ dT (v∗) + ε d(u, v∗)

≤ dT (v∗) + ε (dT (u) + dT (v∗))

≤ ε dT (u) + (1 + ε) dT (u)/fε(β)

= dT (u)/β,

claim proved.
It is easy to see that w lies in Sui ∪ S(u,i−1). To prove that node w is found byA∗(β) it suffices to show

that both m-rings are considered by this algorithm, i.e. that i ≤ 1 + dlogdT (u)e. Indeed,

d(u, v∗) ≤ dT (u) + dT (v∗) ≤ dT (u)
(

1 + fε(β)−1
)

≤ 2 dT(u)/(1 + ε),

2i < 2 d(u, v∗) (1 + ε) ≤ 4 dT (u).

Finally, for the case β = 2 we need to show that nodew is found by algorithmA(2) as well. Specifically,
we need to prove two things:

(i) if w ∈ S(u,i−1) then i− 1 ≥ j − 1.
(ii) if w ∈ Sui then i ≥ j − 1.

First let us note that by the triangle inequality we have

d(u, w) ≥ dT (u)− dT (w) ≥ dT (u)/2. (6.4)

Now if w ∈ S(u,i−1) then dT (u) ≤ 2 d(u, w) ≤ 2i by (6.4); it follows that i ≥ j, proving (i). For (ii) recall
that

d(u, w) ≤ d(u, v) + d(v, w)≤ (1 + ε) d(u, v) ≤ 2i. (6.5)

By (6.4), (6.5) and the definition of j it follows that

2j ≤ 2 dT(u) ≤ 4 d(u, w)≤ 2i+2,

so j ≤ i+ 1, proving (ii).

Let us state some properties of the function fε(β) that will be used in the forth-coming proof of Theo-
rem 6.6. Out of these five properties, most crucial is property (c): in conjunction with Claim 6.10 it shows
that in one step our search algorithm passes from an fε(1 + γ)-approximate neighbor to an fε(1 + γ/2)-
approximate neighbor.
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Claim 6.11. Some useful properties of the function fε(β):

(a) function fε(2) is at most 8 whenever ε ≤ 1
3 , and at most 3 whenever ε ≤ 1

8 .

(b) fε(1 + γ)/(1 + γ) ≤ fε(1 + γ/2), for any ε ≤ 1
3 and any γ ∈ (0, 1).

(c) fε(1 + ε2/2) ≤ 1 + 3ε for any ε ≤ 1
4 .

(d) fε(1 + γ/2) ≤ 1 + 3ε + γ, for any ε ≤ 1
4 and any γ ∈ (0, 2

5).

Proof Sketch. Part (a) are trivial: just plug in the definition of fε(2). For parts (bcd), we plug in the definition
of fε(·) and carefully solve the resulting inequality for ε.

In part (b) the inequality reduces to ε ≤ 1/(2 + γ), which holds for any ε ≤ 1
3 .

In part (c) we get g(ε) := ε((1 + 3ε)2 + 20) ≤ 6, which is true for any ε ≤ 1
4 since the function g(ε) is

increasing in ε and g(1
4) < 6.

Finally, in part (d) the inequality reduces to

g(ε) := ε2(3γ + 6) + ε(γ2 + 4γ − 2)− γ ≤ 0.

Since g(0) = −γ < 0 and the polynomial g(ε) is a quadratic in ε, it has two roots, call them ε1 and ε2, and
it is negative for any ε ∈ (ε1; ε2). Therefore it suffices to show that g(1

4) < 0. Indeed, solving the latter
inequality for γ we get γ < (

√
41− 3)/8, which is more than 2

5 .

Now we are ready to prove Theorem 6.6.

Proof of Theorem 6.6(a): We need to prove that algorithm A(2) finds a 3-approximate neighbor of q. By
Claim 6.10 while the query visits nodes u such that rT (u) ≥ fε(2), the algorithm finds a progress-2 neighbor
of u and forwards the query to it. The distance dT (u) goes down by a factor of at least 2 at each step, so
after at most log(∆) steps the query should arrive at some node v such that r(v) is less than fε(2), which is
at most 3 by Claim 6.11(a).

Proof of Theorem 6.6(b): We will show thatA∗(β) finds a (1+3ε)-approximate neighbor of q. The query
proceeds in two stages. In the first stage, while the query visits nodes u such that rT (u) ≥ fε(2), by
Claim 6.10 the distance dT (u) goes down by a factor of at least 2 at each step. So after at most log(∆) steps
the query should arrive at some node v such that r(v) is less than fε(2), which is at most 8 by Claim 6.11(a).

In the second phase the progress at each step is smaller than 2. Specifically, by Claim 6.10 and
Claim 6.11b our search algorithm passes from an fε(1 + γ)-approximate central leader to an fε(1 + γ/2)-
approximate central leader, for any γ ∈ (0, 1). By induction on i we show that after i more steps the query
will arrive at node w such that r(w) < fε(1 + 2−i). So i = dlog(2/ε2)e steps suffices by Claim 6.11c.

Proof of Theorem 6.6(c): The proof is similar to that for part (b); in the second stage i = dlog 2/γe steps
suffices by Claim 6.11d.

6.4 Full proof of Theorem 6.7 on exact nearest neighbors

Let us start with two easy applications of Chernoff Bounds. Their proofs are fairly standard; we include
them here for the sake of completeness.

Claim 6.12. Consider sets T ⊂ V . Suppose we choose a k-node subset S ⊂ V uniformly at random from
V . Then with failure probability at most e−(1−1/µ)2µ/2 some node from S lands in T , where µ = k|T |/|V |.
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Proof. Denote the desired event byA. The distribution of Sui is that of the following process P : pick nodes
from V independently and uniformly at random, until we gather k distinct nodes. For simplicity consider
a slightly modified process P ′: pick k nodes from Bui independently and uniformly at random, possibly
with repetitions. Obviously, P ′ is doing exactly the same as P , except P might stop later and, accordingly,
choose some more nodes. Therefore PrP [A] ≥ PrP ′ [A].

Let’s analyze process P ′. Let Xj be a 0-1 random variable that is equal to 1 if and only if the j-th
chosen node lands in Bv(r). Then Pr[Xj = 1] = |T |/|V |, so µ = E(

∑

Xj). The claim follows from
Lemma 2.1(a) with y = 1 and 1− ε = 1/µ.

Claim 6.13. Consider two sets S ′ ⊂ S and suppose n nodes are chosen independently and uniformly at
random from S; say X of them land in S ′. Let λ = n|S ′|/|S|. Then:

(a) Pr[X < λ/2] ≤ e−λ/8,

(b) Pr[X > k] ≤ e−k/16 for any k ≥ 2λ,

(c) Pr[X > 2λ] ≤ (e/4)λ.

Proof. Let Xj be a 0-1 random variable that equals 1 if and only if the j-th chosen node lands in S ′. Then
X =

∑n
j=1Xj is a sum of independent random variables, so

E(X) = n · Pr[Xj = 1] = n · |S ′|/|S|= λ.

For part (a), use Lemma 2.1(a) with y = 1 and ε = 1/2. Parts (bc) follow from Lemma 2.1(b) with y = 1
and β = 2; specifically, take µ = k/2 in part (b), and take µ = λ in part (c).

We prove part (b) of the Theorem first since it is simpler.

Proof of Theorem 6.7(b): Let the size of a Meridian ring be k = 2.2·10α ln(1/p), where p = δ/N |Q| log(∆).
Let q ∈ Q be the target, and let v ∈ SM be its exact nearest neighbor. Fix some Meridian node u, let d = duq

and choose the smallest i such that 1.5d ≤ 2i.
We claim that either v ∈ Sui, or with failure probability at most p node u has a Meridian neighbor

w ∈ Bq(d/2). Indeed,

Bui ⊂ Bq(2
i + d) ⊂ Bq(4d)

|Bui| ⊂ |Bq(4d)| ≤ 8α |Bq(d/2)|,

so if |Bui| ≥ k then the claim follows from Claim 6.12; the constant 2.2 in front of k works numerically as
long as e.g. n|Q| > 552 and δ < e−2, which is quite reasonable. Finally, if |Bui| ≤ k then every node in
Bui is in ring Sui, including v, claim proved.

Recall that, letting j = dlog de, algorithm A(2) at node u considers the m-rings S(u,j−1), Suj and
S(u,j+1). Since by the triangle inequality d/2 ≤ duw ≤ 3d/2, node w lies in one of these three m-rings, and
therefore is found by A(2). So the progress is at least 2 at every step except maybe the last one, with failure
probability at most p. Therefore the algorithm makes at most log∆ steps before completion.

Finally, for a single (u, q) pair the failure probability for a single step is at most p. Taking the Union
Bound over allN |Q| possible (u, q) pairs and all dlog∆e possible steps, it follows that the total probability
is at most δ.

Theorem 6.7(a) is proved using the same idea, except we need to address the fact that Meridian nodes
themselves are chosen at random from Q.
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Proof of Theorem 6.7(a): Let Qu(r) denote the closed ball in Q of radius r around node u, i.e. the set of
all nodes in Q within distance r from u. Denote Qui = Qu(2i) and let the cardinality of a Meridian ring be

k = 8 · 8α ln
(

2
δ N |Q| log∆

)

. (6.6)

Let q be the target and let v ∈ SM be its exact nearest neighbor. Fix some Meridian node u, let d = duq and
B = Bq(d/2); choose the smallest i such that 1.5 d ≤ 2i.

Note that without loss of generality we can view the process of selecting SM from Q as follows: choose
the cardinality x for Bui from the appropriate distribution, then choose, independently and uniformly at
random, x nodes from Qui, and n − x nodes from Q \Qui.

We claim that with failure probability at most δ′ = δ/N |Q| log(∆) either v ∈ Sui, or node u has a
Meridian neighbor w ∈ B. Indeed, if the cardinality of Bui is at most k, then all of Bui lies in the ring
Sui, including v. Now assume the cardinality of Bui is some fixed number x > k. Since by the triangle
inequalityQui ⊂ Qq(2

i + d) ⊂ Qq(4d), it follows that

x

E(|B|) =
|Qui|

|Qu(d/2)| ≤
|Qu(4d)|
|Qu(d/2)| ≤ 8α,

where the last inequality holds by definition of the grid dimension. Therefore by Claim 6.13(a) with failure
probability at most δ′/2 the cardinality of B is at least half the expectation. If it is indeed the case that, then
by Claim 6.12 with failure probability at most δ′/2 some node in ring Sui lands in B. So the total failure
probability is at most δ′, claim proved.

As in the proof of part (b), we show that node w is found by algorithm A(2). Therefore the progress is
at least 2 at every step except maybe the last one, with failure probability at most δ′. Finally, we take the
Union Bound over all N |Q| possible (u, q) pairs and all log ∆ possible steps to show that the probability
that any such pair fails on any step is at most δ.

6.5 Full proof of Theorem 6.9 on load-balancing

In this section we will prove Theorem 6.9 on load-balancing. A large part of the proof is the setup (Sec-
tions 6.5.1 and 6.5.2): it is non-trivial to restate the algorithm and define the random variables so that the
forth-coming Chernoff Bounds-based argument works through. For technical reasons we introduce some
minor changes in the definition of the m-rings and in the search algorithm; these changes do not (really)
affect the practical implementation of Meridian. Proving our result for the exact version of Meridian that is
implemented leads to mathematical difficulties that are far beyond the scope of this paper.

Recall that for the present theorem we use the setting of Theorem 6.7(a). Compared to the latter, we
increase the ring cardinalities by a factor of O(logN)(log∆). This is essentially because we cannot use
Chernoff Bounds on collections of random variables that are almost independent – we need exact indepen-
dence, which is hard to come by. We conjecture that this blow-up can be avoided by a more careful analysis
of almost-independent random variables. However, such analysis is again beyond the scope of this paper.

6.5.1 Setup: Meridian rings and the search algorithm

For convenience, for any x > 0 let us define a set of integers [x] = {0, 1 . . .dxe}.
Recall that each m-ring Sui was defined as a subset of the corresponding ringRui, as long as |Bui| ≥ k.

Here to simplify the proofs let us allow each Sui to be an arbitrary subset of Bui:

Definition 6.14. The distribution of each Meridian ring Sui is the distribution of a set of k nodes that are
drawn independently and uniformly at random from the corresponding ballBui, possibly with repetitions.
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Note that all previous results for growth-constrained metrics work under this definition as well.
Recall that on every step in algorithm A(·) we look at a subset S of neighbors, and either the search

stops, or the query is forwarded the node w ∈ S that is closest to the target. We will relax this as follows: if
w is a progress-2 node, then instead of forwarding to w the algorithm can forward the query to an arbitrary
progress-2 node in S. It is easy to check that all our results for A(·) carry over to this modification.

We will now proceed to define a specific version of A(2) which can be seen as a rule to select between
different progress-2 nodes; we denote it A.

Recall that each ring Sui consists of k nodes from Bui. More formally, let us say that Sui consists of k
slots, each of which is a node id selected independently and uniformly at random from Bui. Let us partition
these slots into L log(∆) collections of size k′ each, where

L = 6 ln
(

1
δN log∆

)

,

k′ = 8 · 10α ln(2K/δ),

K = N |Q|L log(∆).

We will denote these collections by Cui(j, l), where j ∈ [log∆] and l ∈ [L]. Each collection will just consist
of k′ consecutively numbered slots, starting from the slot number (jL+l)k′. Let Sui(j, l) be the set of nodes
whose ids are stored in the slots in collection Cui(j, l). Obviously, Sui(j, l)⊂ Bui, and the union of all sets
Sui(·, ·) is Sui.

Say a j-step query is a query on the j-th step of the algorithm. When node u receives a j-step query to
target q, it chooses l ∈ [L] in a round-robin fashion (the round-robin is separate for each uj pair) and (es-
sentially) lets algorithmA(2) handle this query using only the neighbors in Sui(j, l), for the corresponding
i. Specifically, node u sets i = 1 + blog duqc and asks every node in Sui(j, l) to measure the distance to q.
Out of these nodes, let w be one that is closest to q. If w is a progress-2 node, then the query is forwarded
to w; else, the search stops, and node w is reported to the node that originated the query.

Using the argument from part (a) we can show that for a given tuple (u, q, j, l) either the corresponding
set Sui(j, l) contains a progress-2 node or it contains a nearest neighbor of q, with failure probability at
most δ/K. The Union Bound over allK possible (u, q, j, l) tuples shows that our algorithm isQ-exact with
failure probability at most δ.

Note that algorithm A can be seen as A(2) with a rule to select between different progress-2 nodes if
such nodes exist: namely, choose a progress-2 node from the corresponding Sui(j, l).

6.5.2 Setup: randomization and random variables

Recall that each Sui(j, l) is a set of k′ nodes drawn from Bui independently and uniformly at random,
possibly with repetitions. Moreover, once the set SM of all Meridian nodes is fixed then (since the m-rings
are independent), the collection of all sets

{Sui(j, l) : u ∈ SM , i, j ∈ [log∆], l ∈ [L]}

is a collection of independent random variables.
We consider the probability distribution induced by several independent random choices, namely:

• a random N -node subset SM of Q,

• random subsets Sui(j, l)⊂ Bui, independently for each tuple (u, i, j, l),

• target tu for each node u.
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For a collection of independent random choices, without loss of generality we can assume that a given
choice happens any time before its result is actually used. In particular, we will assume the following order
of events. First, SM and tu’s are chosen. After that the time proceeds in log(∆) epochs. In a given epoch j,
all subsets Sui(j, ·) are chosen, and then all queries are advanced for one step.

Recall that all queries are handled separately, even if a given node simultaneously receives multiple
queries for the same target. When node u handles a j-step query and in the process measures distance to its
neighbor v, we say that v receives a j-step request from u. Let’s define several families of random variables;
here j ranges between 0 and log∆:

• Xuv(j, l) is the number of j-step queries forwarded from u to v, and handled at u using, for some i, a
set Sui(j, l).

• Xj
u is the number of all j-step queries forwarded to node u; set X0

u = 1.

• Yuv(j, l) is the number of j-step requests that are received by v from u, and handled at u using, for
some i, a set Sui(j, l).

• Y j
u is the number of all j-step requests received by node u.

Note that Xuv(j, l) ≤ Xj
u/L and Yuv(j, l) ≤ Xj−1

u /L.

6.5.3 The actual proof

First let us analyze the choice of SM and the queries. Let T be the set of all N queries. For q ∈ T , let t(q)
be the corresponding target. Let Tv(r) be the set of queries q ∈ T such that t(q) is within distance r from v.
Let t(S) be the set of all targets in the set S of queries. Let ψ = N/|Q|. By Claim 6.13 |Bu(r)| and |Tu(r)|
are close to its expectation:

Claim 6.15. With failure probability at most δ, for any u ∈ SM ∪ t(T ) and radius r the following holds:

(*) if z = ψ|Qu(r)| ≥ k0 then |Bu(r)| and |Tu(r)| are within a factor of 2 from z, else they are at most
2k0, where k0 = O(log(n/δ)).

For every j-step query received, a given node sends some constant number c of packets to each of the
k′ neighbors in the corresponding set Sui(j, l). Therefore a given node u sends ck′

∑

j X
j
u packets total,

and receives c
∑

j Y
j
u packets total. Since a single query involves exchanging at most ck′ log(∆) packets,

algorithmA is (γ,Q)-balanced if and only if
∑

j(k
′Xj

u + Y j
u ) ≤ 2γk′ log(∆) (6.7)

for every node u. Recall that γ is a parameter in the theorem statement.

Definition 6.16. Property P(j) holds if and only if for each node v it is the case thatXj
v ≤ γ and Y j

v /k
′ ≤ γ.

By (6.7) it suffices to prove that with high probability P(j) holds for all j; recall that j ranges between
0 and log∆. It suffices to prove the following inductive claim:

Claim 6.17. If property P(j− 1) holds, then with failure probability≤ δ/ log(∆) property P(j) holds, too.

Then we can take the Union Bound over all log∆ steps j to achieve the desired failure probability δ.
Let’s prove Claim 6.17. Suppose all queries have completed j−1 steps and are assigned to the respective

sets Sui(j, l). Now the only remaining source of randomness before the j-th step is the choice of these sets.
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In particular, each random variableXuv(j, l) depends only on one set Sui(j, l), and so does Yuv(j, l). Since
these sets are chosen independently, for any fixed node v the random variables

{Xuv(j, l) : u ∈ SM , l ∈ [L]}

are independent, and so are the random variables

{Yuv(j, l) : u ∈ SM , l ∈ [L]}.

First we claim that P (j) holds in expectation:

Claim 6.18. For every Meridian node v and every step j, (a) E(Xj
v) ≤ γ/2, and (b) E(Y j

v /k′) ≤ γ/2.

Let us assume for now that the above claim holds.
Suppose property P (j − 1) holds. Let’s bound the load on some fixed node v. Note that

Xj
v =

∑

all pairs (u, l)

Xuv(j − 1, l)

is a sum of independent random variables, each in [0, y] for y = γ/L. Applying Claim 2.1(b) with µ = γ/2,
we see that

Pr[Xj
v > γ] ≤ (e/4)L/2 ≤ δ/2N log(∆).

Similarly, Y j
v =

∑

(u,l) Yuv(j, l) is a sum of independent random variables, each in [0, y], so by Claim 2.1(b)
we can upper-bound Pr[Y j

v /k′ > γ]. By the Union Bound property P (j) holds with the total failure
probability at most δ. This completes the proof of Claim 6.17 and Theorem 6.9.

It remains to prove Claim 6.18. Let S0 be the set of queries q ∈ T such that v is a nearest neighbor of
the target t(q).

Claim 6.19. |S0| ≤ O(2α) log(N/δ).

Proof. Choose target t ∈ t(S0) such that dvt is maximal. Let d = dvt. Then Bt(d/τ) ∈ {q} for any τ > 1,
so by Claim 6.15 |Qt(d/τ)| ≤ O(log(n/δ)). Note that S0 ⊂ Bt(2d) ⊂ Qt(2d) and

|Qt(2d)| ≤ (2τ)α|Qt(d/τ)| ≤ (2τ)αO(log(n/δ)).

Claim follows if we take small enough τ > 1.

Let r0 be the smallest r such that Bv(r) has cardinality at least twice the k0 from Claim 6.15. Let
Ri = Tv(r0 2i). Let S ⊂ T be the set of queries that get forwarded to v on step j; recall thatXj

v = |S|.

Claim 6.20. For any query q ∈ T \ (S0 ∪R0), letting t = t(q), we have

Pr[q ∈ S] ≤ O(2α)/|Bv(dvt)|.

Proof. Let d = dvt and suppose query q is currently at node u. Since q 6∈ S0 this query gets forwarded to
some node w ∈ Bq(dut/2), so if d > dut/2 then clearly q 6∈ S. Assume d ≤ dut/2. SinceBv(d) ⊂ Bt(2d),
by Claim 6.15 we have

|Bv(d)| ≤ |Bt(2d)| ≤ 2ψ|Qt(2d)| ≤ 2ψ 2α|Qt(d)| ≤ 4 2α|Bt(d)|,
Pr[q ∈ S] = 1/|Bt(dut/2)| ≤ 1/|Bt(d)|,

which is at most 4 2α/|Bv(d)|, as required.
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Now for R = Ri+1 \ (Ri ∪ S0) and r = r0 2i

ψi := E|S ∩ R| ≤ |Ri+1| Pr[q ∈ S : q ∈ R]

≤ O(2i)|Ri+1|/|Ri| ≤ O(4α),

E|Xj
v| = E|S| ≤ |S0|+ |R0|+

∑

ψi

≤ O(2α) log(n/δ) +O(4α) log(∆)

≤ O(4α) log(n∆/δ) ≤ γ/2.

This completes the proof of Claim 6.18(a). For Claim 6.18(b), let S be the set of queries that cause a
j-step request to v. Suppose a j-step query q is at node u; let t = t(q) and d = dut. Node v receives a j-step
request due to t only if duv ≤ 2d, so let’s assume it is the case. Then dvt ≤ d+ duv ≤ 3d, so

Bu(dvt) ⊂ Bu(duv + dvt) ⊂ Bu(5d)

|Bu(dvt)| ≤ |Bu(5d)| ≤ 4 (2.5)α |Bu(2d)|
Pr[v ∈ S] ≤ 1/|Bu(2d)| ≤ 4 (2.5)α |Bu(dvt)|

as long as |Bu(dvt)| is at least twice as large as the k0 from Claim 6.15. The rest of the proof of Claim 6.18(b)
is similar to that of Claim 6.18(a). This completes the proof of Claim 6.18 and Theorem 6.9.



Chapter 7

Distance Estimation and Object Location
via Rings of Neighbors

In node labeling problems one needs to assign short labels to nodes of a graph so that they capture some
(problem-specific) global information about distances and routes in the graph. We consider four prob-
lems of this type: low-stretch routing schemes [PU89], distance labeling [GPPR04], searchable small
worlds [Kle00b], and triangulation-based distance estimation [KSW04].

We approach these problems with a common technique called rings of neighbors, which refers to a
sparse distributed data structure that underlies all our constructions. The idea is that every node u stores
pointers to some nodes called ’neighbors’; these pointers are partitioned into several ’rings’, so that for
some increasing sequence of balls {Bi} around u, the neighbors in the i-th ring lie inside Bi; the radii of
these balls and the selection of neighbors depend on the specific application. In effect, rings of neighbors
form an overlay network with a certain structure imposed by the balls {Bi}.1

For the problems that we consider, the input is a metric or, more generally, an undirected weighted graph
that induces a shortest-paths metric. We focus on doubling metrics (see Section 2.3.2 for background).
Throughout this section, we let α denote the doubling dimension.

The results in this chapter have been published in Slivkins [Sli05a].

7.1 The four problems and relevant background

Let us discuss each of the four problems in more detail.

Low-stretch routing schemes. A routing scheme on a network is a distributed algorithm that allows any
node to route packets to any other node. The underlying connectivity of the network is expressed by a
weighted graph, where weights represent delays on edges. Every node u is assigned a routing label and a
routing table. Local routing decisions are based on the routing table and the packet header, which includes
the label of a target node.

Formally, a routing scheme on a family G of graphs consists of the following components:
(a) for each G ∈ G, an assignment of routing labels and routing tables to the nodes of G;
(b) an algorithm that inputs a routing table and a packet header, and outputs the next hop for this packet;
(c) an algorithm that inputs the routing table of node u and the routing label of some other node v, and

outputs the packet header such that the packet reaches v starting from u.
1Recall that the term ’neighbor’ here refers to the adjacency in this overlay network, not to the proximity in the input graph.

88
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The algorithms in (b) and (c) must be polynomial-time computable (with respect to the input length). By a
slight abuse of notation, we can talk about a routing scheme on a particular graphG ∈ G once the underlying
familyG of graphs is clear. Such routing scheme consists of routing labels, routing tables, and the algorithms
in (b) and (c). 2

Let duv be the length of the shortest uv-path in G. Say a uv-path has stretch β if its d-length is at most
βduv . A routing scheme onG has stretch β if for any source-target pair the packet follows a β-stretch path.
For a given stretch we try to minimize two parameters: storage (the maximal size of a routing table), and
communication (the maximal size of a packet header).

In a trivial stretch-1 routing scheme, each node stores full routing table of the all-pairs shortest paths
algorithm. However, this routing table takes up Ω(n logn) bits, which does not scale well with n. Compact
low-stretch routing schemes have been introduced in Peleg and Upfal [PU89], and explored in a number
of subsequent papers (see [GP03, Pel00] for a survey). In particular, for any integer k ≥ 2 there exists a
(4k − 5)-stretch routing scheme on weighted graphs with o(k log2 n)-bit packet headers and Õ(n1/k)-bit
routing tables [TZ05, TZ01]; this trade-off between the stretch and the size of routing tables is essentially
optimal [PU89]. Moreover, there is no routing scheme on weighted graphs with stretch less than 3 and
o(n)-bit routing tables [GG01].

OUR CONTRIBUTIONS: We focus on routing schemes for weighted undirected graphs that induce dou-
bling metrics (for simplicity, let’s call them doubling graphs). In this setting, Talwar [Tal04] has achieved
compact (1 + δ)-stretch routing schemes, for any given δ > 0; his result has been improved by Chan et
al. [CGMZ05]. Using rings of neighbors, we re-derive the result in [CGMZ05] via the construction and
proof of correctness that are significantly shorter and simpler than the ones in [CGMZ05]; our guarantees
(Theorem 7.1) are slightly improved, too. Moreover, we can give a really simple derivation (Theorem 7.11)
if we use our result on distance labeling and allow an extra (logn) factor in the routing table size. The quan-
titative results are summarized in Table 7.1. All these results extend to a related model of routing schemes
on metrics,3 with poly-logarithmic out-degrees; see Section 7.4.1 for more details.

We note that the above guarantees are unsatisfactory if the aspect ratio ∆ (the largest distance divided
by the smallest distance) is very large, e.g. ∆ = 2n. We wish to alleviate the dependency on ∆; we do
it by replacing the (log∆) factor with (logn)(log log∆). The first step in this direction is Theorem 7.11,
where the improvement is for packet headers only. Furthermore, in Section 7.4 we improve both packet
headers and routing tables for routing schemes on metrics, and also (Theorem 7.12) for routing schemes on
weighted graphs that contain near-shortest paths with small hop-counts; the latter property is, intuitively, a
natural property of a ”good” network topology.

FOLLOW-UP WORK. Following the publication of the conference version of Slivkins [Sli05a], and
building on our techniques, Abraham et al. [AGGM06] further alleviate the dependency on the aspect ratio
∆ for routing schemes on graphs (see Table 7.1). In particular, one of their results essentially improves
the packet header size in Theorem 7.11 to dlogne. They also provide an extension where they get rid
of the dependence on ∆ altogether, at the cost of extra poly-log(n) factors in both routing table size and
packet header size. This result elaborates on our Theorem 7.12, eliminating the requirement of near-shortest
paths with small hop-counts. Abraham et al. [AGGM06] also refine our results on doubling metrics, see
Section 7.4 for further details.

Related work on routing schemes. An important version of routing schemes is name-independent rout-
ing [ABNLP90, AP90], where the node labels are a part of the input: essentially, each node is given a

2These algorithms must be the same for all graphs in G, so that one could not encode all of G inside the algorithm.
3A routing scheme on a metric (V, d) is a routing scheme on any directed graph on G = (V,E) such that for any edge uv ∈ E,

the weight of this edge is duv . The crucial point here is that we are free to choose E (which is, essentially, an overlay network).
The out-degree of E becomes another parameter to be optimized.



90

routing table size, bits packet header size, bits
Talwar [Tal04] O( 1

αδ)
α(log2+α ∆) O(α log∆)

Chan et al. [CGMZ05] (α
δ )O(α)(log∆)(logDout) O(α log 1

δ )(log∆)

Theorem 7.1 (1
δ )O(α)(log∆)(logDout) same as above

Theorem 7.11 (1
δ )O(α)(log∆)(logn)(log log∆) 2O(α)(logn) log(1

δ log∆)

Follow-up work [AGGM06] (1
δ )O(α)(log∆)(logn) dlogne

(1
δ )O(α)(log4 n) 2O(α)(log3 n)

doubling dimension α, aspect ratio ∆, out-degree Dout

Table 7.1: (1 + δ)-stretch routing schemes for doubling graphs

unique dlogne-bit identifier that cannot be changed by our construction. Currently the best known results
for arbitrary weighted graphs are: stretchO(k) with Õ(n1/k log∆)-bit tables [AGM04a], and stretch 3 with
Õ(
√
n)-bit tables [AGM+04b]; both routing schemes use poly-log packet headers.

For weighted graphs that induce doubling metrics, the extra restriction of name-independence results
in more demanding storage requirements: (1 + δ)-stretch routing with o(n)-bit routing tables is no longer
possible for any δ < 2 [AGGM06]. However, there is a routing scheme with O(1)-stretch and polylog
storage/headers [AGGM06]. Moreover, for any δ > 0 there exists a (1 + δ)-stretch routing scheme on low-
dimensional Euclidean metrics [AM04], also with polylog storage and headers, which is ’almost’ name-
independent (node labels include Euclidean coordinates).

A number of results on name-independent routing has focused on the case of bounded grid dimension
(see the intro to [HKR04] for a short survey). The best current results [AMD04, AM05] achieve (1 + δ)-
stretch with poly-log storage/headers for routing on metrics and on graphs, respectively.

Searchable small-world networks. The small-world networks have been an active topic in many branches
of social and natural sciences. The ’small-world phenomenon’, also known as the ’six degrees of separa-
tion’, has been discovered in a seminal work of Milgram [Mil67] and recently confirmed by Dodds et
al. [DMW03]. Motivated by Watts and Strogatz [WS98], Kleinberg [Kle00b, Kle00a] has articulated an-
other striking aspect of ’small worlds’: that a greedy routing algorithm can find short paths to most targets
using only local information. Kleinberg went on to suggest several mathematical models where this hap-
pens [Kle00b, Kle01]. In particular, he considered a constant-dimensional grid and proved that if every
node chooses a constant number of long-range contacts from a fairly natural probability distribution, then
in expectation a greedy routing algorithm finds O(log2 n)-hop paths for every query. The follow-up work
(e.g. [LS04, MN04, MNW04, FGP04, MN05]) has focused on small worlds on hierarchies and grid-like
graphs, with versions of the basic greedy routing from [Kle00b]. This line of work has also found applica-
tions in the design of peer-to-peer systems (e.g. [MBR03]). For more background on small-world networks,
refer to a very recent survey by Kleinberg [Kle06].

The following design space emerges. We are given a notion of distance such that every node can locally
compute its distance to any given node (e.g. we may assume that node names include informative labels that
enable such computation). For this distance function, we need to provide an overlay network of long-range
contacts, and specify a routing algorithm which finds short paths to every target using only local information
about the contacts. The long-range contacts are usually given as a probability distribution which has the
following informal property: if from the point of view of a given node u two nodes v and w are similar,
then these two nodes should have a similar probability of being chosen as contacts of u. We would like to
minimize the number of long-range contacts (i.e. the out-degree), and the path length.

Most of the previous work has considered the distance induced by a given (possibly directed) unweighted
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graph of short-range contacts; note that one could start from this notion of distance and recover the short-
range contacts as all nodes within distance 1. Abstracting away the useful small-world properties of grids
and hierarchies, Kleinberg [Kle01] introduced searchable small worlds on distance functions induced by
certain families of node sets. Here we take a somewhat different (and perhaps more basic) approach: we
consider distance functions that are metrics, and we wish to extend Kleinberg’s small worlds beyond those
induced by hierarchies and grid-like graphs. Namely, we extend them to doubling metrics.

We use routing algorithms such that the next hop is chosen by only looking at the current node’s contacts,
which is a desirable property since (intuitively) this is the minimal amount of information a routing algorithm
can be allowed to use. More formally, the next hop is chosen among the current node’s contacts, by looking
only at distances to these contacts and distances from these contacts to the target. Let us call such routing
algorithms strongly local. The greedy algorithm used in [Kle00b] is a strongly local routing algorithm that
just chooses the contact that is closest to the target.

OUR CONTRIBUTIONS: We extend Kleinberg’s model to doubling metrics. While it is relatively straight-
forward to achieve out-degree O(logn)(log∆) and O(log∆)-hop paths, where ∆ is the aspect ratio, it is
quite non-trivial to handle the case of super-polynomial ∆. To remedy this, we obtain O(logn)-hop paths
even if ∆ is exponential in n. In our first result the out-degree is (still) proportional to log(∆), suggesting
that it is a natural lower bound since we need some long-range contacts for each one of the (log∆) dis-
tance scales. However, our second (and much more complicated) result breaks this barrier, achieving the
out-degreeO(log2 n)

√
log ∆. This result uses a routing algorithm that jumps ’sideways’ whenever it cannot

make good progress towards the target. To the best of our knowledge this is the first small-world model with
a non-greedy strongly local routing algorithm.

We note in passing that our results trivially extend to a setting where we are given a graph of local
contacts, and we add exactly one long-range contact per node; see Section 7.5.3 for further discussion.

Related work on small-world networks. In the literature on searchable small-world networks several
non-greedy routing algorithms have been suggested. In Manku at al. [MNW04] the algorithm looks at all
contacts of contacts of the current node, and (greedily) forwards the message to one that is closest to the
target. In Martel and Nguyen [MN04] and Fraigniaud et al. [FGP04] the algorithm looks at several nodes
that are closest to the current node u, looks at their contacts, among these contacts chooses one (let us call
it v) that is closest to the target, and tries to deliver the message to v by forwarding it to one of the contacts
of u. Finally, in Lebhar and Schabanel [LS04] the algorithm has access to contacts of the previously visited
nodes. Note that all these non-greedy algorithms are not strongly local.

Following the publication of the conference version of Slivkins [Sli05a], we became aware that concur-
rently with our work, two other papers have independently considered extending searchable small worlds
to broader classes of graphs. Specifically, Duchon et al. [DHLS05] consider graphs of low grid dimension,
and Fraigniaud [Fra05] work on graphs of bounded treewidth. An even more recent paper [AG06] considers
weighted minor-excluding graphs. Furthermore, Fraigniaud et al. [FLL06] have recently provided a com-
plementary impossibility result for searchable small-worlds on an infinite family of graphs of large doubling
dimension.4

Triangulation. Let us recall the definition; we state it in a slightly less general form, which however
suffices for the purposes of this chapter. A triangulation of order k is defined as a labeling of the nodes
such that a label of a given node u consists of distances from u to each node in a set Su of at most k other
nodes. Then given the labels of two nodes u and v, one can use the triangle inequality to upper-bound the
uv-distance by D+

uv = min(dub + dvb), and lower-bound it byD−
uv = max |dub − dvb|, where the max and

4The cited result is for the ’one long-range contact per node’ setting; note that it trivially extends to our setting, too.
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min are taken over all b ∈ Su∩Sv . An (ε, δ)-triangulation is a triangulation such thatD+
uv/D

−
uv ≤ 1+δ for

all but an ε-fraction of node pairs uv. In particular, this inequality holds whenever there exists some node
b ∈ Su ∩ Sv that lies within distance δduv/3 from u or v. Note that if it holds then either bound can be
seen as a (1 + δ)-approximate estimate on the uv-distance, and, moreover, these bounds provide a ”quality
certificate” for the estimate.

The distributed algorithms for triangulation from Chapter 3 offered no guarantees for some small fraction
of the node pairs. Here we consider triangulation as an off-line problem of constructing the corresponding
data structure given a metric, and we seek for guarantees for all node pairs. Specifically, given a metric and
a parameter δ > 0 we want to construct a (0, δ)-triangulation of low order.

OUR CONTRIBUTION: We construct a (0, δ)-triangulation of order (1
δ )O(α)O(logn).

Distance labeling. In a distance labeling scheme (DLS), each node is assigned a short label so that the
distance between any two nodes can be efficiently approximated just by looking at their labels. Formally, a
k-approximate DLS for a classM of metrics consists of a polynomial-time computable real-valued function
f(x, y) and, for each metric M ∈ M, an assignment of labels Lu to nodes u of M such that for each node
pair uv, f(Lu, Lv) is within factor of k of the true uv-distance. By a slight abuse of notation, we can talk
about a DLS on a particular metric M ∈ M once the underlying familyM of metrics is clear. Given k,
we’d like to minimize the maximal bit-length of node labels.

In a trivial DLS, the label of node u would encode the distances to all other nodes, taking up O(n log∆)
bits. Exact DLS are known for two families of unweighted graphs: for bounded-genus graphs and for graphs
with constant-size separators, with Õ(

√
n)- and O(log2 n)-bit labels, respectively [GPPR04]. For weighted

graphs, approximate DLS with sublinear label length have been introduced by Peleg [Pel99], see [GP03,
Pel00] for a survey. In particular, for any integer k there exists a (2k − 1)-approximate DLS on weighted
graphs with Õ(n1/k log ∆)-bit labels [TZ05]; a complimentary lower bound of Õ(n1/k) is given in [TZ05,
GKK+01].

Major improvements are possible for doubling metrics. For any δ ∈ (0, 1
2) Gupta et al. [GKL03] pro-

vided an embedding into `∞ which trivially translates into a (1+δ)-approximate DLS with (1
δ )O(α)(logn)(log∆)

bits per label, where α is the doubling dimension and ∆ is the aspect ratio. Using a different technique, Tal-
war [Tal04] improved this by a factor of (logn), and gave a lower bound of (1

δ )Ω(α).
OUR CONTRIBUTIONS: We observe that since the aspect ratio ∆ can be arbitrarily large with respect to

n, it is desirable to alleviate the dependency on ∆. Using our result on triangulation, with the upper bound
D+ as a distance estimate, we obtain a (1 + δ)-approximate DLS with (1

δ )O(α)(logn)(logn + log log∆)

bits per label. We further improve it to (1
δ )O(α)(logn)(log log∆) bits per label using the ideas from our first

result on routing schemes. For any ∆ ≥ nlog n and bounded α, δ this is optimal up to constant factors.5
BIBLIOGRAPHICAL NODE: The above results have been published in Slivkins [Sli05a]. Our initial result

on DLS for doubling metrics, with (1
δ )O(α)(log2 n)(logn + log log∆) bits per label, has been published in

Slivkins [Sli05b]. In the period between the latter and the former publications, this initial result has been
improved by a (logn) factor in [MHP05], using a different technique.

The unifying technique. In this paper we present results on four related, yet different problems. These
results are unified by a common technique: rings of neighbors. Moreover, these results are intertwined, in
the sense that one result elaborates ideas pioneered in another. This flow of ideas is represented in Figure 7.1.
Note that both Theorem 7.11 and Theorem 7.12 build on Theorem 7.8; however, Theorem 7.11 just uses it
as a black box, whereas Theorem 7.12 imports its techniques and elaborates on them. In fact, the proof of
Theorem 7.12 is the culmination of our techniques for routing schemes, triangulation and distance labeling.

5The lower bound is from [MHP05], see (7.1) on page 97 in this thesis.



93

Figure 7.1: Interconnections between our results: arrows indicate the flow of ideas.

Recall that in rings of neighbors, the i-ring neighbors of a given node u lie in a ball Bi around u,
for some increasing sequence of balls {Bi}; the radii of these balls and the distribution of neighbors in a
given ring depend on the specific application. One trick that has been particularly useful in our proofs is to
combine the following two collections of rings of neighbors. In the first collection, the cardinalities of the
balls Bi grow exponentially, and the i-ring neighbors are distributed uniformly on the node set of Bi. In
the second collection, the radii of the Bi’s grow exponentially, and (if one draws on the analogy between
doubling metrics and low-dimensional Euclidean metrics) the i-ring neighbors are distributed uniformly in
the space region that corresponds to Bi. For some applications, e.g. in Section 7.2, the second collection
alone suffices.

In a more abstract view, a collection of rings of neighbors is a tractable representation for the fine
structure of the underlying graph. The idea of using a tractable structure-preserving representation as a
unifying technique for various problems on graphs is not new; several representations have been suggested
in the literature, e.g. [AGLP89, ABNLP90] for general graphs and [Tal04, MHP05] for doubling graphs.
Our representation seems to be particularly suitable to the problems that we consider in this paper.

Map of the chapter. We start with a simple proof of the main result in Chan et al. [CGMZ05] on routing
schemes. In Section 7.3 we present our results on triangulation and distance labeling. We return to routing
schemes in Section 7.4; in particular, we consider routing schemes on metrics in Section 7.4.1. Finally, in
Section 7.5 we discuss our results on searchable small-world networks.

Notation. Define an enumeration of a finite set S as a bijection S → [k], where k = |S|. Recall that for
k ∈ N we define [k] as the set {0, 1 . . .k − 1}.
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7.2 A low-stretch routing scheme for doubling metrics

In this section we will use rings of neighbors to derive a significantly shorter and simpler standalone proof
of the main result in Chan et al. [CGMZ05]; the ideas from this proof will be used in the subsequent results.

Theorem 7.1. Consider a weighted graph G with out-degree Dout. Suppose its shortest-paths metric has
doubling dimension α and aspect ratio ∆. Then for any δ ∈ (0, 1

4) there is a (1 + δ)-stretch routing
scheme on G with O(α log 1

δ )(log∆)-bit packet headers and routing tables of (1
δ )O(α)(log∆)(logDout)

bits. Moreover, such routing scheme can be efficiently computed.

Proof. Let d be the shortest-paths metric of G. For each j ∈ [log∆] let Gj be some ∆/2j-net on d; let
rj = 4∆/δ2j and define the j-th ring of neighbors of node u as the set Yuj = Bu(rj) ∩ Gj . Note that
by Lemma 2.20 each node has at most K = (16/δ)α j-ring neighbors. The nodes in ∪jYuj are called the
neighbors of u. Intuitively, we think that u has a virtual link to each of its neighbors; note that these virtual
links are not the physical links in the underlying connectivity graph G.

To connect the virtual links with G, for each neighbor v the routing table of u will contain the first-hop
pointer from u to v, which is, informally, the first edge of some shortest uv-path in G. We will define the
first-hop pointers formally later in the proof.

Fix some node t; let us think of t as a potential target node. For any given j, by definition of Gj there
exists a j-ring neighbor of t that lies within distance ∆/2j from t; let us fix one such neighbor, call it ftj .
Consider the sequence {ftj : j ∈ [log∆]}. The nodes in this sequence zoom in on t as j increases. Let us
call this sequence the zooming sequence of t.

A routing label of t will contain (a description of) its zooming sequence, which will be used to guide
the routing as follows. Suppose node u wants to send a packet to node t. For some j node u has a neighbor
v = ftj ∈ Yuj that lies within distance δdut from t. Essentially, node u wants to forward the packet to v;
here v becomes an intermediate target. In general, u does not have a direct link to v. Instead, the packet is
sent via the edge uw which is the first-hop pointer to v. It will turn out that v is also a neighbor of w, so we
can again use the first-hop pointer to v, and so on. This way the packet gets delivered to v via a shortest path
using the first-hop pointers. Once the packet reaches v, a new intermediate target is selected. Eventually the
next intermediate target that we choose will be the actual target t.

We want a routing table of each node u to list all its neighbors. Similarly, we want a routing label
of each node t to list its zooming sequence. The simplest way to achieve this is to assign each node a
global dlogne-bit identifier, and just list the corresponding identifiers. However, this leads to unwanted
extra (logn) factors in the storage requirements. Later in the proof we will show how to reduce storage
using shorter local identifiers. No matter what routing tables and routing labels we use, all we need from
them is summarized in the following claim (which is trivial if we use global identifiers).

For any two nodes (u, t), let us define jut be the maximum j such that fti ∈ Yui for each i ≤ j. Note
that jut ≥ 0 since f(t,0) ∈ G0 = Y(i,0). Let gutj be the first-hop pointer from u to ftj , or null if u = ftj .

Claim 7.2. Given the routing table of u and the routing label of t we can find jut and gutj for each j ≤ jut.

Now using this claim we will define the routing algorithm and prove its correctness. Then we provide a
more space-efficient way to define routing tables and routing labels which will satisfy Claim 7.2 and lead to
the desired storage complexity.

We start with a very useful fact about the zooming sequences: ftj ∈ Yuj for a sufficiently small j.

Claim 7.3. For any two nodes (u, t) and any j ≤ dlog(∆/δdut)e we have ftj ∈ Yuj . In particular, for any
node t and any j ∈ [log∆] letting f = f(t, j−1) we have ftj ∈ Yfj .
Proof: By definition ftj ∈ Gj . It is easy to check that ftj lies within distance rj from u, so ftj ∈ Yuj . The
claim applies to f = f(t, j−1) since dft ≤ ∆/δ2j .
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ROUTING ALGORITHM. For a packet with target t, the header consists of the routing label of t and the
number j ∈ [log∆] such that ftj is the current intermediate target. Suppose node u wants to send a packet
to target t. Then using Claim 7.2 node u computes j = jut and gutj , chooses ftj to be the intermediate
target, and sends the packet along the hop gutj .

Now suppose node u receives a packet with target t and intermediate target ftj . We will prove that in
this case we have jut ≥ j (see Claim 7.4b). First node u checks whether it is the target.6 If not, then via
Claim 7.2 it computes jut and gutj and, in particular, checks whether the intermediate target is u itself. If it
is not, i.e. if gutj is not null, then u just forwards the packet along the hop gutj .

If u is indeed the current intermediate target, then it needs to select a new one. Specifically, it resets
j = jut and selects ftj as the new intermediate target. Then it recomputes gutj and forwards the packet
along the corresponding hop. This completes the routing algorithm.

Claim 7.4. Here are some key properties of the routing algorithm-
(a) each intermediate target is at least 1

δ times closer to the target than the previous one.
(b) if node v receives a packet with primary target t and intermediate target ftj then jvt ≥ j.
(c) each packet follows a shortest path to each intermediate target.

Proof: (a) The next intermediate target is chosen when the current intermediate target u is reached; it is
defined as ftj such that j = jut. By Claim 7.3 j ≥ dlog(∆/δdut)e, so ftj lies within distance δdut from t.

(b) Let P be this packet. We will use induction on the path traversed by P . This path starts when some
node u chooses w = fj(t) as an intermediate target; then the current level is set to jut. For the induction
step, assume node v receives P from some node u such that jut ≥ j; we need to show that jvt ≥ j, too.
Since w ∈ Yuj , and by the specs dvw < duw ≤ rj, it follows that w ∈ Yvj . It remains to show that fti ∈ Yui

for every i < j. Indeed, by the triangle inequality dvt ≤ dvw + dwt < rj + ∆/2j . It is easy to check that
dvt + ∆/2i ≤ ri. Therefore, fti ∈ Bt(∆/2

i) ⊂ Bv(ri).
(c) More precisely, we need to show that if node u sends a packet P with intermediate target w then P

reaches w and traverses path of total length duw. Indeed, by part (b) node x sends P along the first hop of
some shortest xw-path. Therefore before reaching w the distance to w decreases on every hop, so P never
visits the same node twice. Since the network is finite, P reaches w eventually.

Let ρ(u) be the path traversed by P from u to w, and let ρL(u) be its metric length. We will prove that
ρL(u) = duw using induction on ρ(u). Indeed, consider an edge xy ∈ ρ(u), and assume we proved that
ρL(u) = dyw. Since xy is the first hop of a shortest xw-path, dxw = dxy+dyw = dxy+ρL(u) = ρL(x).

Now it is straightforward to prove correctness of the routing algorithm-

Claim 7.5. Every packet reaches its target and follows a path of stretch 1 + O(δ).

Proof. Consider a packet send by node u to target t. By Claim 7.4b the algorithm is well-defined. By
Claim 7.4c the packet reaches each intermediate target, and by Claim 7.4a it reaches t. The distance from
the i-th intermediate target to t is at most δidut by Claim 7.4a, so by Claim 7.4c the total path length is at
most

∑

i=0 δ
idut(1 + δ) ≤ dut(1 +O(δ)).

It remains to provide space-efficient routing tables and routing labels which satisfy Claim 7.2. Recall
that our goal is to replace dlogne-bits global node identifiers with shorter ’local’ identifiers.

For each node u, let us fix some enumeration ϕuj(·) of each ring Yuj ; let us call it the j-th host enumer-
ation of u. Recall that an enumeration of a set S is a bijection S → [k], where k = |S|. Since the rings Yu0

coincide for all nodes u, without loss of generality so do the corresponding enumerations ϕu0.
Consider nodes f = ftj and w = f(t,j+1), for some target t and integer j. Note that by Claim 7.3 we

have w ∈ Y(f,j+1). Consider some node u such that f ∈ Yuj and w ∈ Y(u,j+1). For such triangles (u, f, w)

6Without loss of generality, the routing table and the routing label of every node contain its global identifier.
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u
 w = f
(t, j+1)


f = f
(t, j)


j


j+1


j+1


Figure 7.2: Translation between host enumerations of u and f = ftj .

(see Figure 7.2) we will provide a ’translation’ between host enumerations of u and f , in the following
sense: knowingϕuj(f) and ϕ(f,j+1)(w) we will be able to find ϕ(u,j+1)(w).

Specifically, for each j ∈ [log∆] the routing table of each node u will include the translation function
ζuj : [K]× [K]→ [K] such that

ζuj

(

ϕuj(f), ϕ(f, j+1)(w)
)

= ϕ(u, j+1)(w) whenever f ∈ Yuj and w ∈ Y(u, j+1) ∩ Y(f, j+1),

and null otherwise. Clearly, each such function can be stored using K2dlogKe bits. Recall that K =

(16/δ)α is the maximal cardinality of each set Yuj .
Let us formally define the first-hop pointers. For each node u we fix some enumeration φu(·) of all

outgoing links in the underlying connectivity graph G. For two nodes uv, we define the first-hop pointer
from u to v as φu(w) such that uw is the first edge of some shortest uv-path; each such pointer can be stored
using only dlogDoute bits.

For every node t, let us encode its zooming sequence via host enumerations of its elements as follows:
let us define nt0 = ϕt0(ft0), and for each j ≥ 1 let ntj = ϕfj(ftj), where f = f(t,j−1). This is well-defined
because by Claim 7.3 ftj is a j-ring neighbor of node f . It is easy to see that the sequence {ntj} can be
stored usingO(logK)(log∆) bits.

DATA STRUCTURES: The routing table of a given node u consists of the translation functions ζuj and
the first-hop pointers to all its neighbors. The routing label of a given node t is the sequence {ntj}.

Having defined routing tables and routing labels, it remains to prove Claim 7.2. The proof follows in
a straightforward way from our discussion of the translation functions. Indeed, let mj = ϕuj(ftj); this is
well-defined for all j ≤ jut. We will use induction on j to compute mj for all j ≤ jut. Host enumerations
ϕu0 coincide for all nodes u, so m0 = nu0. Suppose for some j < jut we know mj and we’d like to
compute mj+1. Let f = ftj and w = f(t,j+1). Since we know mj = ϕuj(f) and ntj = ϕfj(w), we
can find mj+1 = ϕ(u,j+1)(w) using the translation function ζuj . We iterate the above procedure while we
can, i.e., while w ∈ Y(u,j+1). We stop exactly at j = jut. This completes the proof of Claim 7.2 and
Theorem 7.1.

7.3 Triangulation and distance labeling schemes

We start with the result on triangulation, then we elaborate it using the ideas from the previous section and
achieve an optimal (1+δ)-approximate distance labeling scheme. We will use Lemma 3.19 on the existence
of (ε, µ)-packings.

Theorem 7.6. For any δ ∈ (0, 1) any metric has a (0, δ)-triangulation of order [O(1
δ )]O(α) logn, where α

is the doubling dimension. Moreover, such triangulation can be efficiently computed.

Proof. The label of every node uwill consist of distances to a subset of nodes which we call the neighbors of
u. These neighbors will be partitioned into two types of rings: there will beXi-neighbors and Yi-neighbors,
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i ∈ [logn]. All Xi-neighbors and all Yi-neighbors of u will be contained in the open balls B(u,i−1) and
Bu(12rui/δ), respectively, where rui = ru(2−i) and Bui = Bu(rui). This is the construction:

• For each i ∈ [logn] let Fi be a (2−i, µ)-packing guaranteed by Lemma 3.19, where µ is the counting
probability measure. Fix one point hB ∈ B for every ball B ∈ Fi. Define the Xi-neighbors of u as
all nodes hB such that B ⊂ B(u,i−1).

• Let us greedily construct a sequence of nested r-netsGdlog∆e ⊂ . . .⊂ G1 ⊂ G0, where Gj is a 2j-net
for each j ∈ dlog∆e. Then for each i ∈ [logn] let us define the Yi-neighbors of u as all nodes in
Bu(12rui/δ) that lie in Gj , j = blog(δrui/4)c.

The above construction is efficiently computable since so are (2−i, µ)-packings and the nested 2j-nets.
Let’s bound the number of neighbors. Fix node u. Since each ballB(u,i−1) contains at most 2O(α) balls

B ∈ Fi, there are at most 2O(α) Xi-neighbors for each i. By Lemma 2.20 there are at most [O(1/δ)]O(α)

Yi-neighbors. It remains to prove that our construction is indeed a (0, δ)-triangulation. First we need a basic
fact about the radii rui:

Claim 7.7. For any edge uv and any i ∈ [logn] we have |rui − rvi| ≤ duv.
Proof: Since Bv(rvi) ⊂ Bu(d+ rvi), the latter ball contains at least n/2i nodes, so it follows that rui ≤
duv + rvi. Similarly, sinceBui ⊂ Bv(duv + rui) it follows that rvi ≤ duv + rui.

Fix a node pair uv and let d = duv . We need to show that a ball of radius δd around either u or v
contains a common neighbor of both u and v. Suppose there is no such node. Let r = (1 + δ)d and choose
i such that rui < r+ d ≤ r(u,i−1). We choose i with respect to u, but by Claim 7.7 this yields some bounds
on rvj’s as well; specifically, r(v,i−1) ≥ r and rvi ≤ r+ 2d.

First we make use of the Xi-neighbors. The ball Bv(6rvi) contains some B ∈ Fi, so in particular it
contains some node w = hB . If 6rvi ≤ δd then Bv(6rvi) is contained in both B(u,i−1) and B(v,i−1), hence
node w is an Xi-neighbor of u and v, contradiction. Similarly, Bu(6rui) contains some ball B ∈ Fi, so if
6rui < δd then the node w = hB is an Xi-neighbor of u and v, contradiction. Therefore letting x = δd/6
we have x ≤ rui ≤ r + d and x < rvi ≤ r + 2d. We will use (all of) these four conditions to show that the
Yi-neighbors give us the desired common neighbor.

Indeed, consider the ball B = Bv(δd) and let j = blog(δd)c. Then there exists a node w ∈ Gj ∩ B.
Now since rui ≥ x it follows that B ⊂ Bu(12rui/δ) and j ≤ log(6rui); moreover, j ≥ blog(δrui/4)c
since rui ≤ r + d. Therefore by definition w is a Yi-neighbor of u. Similarly, w is a Yi-neighbor of v,
contradiction.7 Theorem proved.

Our (0, δ)-triangulation can be extended to a (1 + δ)-approximate distance labeling scheme where
each label consists of [O(1

δ )]O(α)(logn)(logn + log log∆) bits, matching the result of Mendel and Har-
Peled [MHP05]. Indeed, we assign each node u a unique dlogne-bit identifier ID(u) and store each neighbor
u of v as a pair (ID(u), duv). We use the upper bound D+ for the distance estimate, so it suffices to store
duv as a O(log 1

δ )-bit mantissa and O(log log∆)-bit exponent.
Extending a result from [GPPR04], Mendel and Har-Peled [MHP05] constructed a family of doubling

metrics for which any 1.9-approximate distance labeling scheme needs

Ω(logn)(log log ∆− log logn) (7.1)
7Similarly we can also prove that u and v have a common Yi-neighbor in the ball Bu(δd).
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bits per label. This is Ω(logn)(log log ∆) as long as ∆ ≥ nlogc n for any constant c > 0. Their construc-
tion works for infinitely many n and for (essentially) a full range of possible values of the aspect ratio ∆.
Specifically, it works for some ∆ in every interval [(n/2)M ; nM ] such thatM ≥ 2 is an integer.

Our next result shows that we can elaborate our distance labeling scheme, getting rid of the dlogne-
bit node identifiers and achieving Oα,δ(logn)(log log ∆)-bit labels. This is an improvement whenever
log log ∆ = o(logn). Moreover, for any ∆ ≥ nlog n and fixed α, δ we match the lower bound (7.1) up
to constant factors.

Theorem 7.8. For any δ ∈ (0, 1) any metric has a (1 + δ)-approximate distance labeling scheme where
each label consists of [O(1

δ )]O(α)(logn)(log log∆) bits, where α is the doubling dimension and ∆ is the
aspect ratio. Moreover, such scheme can be efficiently computed.

Proof Sketch. We will elaborate the construction in the proof Theorem 7.6 using the ideas from the proof of
Theorem 7.1. Specifically, we will use the zooming sequences and the host/foreign enumeration technique.

Keep the notation from the proof of Theorem 7.6. Recall that for each j ∈ [log∆] we fix some 2j-net
Gj . For each node u and each i ∈ [logn] fix a node fui ∈ Gl, l = blog(rui/4)c, that lies within distance
rui/4 from u. Such node is a Yi-neighbor of u by definition of the Yi-neighbors; it is possible that fui = u.
Call the sequence {fui : i ∈ [logn]} a zooming sequence, and denote it fu. Moreover, for each node u fix
some enumeration ϕu(·) of all its neighbors.

From the proof of Theorem 7.6 we know that for any given node pair uv there exists a node w0 within
distance δduv from u or v such that w0 is a common neighbor of u and v; recall that distances from w0 to
u and v give us a desired estimate. However, we know such w0 exists, it is non-trivial to identify it since
we do not have global node ids. In our context, to identify a common neighbor w of u and v means to find
ϕu(w) and ϕv(w).

Suppose w0 is within distance δduv from v; then, essentially, we identify it by zeroing in on v via the
sequence fv. We will be able to identify, sequentially, all fvi from i = 0 to some i0 such that f = fvi0 lies
”reasonably close” to v; each fvi will help us identify f(v,i+1). Then f will help us identify w0.

The problem is that f(v,i+1) might not be a neighbor of fvi, and w0 might not be a neighbor of f , so
we cannot use the host/foreign enumeration technique the way it is used to prove Theorem 7.1. Instead, for
every node we will define another set of nodes called virtual neighbors, so that each f(v,i+1) is a virtual
neighbor of fvi, and w0 is a virtual neighbor of f . These virtual neighbors are used for enumeration only:
for each node u fix some enumeration ψu(·) of all its virtual neighbors, and define a pointer from one ’true’
neighbor u to another ’true’ neighbor v as ψu(v). It follows that virtual neighbors are cheap: if every node
has at most N of them, then each pointer between the ’true’ neighbors will use only dlogNe bits. We will
actually have N = Oα,δ(logn) log(∆). 8

The crux of the proof is to define the virtual neighbors and prove that they have the desired properties.
This is quite non-trivial even using this relatively large value of N ; see the full proof for details.

In the remainder of this section we give the full proof of Theorem 7.8. Keep the notation from the
proof of Theorem 7.6. Let Xui and Yui denote the sets of Xi- and Yi-neighbors of u, respectively; let
Xu = ∪iXui and Yu = ∪iYui. Recall that for each j ∈ [log∆] we fix some 2j-net Gj . For each node u and
each i ∈ [logn] fix a node fui ∈ Gl, l = blog(rui/4)c, that lies within distance rui/4 from u. Such node
lies in Yui by definition of the Yi-neighbors; it is possible that fui = u. Call the sequence {fui : i ∈ [logn]}
a zooming sequence, and denote it fu.

8A minor technical note: log N = (log log n) + (log log ∆) + Oα,δ(1). To avoid the ugly (log log n) factor in the theorem
statement, we note that due to Lemma 2.18 it is subsumed by (log log ∆).
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For each node u we define the sets

Zuj = Bu(2j) ∩ Gl, where l = max(0, blog(2jδ/64)c).
Tu = Xu ∪ Zu ∪ [∪v∈XuZv ], where Zu = ∪log∆

j=1 Zuj .

The elements of Tu will be called the virtual neighbors of u. We will need the following crucial facts about
virtual neighbors:

Claim 7.9. Fix node u and i ∈ [logn]; let r = r(u,i−1) and f = f(u,i−1). Then
(a) if rui ≤ r/12 then the nearestXi-neighbor of u is an Xi-neighbor of f .
(b) if x ∈ [ δ

4rui; 6rui], x ≤ r/2 then any node w ∈ Gblogxc ∩Bu(x) is a virtual neighbor of f .
(c) in particular, node fui is a virtual neighbor of f .

Proof: For part (a), note that the nearest Xi-neighbor of u is some node hB ∈ B ∈ Fi such that the ballB
is a subset of Bu(6rui). Letting z = r(f,i−1) we have z − duf ≥ r − 2duf ≥ r/2 ≥ 6rui and consequently
Bu(6rui) ⊂ Bu(z − dvf ) ⊂ Bf (z). Part (a) follows by definition of the Xi-neighbors.

For part (b), it is easy to check that if rui > r/12 then w ∈ Zfj for j = dlog(x+ duf )e. Now suppose
rui ≤ r/12 and let v be the nearestXi-neighbor of u. Then by part (a) v ∈ Xui. Moreover, since duv ≤ 6rui

it is easy to see that w ∈ Zvj for j = dlog(duv + x)e. Since w ∈ Zvj and it follows that w ∈ Tu.
Finally, part (c) follows from (b) with x = rui/4.

Let’s define the labels of nodes. Fix some enumeration ϕu(·) of each set Xu ∪ Yu; call it a host enumer-
ation of u. Since any ball Bu0 contains all nodes, the sets Xu0 coincide for all u, and so do the sets Yu0.
Therefore without loss of generality all host enumerations coincide on Xu0 ∪ Yu0. Fix some enumeration
ψu(·) of each set Tu; call it a virtual enumeration of u.

Fix node u and let N(i) = Xui ∪ Yui. Whenever v ∈ N(i), the label of u will include the translation
between the host enumeration of u and the virtual enumeration of v. Specifically, for each i ∈ [logn] we
define the translation function ζui on pairs of integers, so that

ζui (ϕu(v), ψv(w)) = ϕu(w) whenever v ∈ N(i) and w ∈ N(i+ 1)∩ Tv,

and null otherwise.
The label of uwill contain distances to all its neighbors (but not to its virtual neighbors). These distances

are stored as an array whose j-th entry is the distance to ϕu(j), encoded as a O(log 1
δ )-bit mantissa and

O(log log∆)-bit exponent. Moreover, the label will contain the maps ζui: each ζui is represented by an
ordered set of triples (x, y, z) such that ζui(x, y) = z 6= null. Finally, it will contain the sequence fui’s;
specifically, we store ϕu(fu0), and each f(u,i+1) is represented by its number in the virtual enumeration of
fui. This completes the definition of the labels.

By the proof of Theorem 7.6, the cardinality of each Xui, Yui and Zuj is upper-bounded by some
K = [O(1/δ)]O(α). Therefore each node has at most K logn neighbors, and each map ζui is repre-
sented by at most K2 triples, each triple taking at most 2 logK + log |Tu| bits to store. Since |Tu| <
O(K2) log(n) log(∆), the label size is within the claimed bounds.

Let’s show how to estimate distances from the labels. As in the proof of Theorem 7.6, fix a node pair
uv, denote d = duv, let r = (1 + δ)d and choose i such that rui < r + d ≤ r(u,i−1). It follows that
r(v,i−1) ≥ r and rvi ≤ r+2d. We know that there exists a node w0 within distance δd from u or v such that
w0 is a common neighbor of u and v; recall that distances from w0 to u and v give us a desired estimate.
However, we know such w0 exists, but we do not know how to identify it: this is non-trivial since we do not
have global node ids. In our context, to identify a common neighbor w of u and v means to find ϕu(w) and
ϕv(w).

Essentially, if w0 is close to v then we identify it by zeroing in via the sequence of fvj ’s, and vice versa.
First we need a basic claim about fvj ’s:
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Claim 7.10. For any j ≤ i− 1 we have fuj ∈ Yvj and fvj ∈ Yuj .
Proof: Let w = fvj and note that w ∈ Gl for l = blog(rvj/4)c. Since ruj ≥ r + d, by Claim 7.7 it follows
that ruj/2 < rvj < 2ruj and duw ≤ d+rvj/4 ≤ 1.5ruj. Therefore w ∈ Yuj by definition of Yuj . Similarly,
we can show that fuj ∈ Yvj .

In particular, for any j ≤ i − 1 nodes fuj and fvj are common neighbors of u and v. Moreover, we
can identify them sequentially using the translation maps ζuj and ζvj . For instance, it is easy to identify fu0

since it is numbered the same in any host enumeration. Then, inductively, suppose that we have identified
some fuj , j ≤ i − 2 and we need to identify f = f(u,j+1). Then by Claim 7.9c f is a virtual neighbor of
fuj , so we can find ϕu(f) using map ζuj and (by Claim 7.10) we can find ϕv(f) using map ζvj .

Now, assuming w0 is closer to v than to u, we will identify it using f = f(v,i−1): it suffices to show that
w0 is a virtual neighbor of f . (If w0 is closer to u, we can identify it similarly using f(u,i−1).) According to
the proof of Theorem 7.6, letting x = δd we can assume that either

(a) rvi ≤ x/6 and w0 is the nearest Xi-neighbor of v, or
(b) rvi > x/6 and w0 ∈ Gl such that l = blogxc.

In case (a) w0 ∈ Tf by Claim 7.9a since r(v,i−1) > d ≥ 2x; in case (b) w0 ∈ Tf by Claim 7.9b since x
matches the conditions in the claim. This completes the proof of Theorem 7.8.

7.4 Low-stretch routing schemes, revisited

First we will use our result on distance labeling to obtain a really simple (1 + δ)-stretch routing scheme for
doubling graphs, then we merge the techniques from the previous two sections to obtain routing schemes
for doubling graphs with super-polynomial aspect ratio. We also discuss extensions to routing on metrics.

Theorem 7.11. In the setting of Theorem 7.1, for any δ ∈ (0, 1) there exists a (1 + δ)-stretch routing
scheme with 2O(α)(φ logn)-bit packet headers and routing tables of (1

δ )O(α)(φ logn)(log∆) bits, where
φ = log(1

δ log ∆). Such routing scheme can be efficiently computed.

Proof. For every node u, let ID(u) be its unique dlogne-bit ID. Fix a 3/2-approximate distance labeling
scheme with 2O(α)(logn)(log log∆)-bit labels, which is guaranteed by Theorem 7.8; for each node u let
Lu be the label of u in this scheme, and let D(·, ·) be the non-contracting distance function on labels.
Without loss of generality assume that Lu contains ID(u). Each packet header consists of Lt and ID(t′)
where t is the target and t′ is the intermediate target. The routing table of node u contains labelsLv of some
nodes v which we call neighbors of u; we will specify them later. For each such v we also store the first
node gu(v) on some shortest path to v.

The routing algorithm is simple. To send a packet to node t, node u initiates the intermediate target to
u. Suppose node u creates or receives a packet with target t and intermediate target t′. If t′ = u then node u
selects a neighbor v such that D(Lv, Lt) is minimal, makes v the new intermediate target, and forwards the
packet to gu(v). Else, as we will see, t′ is a neighbor of u, so node u just forwards the packet to gu(t′).

Let’s define the neighbors: for each j ∈ [log∆] let Fj be some 2j-net; let rj = 2j+2/δ and Fj(u) =
Bu(rj) ∩ Fj . Elements of Fj(u) are called j-level neighbors of u; by Lemma 2.20 each node has at most
[O(1

δ )]O(α) j-level neighbors for each j.
Now we can proceed with the proof of correctness. We claim that for any pair ut of nodes, letting

d = dut, node u has a neighbor v ∈ B = Bt(δd). Indeed, pick j such that 2j ≤ δd < 2j+1. Then
on one hand B contains some node v ∈ Fj , and on the other hand rj > 2d, so B ⊂ Bu(rj), so v is a
j-level neighbor of u, claim proved. It follows that D(Lt, Lv) ≤ δd(1 + δ). So when node u selects a new
intermediate target for a packet with final target t, it selects a neighbor v within distance δ(1 + δ)d from t.

Suppose an intermediate target t′ for packet P has been set by the node u. Then t′ ∈ Fj(u) for some
j. We claim that t′ ∈ Fj(v) for every node v visited by P after u and before reaching t′. Indeed, let’s use
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induction: if t′ ∈ Fj(v) then P goes from v to w = gv(t
′), so dwt′ < dvt′ ≤ rj , so t′ ∈ Fj(w), claim

proved.
Now Claim 7.4c holds: each packet follows a shortest path to each intermediate target. To reach the i-th

intermediate target, i ≥ 1, the packet traverses path at most dut(1+ 2δ)δi−1. Therefore the total path length
is at most dut[1 +O(δ)].

We note that the bounds in Theorem 7.1 are unsatisfactory for metrics with large aspect ratio, and an
extension that alleviates the dependency on ∆ for weighted graphs that contain near-shortest paths with small
hop-counts; this property is, intuitively, a natural property of a ”good” network topology. For concreteness
we will state this result for an illustrative special case; so as not to disrupt the flow, the general case and the
full proof are deferred to Section 7.6.

Theorem 7.12. Suppose the aspect ratio is 2n and any two nodes in the input graph G are connected by a
(1 + δ)-stretch path with at most k logn hops, where k = (1

δ )O(α) and α is the doubling dimension. Then
for any δ ∈ (0, 1) there exists a (1+ δ)-stretch routing scheme onG withO(k log3 n)-bit routing tables and
O(k log2 n)-bit packet headers. Such routing scheme can be efficiently computed.

Proof Sketch. We will combine the ideas of Theorem 7.8 and Theorem 7.1, and add some new tricks. In
particular, we will use (i) the basic rings of neighbors, (ii) zooming sequences and intermediate targets, (iii)
the first-hop pointers, and (iv) host/virtual enumerations. We will use the rings, the zooming sequences,
and the enumerations as defined in Theorem 7.8. In fact, we will just use all definitions from the proof
Theorem 7.8, for the same value of δ, including the sets of Xi- and Yi-neighbors. We also need a unique
dlogne-bit identifier ID(u) for every node u.

The routing will have two modes. One is an elaboration of the routing in Theorem 7.1: we use interme-
diate targets that zoom in towards the true target. If at the current node u the intermediate target is not set,
we select a new intermediate target w among the neighbors of u, using the zooming sequence ft and other
data in the routing label of t. To save space in the packet header, this w will be represented not by a global
id, but by its number in a virtual enumeration of some fti. Now suppose an intermediate target w is set, and
the packet is at node v. If w is a neighbor of v and, moreover, v can identify this w (i.e. find ϕv(f)), then v
forwards the packet using the first-hop pointer to w.

Note that this routing algorithm might fail since it might not be possible to find a ’good’ new intermediate
target, or identify it at some intermediate node v. However, the algorithm is set up so that this can happen
only if there is a large gap between dvt and the largest rvi that lies below 4

3dvt. Verifying this claim is the
crux of the proof of the theorem.

If the first routing mode fails, we will go into the second routing mode, and we never come back. By
Lemma 3.19 there exists a ball B ∈ Fi of cardinality at least n/2i+O(α) such that B ⊂ Bu(6rui). Let
w = hB be the node selected from B in Theorem 7.6; without loss of generality say it is a center of B.
It is easy to see that the ball B′ = B(h,i−1) contains target t. The nodes in B will collectively store the
routes to all nodes in B′; specifically, each node in B will store full routes to 2O(α) nodes in B′ so that
exactly one node in B is responsible for each node in B′. Moreover, the nodes in B will maintain a labeled
shortest-paths tree TB rooted at w, such that given ID(t) it is possible to route from w to the node vt that
stores a path to t. Here it is crucial that we are free to choose the labels for TB and the mapping vt from B′

to B any way we like. We will choose so that for a given link in the shortest-paths tree it suffices to specify
a single range of target ids for which a packet should take that link.

This is how the packet will reach t. First the node w (which is a neighbor of u) is designated as the
intermediate target, and the packet is routed to w via the first-hop pointers. From w the packet is routed to
vt via the shortest-paths tree TB. Then node vt puts the full route to t into the packet header and send the
packet to t. More precisely, vt will store a (1 + δ)-approximate shortest path to t with k logn hops (the
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out-degree routing table size, bits packet header size, bits
Chan et al. [CGMZ05] (α

δ )O(α)(log∆) (α
δ )O(α)(φ log∆) O(α log 1

δ )(log∆)

Theorem 7.1 (1
δ )O(α)(log∆) (1

δ )O(α)(φ log∆) same as above
Theorem 7.11 same as above (1

δ )O(α)(φ log∆)(logn) 2O(α)(φ logn)

Theorem 7.12 (1
δ )O(α)(logn) (1

δ )O(α)(φ logn)(log logn) O(αφ logn)

Follow-up work [AGGM06] (1
δ )O(α)(logn) (1

δ )O(α)(log2 n) dlogne
doubling dimension α, aspect ratio ∆, and φ = log(1

δ log∆)

Table 7.2: (1 + δ)-stretch routing schemes for doubling metrics

existence of such a path is guaranteed by the theorem statement). Each hop in this path can be encoded
by dlogDoute ≤ dlogne bits, where Dout is the out-degree, so the entire path can be stored using at most
k log2 n bits.

This was the second routing mode; it is easy to see that it causes a detour of length at most O(δdut).
Moreover, we will show that the total path length from source to target is within the claimed stretch 1+O(δ)
even if we switch to the second mode in the middle of a path to some intermediate target.

7.4.1 Routing schemes on metrics

Finally, we note that all our results on routing schemes on doubling graphs extend to routing on metrics. Here
we are given a metric (V, d), and we need to construct a routing scheme on some weighted directed graph
G = (V,E). The crucial point is that we are free to choose the (unweighted) set of edges E; essentially,
it can be seen as an overlay network on V . The edge-weights are determined by the metric: for any edge
uv ∈ E, the weight of this edge is duv. In addition to the maximal size of a routing table and the maximum
size of a routing label, the out-degree of E becomes another parameter to be optimized.

Extension to routing on metrics is almost trivial. In fact, in all our proofs we first construct a routing
scheme on a low-degree overlay network (which is, by definition, a routing scheme on a metric), and then
with some additional work adapt it to the underlying connectivity graph. The quantitative results are sum-
marized in Table 7.2; we omit the appropriate modifications (simplifications) of the proofs. Note that in this
setting Theorem 7.12 does not need any assumptions about the existence of near-shortest paths.

FOLLOW-UP WORK: Following the publication of the conference version of Slivkins [Sli05a], Abraham
et al. [AGGM06] provided a fine-tuned version of Theorem 7.12, where they completely eliminate the
dependence on aspect ratio ∆; see Table 7.2 for quantitative results.

7.5 Searchable small-world networks

In this section we consider searchable small-world networks on metrics. To the best of our knowledge, the
most general previous result in this direction is for metrics such that the growth rate of balls (defined as
the ratio |Bu(2r)|/|Bu(r)|) is both upper- and lower-bounded by a constant; let us call such metrics UL-
constrained. This result can be easily achieved from Kleinberg’s original construction for two-dimensional
grids [Kle00b]. Here we extend small worlds to doubling metrics.

We will consider routing algorithms where the next hop is chosen among the current node’s contacts,
by looking only at distances to these contacts and distances from these contacts to the target. Recall from
Section 7.1 that we call such routing algorithms strongly local. A very natural routing algorithm is the
greedy algorithm- select the contact that is closest to the target.
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As searchable small-worlds on metrics have not been previously studied explicitely, we need to give a
formal definition. For simplicity let us focus on the case when the routing algorithm is strongly local.

Definition 7.13. A small-world model on a metric (V, d) consists of the following two items:

• a distribution over directed graphs on V (from which the graph of contacts is sampled) such that the
out-links of a given node u are chosen independently for different nodes u;

• a strongly local routing algorithm that selects the next hop among the current node’s contacts.

Let us define the out-degree of a small-world model as the maximal possible out-degree of its graph of
contacts. For a given metric, we would like to balance two conflicting objectives: the out-degree and the
length of paths found by the routing algorithm.

We would like the distribution of contacts to have the following informal property: if from the point of
view of a given node u two nodes v and w are similar, then these two nodes should have a similar probability
of being chosen as contacts of u. Indeed, in our constructions the probability that node v is chosen as a long-
range contact of a node u depends only on the rank of duv among distances from u to all other nodes, and
the ratios µ(v)/µ(Buj), where µ is a doubling measure and {Buj : 0 ≤ j ≤ dlog∆e} are balls around u
with exponentially increasing radii. Here the doubling measure of v quantifies how dense is the metric in
the vicinity of v; intuitively, we need to oversample nodes that lie in very sparse neighborhoods.

Now we can describe our results. Let ∆ be the aspect ratio of the metric. While it is relatively straight-
forward to achieve out-degree O(logn)(log∆) and O(log∆)-hop paths, it is quite non-trivial to handle the
case of super-polynomial aspect ratio. We obtain O(logn)-hop paths even if ∆ is exponential in n. In our
first result the out-degree is (still) proportional to log(∆), suggesting that it is a natural lower bound since
we need some long-range contacts for each one of the (log∆) distance scales. However, our second result
breaks this barrier. Moreover, in Section 7.5.2 we argue that for UL-constrained metrics our small worlds
essentially coincide with those induced by Kleinberg’s group structures from [Kle01].9

To break the above-mentioned O(log∆) barrier we need to use a non-greedy routing algorithm. Yet,
we can still make this algorithm strongly local, so that on each routing step we do not need to use any
extra information beyond the current node’s list of neighbors. To the best of our knowledge it is the first
non-greedy strongly local routing algorithm in the literature.

Let us state the main result of this section. Note that we upper-bound the actual (as opposed to expected)
hop counts, so that with high probability our upper bound is valid for all possible queries.

Theorem 7.14. Let α be the doubling dimension, and let ∆ be the aspect ratio.

(a) For any metric there is a small-world model with out-degree 2O(α)(logn)(log∆) and a greedy routing
algorithm such that with high probability all queries complete inO(logn) hops.

(b) For any metric there is a small-world model with out-degree 2O(α)(logn)2 (log∆)1/2 (log log∆) and
a strongly local routing algorithm such that w.h.p. all queries complete in O(logn) hops.

Proof Sketch. To be consistent with the earlier parts of the paper, let us use words ’contact’ and ’neighbor’
interchangeably. A relatively straightforward solution is to use (log∆) rings of neighbors so that the radii
of the rings grow exponentially, and the neighbors are distributed with respect to the doubling measure; let
us call these neighbors the Y-type neighbors. It is easy to make sure that the greedy algorithm reduces the
distance by at least a factor of two at each step, so any query will take (log∆) steps to complete. However,

9The guarantees in [Kle01] apply to UL-constrained metrics that are subsets of some `p space, p ≥ 1. However, the construction
itself is well-defined for any metric.
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reducing the distance by a constant factor at each step does not suffice to guarantee O(logn)-hop query
paths when the aspect ratio ∆ is large.

Let us denote Bui = Bu(rui), where rui = ru(2−i). In other words, Bui is the smallest ball around
node u that contains at least n/2i nodes, and rui is the radius of this ball. Let t be the target node, and let us
consider the annuli B(t, i−1) \Bti, indexed by i ∈ [logn]. Instead of trying to reduce the distance to target
by a constant factor at each step, we will now focus on how quickly the routing algorithm gets us from one
such annulus to the next one. Specifically, to guaranteeO(logn)-hop query paths, we will need small-world
models with the following property:

(*) if the current node u lies inside ballB(t, i−1) but outside ballBti, then we get inside ballBti in at most
a constant number of hops.

This property is non-trivial when the radius rti is much smaller than the distance between u and the target.
In part (a) we keep the Y-type neighbors. It turns out that we satisfy property (*) if we throw in another

collection of rings of neighbors where the neighbors are distributed with respect to the counting measure;
let us call these neighbors the X-type neighbors. Specifically, we get from u into the ball Bti using only two
hops; the one intermediate hop leads from u to some node within distance dut/4 from t.

For part (b), however, using all Y -neighbors is not an option since there are too many of them. Instead,
we will need to prune them. From part (a) it will follow that after we get within distance dut/4 from t, the
next hop gets us inside Bti. However, u might not have a neighbor that is sufficiently close to t. To handle
this case, we will need to use a non-greedy routing choice, specifically:

(**) if the current node u has no contacts within distance dut/4 from the target node t, then we choose the
contact v that is farthest from u subject to the constraint duv ≤ dut.

Intuitively, if we cannot make a sufficiently good progress towards the target, this is because the current
node u happens to be in a particularly ’bad’ neighborhood. We want the next hop to take us away from this
’bad’ neighborhood, and place us into a ’good’ one. This is why we want the next hop to take us to some
node v which is far away from node u. Furthermore, we want to prove that we necessarily land in a ’good’
neighborhood. To prove this we must use the ’badness’ of u (since otherwise node v is no better than node
u as far as we are concerned). Therefore we do not want to get too far from node u, which is expressed by
the constraint duv ≤ dut.

To make (**) work, we introduce yet another family of neighbors, which we call the Z-type neighbors.
Our argument proceeds as follows. If node v is a contact of the current node u, let us say that v is good if
the ratio duv/dut is large enough, yet smaller than 1. We will show that if the current node u is in a ’bad’
neighborhood, then any good contact v is in a ’good’ one. Moreover, (**) will necessarily find a ’good’
contact if u has one. So our job is to make sure that node u has at least one ’good’ contact. And indeed node
u will have at least one ’good’ contact among the Z-type neighbors.

7.5.1 Full proof of Theorem 7.14

Let us fill in the details. For simplicity let us assume that in the input metric all distances are distinct. Recall
that Bui = Bu(rui), where rui = ru(2−i) is the radius of the smallest ball around u that contains at least
n/2i nodes. Fix an absolute constant c to be specified later. Recall that α is the doubling dimension; let µ
be the 2O(α)-doubling measure. For each i ∈ [logn] select a node independently and uniformly at random
from the ball Bui. Repeat this c logn times, where c is a sufficiently large constant to make the Chernoff
Bounds work out (see Footnote 10 below), and let Xui be the set of selected nodes. Let Xu = ∪Xui; these
are the X-type neighbors of u. Note that |Xu| ≤ O(log2 n).
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Proof of part (a): For a given node u, select the neighbors as follows. For each j ∈ [log∆] select a node
independently from the ball B = Bu(2j) according to the probability distribution µ(·)/µ(B); repeat this
(2cα logn) times, and let Yuj be the set of selected nodes. Let Yu = ∪Yuj ; these are the Y-type neighbors of
u. Define the set of neighbors of u as Xu ∪ Yu. Note that the out-degree of u is within the claimed bound;
in particular, we upper-bound |Xu| using Lemma 2.18.

We need to prove that property (*) holds. Suppose t is the target and u is the current node. Let us choose
i such that node u lies in the annulus B(t,i−1) \ Bti. Let us denote d = dut and j = dlog(1.25 d)e. Note
that the set Yuj contains a node w that is within distance d/4 from target t.10 Therefore the greedy routing
algorithm will choose such node for the next hop.

If rti ≥ d/4 then we are done. Now suppose rti < d/4. By our choice of i we have r(t, i−1) > d. It
follows that r(w, i−1) >

3
4d, so Bti ⊂ Bt(d/4) ⊂ B(w, i−1). Since ball Bti contains at least a half of the

nodes of the ballB(w, i−1), it follows that with high probability the set X(w, i−1) contains a node inBti, and
we are done.

Proof of part (b). In the remainder of this subsection we will prove part (b) of the theorem. As we
discussed in the proof sketch, we will introduce a new family of contacts (called Z-type neighbors), and
define the pruned version of the Y-type neighbors.

For a given node u, let us select the contacts as follows. Let us denote x =
√

log∆ and ρj = 2(1+1/x)j .
Let us consider the annuli Bu(ρj) \ Bu(ρj−1), indexed by j. For each j such that ρj ≤ ∆ let us pick a
node zuj uniformly at random from the j-th such annulus, provided that it is non-empty; else let zuj be the
closest node to u that lies outside Bu(ρj), ties broken arbitrarily. Let Zu = ∪j {zuj}; these are the Z-type
neighbors of u.

For each i ∈ [logn] and each (signed) integer j such that

|j| ≤ (3x+ 3)(log log∆) and r(u,i+1) < rui · 2j < r(u,i−1),

let us select a node independently from the ball B = Bu(rui · 2j) according to the distribution µ(·)/µ(B).
Repeat this (2cα logn) times and let Y(u,i,j) be the set of selected nodes. Let Yu = ∪ijY(u,i,j); these are the
Y-type neighbors of u. Define the set of neighbors of u as Xu ∪ Yu ∪ Zu.

Let us check that the out-degree is small enough. Indeed, there are at mostO(log2 n) X-type neighbors.
Each set Y(u,i,j) contains at most 2O(α)(logn) nodes. Since for these sets there are at most (logn) valid
indices i and at most O(x log log ∆) valid indices j, the number of Y-type neighbors is below the claimed
upper bound. Finally, for the Z-type neighbors it suffices to note that ρj ≤ ∆ implies j ≤ O(x)(log log∆).

The routing algorithm is simple. Suppose u is the current node and t is the target. If u has a contact
within distance dut/4 from t then we greedily choose the contact that is closest to t. Else we do the non-
greedy step (**).

This completes the specification of our small-world model; now we need to prove that our routing
algorithm satisfies property (*). Suppose t is the target and u is the current node. Let us choose i such that
node u lies in the annulusB(t,i−1) \Bti. We will show that we get inside the ballBti in at most three hops.

Indeed, let d = dut and note that as proved in part (a), if we get within distance d/4 from target t then in
at most one more hop we are done. Let us consider the hard case: suppose node u does not have a contact
in Bt(d/4). Let us choose an integer l such that rul ≤ d ≤ r(u, l−1). It is easy to see that

rul · 8x+1 < 1.25 d < r(u, l−1)/8
x+1. (7.2)

10More precisely, by Chernoff Bounds for large enough constant c with high probability this happens for all (u, t) pairs simulta-
neously. In the rest of the proof we will omit these trivial applications of Chernoff Bounds.
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Indeed, if the first inequality fails then for j = blog(d/rul)c some node from Y(u,l,j) lies in Bt(d/4),
contradicting the assumption that node u does not have contacts in Bt(d/4). If the second inequality fails,
then similar contradiction arises with the set Y(u, l, ·).

Now let us choose j such that ρj ≤ d < ρj+1 and consider z = zuj . It follows that ρj−1 ≤ duz ≤ d and

d/duz ≤ ρj+1/ρj−1 = (ρj−1)
3/x ≤ ∆3/x = 8x.

Therefore the non-greedy step (**) will choose some contact w of u such that

d/8x ≤ duw ≤ d. (7.3)

In particular, by (7.2) and (7.3) it follows that

4rul < duw < r(u, l−1)/4. (7.4)

Now that we are at w we will be able to make progress towards t. To be consistent with our search
algorithm, the next hop should get us from w to within distance dwt/4 from t. Since dwt > d/4 by our
assumption, it suffices to get inside the ball Bt(d/16). (Note that if the routing algorithm is allowed to
remember the previous move, then getting inside Bu(d/4) is sufficient, too.) We will achieve the desired
progress using some neighbor in Y(w,l,j) for the appropriately chosen j.

Claim 7.15. duw − rul ≤ rwl ≤ duw + rul.

Proof. The second inequality follows since the ball Bw(duw + rul) contains the ball Bul and therefore
has cardinality at least n/2l. Suppose the first inequality fails. Then the balls Bwl and Bul are disjoint;
since both balls lie inside Bu(duw + rwl), the latter ball has cardinality at least n/2l−1. It follows that
r(u, l−1) ≤ duw +rwl. However, using (7.4) we have duw +rwl ≤ 2duw +rul < r(u, l−1), contradiction.

Combining Claim 7.15 and (7.4), it follows that rwl/duw < (4
3 ,

5
3). Let us denote r = dwt +d/16. Then

r ≤ 1.07 d+ duw ≤ duw (1.07 · 8x + 1) < 23x+1 rwl (7.5)

In (7.5) the first inequality follows simply because dwt ≤ d+duw , and the second inequality holds by (7.3).
Let us choose j such that 2j−1 < r/rwl ≤ 2j . Then by (7.5) we have j ≤ 3x+ 2, and by definition of r

we have Bt(d/16) ⊂ Bw(rwl · 2j). The radii of these two balls are within a constant factor because
{

r = Θ(rwl · 2j) by definition of j
r = Θ(d) by definition of r, since dwt ≤ d+ duw ≤ 2d.

Therefore the set Y(w,l,j) is well-defined, and it follows that with high probability the ballBt(d/16) contains
a node from Y(w,l,j). This completes the proof of part (b) of the theorem.

7.5.2 Comparison with Kleinberg’s small worlds

Let us argue that our small-world models generalize one of the Kleinberg’s small worlds. Specifically,
we consider the group structures from [Kle01] applied to balls in a metric (it was one of the two original
applications described in [Kle01]). This small-world model, call it STRUCTURES, can be defined as follows.
For any two nodes (u, v), let xuv be the smallest cardinality of a ball containing both u and v. For each node
u, define a probability distributionπu on V (the set of all nodes) by πu(v) = c1/xuv , where c1 is the suitable
normalization constant. Each node u has Θ(log2 n) neighbors chosen independently from distribution πu.
The routing algorithm is greedy.

On UL-constrained metrics our two small-world models essentially coincide with STRUCTURES:
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Theorem 7.16. For UL-constrained metrics, both small-world models in Theorem 7.14 share the following
properties with STRUCTURES:

(a) with high probability, any target is found in O(logn) steps from any starting node.
(b) the local search algorithm is greedy.
(c) each node has k = Θ(log2 n) neighbors.
(d) Pr[v is a neighbor of u] = Θ(logn)/xuv, for any nodes (u, v).11

Proof Sketch. Part (a) is trivial because any UL-constrained metric has a polynomially bounded aspect ratio.
For part (b) note that the routing algorithm in Theorem 7.14a is greedy by definition, and in Theorem 7.14b
the non-greedy step is taken only if there is no neighbor that would reduce the distance to the target by the
factor of 4. It is easy to show that if the underlying metric is UL-constrained then the set Xu ∪ Yu will
contain such a neighbor, so in Theorem 7.14b the routing algorithm is greedy as well and, moreover, the
Z-type neighbors are never used.

Part (c) and (d) follow from the following observations:
(i) On a UL-constrained metric, the counting measure is doubling.
(ii) For any two nodes (u, v) in a UL-constrained metric, |Bu(duv)| is within a constant factor of xuv .
(iii) In a UL-constrained metric, for any node u and any i ∈ log[n] there can be at most a constant

number of ballsBu(2j), j ∈ [log∆] that are sandwiched between Bui and B(u,i+1), where Bui is the
smallest ball around u that contains at least n/2i nodes.

By (iii), in Theorem 7.14b for every node u and each i ∈ [logn] there is at most a constant number of
non-empty sets Yuij (and obviously, there is at least one such set). Part (c) follows immediately.

In both parts of Theorem 7.14, for each node u we sample Θ(logn) neighbors (namely, the X-type
neighbors) uniformly at random from each of the balls {Bui, i ∈ [logn]}. Here a given node v is selected
with probability Θ(logn)/|Bu(duv)|, which by (ii) is Θ(logn)/xuv .

Apart from that, we sample Θ(logn) neighbors (namely, the Y-type neighbors) from each of the balls
{Bu(2j), j ∈ [log∆]}. By (ii) we sample them uniformly at random; by (iii) this boosts the probability of
selecting a given node by at most a constant factor.

7.5.3 Comparison with the single-link-per-node model

Let us briefly comment on an alternative setting where we are given a graph of local contacts, and we add
exactly one long-range contact per node. This has been the original Kleinberg’s model [Kle00b] (for two-
dimensional grids). Recently (following the publication of the conference version of Slivkins [Sli05a]) it
has been considered in [DHLS05, Fra05, AG06, FLL06] for, respectively, graphs that induce metrics of low
grid dimension, graphs of bounded treewidth, graphs that exclude a fixed minor, and doubling graphs. The
typical guarantee is that any query completes in expected poly-log number of hops.

We note in passing that our more straightforward result (the one that only uses the Y-type neighbors)
trivially extends to this setting:

Theorem 7.17. Consider a graphG such that its shortest paths metric dG has doubling dimensionα. There
is a randomized algorithm that assigns to every node exactly one long-range contact so that in the resulting
small-world model on dG the greedy algorithm completes each query in expected 2O(α)(log2 ∆) hops.

Proof Sketch. We will use, implicitly, (log∆) rings of neighbors so that the radii of the rings grow expo-
nentially, and the neighbors are distributed with respect to the doubling measure. Specifically, for each node
u we choose u.a.r. an integer j ∈ [log∆], and then we select the one long-range contact of u from the ball
B = Bu(2j) according to the probability distributionµ(·)/µ(B), where µ is a doubling measure on dG.

11For Theorem 7.14b we ignore Z-type neighbors since it turns out that on doubly constrained metrics they never get used.
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Suppose u is the current node and t is the target. Then with probability p =
(

2O(α) log ∆
)−1 node u

has a long-range contact within distance dut/2 from t. At every step the greedy algorithm is guaranteed
some progress via the local contacts, and in expected (1/p) steps it will find a suitable long-range contact
and halve the distance to target. Therefore the query will complete in expected (p−1 log∆) steps.

Recall that Theorem 7.14 explored the interesting trade-off between the out-degree and the hop-count.
Here, in Theorem 7.17, in order to make progress, a success event at any one node suffices; so if we allow
larger out-degree, then the product of hop-count and out-degree stays constant. This seems a good way
to capture the above-mentioned tradeoff. Unfortunately, it does not work in general. For instance, if we
adapt Theorem 7.14(a) or Theorem 7.14(b) to the current setting then in order to make progress we need
success events at two (resp. three) consecutive nodes. This results in poor probability of making progress
at a given node, and, accordingly, in an unreasonably poor expected hop-count, as compared to a much less
sophisticated Theorem 7.17. These considerations suggest that sometimes the current setting does not quite
capture the richer setting of polylog out-degree.

7.6 Full proof of Theorem 7.12 on routing schemes

In this section we give the proof of Theorem 7.12 from Section 7.4. We moved it to the end of this chapter
in order not do disrupt the flow of exposition.

We prove the theorem in the following more general form:

Theorem 7.18. Suppose any two nodes in the input graph G are connected by a (1 + δ)-stretch path with
at mostNδ hops. Let α be the doubling dimension, let ∆ be the aspect ratio, and let Dout be the out-degree
of G. Then for any δ ∈ (0, 1) there exists a (1 + δ)-stretch routing scheme on G with

- O(αφ logn) +Nδ(logDout)-bit packet headers and
- (1

δ )O(α)(φ+Nδ)(logn)(logDout)-bit routing tables,
where φ = log(1

δ log∆). Such routing scheme can be efficiently computed.

We will combine the ideas of Theorem 7.8 and Theorem 7.1 with some new tricks. We will use (i) the
basic rings of neighbors, (ii) zooming sequences and intermediate targets, (iii) the first-hop pointers, and (iv)
host/virtual enumerations. Our basic setup is from the proof of Theorem 7.8. For simplicity let’s assume
δ ≤ 1/8 and let δ′ = δ/(1− δ).

NOTATION. We borrow a lot of definitions from the previous proofs:
• From Theorem 7.6, we borrow, firstly, radii rui and ballsBui; secondly, (2−i, µ)-packingsFi and sets
Xui of Xi-neighbors; and thirdly, 2j-nets Gj and sets Yui of Yi-neighbors.

• From Theorem 7.8, we borrow the zooming sequences fu = {fui : i ∈ [logn]}, the sets Tu of virtual
neighbors; host enumerations ϕu(·), virtual enumerations ψu(·), and translation functions ζui. For
convenience set ψu(v) = null whenever v is not a virtual neighbor of u.

• From Theorem 7.1 we borrow the first-hop pointers.
We use (2−i, µ)-packings Fi as provided by Lemma 3.19; for each B ∈ Fi, let h = hB be a node and
r = rB be a radius such that B = Bh(r) and 6ru(2−i) ≥ duh + r. We need to fix h because B can
have multiple centers, i.e. nodes v such that B = Bv(r) for some r, whereas Lemma 3.19 guarantees this
inequality only for one of them. We redefine the set Xui of Xi-neighbors of u as follows as the set of all
nodes h = hB such thatB ∈ Fi and r(u,i−1) ≥ duh + rB.

We introduce the following new notation. For each node t, each i ∈ [logn] and each j ∈ [log∆], we
define:

- ID(t) as a unique global dlogne-bit identifier for t;
- xti as the nearest Xi-neighbor of t;
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- ytj as the nearest Yj-neighbor of t;
- Jti as the set of all integers between blog( δ

4rti)c and dlog(6rti)e;
- Sti as the set of all ytj such that j ∈ Jti.

All nodes xui and all nodes in all sets Sui are called friends of u.

DATA STRUCTURES. Routing labels and routing tables will contain distances between some pairs of nodes.
All these distances as stored as aO(log 1

δ )-bit mantissa and log log∆-bit exponent. It will be easy to see that
this many bits suffice for our purposes; we omit the details and treat the stored distances as exact distances.

The routing label of target t contains ID(t) and the information about the zooming sequence and the
friends of t, specifically:

- sets Jti, for all i.
- the host enumeration of t for ft0, xt0 and all nodes in St0.
- for each i ≥ 1, the virtual enumeration of f(t,i−1) for fti, xti and all nodes in Sti.
- the distances from t to all fti, all xti and all nodes in Sti.

In the routing label, the info about all nodes fti and xti is stored as an array indexed by i; similarly, the info
about all nodes ytj ∈ Sti is stored as an array indexed by j. The global IDs are not used.
The routing table of each node u includes:

- its label, radii rui for all i, and distances to all its neighbors (but not to its virtual neighbors),
- translation maps ζui, for all i ∈ [logn].
- the first-hop pointer from u to each neighbor of u, which we can store using only dlogDoute bits.

Node u does not know the global IDs of its neighbors; they are indexed according to ϕu.

USING THE DATA STRUCTURES. Suppose t is the target and u is the current node. Say node w is a (u, i, j)-
landmark if the following three conditions hold:
(c1) w is a neighbor of u and a virtual neighbor of f(t,i−1).
(c2) if j =∞ then w = xti ∈ Xui; else j ∈ Jui and w = ytj ∈ Yui.
(c3) for all l ≤ i− 1 node ftl is a neighbor of u;

Say node w is (u, i, j)-good if conditions (c1)-(c3) hold and, moreover,
(c4) dwt ≤ δ′duw and 6rui ≤ δ′duw and j ≥ blog δ

1+δ duwc.
(c5) rui < 2βduw ≤ r(u, i−1) for some β such that 1− δ′ ≤ β < 1/(1− δ).

Say a node is u-good if it is (u, i, j)-good for some pair (i, j). Note that by condition (c2) a (u, i, j)-
landmark is unique if it exists, whereas there could be multiple u-good nodes.

Here is the meaning behind these definitions. A current node u in the routing can select some u-good
node w as an intermediate target; the definition is tailored so that, on one hand, a u-good node is a good
intermediate target, and on the other hand, we could show that such nodes exist. Then the packet will be
routed along some initial segment of a shortest uw-path. In particular, each node v in this segment will
know where to forward the packet; essentially, it will be due to the fact that w is a (v, i, j)-landmark.

First we show that (u, i, j)-landmarks and u-good nodes exist, then we show how to identify them. The
following claim is an elaboration of the arguments in the proof of Theorem 7.8.

Claim 7.19. Fix any nodes u and t, and let d = dut.
(a) If rul ≥ 4

3dut for some l then ftl is a Yl-neighbor of u.
(b) if δd/6 ≤ rui < 2d ≤ r(u,i−1) for some i, then there exists a u-good node.

Proof: (a) Let d = dut. Note thatw = ftl ∈ Gj , j = blog(rtl/4)c, and by Claim 7.7 we have |rul−rtl| ≤ d.
By definition of Yl-neighbors, we need to check two things: that duw ≤ 12rul/12 and that l ∈ Jul. Firstly,

dwt ≤ rtl/4 ≤ (rul + d)/4 < rul/2, so duw ≤ d+ dwt < 1.5rul.

Secondly, j ∈ Jul follows because rtl ≥ rul − d ≥ rul(1− 3
4) ≥ δrul.
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(b) We will produce a (u, i, j)-landmark w such that dwt ≤ δd. For such w by triangle inequality we
have

d(1− δ) ≤ d− dwt ≤ duw ≤ d+ dwt ≤ d(1 + δ),

so it is easy to see that conditions (c4) and (c5) hold and w is u-good.
If rti ≤ δd/6 then let w = xti; else let w = ytj , j = blog δdc. In either case, dwt ≤ δd. We claim that

w is a (u, i, j)-landmark. Since condition (c3) holds by part (a), we just need to check (c1) and (c2).
Let x = δd and f = f(t, i−1). There are two cases. Firstly, suppose rti ≤ x/6 and w = xti. By

definition of Xi-neighbors for some radius r we have Bw(r) ∈ Fi and dwt + r ≤ 6rti ≤ x. Therefore

duw + r ≤ d+ dwt + r ≤ d+ x < 2d ≤ r(u, i−1),

so w ∈ Xui. Since r(t, i−1) ≥ r(u, i−1) − d ≥ d > 12rti, by Claim 7.9a w is a virtual neighbor of f .
Now suppose rti > x/6. Note that rti ≤ rui + d < 3d, so x ∈ [ δ

4 ; rti6rti]. Then w = ytj ∈ Gj ∩Bt(z)
satisfies all conditions in Claim 7.9b, hence is a virtual neighbor of f . Finally, u is a Yi-neighbor of u since
12rti/δ > 2d > d+ dwt ≥ duw and j = blog xc ≥ blog δrti/4c.

Claim 7.20. Given the routing table of u and the routing label of t, one can efficiently:
(a) check whether a u-good node w exists; if so, find ϕu(w) and (i, j) such that w is (u, i, j)-good.
(b) check whether the (u, i, j)-landmarkw exists, for given (i, j), and find ϕu(w) if it does.

Proof: Consider the following algorithm. First, read ϕu(ft0) from the routing table of u. Then consecu-
tively for each i from 1 to dlogne, let f = f(t, i−1), do the following:

1. Note that by construction condition (c3) holds and we know ϕu(f).
2. for w = xui and then consecutively for each w = yuj , j ∈ Jul in the order of decreasing j:

a. check ζui (ϕu(f), ψf(w)). If it is not null then it is equal to ϕu(w), and condition (c1) holds.
b. check condition (c2). If it holds, then node w is (u, i, j)-identifiable.
c. if (c1) and (c2) hold, we can check (c4) and (c5). If they hold, too, then node w is u-good.

3. Check ζui (ϕu(f), ψf(fti)). If it is null then exit. If it is not null then it is equal to ϕu(fti).
For part (a) we exit if in step 2b we find a (u, i, j)-identifiable node; for part (b) we exit if in step 2c we find
a u-good node. it is easy to see that if a (u, i, j)-identifiable (resp. u-good) node exists, then our algorithm
finds and identifies it.

FIRST ROUTING MODE. The routing will have two modes,M1 andM2. Routing starts inM1, then may
switch toM2; if it does, it does not go back toM1. In what follows, the target node is denoted by t.

The first routing mode is an elaboration of the routing algorithm in the proof of Theorem 7.1. In this
mode the packet is routed to an intermediate target w, until it reaches w or t, or switches toM2, or a new
intermediate target is chosen. If the current intermediate target w has been chosen at node u, then the packet
header contains the routing label of t, the distance Dest = duw, and the intermediate target id, which is a
pair (i, j) such that w is (u, i, j)-good.

Suppose node u receives a packet. First u checks whether it is the target: if ID(t) = ID(u) then we are
done. If u is not the target, there are two cases, depending on whether the intermediate target id is null.

• If the intermediate target id is null, u checks whether a u-good nodew exists; if so, u finds ϕu(w) and
a pair (i, j) such that w is (u, i, j)-good (see Claim 7.20a). If u-good nodes do not exist, the routing
switches toM2. Else, u chooses w as the next intermediate target, sets Dest = duw, and sets the
intermediate target id to (i, j).

• If the intermediate target id is (i, j), then u checks whether the (u, i, j)-landmark node w exists (see
Claim 7.20b), finds ϕu(w) it if it does, or switches toM2 if it doesn’t.
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Suppose the first-hop pointer from u to w denotes edge uv, for some node v. If duw −duv ≤ 2δ′Dest, or if v
is w itself, then u sets the intermediate target id to null. Finally, u forwards the packet to v. This completes
the description of the first routing mode. For convenience assume that initially the sender receives the packet
(from itself) such the intermediate target id is null.

We claim that the routing in M1 is sufficiently nice, namely that the intermediate targets zoom in
towards t, and the packet follows shortest paths from one intermediate target to another. We will need a
simple application of triangle inequality: for any nodes u, w and t such that dwt ≤ δ′d we have

(1− δ′) duw ≤ duw − dwt ≤ dut ≤ duw + dwt ≤ (1 + δ′) duw.

Claim 7.21. Let u0, u1, . . . , uk−1 be the nodes where the new intermediate target id has been set; let uk be
the last node that the packet has reached inM1. Then for a fixed i < k we have:

(a) the indermediate target w chosen at ui is at least 3
4

1
δ times closer to t then ui.

(b) ui is at least 1
4

1
δ times closer to t then ui−1.

(c) the packet trajectory from ui to ui+1 is a segment of a shortest (ui, wi)-path .
Proof: (a) Let u = ui. Then w is u-good, so dwt ≤ δ′duw and

dut ≥ (1− δ′)dwt ≥ (1− δ′)dwt/δ
′ = (1− 2δ)dwt/δ ≥ 3dwt/4δ.

(b) Let v = ui+1 and suppose v 6= w. Let x be the node visited by the packet right before v. Then by
definition ofM1 node v lies on a shortest xw-path, and at node x we had dvw = dxw − dxv ≤ 2δ′Dest,
where Dest = duw. Therefore,

dvt ≤ dvw + dwt ≤ 3δ′duw ≤ 3δ′dut/(1− δ′) = 3δdut/(1− 2δ) ≤ 4δdut.

(c) The proof is similar to that of Claim 7.4, but somewhat more complicated since ui+1 is not necessarily
equal to w. Let u = ui and v = uu+1. Let ρ(x) be the path traversed by the packet from node x to v; let
ρL(x) be the metric length of this path. We need to show that ρL(u) = duv = duw − dvw.

We claim that for every node x ∈ ρ(u) we have ρL(x) = dxv = dxw − dvw. We will use induction on
ρ(x). Consider an edge xy ∈ ρ(u) and assume ρL(y) = dyv = dyw − dvw. By definition ofM1 node y lies
on a shortest xw-path, so dxy + dyw = dxw. It follows that

dxv + dvw ≥ dxw = dxy + dyw = dxy + dyv + dvw ≥ dxv + dvw,

so ρL(x) = dxy + ρL(y) = dxy + dyv = dxv = dxw − dvw.

SWITCHING BETWEEN THE MODES. It is crucial that the routing switches fromM1 toM2 only if for the
current node a certain condition (Lemma 7.22) holds. We will see later that under this conditionM2 work
efficiently. The forthcoming Lemma 7.22 is really the crux of the proof of Theorem 7.12.

Lemma 7.22. Suppose the routing switches toM2 at node v. Then 6rvi/δ <
4
3dvt ≤ r(v,i−1) for some i.

Proof: Suppose such i does not exist. Let u be the last node that receives the packet in M1 with null
intermediate target id. If u = v then for i such that rui <

3
2dut ≤ r(u,i−1) we must have 6rui ≥ 4

3δdut, so
by Claim 7.19b there exists a u-good node, contradiction. Therefore u 6= v. It follows that:

• the routing did not switch toM2 at u, so u has set the intermediate target id to a pair (i, j) such that
there exists a (u, i, j)-good node w.

• node v received the packet with a non-null intermediate target id (equal to (i, j)), so it must be the
case that dxw − dxv > 2δ′duw, where x is the node visited by the packet immediately before v.
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Since the routing switched toM2 at v, by the specification ofM1 there is no (v, i, j)-landmark node.
For the sake of contradiction, We will show that node w is a (v, i, j)-landmark; this will complete the proof
of the Lemma.

We need to check conditions (c1-c3) in the definition of a (v, i, j)-landmark. For condition (c3), we
claim that for each l ≤ i−1 we have ftl ∈ Yvj . Indeed, sincew is (u, i, j)-good, it follows that dwt ≤ δ′duw

and rul ≥ 2duw(1− δ′). By Claim 7.21c node v lies on a shortest uw-path, so duv +dvw = duw. Moreover,
rvl ≥ rul − duv by Claim 7.7. Putting this all together and letting β = 4

3 , we have:

rul ≥ 2duw(1− δ′) ≥ βduw(1 + δ′) ≥ β(duw + dwt) = β(duv + dvw + dwt)

rvl ≥ rul − duv ≥ rul − βduv ≥ β(dvw + dwt) ≥ βdvt,

so the claim follows by Claim 7.19a.
Since w is (u, i, j)-good, it is a virtual neighbor of f(t, i−1). Therefore it remains to check condition

(c2). To this end, we claim that w ∈ Xvi if j =∞, and w ∈ Yvi otherwise.
If j = ∞ then by definition of (u, i, j)-landmarksw = xti ∈ Xui, so by definition of Xi-neighbors for

some r we have Bw(r) ∈ Fi and r(u, i−1) ≥ duw + r. It follows that

r(v, i−1) ≥ r(u, i−1) − duv ≥ duw + r − duv = dvw + r,

so w is a Xi-neighbor of v, too.
If j < ∞ then by definition of (u, i, j)-landmarks it must be the case that w = yuj ∈ Gj . We need to

show that w ∈ Yvi, i.e. that (a) dvw ≤ 12rvi/δ and (b) j ≥ bδrvi/4c.
Recall that δ ≤ 1/8. Since 4

3dvt ≤ r(v,i−1) and we assumed that the i in the statement of the Lemma
does not exist, it must be the case that 6rvi ≥ 4

3δdvt. Therefore:

dvt ≥ dvw − dwt > 2δ′duw − δ′duw = δ′duw ≥ dwt,

dvw ≤ dvt + dwt ≤ 2dvt ≤ 2(3/4)(6/δ)rvi = 9rvi/δ.

This proves part (a). For part (b) recall that j ≥ blog δ
1+δ duwc and rui ≤ 2duw/(1− δ) since w is (u, i, j)-

good. In particular, it suffices to show that 4duw ≥ (1 + δ)rvi. Indeed,

rvi ≤ duv + rui ≤ duw + 2duw/(1− δ) ≤ 4duw/(1 + δ),

claim proved. This completes the proof of the Lemma.

SECOND ROUTING MODE. Suppose routing switches toM2 at node u; let d = dut. By Lemma 7.22 for
some i it is the case that 6rui/δ <

4
3d ≤ r(u,i−1). By Lemma 3.19 there exists a ball B ∈ Fi of cardinality

at least n/2i+O(α) such that B ⊂ Bu(6rui). Let w = hB be the node selected from B in Theorem 7.6;
recall that it is a center of B. It is easy to see that the ball B′ = B(w, i−1) contains target t. Indeed,
duw ≤ 6rui ≤ 4

3δd ≤ d/6 since δ ≤ 1
8 , and by Claim 7.7

r(w,i−1) ≥ r(u,i−1) − duw ≥ 4d/3− d/6 ≥ d+ duw ≥ dwt.

The nodes inB will collectively store the routes to all nodes inB′; specifically, each node inB will store
full routes to 2O(α) nodes in B′. Moreover, the nodes in B will maintain a shortest-paths tree TB rooted at
h. We label the edges of TB so that given ID(t), t ∈ B′ it is possible to route from h to the node vt ∈ B that
stores a path to this t ∈ B′. Specifically, we label each node v with a range Rv such that if a packet is at u,
and edge uv ∈ TB, and ID(t) is within this range, then the packet is forwarded to v.
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routing table size, bits packet header size, bits
modeM1 (1

δ )O(α)(φ logn)(logDout) O(αφ logn)

modeM2 2O(α)(Nδ logn)(logDout) NδdlogDoute
total (1

δ )O(α)(φ+Nδ)(logn)(logDout) O(αφ logn) +NδdlogDoute

Table 7.3: Space requirements; let φ = log(1
δ log ∆).

It is crucial that we are free to choose the ranges Rv to edges of TB and the mapping vt from B′ to B
any way we want. We do it using a top-to-bottom construction on the tree TB. For technical convenience,
extend TB as follows: for every node u ∈ B add a distinct node lu and edge (u, lu), so that each node has a
corresponding leaf. We start from the root which is assigned the full range [logn]. For a node u ∈ B with a
given range, partition this range into subrangesRv, uv ∈ TB such that |Rv| is proportional to the cardinality
of the subtree of TB rooted at v. For each leaf l = lu, we assign to u all nodes t such that ID(t) ∈ Rl.

This is how the packet will reach target t. First the node h (which is a neighbor of u) is designated as
the intermediate target, and the packet is routed to h via the first-hop pointers. From h the packet is routed
to vt via the shortest-paths tree. Then vt puts the full route to t into the packet header and send the packet to
t. More precisely, vt will store a (1 + δ)-approximate shortest path to t with the smallest hop count, which
is at most Nδ by definition of Nδ. Each hop in this path can be encoded by dlogDoute bits, where Dout
is the maximal degree of the underlying connectivity graph, so the entire path can be stored using at most
NδdlogDoute bits. Since a given node can lie in only one ballB ∈ Fi, it has to store at most 2O(α) paths for
each i, for a total of at most 2O(α) logn paths. This completes the second routing mode.

Claim 7.23. If the routing switches toM2 at node u, then from u to t it has stretch 1 +O(δ).

PROOF OF CORRECTNESS. The space requirements of both routing modes are summarized in Table 7.3. We
need to show that our routing scheme has stretch 1+O(δ). If the packet reaches the target without switching
toM2, this follows from Claim 7.21. Now suppose it switches toM2 at node w in the middle of a path to
some intermediate target v. Let u be the node that set v as the intermediate target and let d = dut. Let ρxy

be the distance traversed by the packet on its path from node x to node y.
By Claim 7.23 ρwt/dwt ≤ 1 + O(δ). By Claim 7.21ab v ∈ Bt(6δd). By Claim 7.21c, node w lies on

some shortest path from u to v, and the packet followed this path from u to w. Putting this together, we get

ρwt ≤ (1 +O(δ))dwt ≤ (1 + O(δ)) (dwv + dvt) ≤ dwv + O(δd)

ρut ≤ ρuw + ρwt = duw + dwv + O(δd) = duv + O(δd) = d+O(δd).

Suppose the packet originated at node s. If s = u then we are done. If s 6= u then by Claim 7.21
ρsu ≤ (1 + O(δ))dst and by Claim 7.21ab d ≤ δdst. Therefore,

ρst = ρsu + ρut ≤ (1 +O(δ)) (dst + d) ≤ (1 +O(δ))dst,

as claimed. This completes the proof of Theorem 7.18.



Chapter 8

Conclusions and further directions

Concurrent with numerous theoretical results on metric embeddings, a growing body of research in the net-
working community has studied the distance matrix defined by node-to-node latencies in the Internet, result-
ing in a number of recent approaches that approximately embed this distance matrix into low-dimensional
Euclidean space. A fundamental distinction between the theoretical approaches to embeddings and this re-
cent Internet-related work is that the latter operates under the additional constraint that it is only feasible to
measure a linear number of node pairs, and typically in a highly structured way. Indeed, the most common
framework here is a beacon-based approach: one randomly chooses a small number of nodes (’beacons’) in
the network, and each node measures its distance to these beacons only. Moreover, beacon-based algorithms
have been designed for the more basic problem of triangulation, in which one uses the triangle inequality to
infer the distances that have not been measured.

In this dissertation we provide a theoretical foundation for distributed distance reconstruction approaches,
with extensions to metric embeddings and node-labeling problems. We give beacon-based algorithms with
provable performance guarantees for triangulation and embedding; in addition to multiplicative error in the
distances, such guarantees typically must include a notion of ”slack” – an ε-fraction of all distances may be
arbitrarily distorted, which is a novel notion for theoretical work on metric embeddings. We extend these
results in a number of directions: embeddings with slack that work for all ε at once; distributed algorithms
for triangulation and embedding with low overhead on all participating nodes; distributed triangulation with
guarantees for all node pairs; node-labeling problems for graphs and metrics; extensive provable guarantees
for a systems project on location-aware node selection in a large-scale distributed network.

This thesis is based on a line of work started in [KSW04]. This paper gave rise to several open ques-
tions which motivated, and got resolved in, a number of the subsequent papers. Specifically, we have been
wondering whether there exist: ε-slack embedding for arbitrary metrics (the original result on ε-slack em-
beddings was for doubling metrics); fully distributed embeddings; triangulation-style data structure with
good guarantees for all edges; fully distributed triangulation with guarantees for all edges. These ques-
tions have been addressed respectively, in [CDG+05, Sli05b, Sli05a, Sli06]. Moreover, the existence of
gracefully degrading embeddings for arbitrary metrics has been the main technical contribution of a recent
effort [ABN06] by another research group.

The above line of work has also motivated a number of new new open questions:

Gracefully degrading distortion. The result in [ABN06] is that any metric can be embedded into any `p,
p ≥ 1 with gracefully degrading distortion O(log 1

ε ); this is optimal up to constant factors. Recall that in
Chapter 4 we obtained O(log 1

ε )
1/p for decomposable metrics. An intriguing open question is whether

o(log 1
ε ) is possible for other families of metrics, too. In particular, is gracefully degrading distortion
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Õ(
√

log 1/ε ) possible for embedding finite subsets of `1 into `2? This would mirror the corresponding
Õ(
√

logn ) distortion result [ALN05] which is closely related to the recent break-through on the sparsest
cut problem [ARV04, AHK04].

Triangulation. Several open questions concern triangulation.
First, while our strong guarantees are for doubling metrics, it is not clear how crucial this restriction

is. In particular, what can we say about a metric that allows a good triangulation? Can we achieve good
triangulation for other families of metrics?

Second, recall that our result in Chapter 7 achieves (0, δ)-triangulation of order Oα,δ(logn), where α
is the doubling dimension. However, the lower bound (7.1) on distance labeling (see Section 7.3), which is
the only lower bound for triangulation that we have, does not preclude triangulations of order Oα,δ(1) for
polynomially bounded aspect ratio, and triangulations of order Oα,δ(log logn) otherwise. Can we provide
doubling metrics with a triangulation-specific lower bound of Ω(logn), or, alternatively, construct trian-
gulations of sub-logarithmic order? Intuitively, the latter would be very surprising. Indeed, consider balls
around a given node u. Then there are Ω(logn) exponentially increasing size scales, and at least as many
exponentially increasing distance scales. If the size scales are roughly aligned with the distance scales, then,
intuitively, a label of u should include distances to at least one node in each of these scales.

Distributed algorithms. An array of open questions concerns the distributed framework described in
Chapter 3. One direction here is to provide provable guarantees for decentralized network algorithms that
build on triangulation or virtual coordinates. This might require a more fine-tuned (and possibly application-
specific) notion of slack. Another direction is to design decentralized algorithms for triangulation and
embedding that can handle churn in the system. In particular, consider the simple setting of an online
embedding: nodes arrive sequentially; each node must compute its coordinates based on distances to (and
coordinates of) the previously arrived nodes. Finally, in some settings it could be possible to get rid of the
ε-slack, i.e. obtain guarantees for all node pairs. Recall that we did obtain such result for fully distributed
triangulation in growth-constrained metrics. Can we obtain a similar result for embeddings? Is it possible
to extend these result to a more general family of metrics?

Rings of neighbors. Rings of neighbors can be used in a distributed system as a layer that supports various
applications. Recall that we used this framework in Chapters 5, 6 and 7. While this framework has already
lead to significant results, rings that we can define theoretically are much ’better’ than the ones that we know
how to construct in a distributed fashion (either in theory or in practice). Closing this gap is an interesting
open question.

Internet latencies. In Chapter 3 we obtained strong guarantees for triangulation in an overlay network,
assuming that the matrix of Internet latencies is a doubling metric. To which extent do the Internet latencies
resemble a doubling metric? More generally, what are the special properties of this distance matrix? A clean
and experimentally sound model for Internet latencies is fundamental for theoretical studies of algorithms
operating on the Internet. However, there has been essentially no work on this question, beyond the study
of the triangle inequality violations. This is a multi-facet research direction that involves systems issues of
gathering sufficiently large and clean data sets, analytical issues of inventing the right set of properties to
look at, algorithmic issues of mining for these properties in the large and (potentially) incomplete and dirty
data, and statistical issues of modeling and filtering out the noise.
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Node labeling problems. Several open questions concern the node labeling problems considered in Chap-
ter 7: routing schemes, small-world networks, and distance labeling.

First, for routing schemes on graphs and for searchable small-world networks it is desirable to further
alleviate the dependency on the aspect ratio ∆, e.g. by replacing the (log∆) factor by (logn)(log log∆)
like we did for distance labeling schemes and routing schemes on metrics. A more ambitious task is to obtain
poly-log(n) upper bounds that do not depend ∆ altogether. After the conference version of Slivkins [Sli05a]
has appeared, such results for routing schemes have been obtained by Abraham et al. [AGGM06].

Second, we would like extend our results on all four problems considered in Chapter 7 to decomposable
metrics. This direction seems promising since similar extensions (from doubling metrics to decomposable
metrics) have been obtained, in [KLMN05] and in Chapter 4 of this thesis, in the context of metric em-
beddings. Also, recent results of Abraham at al. [AGM05, AG06] construct low-stretch routing schemes,
distance labeling schemes, and small-world networks for graphs excluding a fixed minor.
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[Mat97] Jiřı́ Matoušek. On embedding expanders into lp spaces. Israel J. Math., 102:189–197, 1997.
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