
Informatica 17 page xxx{yyy 1

The ABCs of Speci�cation: AsmL, Behavior, and Components

Mike Barnett and Wolfram Schulte
Microsoft Research
One Microsoft Way
Redmond WA, 98052-6399, USA
fmbarnett, schulteg@microsoft.com

Keywords: Speci�cation, Component, Subtyping

Edited by:

Received: Revised: Accepted:

We show how to use AsmL, an executable speci�cation language, to provide behavioral interfaces

for components. This allows clients to fully understand the meaning of an implementation without

access to the source code. AsmL implements the concept of behavioral subtyping to ensure the

substitutability of components and provides many advanced speci�cation features such as generic

types, transactional semantics, invariants and history constraints.

1 Introduction

There is a broad consensus that a speci�cation of a
component's interface must include some way of de-
scribing its behavior [26, 32, 36, 43]. Current practice
tends towards formal speci�cation of the syntax of the
interfaces while using informal natural-langugage de-
scriptions for the semantics. Current theory is based
on the idea of design by contract [35], generally us-
ing pre- and post-conditions. Previous attempts at
describing software also have used algebraic speci�ca-
tions [24].
Interfaces, as they are standardized today, for exam-

ple using IDL [11], are clearly inadequate for the task
of specifying components. It is not enough to provide
merely the syntax | signature | for each method
contained in an interface. A client who wishes to use
a component needs to know the semantics | behav-
ior | of each method. In addition, understanding the
relationships between the methods contained in an in-
terface is crucial for the e�ective use of a component
supporting that interface.
We follow the speci�cation taxonomy of Beugnard

et al. [9]. A speci�cation is a contract for a software
component that describes properties on four levels:

1. basic: the syntactic properties of method names,
number and type of parameters and very simple
semantic properties (e.g., in IDL one can specify
whether a parameter that is a pointer can ever be
null or not).

2. behavioral: the properties that can be speci�ed
with pre-conditions, post-conditions, and invari-
ants, including history constraints [34].

3. synchronization: properties of component inter-
action.

4. quantitative: all non-functional properties, such
as quality of service, response times, throughput
guarantees, etc.

Our method for speci�cations covers only the �rst
three levels; however, we use the term behavioral to
refer also to the synchronization class of speci�cation.

Our group at Microsoft Research, the Foundations
of Software Engineering [16], has developed an exe-
cutable speci�cation language, AsmL, which is based
on the theory of Abstract State Machines (ASMs) (see
[22] for an introduction to the notion of ASMs). ASMs
allow precise, formal, operational speci�cations of soft-
ware systems. AsmL has many important features,
among which are generic interfaces and classes, and a
transaction-based semantics.

In this paper, we use AsmL to specify the behav-
ioral and synchronization properties of component in-
terfaces, in particular method behavior, interface-wide
invariants, history properties, and component compo-
sition.

In previous work we used AsmL to write compo-
nent models by reverse-engineering already existing
components [6]. The resulting models provided es-
sentially the identical functionality as the components
they were models of. In other words, they modeled
the classes that implemented the components. Our
concern here is the use of AsmL at the design stage
by providing models of interfaces. We wish to spe-
cify interfaces at their most general level: only the
required behavior any component implementing them
must have is detailed. The rest is left up to the imple-
menter of the component. An interface model allows
clients and implementers to understand the behavior
of a software component that correctly implements the
interface.

Informatica 17 page xxx{yyy 2

We believe that one should implement a component
using classes, i.e., using object-oriented programming,
but that the speci�cation should be done at the inter-
face level. The key idea connecting a class to its inter-
face is that the class must be a behavioral subtype [34]
of its interface. An interface speci�cation describes the
minimal behavior expected of all of its subtypes: the
behavior of a class can be more constrained than that
of its interface.
This paper's contribution is to provide a clean layer

in which full behavioral speci�cations can be written.
Speci�cation languages should not be tightly coupled
to implementation languages. Precise semantics are
crucial for a speci�cation language; implementation
languages are oriented towards execution eÆciency, as
indeed they should be. AsmL has a formal seman-
tics which provides a mathematical foundation for the
speci�cation e�ort. It provides features that aid in
the re�nement process for developing components that
correctly implement their speci�cations.
The paper is organized as follows. Section 2 provides

more detail on exactly what an interface speci�cation
looks like in AsmL. Section 3 discusses our notion of
re�nement and provides an example. Then, in Sec-
tion 4, we show how to handle component creation
and parameterization within AsmL. The next two sec-
tions explain how to compose speci�cations: Section
5 for data-linking and behavior-linking and Section 6
for aggregation and delegation. An overview of sim-
ilar approaches is discussed in Section 7. Section 8
summarizes and presents limitations and future work.

2 Speci�cations

We write executable speci�cations of components in
AsmL (the Abstract State Machine Language). AsmL
is based on the theory of Abstract State Machines [22].
ASMs are transition systems: their states are �rst or-
der algebras, that is, interpretations of a functional
signature. The transition relation is speci�ed by tran-
sition rules (in the sequel simply called rule) describing
the modi�cation from one state to the next, namely in
the form of guarded updates, i.e., assignment state-
ments that are executed if a boolean condition holds.
A sequential run of an ASM program P is a �nite
or in�nite sequence of states S0;S1; : : : where each Si ,
i > 0, is obtained from Si�1 by executing the updates
of P at Si�1. The updates generated in a particular
step are called the update set for the step.
To deal with industrial applications, we have ex-

tended ASMs with submachines, objects, exception
handling [23] and a very powerful type system (as
have others, see [2, 8, 10]). AsmL is freely available
for non-commercial research or teaching purposes from
our web site [16]. It is currently used within Microsoft
for modeling, rapid prototyping, analyzing and check-
ing of APIs, devices and protocols.

We introduce AsmL at the same time as we develop
the examples. Only a small subset of AsmL will be
used. Our �rst, very small, example is a speci�cation
of a counter interface.

interface ICounter

var ct as Integer = 0

Counter() as Integer

return ct

Increment()

ct := ct + 2

To specify components we use interfaces. Stateful
interfaces have member variables, which are also called
model variables. Model variables are not part of the
signature of the interface; they are provided only to
give meaning to the method bodies. They are accessi-
ble only through the methods de�ned in the containing
interface and its subtypes.

Method bodies in an interface are called model pro-

grams: they specify the e�ect that any implementation
must respect. Method bodies typically refer to mem-
ber variables. If a method body updates a member
variable, it de�nes an ASM rule. ASM rules are in-
herently parallel. This synchronous parallelism comes
in handy when specifying independent updates. For
example to swap two variables you write:

swap()

x := y

y := x

Sequential composition is the unusual case; to dis-
courage its use, we require a \heavy" notation for it.
The sequential AsmL speci�cation for swapping the
values of two variables uses an ASM sub-machine:

swap()

var t = x

step x := y

step y := t

AsmL also provides exception handling. Combined
with synchronous parallelism, this eases speci�cations:
when an exception is thrown all updates that are pro-
duced in the protected block are undone.

The simple transition semantics also simpli�es the
translation of AsmL rules into predicates. For this
purpose we use a slight variation of weakest precondi-
tions. This allows the counter also to be speci�ed in
more declarative terms.

Informatica 17 page xxx{yyy 3

interface ICounter

var ct as Integer ct = 0

Counter() as Integer

require true

ensure result = ct and ct = ct 0

Increment()

require true

ensure ct 0 = ct + 2

The keywords require and ensure are used for pre-
and post-conditions, respectively. Priming (e.g., x 0)
denotes the value in the next state of a run. The key-
word result refers to the value returned by the method.
In general, any straight-line method body can be

automatically replaced with a pre- and post-condition
pair that speci�es the same behavior. Loops and recur-
sion require manually-supplied invariants and bounds.
In AsmL a method application changes only those

variables that occur in the computed update set; vari-
ables not mentioned in the update set are not changed.
If a method body is only described by a pre-/post-
condition pair one has to specify explicitly which vari-
ables change and which retain their values. If no
method body and no pre-/post-condition pair is given,
the method can do whatever it wants to, except that is
has to respect any interface invariants and constraints
(as described in Section 3).
Not only do pre- and post-conditions fail to scale

with larger speci�cations [12], but we have found that
real users prefer writing executable speci�cations in-
stead of pre-postcondition pairs. In AsmL, users can
use high-level data structures, users can write nonde-
terministic speci�cations, users get atomic transition
semantics, and users get ease of reasoning due to ref-
erential transparency within each step. Furthermore
they can immediately execute the written AsmL spec-
i�cations.

3 Re�nement

A speci�cation is useful only in so far as it de�nes prop-
erties that are true for any implementation. In essence,
this is Liskov and Wing's notion of behavioral subtyp-
ing [34]: a subtype should always be substitutable for a
basetype in all contexts. ASMs can be used in a more
general theory of re�nement (see e.g. [41]), but for
our purposes it suÆces to restrict our attention to the
1 : n re�nements possible in the syntactic framework
of classes implementing interfaces. That is, any com-
ponent implementing an interface must support the
syntactic interface; it may do less or more work within
each method, but the protocol by which a client uses
the functionality is �xed by the syntax of the interface.
There is a well-known problem with speci�cations

and behavioral subytping: a subtype might violate
properties of its basetype. For example, in the case of
the ICounter speci�cation, one cannot reason that the

value is always even: as speci�ed, a subtype could in-
crement the counter only by one. Likewise, the counter
cannot be assumed to always be positive, a subtype
might introduce a decrement method. In order to com-
pensate for this, Liskov and Wing require invariants,
which are properties of a single state, and constraints,
which in AsmL are properties of consecutive states.
For instance, to ensure the two above-mentioned prop-
erties, we can add to the ICounter interface:

interface ICounter : : :

invariant even(ct)

constraint ct � ct 0

The ellipsis (three dots) is part of our literate pro-
gramming environment [31]; it indicates that this is a
continuation of a previous construct.

AsmL also introduces an alternative construct for an
operational speci�cation of the permitted state transi-
tions of any method in any subtype: the others clause.
For instance, to ensure the even stronger property that
any other method can increment ct only by a multiple
of two in the range from 0 to 20 one can write:

interface ICounter : : :

others(: : :)

choose i in f0; 2::20g

ct := ct + i

Any additional method de�ned in any subtype of
ICounter will inherit the derived post-condition from
the others method.

Our notion of re�nement for synchronization prop-
erties depends on the concept of a mandatory call.
Certain method calls in the model programs are iden-
ti�ed as communications that any implementation
must make during the execution of the corresponding
method. All calls to non-local public interface meth-
ods are mandatory calls. This includes constructors,
see Section 4 for an example. Note that it is the call
site that is mandatory, not the method de�nition. An
implementation is free to make additional calls; the
model indicates the minimal behavior that must be
observed. Thus, we say that an AsmL speci�cation
provides a minimal model for any implementation.

Classes that implement an interface must be a be-
havioral subtype of the latter. But the implementation
typically chooses a di�erent representation of its �elds.
Contrary to Liskov and Wing's formulation, we do not
require that the class de�nes an abstraction function
(see also Hoare [28]) which relates the concrete state
of the class to the abstract state of the interface. In
other work [6] we outline a scheme that provides for
run-time checking of the subtype relationship without
an abstraction function.

However, providing an abstraction function allows
for a higher level of veri�cation; AsmL allows a class

Informatica 17 page xxx{yyy 4

to de�ne one with the abstraction construct. Suppose
that the class that implements the ICounter uses a
\successor" representation for a counter. Then the
abstraction function is just two times its successor rep-
resentation.

class CCounter implements ICounter

var succ as Integer = 0

abstraction

ICounter :ct = 2 � succ

Counter() as Integer

return 2 � succ

Increment()

succ := succ + 1

In this particular example, it is obvious how
CCounter ful�lls the obligations it inherits when im-
plementing the ICounter interface. However, in gen-
eral, abstractions can be much more complicated.

There is no requirement that an AsmL speci�cation
be implemented in AsmL. AsmL provides native COM
connectivity (as well as COM Automation) and so can
be used directly with a component implemented in any
programming language.

One interface may also re�ne another interface, ei-
ther by extension (see Sections 5 and 6) or implementa-
tion. Again, the former interface must be a behavioral
subytpe of the latter interface.

To simplify rapid prototyping, i.e., executing of
speci�cations, AsmL classes don't have to provide
their own de�nitions. As long as interface methods are
speci�ed by method bodies, interfaces are executable
exactly as written. Thus a class can reuse the de�ni-
tions of the interfaces. The simplest implementation
for ICounter then becomes:

class CCounter reuses ICounter

Thus it is often suÆcient to close a speci�cation by
merely providing a class that reuses the speci�cation.

4 Creation and

Parameterization

In this section, we consider two prerequisites for com-
posing interfaces. First, there must exist a way to
specify the creation of a reference to an interface. An
interface is merely a view on a component (namely
a particular subset of the component's functionality):
what does it mean to have a new reference to one? Sec-
ond, an interface can be dependent on external values
(and/or objects); a completely closed interface is not
particularly interesting. The simplest forms of depen-
dency are ones required for parameterizing an inter-
face: by type and by value.

Creation. At the interface level there are only in-
terfaces, not components. So if one wishes to access a
new interface, where does it come from?

One solution would be to parameterize all interfaces
by a factory interface that can be used to request
the desired interface. A factory interface contains a
method which will deliver an interface reference upon
request, given some sort of identi�er for the interface.
But this merely pushes the problem back one level:
where does the speci�cation of the factory interface
get the interface reference to return? What exactly
are the properties of the returned interface?

While factory interfaces are very useful at the im-
plementation level in order to decouple component cre-
ation and allow subclassing [17], AsmL interfaces are
already expressed at the abstract level. A clearer pic-
ture of the desired properties is needed.

When a component is created, there are several as-
sumptions about the resulting reference. Abstracting
from the speci�cs of implementation issues, such as
storage allocation, leaves us with the following prop-
erties: the component supporting the requested inter-
face

1. should have a unique identity,

2. should not be aliased, and

3. should provide the requested interface in one of
its initial states.

Such an interface is guaranteed to be private to the
component that is requesting it, unless it explicitly
decides to share the reference either by creating aliases
or by passing the reference to a third party. For this
concept, we use the keyword new with an interface:

interface IHistory

var s as ICounter = new ICounter

However, it is important to note that the use of new
does not necessarily imply the creation of an object as
it would when used on a class. As long as properties
1{3 are ensured for s , then it does not matter if a new
class object is created by actually calling a constructor
or not.

The above example speci�es that within the in-
terface IHistory, the name s refers to an interface
ICounter on some component. Only IHistory has a
reference to this component. Furthermore, this com-
ponent is in its initial state, i.e., s.ct is equal to zero,
and will remain so until changed by a call from within
IHistory. The fact that the component has a unique
identity will be utilized in Section 6.

Sometimes a new interface is requested on an al-
ready referenced component, i.e., an existing interface
reference. In AsmL that is modeled by a type cast:

Informatica 17 page xxx{yyy 5

== : : : i is an interface reference to IA : : :

let j = i as IB

: : :

This corresponds to using the COM method Query-

Interface [11]. When the type cast is successful, the
requested interface is not necessarily in its initial state.

Parameterization. An interface can be dependent
on a type, i.e., it can be a generic interface. A generic
interface speci�es a family of interfaces all of whom
instantiate the generic parameter for some particular
type. A typical example for a generic interface is the
IState speci�cation:

interface IStatehT i

private var value as T

Set(v as T)

value := v

Get() as T

return value

The IState speci�cation says nothing about its ini-
tial state; it is also dependent on a value of type T

that must be supplied to the constructor when an in-
stance of IState is created. AsmL provides a default
constructor that has the same name as the interface.
The default constructor takes a parameter for each of
the uninitialized member variables:

interface IStatehT i : : :

IState(v as T)

value = v

In order to be instantiated, the interface IState is
dependent on both the type parameter T and supplied
argument for value. Note that it is just a coincidence
that the type of value is itself T . Multiple constructors
with di�erent parameter lists are also allowed.

The visibility attribute private on valuemeans that it
may not be modi�ed by a method within any subtype.
Therefore the only way to modify value is to call Set.
This guarantees the property that once a client calls
Set, value will remain unchanged until the next call
to Set. In other words, any component implementing
IState will act like a program variable.

5 Linking Speci�cations

While it is important to be able to specify interfaces in
isolation, true component-oriented programming can
be realized only when sub-units are composed to make
larger units. This implies that we must be able to com-
pose interfaces as well, since the speci�cation for the
composition of two components should be the compo-
sition of their individual speci�cations.

foo

value

value

IMetricLength

IUSLength

IMetricAndUSLength

Figure 1: Linking two interfaces by shared data

5.1 Data Linkage

Linking two speci�cations through shared data |
state-coupled speci�cations | allows for multiple
viewpoints on the same component, while ensuring
that the component stays in a consistent state. This
represents a common pattern; our example uses the
idea of di�erent units for a single measurement [20].
For instance, suppose there are two interfaces.

interface IMetricLength extends IStatehIntegeri

IMetricLength() extends IState(0)

interface IUSLength extends IStatehIntegeri

IUSLength() extends IState(0)

The speci�cation for IMetricLength implicitly keeps
value in metric units, e.g., centimeters. Meanwhile,
the speci�cation for IUSLength implicitly keeps value
in inches. Note that neither interface is parameterized:
the generic parameter T from IState has been instan-
tiated to Integer. Also, the explicit constructors take
no arguments. But they call the constructors of the
interface they are extending; the initial state is thus
fully determined.

Suppose we would like to specify a component that
provides both interfaces with a consistent shared value.
Whatever changes are made through one interface
should be re
ected in the other interface. This is easily
speci�ed via a linking invariant which constrains any
implementation to meet this condition. Fig. 1 shows
the structure of the composition.

interface IMetricAndUSLength

extends IMetricLength and IUSLength

invariant

IMetricLength:value � 2:54 = IUSLength:value

A crucial feature of AsmL is that all methods and
member variables from inherited interfaces are kept
distinct. The interface IMetricAndUSLength does not
identify the methods Get and Set from the two in-
terfaces; the combined interface has all four methods.
AsmL, just as C# [25], does not fold methods with
the same name and signature when extending multi-

Informatica 17 page xxx{yyy 6

ple interfaces. This is especially important for generic
interfaces. Java [19], for instance, is unable to keep
the methods distinct.

The behavior of any component implementing the
interface IMetricAndUSLength must respect the in-
variant (as well as the individual behaviors speci�ed
in each interface). How it does so is left up to the
component; one way is to keep value in one unit and
converting it for the other interface:

class CMetricAndUSLength

implements IMetricAndUSLength

var metricValue as Integer = 0

abstraction

IMetricLength:value = metricValue

IUSLength:value = metricValue = 2:54

IMetricLength:Set(v as Integer)

metricValue := v

IMetricLength:Get() as Integer

return metricValue

IUSLength:Set(v as Integer)

metricValue := v � 2:54

IUSLength:Get() as Integer

return metricValue = 2:54

This example di�ers from the traditional Observer
pattern [17] in that both of the original interfaces are
peers; neither is distinguished as the subject holding
the \correct" value (although the component decided
to implement it that way).

5.2 Behavior Linkage

In this section, we present an example of two compo-
nents that are coupled through their interacting be-
haviors instead of through shared state. We use the
Observer pattern [17] which involves two components:
a subject and a set of observers, called views.

The IView interface is trivial: it contains a method
Update that is to be called by the subject, and a
method for registering the subject with the view so
it has access to the subject.

interface IViewhT i

var subject as ISubjecthT i

Update()

== behavior goes here; to be de�ned by subtype

SetSubject(s as ISubjecthT i)

subject := s

The subject holds some state; whenever the state is
changed, each view is noti�ed. This is a generalization
of the Reader/Writer paradigm. The speci�cation of
a subject is an extension of IState that has methods
for adding, removing, and alerting views:

interface ISubjecthT i extends IStatehT i

var views as SethIViewhT ii = fg

Set(val as T)

step base :Set(val)

step Notify()

private Notify()

forall v in views

v :Update()

Attach(v as IViewhT i)

views += f v g

Detach(v as IViewhT i)

views �= f v g

others(: : :)

ensure value = value 0

There are three interesting properties that this spe-
ci�cation prescribes for any implementation:

1. A subject calls the Update method of each view
whenever its Set method is called. Because Up-

date is a public interface method, this call is a
mandatory call. An implementation is free to
call Update more than once, perhaps for fault-
tolerance purposes.

2. Views are synchronized with subjects. That is,
all views receive a noti�cation with the subject
in the same state. This is because the forall loop
used within Notify is a parallel loop.

3. A view can perform any behavior within its Up-
date method. Obviously, it would be unwise to
call the subject's Set method: allowing the state
to change during a callback is known to create
problems [43]. The speci�cation can easily be
modi�ed to disallow it.

Because of the others clause, no subtype of ISubject is
allowed to add a method that alters value other than
by calling ISubject.Set. This may be too restrictive;
one can specify instead a constraint that connects state
changes to value with calls to Update for each view.
The method Notify is marked private to emphasize

that it is not a mandatory call. It is only the call
to Update during the execution of Set that must be
observable.

6 Aggregating Speci�cations

In addition to linking interfaces, we use AsmL to de�ne
interfaces that re-use existing behaviors to create new
functionality. This explores another way of composing
speci�cations which can be seen as aggregation or del-
egation depending on the details of how it is speci�ed.
We take the example of a radio button group in

a graphical user interface from [26]. A radio but-
ton group is a set of radio buttons that operate in

Informatica 17 page xxx{yyy 7

a mutually-exclusive manner. At most one of them
can be selected at any one time; selecting one radio
button unselects all of the others in the group. Each
button in the group must display itself appropriately
as either selected or not.
A radio button group can be seen as an example of

reusing the Subject/View contract (i.e., the Observer
pattern [17]): each radio button is a view on a subject
whose state re
ects which button is currently selected.
To begin the speci�cation, we �rst specify the behavior
of buttons in general.

6.1 Buttons

We model a button as a user-interface element that
has a text label and allows the user to select it, say by
clicking on it with the mouse.

interface IButton

var label as String

var chosen as Boolean

GetLabel() as String

return label

SetLabel(s as String)

label := s

Select()

choose b in f false; true g

chosen := b

Of course, the interface would have additional meth-
ods relating to its size, color, etc.
A checkbox button acts as a toggle: clicking it re-

verses its current state.

interface ICheckBoxButton extends IButton

Select()

chosen := not chosen

A radio button, by way of contrast, is idempotent:
clicking on it sets it to true. The only way to unselect
it is to select another radio button in the same group.

interface IRadioButton extends IButton

Select()

chosen := true

A single radio button may seem useless, but could be
used for signing a document or some other irreversible
operation.

6.2 ButtonView

A radio button, as speci�ed in IRadioButton, is not
immediately composable into a group. As stated, the
interface does not provide any functionality for syn-
chronizing its state with other buttons in the same
group. This clearly separate behavior can be added in
a modular fashion.

ISubject

IRBAndView

IRadioButtonGroup

IView

IRB

Figure 2: The IRadioButtonGroup interface

We extend the IRadioButton interface with an IView
interface. It describes a button that just behaves like
a radio button, but responds to a new input notifying
it that some state has changed somewehere else.

interface IRadioButtonView extends IRadioButton

and IViewhIRadioButton or Undef i

== explicit constructor

IRadioButtonView(s as String)

extends IRadioButton(s; false) and IView(Undef)

Update()

chosen := subject :Get() = me

== redraw appropriately : : :

Select()

base :Select()

subject :Set(me)

The explicit constructor initializes the button to be
unselected. In addition it initializes the view's subject
to be unde�ned. Note that in AsmL reference types
don't contain a null value. But disjunctive types, here
exempli�ed by the type IRadioButton orUndef give
you the
exibility to add Undef when needed. The
keyword base refers to the immediate supertype, in
this case IRadioButton.
Given this interface, it is now easy to de�ne the

behavior of a radio button group.

6.3 ButtonGroup

The requisite behavior of having the radio buttons
be mutually exclusive is achieved by wiring the aug-
mented radio buttons from Section 6.2 together with a
component that implements the ISubject interface into
a Subject/View relationship.

interface IRadioButtonGroup

var bs as SethIRadioButtonViewi

var subj as ISubjecthIRadioButton or Undef i

Figure 2 shows the structure of the interface, al-
though not the multiplicity of views.
A radio button group has its own interface: there are

operations that make sense for a button contained in

Informatica 17 page xxx{yyy 8

a group, but not for the collection as a whole and vice
versa. Selection of one button in the group is spec-
i�ed by delegating the Select call to the appropriate
button.

interface IRadioButtonGroup : : :

Select(s as String)

choose b in bs where b:GetLabel() = s

b:Select()

: : : other methods : : :

The constructor for IRadioButtonGroup takes a set
of labels for the radio buttons to be generated, gener-
ates the sub-components and wires them together.

interface IRadioButtonGroup : : :

IRadioButtonGroup(ls as SethStringi)

subj = new ISubject(undef)

bs = f new IRadioButtonView(l) j l in ls g

forall b in bs

b:SetSubject(subj)

subj :Attach(b)

Informal Reasoning. Now that the composition
has been created, it can be reasoned about. Here we
give an informal outline of IRadioButtonGroup's cor-
rectness for maintaining the mutual exclusion of a se-
lected button.

The only external action that can cause an update
is for one of the radio buttons b1 to bn in the group to
have their Select method called. Without loss of gen-
erality let's assume that b1 is selected. This, in turn,
will cause b1:IRadioButtonView :Select to be called,
which will call b1:IRadioButton:Select . So b1:chosen

becomes true.

The button b1 will also call Set(b1) on the shared
subject. First, its value becomes b1. Next, the shared
subject will call back to every button in the group
via IRadioButtonView.Update. For every button the
Get method called on the shared subject will return
b1 | this is the value that was just stored. For b1 this
generates another update of b1:chosen to true; this is a
non-con
icting update. In contrast, the chosen �eld of
the buttons b2 : : : bn , become false, since b1 is di�erent
from any of b2 : : : bn .

As a result, we are guaranteed that the group makes
an atomic step which preserves the property that at
most one button can be selected at any time.

Given AsmL's transactional semantics, it is possi-
ble for two buttons to execute their Select methods in
the same step. Each method will cause an update in
the subject for two di�erent values (the value of me

for each of the buttons). These updates are con
ict-
ing; AsmL's runtime checks for di�erent values being
assigned to the same location at the end of each step
and will signal an exception.

7 Related Work

As long as there have been programmers, there has
been concern with the meaning of the artifacts they
create by formally specifying the programming pro-
cess, e.g. [27]. Here, we concentrate speci�cally on
work involving components.

There is a long tradition within the object-oriented
community that is concerned with speci�cation,
whether formal or not. Meyer, of course, is famous
for his ideas on design by contract [35]. Over a decade
ago, Helm et al. [26] pointed out the necessity for con-
tracts and how they can be used as a structuring con-
cept for speci�cations, but their contracts were a) not
executable, and b) confused the wiring of components
with the speci�cation of their interaction. America [1]
did some of the early work on behavioral subtyping.
The most standard formulation of behavioral subtyp-
ing follows that of Liskov and Wing [34]. Most of this
work used only pre- and post-conditions for methods,
or did not consider using a separate speci�cation lan-
guage.

Leavens and Dhara provide speci�cations for Java
components using a language called JML [33]. Like
us, they insist on behavioral subtyping as a re�nement
notion and also use model programs in addition to pre-
and post-conditions. However, their work is limited
to Java programs; AsmL can be used in conjunction
with any implementation language. They make the
distinction between strong and weak subtyping; we re-
strict our attention to strong subtyping since AsmL
does not prohibit aliasing.

Besides JML, there has been a lot of work on us-
ing assertions to specify Java interfaces, e.g., Contract
Java [15], iContract [13], jContractor [30], and Jass
[7] all implement various schemes to implement de-
sign by contract for Java programs. JISL, the Java
Interface Speci�cation Language [40], translates and
inserts speci�cations into Java programs. It uses pre-
and post-conditions and is used to primarily specify
and check frame properties.

Edwards [14] uses speci�cations for components to
generate wrapper components that check the pre- and
post-conditions. An abstraction function is required
because the conditions are expressed in terms of ab-
stract values. But without model programs, synchro-
nization properties cannot be speci�ed.

Soundarajan and Tyler [42] use trace variables in
speci�cations to record method calls in order to reason
incrementally about subtypes. Their trace variables
are similar to our mandatory calls, but they also do
not have model programs.

Jonkers [29] has interface speci�cations that are not
executable; he also does not insist on absolute rigor in
a speci�cation. But his ideas of how to specify inter-
faces are very similar to ours.

The theoretical background for component speci�-

Informatica 17 page xxx{yyy 9

cation is mostly based on the re�nement calculus by
Back and Wright [4] and Morgan [39]. Constructs for
object-oriented programming are added to a notation
for sequential computing and class re�nement is de-
�ned such that it respects supertype behavior [3]. To
declare a class as a subtype of another means to do
a proof in the re�nement calculus that the predicate
transformer semantics of the class hold the correct re-
lationship with those of the superclass. However, there
does not seem to be a concern with directly execut-
ing speci�cations. Sekerinski et al. have explored the
restrictions on component-oriented programming that
are needed in order to be able to prove re�nement in
the presence of recursive re-entrance [37]. They have
also done a small case study of proving the correct-
ness of Java Collections Frameworks [38]. They ex-
tend Java with a speci�cation language and claim that
it has a formal mathematical foundation: \every exe-
cutable statement of the Java language. . . that we use
has a precise mathematical meaning". We take that
to mean that only a subset of Java is used.

8 Conclusions

The need for behavioral speci�cations is widely recog-
nized, especially in component-oriented programming.
AsmL provides an industrial-strength tool for writing
such speci�cations. It provides all of the features nec-
essary to express the properties needed for behavorial
subtyping.

AsmL is agnostic with regards to veri�cation tech-
nology. An AsmL speci�cation can be subjected to
analysis with a variety of formal methods, for instance,
a re�nement calculus proof.

The executability of AsmL speci�cations opens pos-
sibilities that go beyond those traditionally associated
with speci�cation languages. A formal speci�cation
is the boundary between the informal understanding
of a system and its digital incarnation. At the de-
sign stage, exploration of the speci�cation provides in-
sight and feedback about the appropriateness of the
formalization. During the coding process, the speci�-
cation can be used, in special domains, to derive test
cases and perform conformance testing [18, 21]. An
executable speci�cation allows conformance checking,
i.e., assertion monitoring, to ensure that an implemen-
tation's behavior is allowed by the speci�cation [5, 6].
Furthermore, AsmL's COM connectivity means that
it can be used in a language-neutral setting: any lan-
guage can be used to implement the speci�cation.

There are many areas that need to addressed in fu-
ture work. For example, adding automatic support to
enforce the kind of restrictions needed for re�nement
proofs [37] or other proof tools.

Acknowledgements

We wish to thank the rest of our research group in
Microsoft Research, FSE. Clemens Szyperski, Egon
B�orger, and Crispin Goswell reviewed earlier drafts of
this work and made many useful suggestions.

References

[1] Pierre America. Inheritance and subtyping in a parallel
object-oriented language. In Jean Bezivin et al., editors,
ECOOP '87, European Conference on Object-Oriented
Programming, Paris, France, pages 234{242, New York,
NY, June 1987. Springer-Verlag. Lecture Notes in Com-
puter Science, Volume 276.

[2] M. Anlau�. XASM { An Extensible, Component-Based
Abstract State Machines Language. In Y. Gurevich and
P. Kutter and M. Odersky and L. Thiele, editor, Abstract
State Machines: Theory and Applications, volume 1912 of
LNCS, pages 69{90. Springer-Verlag, 2000.

[3] Ralph Back, Anna Mikhajlova, and Joakim von Wright.
Class re�nement as semantics of correct subclassing. Tech-
nical Report 147, Turku Centre for Computer Science,
December 1997. Available from www.tucs.abo.fi at
/publications/techreports/TR147.html.

[4] Ralph-Johan Back and Joakim von Wright. Re�nement
Calculus: A Systematic Introduction. Springer-Verlag,
1998.

[5] Mike Barnett, Lev Nachmanson, and Wolfram Schulte.
Conformance checking of components against their non-
deterministic speci�cations. Technical Report MSR-TR-
2001-56, Microsoft Research, June 2001. Available from
http://research.microsoft.com/pubs.

[6] Mike Barnett and Wolfram Schulte. Spying on components:
A runtime veri�cation technique. In Workshop on Spe-
ci�cation and Veri�cation of Component-Based Systems,
OOPSLA 2001, pages 7{13. Published as Iowa State Tech-
nical Report #01-09a, October 2001.

[7] Detlef Bartetzko, Clemens Fischer, Michael M�oller, and
Heike Wehrheim. Jass | Java with Assertions. Available
from http://semantik.informatik.uni-oldenburg.de at
~jass/doc/index.html.

[8] H. Baumeister and A. Zamulin. State-Based Extension of
CASL. In W. Grieskamp, T. Santen, and B. Stoddart,
editors, Integrated Formal Methods (Proceedings of IFM
2000), volume 1945 of LNCS, pages 3{24. Springer, 2000.

[9] Antoine Beugnard, Jean-Marc J�ez�equel, N�oel Plouzeau,
and Damien Watkins. Making components contract aware.
Computer, 32(7):38{44, July 1999.

[10] E. B�orger and J. Schmid. Composition and Subma-
chine Concepts for Sequential ASMs. In P. Clote and
H. Schwichtenberg, editors, Computer Science Logic (Pro-
ceedings of CSL 2000), volume 1862 of LNCS, pages 41{60.
Springer, 2000.

[11] Don Box. Essential COM. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1998.

[12] Martin B�uchi and Emil Sekerinski. Formal meth-
ods for component software: The re�nement calcu-
lus perspective. In Proceedings of the Second Work-
shop on Component-Oriented Programming (WCOP),
June 1997. Available from ftp://ftp.abo.fi at
/pub/cs/papers/mbuechi/FMforCS.ps.gz.

[13] A. Duncan and U. H�olze. Adding contracts to Java with
handshake. Technical Report TRCS98-32, University of
California at Santa Barbara, December 1998.

Informatica 17 page xxx{yyy 10

[14] Stephen H. Edwards. A framework for practical, automated
black-box testing of component-based software. Software
Testing, Veri�cation and Reliability, 11(2), 2001.

[15] Robert Bruce Findler and Matthias Felleisen. Contract
soundness for object-oriented languages. In OOPSLA 2001,
pages 1{15. ACM SIGPLAN, September 2001.

[16] Microsoft Research Foundations of Software Engineering,
2001. http://research.microsoft.com/fse.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[18] Uwe Gl�asser, Yuri Gurevich, and Margus Veanes. Universal
plug and play machine models. Technical Report MSR-TR-
2001-59, Microsoft Research, June 2001. Available from
http://research.microsoft.com/pubs/.

[19] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The Java Language Speci�cation Second Edition. The Java
Series. Addison-Wesley, Boston, Mass., 2000.

[20] Crispin Goswell, 2001. Personal communication.

[21] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte,
and Margus Veanes. Conformance testing with ab-
stract state machines. Technical Report MSR-TR-2001-
97, Microsoft Research, October 2001. Available from
http://research.microsoft.com/pubs.

[22] Yuri Gurevich. Evolving algebra 1993: Lipari guide. In
Egon B�orger, editor, Speci�cation and Validation Methods,
pages 9{36. Oxford University Press, Oxford, UK, 1995.

[23] Yuri Gurevich, Wolfram Schulte, and Margus
Veanes. Toward industrial strength abstract state
machines. Technical Report MSR-TR-2001-98, Mi-
crosoft Research, October 2001. Available from
http://research.microsoft.com/pubs.

[24] John V. Guttag, James J. Horning, S.J. Garland, K.D.
Jones, A. Modet, and J.M. Wing. Larch: Languages and
Tools for Formal Speci�cation. Springer-Verlag, New York,
NY, 1993.

[25] Anders Hejlsberg and Scott Wiltamuth. C# lan-
guage speci�cation, version 0.22. Available at
http://msdn.microsoft.com/library/default.asp.

[26] R. Helm, I. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioral compositions in object-oriented sys-
tem. ACM SIGPLAN Notices, 25(10):169{180, October
1990. OOPSLA ECOOP '90 Proceedings, N. Meyrowitz
(editor).

[27] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576{583,
October 1969.

[28] C. A. R. Hoare. Proof of correctness of data representa-
tions. Acta Informatica, 1(4):271{281, 1972.

[29] H.B. Jonker. Ispec: Towards practical and sound inter-
face speci�cations. In IFM'2000, volume 1954 of LNCS,
pages 116{135, Berlin, Germany, November 1999. Springer-
Verlag.

[30] Murat Karaorman, Urs Holzle, and John Bruno. jContrac-
tor: A re
ective Java library to support design by con-
tract. Technical Report TRCS98-31, University of Califor-
nia, Santa Barbara. Computer Science., January 19, 1999.

[31] Donald E. Knuth. Literate programming. Computer Jour-
nal, 27(2):97{111, May 1984.

[32] Gary T. Leavens. Modular speci�cation and veri�cation of
object-oriented programs. IEEE Software, 8(4):72{80, July
1991.

[33] Gary T. Leavens and Krishna Kishore Dhara. Concepts
of behavioral subtyping and a sketch of their extension to
component-based systems. In Gary T. Leavens and Mu-
rali Sitaraman, editors, Foundations of Component-Based
Systems, chapter 6, pages 113{135. Cambridge University
Press, 2000.

[34] Barbara Liskov and Jeannette Wing. A behavioral notion
of subtyping. ACM Transactions on Programming Lan-
guages and Systems, 16(6):1811{1841, November 1994.

[35] Bertrand Meyer. Ei�el: The Language. Object-Oriented
Series. Prentice Hall, New York, NY, 1992.

[36] Bertrand Meyer. Object-oriented Software Construction.
Prentice Hall, New York, NY, second edition, 1997.

[37] Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis. De-
veloping components in the presence of re-entrance. Techni-
cal Report TUCS-TR-239, TUCS - Turku Centre for Com-
puter Science, February 1999.

[38] Anna Mikhajlova and Emil Sekerinski. Ensuring correct-
ness of Java Frameworks: A formal look at JCF. Technical
Report TUCS-TR-250, TUCS - Turku Centre for Com-
puter Science, March 1999.

[39] Carroll Morgan. Programming from Speci�cations. Pren-
tice Hall International, Hempstead, UK, 1990.

[40] P. M�uller, J. Meyer, and A. Poetzsch-He�ter. Mak-
ing executable interface speci�cations more expressive.
In C. H. Cap, editor, JIT '99 Java-Informations-Tage
1999, Informatik Aktuell. Springer-Verlag, 1999. Avail-
able from http://www.informatik.fernuni-hagen.de at
/pi5/publications.html.

[41] G. Schellhorn. Veri�cation of Abstract State Ma-
chines. PhD thesis, Universit�at Ulm, Ulm, Germany,
1999. Available from http://www.informatik.uni-ulm.de

at /pm/mitarbeiter/gerhard/.

[42] Neelam Soundarajan and Benjamin Tyler. Testing com-
ponents. In Workshop on Speci�cation and Veri�cation
of Component-Based Systems, OOPSLA 2001, pages 1{6.
Published as Iowa State Technical Report #01-09a, Octo-
ber 2001.

[43] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-Wesley,
New York, NY, 1998.

