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Abstract 

This short paper describes the trash attack which is effective against the majority of fully-

verifiable election systems.  The paper then offers a simple but counter-intuitive mitigation 

which can be incorporated within many such schemes to substantially reduce the effectiveness 

of the attack.  This mitigation also offers additional benefits as it significantly improves the 

statistical properties of existing verifiable systems. 

 

1. Introduction 

Fully-verifiable (also known as end-to-end verifiable) 

election systems such as Scantegrity [CECCPSV08], 

Prêt à Voter [CRS05], VeriScan [Ben08], Helios 

[Adi08], and MarkPledge [Nef04,AdNe09] offer great 

promise.  They enable the integrity of election 

results to be checked by anyone without having to 

trust election software, hardware, or personnel. 

In traditional election systems, insider attacks can be 

perpetrated either by unscrupulous or subverted 

election officials or by the equipment they have 

chosen to trust.  Verifiable election technologies 

prevent insider attacks by enabling voters 

themselves – as well as any observers – to verify the 

integrity of election results. 

This paper introduces a previously unpublished 

attack that can be effective against most (perhaps 

even all) prior verifiable election systems.  The attack 

is simple and practical, and it can be used to 

undetectably alter large numbers of votes. 

Next, this paper describes a simple and effective 

mitigation which, although it conflicts with standard 

electoral doctrine, can be easily incorporated into 

many verifiable election systems.  This mitigation 

makes the attack far more difficult and makes it 

nearly impossible to alter more than a small number 

of votes.  The mitigation also offers additional 

benefits to many verifiable systems at minimal cost. 

This paper does not propose a new verifiable 

election system.  It instead describes a simple 

addition that can be incorporated into many existing 

systems which provides substantial benefits.  A 

complete verifiable election system has many 

components including a voter interface, a back-end 

tallying process, a public verification process, and a 

dispute resolution process.  The modification 

proposed in this paper affects both the voter 

interface and the public verification processes, but in 

most cases the actual changes are quite small.  Other 

components are unaffected and remain as described 

in the cited references. 

2. The Attack 

Verifiable election systems give voters the ability to 

check that their votes have not been altered by 

providing them with receipts – usually in paper form 

– which voters can later check against a published 



list.
1
  These receipts serve as an integral component 

of the integrity checking process.  It is not assumed 

that all voters will check their receipts.  Indeed, the 

expectation is that many – perhaps most – voters 

will not bother to check their receipts against the 

published election data.  However it is not necessary 

that the majority of voters check their receipts.  As 

long as election personnel and the systems they are 

charged with managing do not know which receipts 

will be checked, the checking of even a small fraction 

of receipts makes it very unlikely that election 

personnel or malicious vote management systems 

will be able to alter more than a few votes without 

detection.
2
 

These statistics, however, only work if those who 

might have the ability to alter votes have no 

knowledge of which voters might be more likely to 

check their receipts.  If there were a way for election 

workers or vote management systems to know with 

certainty or near certainty that particular voters 

would not check their receipts, they would be free to 

alter their corresponding votes.  For this reason, it is 

essential to give receipts to all voters and not just 

offer receipts to those voters who request them. 

The provision of receipts to voters who may not 

want them, however, suggests a very simple means 

by which election workers could find votes that are 

good candidates for alteration:  poll workers could 

simply collect the contents of the nearest trash 

receptacles.  Any receipts that have been discarded 

by voters would be strongly correlated with votes 

that could be altered without detection.
3
  Active 

collection of receipts may also be viable through 

social engineering.  Voters who can be induced to 

                                                           
1
 Scantegrity II provides voters with a blank strip 

containing a ballot identifier onto which they can 
copy data revealed during the voting process. 
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 If, for example, only 5% of the receipts are 
checked, insiders would be unlikely to be able to 
alter more than about 20 votes without being 
detected. 
3
 While it would be possible to create a ruse by 

making a copy of a receipt before discarding it, each 
individual discarded receipt would still be very 
unlikely to be checked. 

surrender their receipts have little protection against 

alteration of their votes by people or entities that 

have sufficient access to do so. 

Although the most direct means of attack may be to 

collect receipts that have been separated from the 

voters to which they were issued, it may be 

sufficient to observe other characteristics of voters 

that make them appear to be less likely to check 

their receipts.  Depending upon the verifiable 

election system in use, it may be possible for 

observers to associate voters with receipts and gain 

a statistical advantage at finding votes that can more 

likely be altered without detection. 

3. The Mitigation 

The attack described above takes advantage of the 

possibility of altering a single ballot or vote without 

disturbing others.  This is generally possible in both 

traditional and verifiable election systems, and the 

common wisdom is that votes should be 

independent of each other and that the actions of 

one voter should not be manifested in any way that 

is observable by other voters.  However, this 

principle seems overly broad.  Indeed, it is this very 

independence of votes that facilitates the trash 

attack. 

If altering the vote of a voter whose receipt is not 

verified would have an effect that would cause other 

voters’ receipts to fail the verification process, then 

this attack would be substantially less effective, and 

it is possible to create such a dependency.  There are 

many possible means by which dependencies could 

be created amongst voter receipts.  An especially 

simple mechanism of creating such a dependency 

would be for each voter’s receipt to include a 

cryptographic hash (e.g. SHA-256
4
) of the prior 

voter’s receipt.
5
  Since the receipt in many verifiable 

election systems already includes a cryptographic 

hash of ballot data, the mitigation could be 

                                                           
4
 As defined in the National Institute of Standards 

and Technology Federal Information Processing 
Standard FIPS 180-3:  Secure Hash Standard. 
5
 Presumably, “prior voter” here would be the most 

recent prior voter using a particular voting device. 



accomplished by simply adding the hash of the prior 

voter’s receipt as one additional argument to the 

hash computation on a current voter’s receipt.  Such 

a change would be easy to incorporate within many 

verifiable election systems – including Prêt à Voter, 

VeriScan, and Helios, but more substantive changes 

would be required in a few systems such as 

Scantegrity where receipts are produced by the 

actions of each voter – without use of a vote 

recording or casting device. 

The approach is quite simple.  A verifiable voting 

device that produces a receipt should retain a copy 

of the last receipt produced (an arbitrary initial value 

can be used when the device is initialized).  Each 

subsequent receipt should incorporate a 

cryptographic hash of the prior receipt with the 

current ballot receipt.  By linking receipts in this way, 

each receipt that is checked serves not only as a 

verification that the associated vote has not been 

altered, it also serves as a verification that none of 

the votes previously cast on the same device have 

been subsequently altered. 

The idea of a running hash is certainly not new.  

Hash chains are a common cryptographic tool and 

are found in many protocols.  Indeed, the Merkle-

Damgård construction of a hash function [Mer79, 

Mer89, Dam89] is defined by breaking the input into 

fixed-sized blocks and computing a running hash 

over the input blocks. 

A running hash is not new to the election context 

either.  Sandler and Wallach [SaWa07] suggest using 

a running hash to maintain the integrity of audit 

logs, and this has been incorporated into their 

VoteBox system [SDW08].  However, computing a 

running hash of actual voter receipts and 

incorporating this hash within each subsequently 

issued receipt appears to be a novel approach. 

The actual construction would look very much like a 

typical Mergle-Damgård construction.  At the 

beginning of an election, an initial value   , would 

be selected and published for each receipt-

generating device.
6
  This initial value   , should 

incorporate the date of the election and a unique 

identifier for the device. 

An extent verifiable election system would produce 

a receipt    which is given to the  
th

 voter.  The 

proposal herein is that this receipt be modified to 

also include               – where the function   

is a cryptographically-strong one-way hash function 

such as SHA-256. 

4. Ancillary Benefits 

Besides thwarting the trash attack, a running hash, 

as described above, significantly improves the 

statistical properties of most – if not all – verifiable 

election systems.  For example, suppose that it is 

known that 5% of voters are expected to verify their 

receipts in an election.  With a standard design, an 

insider that randomly alters 10 ballots would escape 

detection about 60% of the time. 

If a running hash were to be incorporated, this 

insider’s options would be severely limited.  If the 

insider had the ability to alter a ballot and a 

corresponding running hash value in real time (i.e. 

before the next voter uses a device), then the same 

60% success rate could be achieved.  But if the 

insider cannot mount a real-time attack, after-the-

fact alteration of 10 ballots would only escape 

detection if they were all cast after the last ballot 

whose corresponding receipt was verified by a voter.  

Not only does this substantially restrict the pool of 

ballots available to the insider, but this threat can 

now be completely eliminated by a single diligent 

voter or observer recording the final running hash 

value at the end of the voting period. 

5. Specific Instantiations 

The details of how to incorporate a running hash of 

prior receipts into each new receipt varies 

                                                           
6
 Depending upon the specific verifiable election 

system, this device may also be used for voters to 
make their selections and/or cast their votes, or it 
may be a separate device whose principal purpose is 
generation of voter receipts. 



somewhat depending on the verifiable election 

system that is used. 

VeriScan, Helios, and MarkPledge all use a device 

which records a ballot and provides a distinct receipt 

to the voter.  In these cases, the receipt already 

incorporates a hash of ballot contents, and it is a 

very simple matter to include the hash value from 

the prior receipt as an additional argument to the 

current hash value. 

Prêt à Voter allows each voter to mark a paper ballot 

and then keep a copy of a portion of this marked 

ballot as a receipt.  In current implementations, the 

copying is done with a scanner that also retains an 

electronic version of what is given to the voter.  This 

scanner could be augmented to produce a hash of its 

electronic version of the ballot and to chain these 

hashes into a running hash that is printed onto the 

receipt that is given to each voter. 

In Scantegrity, the receipt retained by a voter is 

simply a hand-written recording of codes on the 

paper ballot together with a (pre-printed) ballot 

identifier.  This purely manual process requires a 

more substantial change to enable incorporation of 

a running hash value.  The optical scanner that reads 

each Scantegrity ballot could be augmented to 

provide each voter with a complete receipt listing 

the ballot identifier and all codes on the ballot.  Such 

a scanner-provided receipt could then easily be 

augmented to incorporate a running hash of all prior 

receipts produced by that optical scanner.  This 

augmentation could also improve the direct 

verifiability of Scantegrity as voters would be able to 

do immediate checks of the integrity of their ballots 

and could potentially challenge discrepancies on the 

spot by instructing the scanner to return the 

contested ballot rather than drop it into the bin with 

other ballots.  This augmentation would also address 

a frequent complaint of Scantegrity voters who find 

the manual creation of a receipt to be cumbersome. 

In all of these cases, the remainders of the processes 

are as described in the respective systems.  No 

attempt is made here to describe a complete 

verifiable election system which would require a 

fully-specified voter interface, precise roles for 

election officials, a back-end verifiable tallying 

mechanism, a dispute-resolution process, and much 

more.  Instead, this work describes one very simple 

augmentation that can be incorporated within 

otherwise complete verifiable systems to both 

mitigate a previously unrecognized vulnerability and 

to improve the statistical properties of the 

respective existing systems. 

 

 

6. Conclusions 

Although the details may vary between systems, it is 

clear that the simple inclusion of a running hash 

within voter receipts mitigates a serious vulnerability 

that may occur when insiders or others, who may 

have the ability to change votes after they have been 

cast, can use external information to tell which 

voters are more likely to check their receipts against 

published lists.  This mitigation is very simple to 

incorporate into many verifiable election systems, 

but the effect can be profound.  Without the 

mitigation, verifiable election systems may in 

practice be vulnerable to some well-known attacks 

that plague traditional election systems, but with the 

mitigation in place, these systems can not only 

achieve the properties they were previously thought 

to hold, but they can actually achieve even better 

properties with fewer voter checks providing greater 

confidence in the integrity of elections. 
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