
The Trash Attack
An Attack on Verifiable Voting Systems and a Simple Mitigation

Josh Benaloh
Microsoft Research

Eric Lazarus
DecisionSmith

Abstract

This short paper describes the trash attack which is effective against the majority of fully-

verifiable election systems. The paper then offers a simple but counter-intuitive mitigation

which can be incorporated within many such schemes to substantially reduce the effectiveness

of the attack. This mitigation also offers additional benefits as it significantly improves the

statistical properties of existing verifiable systems.

1. Introduction

Fully-verifiable (also known as end-to-end verifiable)

election systems such as Scantegrity [CECCPSV08],

Prêt à Voter [CRS05], VeriScan [Ben08], Helios

[Adi08], and MarkPledge [Nef04,AdNe09] offer great

promise. They enable the integrity of election

results to be checked by anyone without having to

trust election software, hardware, or personnel.

In traditional election systems, insider attacks can be

perpetrated either by unscrupulous or subverted

election officials or by the equipment they have

chosen to trust. Verifiable election technologies

prevent insider attacks by enabling voters

themselves – as well as any observers – to verify the

integrity of election results.

This paper introduces a previously unpublished

attack that can be effective against most (perhaps

even all) prior verifiable election systems. The attack

is simple and practical, and it can be used to

undetectably alter large numbers of votes.

Next, this paper describes a simple and effective

mitigation which, although it conflicts with standard

electoral doctrine, can be easily incorporated into

many verifiable election systems. This mitigation

makes the attack far more difficult and makes it

nearly impossible to alter more than a small number

of votes. The mitigation also offers additional

benefits to many verifiable systems at minimal cost.

This paper does not propose a new verifiable

election system. It instead describes a simple

addition that can be incorporated into many existing

systems which provides substantial benefits. A

complete verifiable election system has many

components including a voter interface, a back-end

tallying process, a public verification process, and a

dispute resolution process. The modification

proposed in this paper affects both the voter

interface and the public verification processes, but in

most cases the actual changes are quite small. Other

components are unaffected and remain as described

in the cited references.

2. The Attack

Verifiable election systems give voters the ability to

check that their votes have not been altered by

providing them with receipts – usually in paper form

– which voters can later check against a published

list.
1
 These receipts serve as an integral component

of the integrity checking process. It is not assumed

that all voters will check their receipts. Indeed, the

expectation is that many – perhaps most – voters

will not bother to check their receipts against the

published election data. However it is not necessary

that the majority of voters check their receipts. As

long as election personnel and the systems they are

charged with managing do not know which receipts

will be checked, the checking of even a small fraction

of receipts makes it very unlikely that election

personnel or malicious vote management systems

will be able to alter more than a few votes without

detection.
2

These statistics, however, only work if those who

might have the ability to alter votes have no

knowledge of which voters might be more likely to

check their receipts. If there were a way for election

workers or vote management systems to know with

certainty or near certainty that particular voters

would not check their receipts, they would be free to

alter their corresponding votes. For this reason, it is

essential to give receipts to all voters and not just

offer receipts to those voters who request them.

The provision of receipts to voters who may not

want them, however, suggests a very simple means

by which election workers could find votes that are

good candidates for alteration: poll workers could

simply collect the contents of the nearest trash

receptacles. Any receipts that have been discarded

by voters would be strongly correlated with votes

that could be altered without detection.
3
 Active

collection of receipts may also be viable through

social engineering. Voters who can be induced to

1
 Scantegrity II provides voters with a blank strip

containing a ballot identifier onto which they can
copy data revealed during the voting process.
2

 If, for example, only 5% of the receipts are
checked, insiders would be unlikely to be able to
alter more than about 20 votes without being
detected.
3
 While it would be possible to create a ruse by

making a copy of a receipt before discarding it, each
individual discarded receipt would still be very
unlikely to be checked.

surrender their receipts have little protection against

alteration of their votes by people or entities that

have sufficient access to do so.

Although the most direct means of attack may be to

collect receipts that have been separated from the

voters to which they were issued, it may be

sufficient to observe other characteristics of voters

that make them appear to be less likely to check

their receipts. Depending upon the verifiable

election system in use, it may be possible for

observers to associate voters with receipts and gain

a statistical advantage at finding votes that can more

likely be altered without detection.

3. The Mitigation

The attack described above takes advantage of the

possibility of altering a single ballot or vote without

disturbing others. This is generally possible in both

traditional and verifiable election systems, and the

common wisdom is that votes should be

independent of each other and that the actions of

one voter should not be manifested in any way that

is observable by other voters. However, this

principle seems overly broad. Indeed, it is this very

independence of votes that facilitates the trash

attack.

If altering the vote of a voter whose receipt is not

verified would have an effect that would cause other

voters’ receipts to fail the verification process, then

this attack would be substantially less effective, and

it is possible to create such a dependency. There are

many possible means by which dependencies could

be created amongst voter receipts. An especially

simple mechanism of creating such a dependency

would be for each voter’s receipt to include a

cryptographic hash (e.g. SHA-256
4
) of the prior

voter’s receipt.
5
 Since the receipt in many verifiable

election systems already includes a cryptographic

hash of ballot data, the mitigation could be

4
 As defined in the National Institute of Standards

and Technology Federal Information Processing
Standard FIPS 180-3: Secure Hash Standard.
5
 Presumably, “prior voter” here would be the most

recent prior voter using a particular voting device.

accomplished by simply adding the hash of the prior

voter’s receipt as one additional argument to the

hash computation on a current voter’s receipt. Such

a change would be easy to incorporate within many

verifiable election systems – including Prêt à Voter,

VeriScan, and Helios, but more substantive changes

would be required in a few systems such as

Scantegrity where receipts are produced by the

actions of each voter – without use of a vote

recording or casting device.

The approach is quite simple. A verifiable voting

device that produces a receipt should retain a copy

of the last receipt produced (an arbitrary initial value

can be used when the device is initialized). Each

subsequent receipt should incorporate a

cryptographic hash of the prior receipt with the

current ballot receipt. By linking receipts in this way,

each receipt that is checked serves not only as a

verification that the associated vote has not been

altered, it also serves as a verification that none of

the votes previously cast on the same device have

been subsequently altered.

The idea of a running hash is certainly not new.

Hash chains are a common cryptographic tool and

are found in many protocols. Indeed, the Merkle-

Damgård construction of a hash function [Mer79,

Mer89, Dam89] is defined by breaking the input into

fixed-sized blocks and computing a running hash

over the input blocks.

A running hash is not new to the election context

either. Sandler and Wallach [SaWa07] suggest using

a running hash to maintain the integrity of audit

logs, and this has been incorporated into their

VoteBox system [SDW08]. However, computing a

running hash of actual voter receipts and

incorporating this hash within each subsequently

issued receipt appears to be a novel approach.

The actual construction would look very much like a

typical Mergle-Damgård construction. At the

beginning of an election, an initial value , would

be selected and published for each receipt-

generating device.
6
 This initial value , should

incorporate the date of the election and a unique

identifier for the device.

An extent verifiable election system would produce

a receipt which is given to the
th

 voter. The

proposal herein is that this receipt be modified to

also include – where the function

is a cryptographically-strong one-way hash function

such as SHA-256.

4. Ancillary Benefits

Besides thwarting the trash attack, a running hash,

as described above, significantly improves the

statistical properties of most – if not all – verifiable

election systems. For example, suppose that it is

known that 5% of voters are expected to verify their

receipts in an election. With a standard design, an

insider that randomly alters 10 ballots would escape

detection about 60% of the time.

If a running hash were to be incorporated, this

insider’s options would be severely limited. If the

insider had the ability to alter a ballot and a

corresponding running hash value in real time (i.e.

before the next voter uses a device), then the same

60% success rate could be achieved. But if the

insider cannot mount a real-time attack, after-the-

fact alteration of 10 ballots would only escape

detection if they were all cast after the last ballot

whose corresponding receipt was verified by a voter.

Not only does this substantially restrict the pool of

ballots available to the insider, but this threat can

now be completely eliminated by a single diligent

voter or observer recording the final running hash

value at the end of the voting period.

5. Specific Instantiations

The details of how to incorporate a running hash of

prior receipts into each new receipt varies

6
 Depending upon the specific verifiable election

system, this device may also be used for voters to
make their selections and/or cast their votes, or it
may be a separate device whose principal purpose is
generation of voter receipts.

somewhat depending on the verifiable election

system that is used.

VeriScan, Helios, and MarkPledge all use a device

which records a ballot and provides a distinct receipt

to the voter. In these cases, the receipt already

incorporates a hash of ballot contents, and it is a

very simple matter to include the hash value from

the prior receipt as an additional argument to the

current hash value.

Prêt à Voter allows each voter to mark a paper ballot

and then keep a copy of a portion of this marked

ballot as a receipt. In current implementations, the

copying is done with a scanner that also retains an

electronic version of what is given to the voter. This

scanner could be augmented to produce a hash of its

electronic version of the ballot and to chain these

hashes into a running hash that is printed onto the

receipt that is given to each voter.

In Scantegrity, the receipt retained by a voter is

simply a hand-written recording of codes on the

paper ballot together with a (pre-printed) ballot

identifier. This purely manual process requires a

more substantial change to enable incorporation of

a running hash value. The optical scanner that reads

each Scantegrity ballot could be augmented to

provide each voter with a complete receipt listing

the ballot identifier and all codes on the ballot. Such

a scanner-provided receipt could then easily be

augmented to incorporate a running hash of all prior

receipts produced by that optical scanner. This

augmentation could also improve the direct

verifiability of Scantegrity as voters would be able to

do immediate checks of the integrity of their ballots

and could potentially challenge discrepancies on the

spot by instructing the scanner to return the

contested ballot rather than drop it into the bin with

other ballots. This augmentation would also address

a frequent complaint of Scantegrity voters who find

the manual creation of a receipt to be cumbersome.

In all of these cases, the remainders of the processes

are as described in the respective systems. No

attempt is made here to describe a complete

verifiable election system which would require a

fully-specified voter interface, precise roles for

election officials, a back-end verifiable tallying

mechanism, a dispute-resolution process, and much

more. Instead, this work describes one very simple

augmentation that can be incorporated within

otherwise complete verifiable systems to both

mitigate a previously unrecognized vulnerability and

to improve the statistical properties of the

respective existing systems.

6. Conclusions

Although the details may vary between systems, it is

clear that the simple inclusion of a running hash

within voter receipts mitigates a serious vulnerability

that may occur when insiders or others, who may

have the ability to change votes after they have been

cast, can use external information to tell which

voters are more likely to check their receipts against

published lists. This mitigation is very simple to

incorporate into many verifiable election systems,

but the effect can be profound. Without the

mitigation, verifiable election systems may in

practice be vulnerable to some well-known attacks

that plague traditional election systems, but with the

mitigation in place, these systems can not only

achieve the properties they were previously thought

to hold, but they can actually achieve even better

properties with fewer voter checks providing greater

confidence in the integrity of elections.

References

[Adi08] Adida, B. Helios: Web-Based Open-

Audit Voting. Proceedings of 17th Usenix

Security Symposium. San Jose, CA, 2008.

[AdNe09] Adida, B. and Neff, C.A. Efficient

Receipt-Free Ballot Casting Resistant to Covert

Channels. Proceedings of EVT/WOTE – 4th

Electronic Voting Technology Workshop /

Workshop on Trustworthy Elections. Montreal,

PQ, 2009.

[Anon09] Authors names withheld to preserve

anonymity. A Serious Threat with a Simple

Solution. Rump session of EVT/WOTE – 4th

Electronic Voting Technology Workshop /

Workshop on Trustworthy Elections. Montreal,

PQ, 2009.

 [Ben08] Benaloh, J. Public and Administrative

Verifiability: Can We Have Both? Proceeding of

3rd Electronic Voting Technology Workshop.

San Jose, CA, 2008.

[CECCPSV08] Chaum, D., Essex, A., Carback, R.,

Clark, J., Popoveniuc, S., Sherman, A., Vora, P.

Scantegrity: End-to-End Voter-Verifiable

Optical-Scan Voting. IEEE Secruity and Privacy

Magazine, Vol. 6, no. 4, pp. 40-46. May/June

2008.

[CRS05] Chaum, D., Ryan, P.Y.A., and

Schneider, S. A Practical Voter-Verifiable

Election Scheme. 2005. Proceedings of ESORICS

2005, 10th European Symposium on Research in

Computer Security. pp. 118-139.

[Dam89] Damgård, I. A Design Principle for

Hash Functions. Advances in Cryptology --

Crypto '89 Proceedings. [ed.] G. Brassard.:

Springer-Verlag, Lecture Notes in Computer

Science, Vol. 435, pp. 416-427. Santa Barbara,

CA, 1989.

[Lam81] Lamport, L. Password Authentication

with Insecure Communication. Association for

Computing Machinery, Communications of the

ACM, Vol. 24, no. 11, pp. 770-772. November

1981.

[Mer79] Merkle, R.C. Security, Authentication,

and Publik Key Systems. Stanford University,

Ph.D. thesis, 1979.

[Mer89] Merkle, R.C. A Certified Digital

Sigrature Advances in Cryptology -- Crypto '89

Proceedings. [ed.] G. Brassard.: Springer-Verlag,

Lecture Notes in Computer Science, Vol. 435,

pp. 218-238. Santa Barbara, CA, 1989..

[Nef04] Neff, C.A. Practical High Certainty

Intent Verification for Encrypted Votes.

VoteHere. [Online]

http://voterhere.net/vhti/documentation/vsv-

2.0.3638.pdf.

[SaWa07] Sandler, D. and Wallach, D.S.

Casting Votes in the Auditorium. Proceedings of

2nd Electronic Voting Technology Workshop.

Boston, MA, 2007.

[SDW07] Sandler, D., Derr, Kyle, and Wallach,

D.S. VoteBox: A Tamper-evident, Verifiable

Electronic Voting System. Proceedings of 17th

Usenix Security Symposium. San Jose, CA, 2008.

