
The Realm of the Pairings

Diego F. Aranha1, Paulo S. L. M. Barreto2?,
Patrick Longa3, and Jefferson E. Ricardini2

1 Department of Computer Science, University of Brasília, Brazil.
dfaranha@unb.br

2 Departamento de Engenharia de Computação e Sistemas Digitais,
Escola Politécnica, University of São Paulo, Brazil.

{pbarreto,jricardini}@larc.usp.br
3 Microsoft Research,

One Microsoft Way, Redmond, USA.
plonga@microsoft.com

Abstract. Bilinear maps, or pairings, initially proposed in a crypto-
logic context for cryptanalytic purposes, proved afterward to be an
amazingly flexible and useful tool for the construction of cryptosystems
with unique features. Yet, they are notoriously hard to implement
efficiently, so that their effective deployment requires a careful choice
of parameters and algorithms. In this paper we review the evolution
of pairing-based cryptosystems, the development of efficient algorithms
and the state of the art in pairing computation, and the challenges yet
to be addressed on the subject, while also presenting some new algorith-
mic and implementation refinements in affine and projective coordinates.

Keywords: pairing-based cryptosystems, efficient algorithms.

1 Introduction

Bilinear maps, or pairings, between the (divisors on the) groups of points of cer-
tain algebraic curves over a finite field, particularly the Weil pairing [94] and the
Tate (or Tate-Lichtenbaum) pairing [45], have been introduced in a cryptologi-
cal scope for destructive cryptanalytic purposes, namely, mapping the discrete
logarithm problem on those groups to the discrete logarithm problem on the
multiplicative group of a certain extension of the base field [66, 46]: while the
best generic classical (non-quantum) algorithm for the discrete logarithm prob-
lem on the former groups may be exponential, in the latter case subexponential
algorithms are known, so that such a mapping may yield a problem that is
asymptotically easier to solve.

It turned out, perhaps surprisingly, that these same tools have a much more
relevant role in a constructive cryptographic context, as the basis for the def-
inition of cryptosystems with unique properties. This has been shown in the
seminal works on identity-based non-interactive authenticated key agreement by
? Supported by CNPq research productivity grant 306935/2012-0.

Sakai, Ohgishi and Kasahara [84], and on one-round tripartite key agreement by
Joux [56], which then led to an explosion of protocols exploring the possibilities
of identity-based cryptography and many other schemes, with ever more complex
features.

All this flexibility comes at a price: pairings are notoriously expensive in
implementation complexity and processing time (and/or storage occupation, in
a trade-off between time and space requirements). This imposes a very careful
choice of algorithms and curves to make them really practical. The pioneering
approach by Miller [67, 68] showed that pairings could be computed in polyno-
mial time, but there is a large gap from there to a truly efficient implementation
approach.

Indeed, progress in this line of research has not only revealed theoretical
bounds on how efficiently a pairing can be computed in the sense of its overall
order of complexity [93], but actually the literature has now very detailed ap-
proaches on how to attain truly practical, extremely optimized implementations
that cover all operations typically found in a pairing-based cryptosystem, rather
than just the pairing itself [4, 80]. One can therefore reasonably ask how far this
trend can be pushed, and how “notoriously expensive” pairings really are (or
even whether they really are as expensive as the folklore pictures them).

Our contribution: In this paper we review the evolution of pairing-based cryp-
tosystems, the development of efficient algorithms for the computation of pair-
ings and the state of the art in the area, and the challenges yet to be addressed
on the subject.

Furthermore, we provide some new refinements to the pairing computation
in affine and projective coordinates over ordinary curves, perform an up-to-date
analysis of the best algorithms for the realization of pairings with special focus
on the 128-bit security level and present a very efficient implementation for x64
platforms.

Organization: The remainder of this paper is organized as follows. Section 2
introduces essential notions on elliptic curves and bilinear maps for cryptographic
applications, including some of the main pairing-based cryptographic protocols
and their underlying security assumptions. Section 3 reviews the main proposals
for pairing-friendly curves and the fundamental algorithms for their construction
and manipulation. In Section 4, we describe some optimizations to formulas
in affine and projective coordinates, carry out a performance analysis of the
best available algorithms and discuss benchmarking results of our high-speed
implementation targeting the 128-bit security level on various x64 platforms.
We conclude in Section 5.

2 Preliminary concepts

Let q = pm. An elliptic curve E/Fq is a smooth projective algebraic curve of
genus one with at least one point. The affine part satisfies an equation of the form

2

E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6 where ai ∈ Fq. Points on E are affine

points (x, y) ∈ F2
q satisfying the curve equation, together with an additional

point at infinity, denoted ∞. The set of curve points whose coordinates lie in
a particular extension field Fqk is denoted E(Fqk) for k > 0 (note that the ai
remain in Fq). Let #E(Fq) = n and write n as n = p+ 1− t; t is called the trace
of the Frobenius endomorphism. By Hasse’s theorem, |t| 6 2

√
q.

An (additive) Abelian group structure is defined on E by the well known
chord-and-tangent method [91]. The order of a point P ∈ E is the least nonzero
integer r such that [r]P = ∞, where [r]P is the sum of r terms equal to P .
The order r of a point divides the curve order n. For a given integer r, the set
of all points P ∈ E such that [r]P = ∞ is denoted E[r]. We say that E[r] has
embedding degree k if r | qk − 1 and r - qs − 1 for any 0 < s < k.

The complex multiplication (CM) method [37] constructs an elliptic curve
with a given number of points n over a given finite field Fq as long as n = q+1−t
as required by the Hasse bound, and the norm equation DV 2 = 4q − t2 can be
solved for “small” values of the discriminant D, from which the j-invariant of
the curve (which is a function of the coefficients of the curve equation) can be
computed, and the curve equation is finally given by y2 = x3 + b (for certain
values of b) when j = 0, by y2 = x3 +ax (for certain values of a) when j = 1728,
and by y2 = x3 − 3cx+ 2c with c := j/(j − 1728) when j 6∈ {0, 1728}.

A divisor is a finite formal sum A =
∑
P aP (P) of points on the curve

E(Fqk). An Abelian group structure is defined on the set of divisors by the
addition of corresponding coefficients in their formal sums; in particular, nA =∑
P (naP)(P). The degree of a divisor A is the sum deg(A) =

∑
P aP . Let

f : E(Fqk) → Fqk be a function on the curve. We define f(A) ≡
∏
P f(P)aP .

Let ordP (f) denote the multiplicity of the zero or pole of f at P (if f has no
zero or pole at P , then ordP (f) = 0). The divisor of f is (f) :=

∑
P ordP (f)(P).

A divisor A is called principal if A = (f) for some function (f). A divisor A is
principal if and only if deg(A) = 0 and

∑
P aPP = ∞ [65, theorem 2.25]. Two

divisors A and B are equivalent, A ∼ B, if their difference A − B is a principal
divisor. Let P ∈ E(Fq)[r] where r is coprime to q, and let AP be a divisor
equivalent to (P)− (∞); under these circumstances the divisor rAP is principal,
and hence there is a function fP such that (fP) = rAP = r(P)− r(∞).

Given three groups G1, G2, and GT of the same prime order n, a pairing is a
feasibly computable, non-degenerate bilinear map e : G1×G2 → GT . The groups
G1 and G2 are commonly (in the so-called Type III pairing setting) determined
by the eigenspaces of the Frobenius endomorphism φq on some elliptic curve
E/Fq of embedding degree k > 1. More precisely, G1 is taken to be the 1-
eigenspace E[n] ∩ ker(φq − [1]) = E(Fq)[n]. The group G2 is usually taken to
be the preimage E′(Fqg)[n] of the q-eigenspace E[n] ∩ ker(φq − [q]) ⊆ E(Fqk)[n]
under a twisting isomorphism ψ : E′ → E, (x, y) 7→ (µ2x, µ3y) for some µ ∈ F∗qk .
In particular, g = k/d where the curve E′/Fqg is the unique twist of E with
largest possible twist degree d | k for which n divides #E′(Fqg) (see [55] for
details). This means that g is as small as possible.

3

A Miller function fi,P is a function with divisor (fi,P) = i(P) − ([i]P) −
(i − 1)(∞). Miller functions are at the root of most if not all pairings pro-
posed for cryptographic purposes, which in turn induce efficient algorithms de-
rived from Miller’s algorithm [67, 68]. A Miller function satisfies fa+b,P (Q) =
fa,P (Q) ·fb,P (Q) · g[a]P,[b]P (Q)/g[a+b]P (Q) up to a constant nonzero factor in Fq,
for all a, b ∈ Z, where the so-called line functions g[a]P,[b]P and g[a+b]P satisfy
(g[a]P,[b]P) = ([a]P) + ([b]P) + (−[a + b]P) − 3(∞), (g[a+b]P) = ([a + b]P) +
(−[a + b]P) − 2(∞). The advantage of Miller functions with respect to elliptic
curve arithmetic is now clear, since with these relations the line functions, and
hence the Miller functions themselves, can be efficiently computed as a side re-
sult during the computation of [n]P by means of the usual chord-and-tangent
method.

2.1 Protocols and Assumptions

As an illustration of the enormous flexibility that pairings bring to the con-
struction of cryptographic protocols, we present a (necessarily incomplete) list
of known schemes according to their overall category.

Foremost among pairing-based schemes are the identity-based cryptosystems.
These include plain encryption [17], digital signatures [24, 83], (authenticated)
key agreement [25], chameleon hashing [27], and hierarchical extensions thereof
with or without random oracles [51, 22].

Other pairing-based schemes are not identity-based but feature special
functionalities like secret handshakes [5], short/aggregate/verifiably encrypted/
group/ring/blind signatures [19, 20, 26, 97, 98] and signcryption [9, 21, 61].

Together with the abundance of protocols came a matching abundance of
security assumptions, often tailored to the nature of each particular protocol
although some assumptions found a more general use and became classical. Some
of the most popular and useful security assumptions occurring in security proofs
of pairing-based protocols are the following, with groups G1 and G2 of order n
in multiplicative notation (and G denotes either group):

– q-Strong Diffie-Hellman (q-SDH) [16] and many related assumptions (like
the Inverse Computational Diffie-Hellman (Inv-CDH), the Square Com-
putational Diffie-Hellman (Squ-CDH), the Bilinear Inverse Diffie-Hellman
(BIDH), and the Bilinear Square Diffie-Hellman (BSDH) assumptions [98]):
Given a (q + 2)-tuple (g1, g2, g

x
2 , . . . , g

xq

2) ∈ G1 × Gq+1
2 as input, compute a

pair (c, g
1/(x+c)
1) ∈ Z/nZ×G1.

– Decision Bilinear Diffie-Hellman (DBDH) [18] and related assumptions (like
the k-BDH assumption [14]): Given generators g1 and g2 of G1 and G2

respectively, and given ga1 , gb1, gc1, ga2 , gb2, gc2, e(g1, g2)z determine whether
e(g1, g2)abc = e(g1, g2)z.

– Gap Diffie-Hellman (GDH) assumption [77]: Given (g, ga, gb) ∈ G3 for a
group G equipped with an oracle for deciding whether gab = gc for any given
gc ∈ G, find gab.

4

– (k + 1) Exponent Function meta-assumption: Given a function f : Z/nZ→
Z/nZ and a sequence (g, ga, gf(h1+a), . . . , gf(hk+a)) ∈ Gk+2

1 for some a,
h1, . . . , hk ∈ Z/nZ, compute gf(h+a) for some h /∈ {h1, . . . , hk}.

The last of these is actually a meta-assumption, since it is parameterized by a
function f on the exponents. This meta-assumption includes the Collusion attack
with k traitors (k-CAA) assumption [70], where f(x) := 1/x, and the (k + 1)
Square Roots ((k + 1)-SR) assumption [96], where f(x) :=

√
x, among others.

Of course, not all choices of f may lead to a consistent security assumption (for
instance, the constant function is certainly a bad choice), so the instantiation of
this meta-assumption must be done in a case-by-case basis.

Also, not all of these assumptions are entirely satisfactory from the point of
view of their relation to the computational complexity of the more fundamen-
tal discrete logarithm problem. In particular, the Cheon attack [28, 29] showed
that, contrary to most discrete-logarithm style assumptions, which usually claim
a practical security level of 2λ for 2λ-bit keys due to e.g. the Pollard-ρ attack [81],
the q-SDH assumption may need 3λ-bit keys to attain that security level, ac-
cording to the choice of q.

3 Curves and Algorithms

3.1 Supersingular curves

Early proposals to obtain efficient pairings invoked the adoption of supersingular
curves [49, 82, 40], which led to the highly efficient concept of η pairings [7] over
fields of small characteristic. This setting enables the so called Type I pairings,
which are defined with both arguments from the same group [50] and facilitates
the description of many protocols and the construction of formal security proofs.
Unfortunately, recent developments bring that approach into question, since dis-
crete logarithms in the multiplicative groups of the associated extension fields
have proven far easier to compute than anticipated [6].

Certain ordinary curves, on the other hand, are not known to be susceptible
to that line of attack, and also yield very efficient algorithms, as we will see next.

3.2 Generic constructions

Generic construction methods enable choosing the embedding degree at will,
limited only by efficiency requirements. Two such constructions are known:

– The Cocks-Pinch construction [32] enables the construction of elliptic curves
over Fq containing a pairing-friendly group of order n with lg(q)/ lg(n) ≈ 2.

– The Dupont-Enge-Morain strategy [39] is similarly generic in the sense of
its embedding degree flexibility by maximizing the trace of the Frobenius
endomorphism. Like the Cocks-Pinch method, it only attains lg(q)/ lg(n) ≈
2.

5

.
Because the smallest attainable ratio lg(q)/ lg(n) is relatively large, these

methods do not yield curves of prime order, which are necessary for certain
applications like short signatures, and also tend to improve the overall processing
efficiency.

3.3 Sparse families of curves

Certain families of curves may be obtained by parameterizing the norm equation
4q − t2 = 4hn − (t − 2)2 = DV 2 with polynomials q(u), t(u), h(u), n(u), then
choosing t(u) and h(u) according to some criteria (for instance, setting h(u) to
be some small constant polynomial yields near-prime order curves), and directly
finding integer solutions (in u and V) to the result. In practice this involves a
clever mapping of the norm equation into a Pell-like equation, whose solutions
lead to actual curve equations via complex multiplication (CM).

The only drawback they present is the relative rarity of suitable curves (the
only embedding degrees that are known to yield solutions are k ∈ {3, 4, 6, 10},
and the size of the integer solutions u grows exponentially), especially those with
prime order. Historically, sparse families are divided into Miyaji-Nakabayashi-
Takano (MNT) curves and Freeman curves.

MNT curves were the first publicly known construction of ordinary pairing-
friendly curves [71]. Given their limited range of admissible embedding degrees
(namely, k ∈ {3, 4, 6}), the apparent finiteness of MNT curves of prime order [63,
58, 92], and efficiency considerations (see e.g. [44]), MNT curves are less useful
for higher security levels (say, from about 2112 onward).

Freeman curves [43], with embedding degree k = 10, are far rarer and suffer
more acutely from the fact that the nonexistence of a twist of degree higher
than quadratic forces its G2 group to be defined over Fq5 . Besides, this quintic
extension cannot be constructed using a binomial representation.

3.4 Complete families of curves

Instead of trying to solve the partially parameterized norm equation 4h(u)n(u)−
(t(u)−2)2 = DV 2 for u and V directly as for the sparse families of curves, one can
also parameterize V = V (u) as well. Solutions may exist if the parameters can
be further constrained, which is usually done by considering the properties of the
number field Q[u]/n(u), specifically by requiring that it contains a k-th root of
unity where k is the desired embedding degree. Choosing n(u) to be a cyclotomic
polynomial Φ`(u) with k | ` yields the suitably named cyclotomic family of
curves [10, 11, 23, 44], which enable a reasonably small ratio ρ := lg(q)/ lg(n)
(e.g. ρ = (k + 1)/(k − 1) for prime k ≡ 3 (mod 4)).

Yet, there is one other family of curves that attain ρ ≈ 1, namely, the Barreto-
Naehrig (BN) curves [12]. BN curves arguably constitute one of the most versatile
classes of pairing-friendly elliptic curves. A BN curve is an elliptic curve Eu :

6

y2 = x3 + b defined over a finite prime4 field Fp of (typically prime) order n,
where p and n are given by p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1 and
n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1 (hence t = t(u) = 6u2 + 1) for u ∈ Z.
One can check by straightforward inspection that Φ12(t(u) − 1) = n(u)n(−u),
hence Φ12(p(u)) ≡ Φ12(t(u)− 1) ≡ 0 (mod n(u)), so the group of order n(u) has
embedding degree k = 12.

BN curves also have j-invariant 0, so there is no need to resort explicitly to
the CM curve construction method: all one has to do is choose an integer u of
suitable size such that p and n as given by the above polynomials are prime. To
find a corresponding curve, one chooses b ∈ Fp among the six possible classes so
that the curve E : y2 = x3 + b has order n.

Furthermore, BN curves admit a sextic twist (d = 6), so that one can setG2 =
E′(Fp2)[n]. This twist E′/Fp2 may be selected by finding a non-square and non-
cube ξ ∈ Fp2 and then checking via scalar multiplication whether the curve E′ :
y2 = x3 + b′ given by b′ = b/ξ or by b′ = b/ξ5 has order divisible by n. However,
construction methods are known that dispense with such procedure, yielding the
correct curve and its twist directly [80]. For convenience, following [85] we call
the twist E′ : y2 = x3+b/ξ a D-type twist, and we call the twist E′ : y2 = x3+bξ
an M -type twist.

3.5 Holistic families

Early works targeting specifically curves that have some efficiency advantage
have focused on only one or a few implementation aspects, notably the pairing
computation itself [13, 38, 90, 15].

More modern approaches tend to consider most if not all efficiency aspects
that arise in pairing-based schemes [34, 36, 80]. This means that curves of those
families tend to support not only fast pairing computation, but efficient finite
field arithmetic for all fields involved, curve construction, generator construction
for bothG1 andG2, multiplication by a scalar in bothG1 andG2, point sampling,
hashing to the curve [42], and potentially other operations as well.

Curiously enough, there is not a great deal of diversity among the most
promising such families, which comprise essentially only BN curves, BLS
curves [10], and KSS curves [57].

3.6 Efficient algorithms

Ordinary curves with small embedding degree also come equipped with efficient
pairing algorithms, which tend to be variants of the Tate pairing [8, 48, 55, 60, 76]
(although some fall back to the Weil pairing while remaining fairly efficient [94]).
In particular, one now knows concrete practical limits to how efficient a pairing
can be, in the form of the so-called optimal pairings [93].
4 Although there is no theoretical reason not to choose p to be a higher prime power,
in practice such parameters are exceedingly rare and anyway unnecessary, so usually
p is taken to be simply a prime.

7

As we pointed out, Miller functions are essential to the definition of most
cryptographic pairings. Although all pairings can be defined individually in for-
mal terms, it is perhaps more instructive to give the following constructive defini-
tions, assuming an underlying curve E/Fq containing a group E(Fq)[n] of prime
order n with embedding degree k and letting z := (qk − 1)/n:

– Weil pairing: w(P,Q) := (−1)nfn,P (Q)/fn,Q(P).
– Tate pairing: τ(P,Q) := fn,P (Q)z.
– Eta pairing [7] (called the twisted Ate pairing when defined over an ordinary

curve): η(P,Q) := fλ,P (Q)z where λd ≡ 1 (mod n).
– Ate pairing [55]: a(P,Q) := ft−1,Q(P)z, where t is the trace of the Frobenius.
– Optimized Ate and twisted Ate pairings [64]: ac(P,Q) := f(t−1)c mod n,Q(P)z,
ηc(P,Q) := fλc mod n,P (Q)z, for some 0 < c < k.

– Optimal Ate pairing [93]: aopt(P,Q) := f`,Q(P)z for a certain ` such that
lg ` ≈ (lg n)/ϕ(k).

Optimal pairings achieve the shortest loop length among all of these pairings. To
obtain unique values, most of these pairings (the Weil pairing is an exception)
are reduced via the final exponentiation by z. The very computation of z is the
subject of research per se [89]. In particular, for a BN curve with parameter u
there exists an optimal Ate pairing with loop length ` = |6u+ 2|.

A clear trend in recent works has been to attain exceptional performance
gains by limiting the allowed curves to a certain subset, sometimes to a single
curve at a useful security level [75, 15, 80, 4]. In the next section, we discuss
aspects pertaining such implementations.

4 Implementation aspects

The optimal Ate pairing on BN curves has been the focus of intense imple-
mentation research in the last few years. Most remarkably, beginning in 2008,
a series of works improved, each one on top of the preceding one, the practical
performance on Intel 64-bit platforms [54, 75, 15]. This effort reached its pinnacle
in 2011, when Aranha et al. [4] reported an implementation running in about
half a millisecond (see also [62]). Since then, performance of efficient software
implementations has mostly stabilized, but some aspects of pairing computation
continously improved through the availability of new techniques [47], processor
architecture revisions and instruction set refinements [79]. In this section, we
revisit the problem of efficient pairing computation working on top of the im-
plementation presented in [4], to explore these latest advances and provide new
performance figures. Our updated implementation achieves high performance on
a variety of modern 64-bit computing platforms, including both relatively old
processors and latest microarchitectures.

4.1 Pairing algorithm

The BN family of curves is ideal from an implementation point of view. Having
embedding degree k = 12, it is perfectly suited to the 128-bit security level and

8

a competitive candidate at the 192-bit security level for protocols involving a
small number of pairing computations [2]. Additionally, the size of the family fa-
cilitates generation [80] and supports many different parameter choices, allowing
for customization of software implementations to radically different computing
architectures [52, 53, 4]. The optimal Ate pairing construction applied to gen-
eral BN curves further provides a rather simple formulation among the potential
candidates [60, 76]:

aopt : G2 ×G1 → GT

(Q,P) 7→ (f`,Q(P) · g[`]Q,φp(Q)(P) · g[`]Q+φp(Q),−φ2
p(Q)(P))

p12−1
n ,

with ` = 6u + 2, map φp and groups G1,G2,GT as previously defined; and an
especially efficient modification of Miller’s Algorithm for accumulating all the
required line evaluations in the Miller variable f (Algorithm 1).

The extension field arithmetic involving f is in fact the main building block
of the pairing computation, including Miller’s algorithm and final exponenti-
ation. Hence, its efficient implementation is crucial. To that end, it has been
recommended to implement the extension field through a tower of extensions
built with appropriate choices of irreducible polynomials [38, 54, 15, 80]:

Fp2 = Fp[i]/(i2 − β), with β a non-square, (1)
Fp4 = Fp2 [s]/(s2 − ξ), with ξ a non-square, (2)
Fp6 = Fp2 [v]/(v3 − ξ), with ξ a non-cube, (3)
Fp12 = Fp4 [t]/(t3 − s) (4)

or Fp6 [w]/(w2 − v) (5)
or Fp2 [w]/(w6 − ξ), with ξ a non-square and non-cube. (6)

Note that ξ is the same non-residue used to define the twist equations in Sec-
tion 3.4 and that converting from one towering scheme to another is possible by
simply reordering coefficients. By allowing intermediate values to grow to double
precision and choosing p to be a prime number slightly smaller than a multiple
of the processor word, lazy reduction can be efficiently employed in all levels
of the towering arithmetic [4]. A remarkably efficient set of parameters arising
from the curve choice E(Fp) : y2 = x3 + 2, with p ≡ 3 (mod 4), is β = −1,
ξ = (1 + i) [80], simultaneously optimizing finite field and curve arithmetic.

4.2 Field arithmetic

Prime fields involved in pairing computation in the asymmetric setting are com-
monly represented with dense moduli, resulting from the parameterized curve
constructions. While the particular structure of the prime modulus has been
successfully exploited for performance optimization in both software [75] and
hardware [41], current software implementations rely on the standard Mont-
gomery reduction [72] and state-of-the-art hardware implementations on the
parallelization capabilities of the Residue Number System [30].

9

Algorithm 1 Optimal Ate pairing on general BN curves [4].

Input: P ∈ G1, Q ∈ G2, ` = |6u+ 2| =
∑log2(`)

i=0 `i2
i

Output: aopt(Q,P)

1: d← gQ,Q(P), T ← 2Q, e← 1
2: if `blog2(`)c−1 = 1 then e← gT,Q(P), T ← T +Q
3: f ← d · e
4: for i = blog2(`)c − 2 downto 0 do
5: f ← f2 · gT,T (P), T ← 2T
6: if `i = 1 then f ← f · gT,Q(P), T ← T +Q
7: end for
8: Q1 ← φp(Q), Q2 ← φ2

p(Q)

9: if u < 0 then T ← −T, f ← fp6

10: d← gT,Q1(P), T ← T +Q1, e← gT,−Q2(P), T ← T −Q2, f ← f · (d · e)
11: f ← f (p6−1)(p2+1)(p4−p2+1)/n

12: return f

Arithmetic in the base field is usually implemented in carefully scheduled
Assembly code, but the small number of words required to represent a 256-bit
prime field element in a 64-bit processor encourages the use of Assembly directly
in the quadratic extension field, to avoid penalties related to frequent function
calls [15]. Multiplication and reduction in Fp are implemented through a Comba
strategy [33], but a Schoolbook approach is favored in recent Intel processors,
due to the availability of the carry-preserving multiplication instruction mulx,
allowing delayed handling of carries [79]. Future processors will allow similar
speedups on the Comba-based multiplication and Montgomery reduction rou-
tines by carry-preserving addition instructions [78].

Divide-and-conquer approaches are used only for multiplication in Fp2 , Fp6
and Fp12 , because Karatsuba is typically more efficient over extension fields, since
additions are relatively inexpensive in comparison with multiplication. The full
details of the formulas that we use in our implementation of extension field arith-
metic can be found in [4], including the opportunities for reducing the number
of Montgomery reductions via lazy reduction. The case of squaring is relatively
more complex. We use the complex squaring in Fp2 and, for Fp6 and Fp12 , we
employ the faster Chung-Hasan asymmetric SQR3 formula [31]. The sparseness
of the line functions motivates the implementation of specialized multiplication
routines for accumulating the line function into the Miller variable f (sparse
multiplication) or for multiplying line functions together (sparser multiplica-
tion). For sparse multiplication over Fp6 and Fp12 , we use the formulas proposed
by Grewal et al. (see Algorithms 5 and 6 in [53]). Faster formulas for sparser
multiplication can be trivially obtained by adapting the sparse multiplication
formula to remove operations involving the missing subfield elements.

In the following, we closely follow notation for operation costs from [4]. Let
m, s, a, i denote the cost of multiplication, squaring, addition and inversion in Fp,
respectively; m̃, s̃, ã, ı̃ denote the cost of multiplication, squaring, addition and

10

inversion in Fp2 , respectively; mu, su, r denote the cost of unreduced multipli-
cation and squaring producing double-precision results, and modular reduction
of double-precision integers, respectively; m̃u, s̃u, r̃ denote the cost of unreduced
multiplication and squaring, and modular reduction of double-precision elements
in Fp2 , respectively. To simplify the operation count, we consider the cost of field
subtraction, negation and division by two equivalent to that of field addition.
Also, one double-precision addition is considered equivalent to the cost of two
single-precision additions.

4.3 Curve arithmetic

Pairings can be computed over elliptic curves represented in any coordinate
system, but popular choices have been homogeneous projective and affine coor-
dinates, depending on the ratio between inversion and multiplication. Jacobian
coordinates were initially explored in a few implementations [75, 15], but ended
superseded by homogeneous coordinates because of their superior efficiency [35].
Point doublings and their corresponding line evaluations usually dominate the
cost of the Miller loop, since efficient parameters tend to minimize the Hamming
weight of the Miller variable ` and the resulting number of points additions.
Below, we review and slightly refine the best formulas available for the curve
arithmetic involved in pairing computation on affine and homogeneous projec-
tive coordinates.

Affine coordinates. The choice of affine coordinates has proven more useful
at higher security levels and embedding degrees, due to the action of the norm
map on simplifying the computation of inverses at higher extensions [86, 59]. The
main advantages of affine coordinates are the simplicity of implementation and
format of the line functions, allowing faster accumulation inside the Miller loop
if the additional sparsity is exploited. If T = (x1, y1) is a point in E′(Fp2), one
can compute the point 2T := T + T with the following formula [53]:

λ =
3x21
2y1

, x3 = λ2 − 2x1, y3 = (λx1 − y1)− λx3. (7)

When E′ is a D-type twist given by the twisting isomorphism ψ, the tangent
line evaluated at P = (xP , yP) has the format g2ψ(T)(P) = yP −λxPw+ (λx1−
y1)w3 according to the tower representation given by Equation (6). This function
can be evaluated at a cost of 3m̃ + 2s̃ + 7ã + ı̃ + 2m with the precomputation
cost of 1a to compute xP = −xP [53]. By performing more precomputation as
y′P = 1/yP and x′P = xP /yP , we can simplify the tangent line further:

y′P · g2ψ(T)(P) = 1 + λx′Pw + y′P (λx1 − y1)w3.

Since the final exponentiation eliminates any subfield element multiplying the
pairing value, this modification does not change the pairing result. Computing

11

the simpler line function now requires 3m̃+ 2s̃+ 7ã+ ı̃+ 4m with an additional
precomputation cost of (i+m):

A =
1

2y1
, B = 3x21, C = AB, D = 2x1, x3 = C2 −D,

E = Cx1 − y1, y3 = E − Cx3, F = Cx′P , G = Ey′P ,

y′P · g2ψ(T)(P) = 1 + Fw +Gw3.

This clearly does not save any operations compared to Equation (7) and
increases the cost by 2m. However, the simpler format allows the faster accumu-
lation f2 · g2ψ(T)(P) = (f0 + f1w)(1 + g1w), where f0, f1, g1 ∈ Fp6 , by saving 6m
corresponding to the multiplication between yP and each subfield element of f0.
The performance trade-off compared to [53] is thus 4m per Miller doubling step.

When different points T = (x1, y1) and Q = (x2, y2) are considered, the point
T +Q can be computed with the following formula:

λ =
y2 − y1
x2 − x1

, x3 = λ2 − x2 − x1, y3 = λ(x1 − x3)− y1. (8)

Applying the same trick described above gives the same performance trade-
off, with a cost of 3m̃+ s̃+ 6ã+ ı̃+ 4m [53]:

A =
1

x2 − x1
, B = y2 − y1, C = AB, D = x1 + x2, x3 = C2 −D,

E = Cx1 − y1, y3 = E − Cx3, F = Cx′P , G = Ey′P ,

y′P · gψ(T),ψ(Q)(P) = 1 + Fw +Gw3.

The technique can be further employed in M -type twists, conserving their
equivalent performance to D-type twists [53], with some slight changes in the
formula format and accumulation multiplier. A generalization for other pairing-
friendly curves with degree-d twists and even embedding degree k would provide
a performance trade-off of (k/2− k/d) multiplications per step in Miller’s Algo-
rithm. The same idea was independently proposed and slightly improved in [73].

Homogeneous Projective coordinates. The choice of projective coordinates
has proven especially advantageous at the 128-bit security level for single pairing
computation, due to the typically large inversion/multiplication ratio in this
setting. If T = (X1, Y1, Z1) ∈ E′(Fp2) is a point in homogeneous coordinates,
one can compute the point 2T = (X3, Y3, Z3) with the following formula [4]:

X3 =
X1Y1

2
(Y 2

1 − 9b′Z2
1),

Y3 =

[
1

2
(Y 2

1 + 9b′Z2
1)

]2
− 27b′2Z4

1 , Z3 = 2Y 3
1 Z1.

(9)

The twisting point P can be represented by (xPw, yP). When E′ is a D-
type twist given by the twisting isomorphism ψ, the tangent line evaluated at
P = (xP , yP) can be computed with the following formula [53]:

g2ψ(T)(P) = −2Y ZyP + 3X2xPw + (3b′Z2 − Y 2)w3 (10)

12

Equation (10) is basically the same line evaluation formula presented in [35]
plus an efficient selection of the positioning of terms (obtained by multiplying
the line evaluation by w3), which was suggested in [53] to obtain a fast sparse
multiplication in the Miller loop (in particular, the use of terms 1, w and w3 [53]
induces a sparse multiplication that saves 13ã in comparison to the use of terms
1, v2 and wv in [4]). The full doubling/line function formulae in [35] costs 2m̃+
7s̃ + 23ã + 4m + mb′ . Based on Equations (9) and (10), [53] reports a cost of
2m̃+ 7s̃+ 21ã+ 4m+mb′ . We observe that the same formulae can be evaluated
at a cost of only 2m̃ + 7s̃ + 19ã + 4m + mb′ with the precomputation cost of
3a to compute yP = −yP and x′P = 3xP . Note that all these costs consider
the computation of X1 · Y1 using the equivalence 2XY = (X + Y)2 −X2 − Y 2.
We remark that, as in Aranha et al. [4], on x64 platforms it is more efficient to
compute such term with a direct multiplication since m̃ − s̃ < 3ã. Considering
this scenario, the cost applying our precomputations is then given by 3m̃ +
6s̃ + 15ã + 4m + mb′ . Finally, further improvements are possible if b is cleverly
selected [80]. For instance, if b = 2 then b′ = 2/(1 + i) = 1− i, which minimizes
the number of additions and subtractions. Computing the simpler doubling/line
function now requires 3m̃ + 6s̃ + 16ã + 4m with the precomputation cost of 3a
(in comparison to the computation proposed in [53], [4] and [35], we save 2ã, 3ã
and 5ã, respectively, when m̃− s̃ < 3ã):

A = X1 · Y1/2, B = Y 2
1 , C = Z2

1 , D = 3C, E0 = D0 +D1,

E1 = D1 −D0, F = 3E, X3 = A · (B − F), G = (B + F)/2,

Y3 = G2 − 3E2, H = (Y1 + Z1)
2 − (B + C), Z3 = B ·H,

g2ψ(T)(P) = HȳP +X2
1x
′
Pw + (E −B)w3.

(11)

Similarly, if T = (X1, Y1, Z1) and Q = (x2, y2) ∈ E′(Fp2) are points in
homogeneous and affine coordinates, respectively, one can compute the point
T +Q = (X3, Y3, Z3) with the following formula:

X3 = λ(λ3 + Z1θ
2 − 2X1λ

2),

Y3 = θ(3X1λ
2 − λ3 − Z1θ

2)− Y1λ3, Z3 = Z1λ
3,

(12)

where θ = Y1 − y2Z1 and λ = X1 − x2Z1. In the case of a D-type twist, the line
evaluated at P = (xP , yP) can be computed with the following formula [53]:

gψ(T+Q)(P) = −λyP − θxPw + (θX2 − λY2)w3. (13)

Similar to the case of doubling, Equation (13) is basically the same line
evaluation formula presented in [35] plus an efficient selection of the positioning
of terms suggested in [53] to obtain a fast sparse multiplication inside the Miller
loop. The full mixed addition/line function formulae can be evaluated at a cost
of 11m̃+2s̃+8ã+4m with the precomputation cost of 2a to compute xP = −xP

13

and yP = −yP [53]:

A = Y2Z1, B = X2Z1, θ = Y1 −A, λ = X1 −B, C = θ2,

D = λ2, E = λ3, F = Z1C, G = X1D, H = E + F − 2G,

X3 = λH, I = Y1E, Y3 = θ(G−H)− I, Z3 = Z1E, J = θX2 − λY2,
g2ψ(T)(P) = λȳP + θx̄Pw + Jw3.

In the case of an M -type twist, the line function evaluated at ψ(P) =
(xPw

2, yPw
3) can be computed with the same sequence of operations shown

above.

4.4 Operation count

Table 1 presents a detailed operation count for each operation relevant in the
computation of a pairing over a BN curve, considering all the improvements
described in the previous section. Using these partial numbers, we obtain an
operation count for the full pairing computation on a fixed BN curve.

Miller loop. Sophisticated pairing-based protocols may impose additional re-
strictions on the parameter choice along with some performance penalty, for
example requiring the cofactor of the GT group to be a large prime number [87].
For efficiency and a fair comparison with related works, we adopt the parame-
ters β, ξ, b = 2, u = −(262 + 255 + 1) from [80]. For this set of parameters, the
Miller loop in Algorithm 1 and the final line evaluations execute some amount
of precomputation for accelerating the curve arithmetic formulas, 64 points dou-
blings with line evaluations and 6 point additions with line evaluations; a single
p-power Frobenius, a single p2-power Frobenius and 2 negations in E′(Fp2); and
66 sparse accumulations in the Miller variable, 2 sparser multiplications, 1 mul-
tiplication, 1 conjugation and 63 squarings in Fp12 . The corresponding costs in
affine and homogeneous projective coordinates are, respectively:

MLA = (i+m+ a) + 64 · (3m̃+ 2s̃+ 7ã+ ı̃+ 4m)

+ 6 · (3m̃+ s̃+ 6ã+ ı̃+ 4m) + 2m̃+ 2a+ 2m+ 2ã

+ 66 · (10m̃u + 6r̃ + 31ã) + 2 · (5m̃u + 3r̃ + 13ã)

+ 3ã+ (18m̃u + 6r̃ + 110ã) + 63 · (3m̃u + 12s̃u + 6r̃ + 93ã)

= 1089m̃u + 890s̃u + 1132r̃ + 8530ã+ 70ı̃+ i+ 283m+ 3a.

MLP = (4a) + 64 · (3m̃u + 6s̃u + 8r̃ + 19ã+ 4m) +

+ 6 · (11m̃u + 2s̃u + 11r̃ + 10ã+ 4m) + 2m̃+ 2a+ 2m+ 2ã

+ 66 · (13m̃u + 6r̃ + 48ã) + 2 · (6m̃u + 5r̃ + 22ã)

+ 3ã+ (18m̃u + 6r̃ + 110ã) + 63 · (3m̃u + 12s̃u + 6r̃ + 93ã)

= 1337m̃u + 1152s̃u + 1388r̃ + 10462ã+ 282m+ 6a.

14

Table 1. Computational cost for arithmetic required by Miller’s Algorithm.

E′(Fp2)-Arithmetic Operation Count
Precomp. (Affine) i+m+ a
Precomp. (Proj) 4a

Dbl./Eval. (Affine) 3m̃+ 2s̃+ 7ã+ ı̃+ 4m
Add./Eval. (Affine) 3m̃+ s̃+ 6ã+ ı̃+ 4m
Dbl./Eval. (Proj) 3m̃u + 6s̃u + 8r̃ + 19ã+ 4m
Add./Eval. (Proj) 11m̃u + 2s̃u + 11r̃ + 10ã+ 4m
p-power Frobenius 2m̃+ 2a
p2-power Frobenius 2m+ ã

Negation ã

Fp2-Arithmetic Operation Count
Add./Sub./Neg. ã = 2a
Conjugation a
Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 8a

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a
Multiplication by β a
Multiplication by ξ 2a

Inversion ı̃ = i+ 2su + 2mu + 2r + 3a

Fp12-Arithmetic Operation Count
Add./Sub. 6ã
Conjugation 3ã
Multiplication 18m̃u + 6r̃ + 110ã

Sparse Mult. (Affine) 10m̃u + 6r̃ + 31ã
Sparser Mult. (Affine) 5m̃u + 3r̃ + 13ã
Sparse Mult. (Proj) 13m̃u + 6r̃ + 48ã
Sparser Mult. (Proj) 6m̃u + 5r̃ + 22ã

Squaring 3m̃u + 12s̃u + 6r̃ + 93ã
Cyc. Squaring 9s̃u + 6r̃ + 46ã
Comp. Squaring 6s̃u + 4r̃ + 31ã
Simult. Decomp. 9m̃+ 6s̃+ 22ã+ ı̃
p-power Frobenius 5m̃+ 6a
p2-power Frobenius 10m+ 2ã
p3-power Frobenius 5m̃+ 2ã+ 6a

Inversion 23m̃u + 11s̃u + 16r̃ + 129ã+ ı̃

15

Final exponentiation. For computing the final exponentiation, we employ the
state-of-the-art approach by [47] in the context of BN curves. As initially pro-
posed by [89], power p

12−1
r is factored into the easy exponent (p6−1)(p2+1) and

the hard exponent p4−p2+1
n . The easy power is computed by a short sequence

of multiplications, conjugations, fast applications of the Frobenius map [15] and
a single inversion in Fp12 . The hard power is computed in the cyclotomic sub-
group, where additional algebraic structure allows elements to be compressed
and squared consecutively in their compressed form, with decompression re-
quired only when performing multiplications [4, 88, 74].

Moreover, lattice reduction is able to obtain parameterized multiples of the
hard exponent and significantly reduce the length of the addition chain involved
in that exponentiation [47]. In total, the hard part of the final exponentiation
requires 3 exponentiations by parameter u, 3 squarings in the cyclotomic sub-
group, 10 full extension field multiplications and 3 applications of the Frobenius
maps with increasing pth-powers. We refer to [4] for the cost of an exponen-
tiation by our choice of u and compute the exact operation count of the final
exponentiation:

FE = (23m̃u + 11s̃u + 16r̃ + 129ã+ ı̃) + 3ã+ 12 · (18m̃u + 6r̃ + 110ã)

+ 3 · (45m̃u + 378s̃u + 275r̃ + 2164ã+ ı̃) + 3 · (9s̃u + 6r̃ + 46ã)

+ (5m̃+ 6a) + 2 · (10m+ 2ã) + (5m̃+ 2ã+ 6a)

= 384m̃u + 1172s̃u + 941r̃ + 8085ã+ 4ı̃+ 20m+ 12a.

4.5 Results and discussion

The combined cost for a pairing computation in homogeneous projective coor-
dinates can then be expressed as:

MLP + FE = 1721m̃u + 2324s̃u + 2329r̃ + 18547ã+ 4ı̃+ i+ 302m+ 18a

= 9811mu + 4658r + 57384a+ 4ı̃+ i+ 302m+ 18a

= 10113mu + 4960r + 57852a+ 4ı̃+ i.

A direct comparison with a previous record-setting implementation [4], con-
sidering only the number of multiplications in Fp generated by arithmetic in Fp2
as the performance metric, shows that our updated implementation in projec-
tive coordinates saves 3.4% of the base field multiplications. This reflects the
faster final exponentiation adopted from [47] and the more efficient formulas
for inversion and squaring in Fp12 . These formulas were not the most efficient
in [4] due to higher number of additions, but this additional cost is now offset
by improved addition handling and faster division by 2. Now comparing the
total number of multiplications with more recent implementations [95, 69], our
updated implementation saves 1.9%, or 198 multiplications.

The pairing code was implemented in the C programming language, with the
performance-critical code implemented in Assembly. The compiler used was GCC

16

version 4.7.0, with switches turned on for loop unrolling, inlining of small func-
tions to reduce function call overhead and optimization level -O3. Performance
experiments were executed in a broad set of 64-bit Intel-compatible platforms:
older Nehalem Core i5 540M 2.53GHz and AMD Phenom II 3.0 GHz processors,
and modern Sandy Bridge Xeon E31270 3.4GHz and Ivy Bridge Core i5 3570
3.4GHz processors, including a recent Haswell Core i7 4750 HQ 2.0GHz pro-
cessor. All machines had automatic overclocking capabilities disabled to reduce
randomness in the results. Table 2 presents the timings split in the Miller loop
and final exponentiation. This is not only useful for more fine-grained compar-
isons, but also to allow more accurate estimates of the latency of multi-pairings
or precomputed pairings. The complete implementation will be made available
in the next release of the RELIC toolkit [3].

Table 2. Comparison between implementations based on affine and projective coor-
dinates on 64-bit architectures. Timings are presented in 103 clock cycles and were
collected as the average of 104 repetitions of the same operation. Target platforms are
AMD Phenom II (P II) and Intel Nehalem (N), Sandy Bridge (SB), Ivy Bridge (IB),
Haswell (H) with or without support to the mulx instruction.

Platform
Operation N P II SB IB H H+mulx

Affine Miller Loop 1,680 1,529 1,365 1,315 1,259 1,212
Projective Miller Loop 1,170 862 856 798 721 704
Final Exponentiation 745 557 572 537 492 473

Affine Pairing 2,426 1,898 1,937 1,852 1,751 1,686
Projective Pairing 1,915 1,419 1,428 1,335 1,213 1,177

We obtain several performance improvements in comparison with current lit-
erature. Our implementation based on projective coordinates improves results
from [4] by 6% and 9% in the Nehalem and Phenom II machines, respectively.
Comparing to an updated version [95] of a previous record setting implemen-
tation [15], our Sandy Bridge timings are faster by 82,000 cycles, or 5%. When
independently benchmarking their available software in the Ivy Bridge machine,
we observe a latency of 1,403K cycles, thus an improvement by our software of
5%. Now considering the Haswell results from the same software available at [69],
we obtain a speedup of 8% without taking into account the mulx instruction and
comparable performance when mulx is employed. It is also interesting to note
that the use of mulx injects a relatively small speedup of 3%. When exploiting
such an instruction, the lack of carry-preserving addition instructions in the first
generation of Haswell processors makes an efficient implementation of Comba-
based multiplication and Montgomery reduction difficult, favoring the use of the
typically slower Schoolbook versions. We anticipate a better support for Comba
variants with the upcoming addition instructions [78].

17

In the implementation based on affine coordinates, the state-of-the-art results
at the 128-bit security level is the one described by Acar et al. [1]. Unfortunately,
only the latency of 15,6 million cycles on a Core 2 Duo is provided for 64-bit
Intel architectures. While this does not allow a direct comparison, observing the
small performance improvement between the Core 2 Duo and Nehalem reported
in [4] implies that our affine implementation should be around 6 times faster
than [1] when executed in the same machine.

Despite being slower than our own projective version, our affine implemen-
tation is still considerably faster than some previous speed records on projective
coordinates [54, 75, 15]. This hints at the possibility that affine pairings could be
improved even further, contrary to the naive intuition that the affine represen-
tation is exceedingly worse than a projective approach.

5 Conclusion

Pairings are amazingly flexible tools that enable the design of innovative crypto-
graphic protocols. Their complex implementation has been the focus of intense
research since the beginning of the millennium in what became a formidable race
to make it efficient and practical.

We have reviewed the theory behind pairings and covered state-of-the-art
algorithms, and also presented some further optimizations to the pairing com-
putation in affine and projective coordinates, and analyzed the performance
of the most efficient algorithmic options for pairing computation over ordinary
curves at the 128-bit security level. In particular, our implementations of affine
and projective pairings using Barreto-Naehrig curves shows that the efficiency of
these two approaches are not as contrasting as it might seem, and hints that fur-
ther optimizations might be possible. Remarkably, the combination of advances
in processor technology and carefully crafted algorithms brings the computation
of pairings close to the one million cycle mark.

Acknowledgements

The authors would like to thank Tanja Lange for the several suggestions to
improve the quality of this paper.

References

1. T. Acar, K. Lauter, M. Naehrig, and D. Shumow. Affine pairings on ARM. In
M. Abdalla and T. Lange, editors, Pairing-Based Cryptography – Pairing 2012,
volume 7708 of Lecture Notes in Computer Science, pages 203–209. Springer, 2013.

2. D. F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. Menezes, and F. Rodríguez-
Henríquez. Implementing pairings at the 192-bit security level. In M. Abdalla
and T. Lange, editors, Pairing-Based Cryptography – Pairing 2012, volume 7708
of Lecture Notes in Computer Science, pages 117–195. Springer, 2013.

18

3. D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/.

4. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit
formulas for computing pairings over ordinary curves. In Advances in Cryptology –
Eurocrypt 2011, volume 6632 of Lecture Notes in Computer Science, pages 48–68,
Tallinn, Estonia, 2011. Springer.

5. D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H. C. Wong.
Secret handshakes from pairing-based key agreements. In IEEE Symposium on
Security and Privacy – S&P 2003, pages 180–196, Berkeley, USA, 2003. IEEE
Computer Society.

6. R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic. Cryptology ePrint
Archive, Report 2013/400, 2013. http://eprint.iacr.org/2013/400.

7. P. S. L. M. Barreto, S. D. Galbraith, C. Ó hÉigeartaigh, and M. Scott. Efficient
pairing computation on supersingular abelian varieties. Designs, Codes and Cryp-
tography, 42(3):239–271, 2007.

8. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology – Crypto 2002, volume
2442 of Lecture Notes in Computer Science, pages 377–387, Santa Barbara, USA,
2002. Springer.

9. P. S. L. M. Barreto, B. Libert, N. McCullagh, and J.-J. Quisquater. Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In
B. Roy, editor, Advances in Cryptology – Asiacrypt 2005, volume 3788 of Lecture
Notes in Computer Science, pages 515–532. Springer, 2005.

10. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with
prescribed embedding degrees. In Security in Communication Networks – SCN
2002, volume 2576 of Lecture Notes in Computer Science, pages 263–273, Amalfi,
Italy, 2002. Springer.

11. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In Selected Areas in Cryptography – SAC 2003, Lecture Notes in Computer
Science, pages 17–25, Ottawa, Canada, 2004. Springer.

12. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography – SAC 2005,
volume 3897 of Lecture Notes in Computer Science, pages 319–331. Springer, 2006.

13. N. Benger and M. Scott. Constructing tower extensions of finite fields for im-
plementation of pairing-based cryptography. In M. A. Hasan and T. Helleseth,
editors, Arithmetic of Finite Fields – WAIFI 2010, volume 6087 of Lecture Notes
in Computer Science, pages 180–195, Istanbul, Turkey, 2010. Springer.

14. K. Benson, H. Shacham, and B. Waters. The k-BDH assumption family: Bilinear
map cryptography from progressively weaker assumptions. In E. Dawson, editor,
Topics in Cryptology – CT-RSA 2013, volume 7779 of Lecture Notes in Computer
Science, pages 310–325. Springer, 2013.

15. J.-L. Beuchat, J. E. González Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-
Henríquez, and T. Teruya. High-speed software implementation of the optimal
ate pairing over Barreto-Naehrig curves. In M. Joye, A. Miyaji, and A. Otsuka,
editors, Pairing-Based Cryptography – Pairing 2010, volume 6487 of Lecture Notes
in Computer Science, pages 21–39. Springer, 2010.

16. D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin
and J. L. Camenisch, editors, Advances in Cryptology – Eurocrypt 2004, volume
3027 of Lecture Notes in Computer Science, pages 56–73. Springer, 2004.

19

17. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology – Crypto 2001, volume 2139 of Lecture Notes in Computer
Science, pages 213–229, Santa Barbara, USA, 2001. Springer.

18. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

19. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In Advances in Cryptology – Eurocrypt
2003, Lecture Notes in Computer Science, pages 416–432. Springer, 2003.

20. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In Advances in Cryptology – Asiacrypt 2001, volume 2248 of Lecture Notes in
Computer Science, pages 514–532, Gold Coast, Australia, 2002. Springer.

21. X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for
identity-based cryptography. In Advances in Cryptology – Crypto 2003, volume
2729 of Lecture Notes in Computer Science, pages 383–399, Santa Barbara, USA,
2003. Springer.

22. X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (with-
out random oracles). In Advances in Cryptology – Crypto 2006, volume 4117 of
Lecture Notes in Computer Science, pages 290–307, Santa Barbara, USA, 2006.
Springer.

23. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptography.
Designs, Codes and Cryptography, 37(1):133–141, 2005.

24. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Public Key Cryptography – PKC 2003, volume 2567 of Lecture Notes
in Computer Science, pages 18–30, Miami, USA, 2003. Springer.

25. L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement protocols from
pairings. International Journal of Information Security, 6(4):213–241, 2007.

26. X. Chen, F. Zhang, and K. Kim. New ID-based group signature from pairings.
Journal of Electronics (China), 23(6):892–900, 2006.

27. X. Chen, F. Zhang, W. Susilo, H. Tian, J. Li, and K. Kim. Identity-based
chameleon hash scheme without key exposure. In Ron Steinfeld and Philip Hawkes,
editors, Information Security and Privacy, volume 6168 of Lecture Notes in Com-
puter Science, pages 200–215. Springer, 2010.

28. J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In Advances in
Cryptology – Eurocrypt 2006, volume 4004 of Lecture Notes in Computer Science,
pages 1–11. Springer, 2006.

29. J. H. Cheon. Discrete logarithm problems with auxiliary inputs. Journal of Cryp-
tology, 23(3):457–476, 2010.

30. R. C. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, and G. X.
Yao. FPGA Implementation of Pairings Using Residue Number System and Lazy
Reduction. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2011, volume 6917 of Lecture Notes in Computer Science,
pages 421–441. Springer, 2011.

31. J. Chung and M. Hasan. Asymmetric Squaring Formulae. In 18th IEEE Symposium
on Computer Arithmetic – ARITH-18 2007, pages 113–122, 2007.

32. C. Cocks and R. G. E. Pinch. Identity-based cryptosystems based on the Weil
pairing. Unpublished manuscript, 2001.

33. P. G. Comba. Exponentiation Cryptosystems on the IBM PC. IBM Systems
Journal, 29(4):526–538, 1990.

34. C. Costello. Particularly friendly members of family trees. Cryptology ePrint
Archive, Report 2012/072, 2012. http://eprint.iacr.org/.

20

35. C. Costello, T. Lange, and M. Naehrig. Faster Pairing Computations on Curves
with High-Degree Twists. In P. Q. Nguyen and D. Pointcheval, editors, Public Key
Cryptography – PKC 2010, volume 6056 of Lecture Notes in Computer Science,
pages 224–242. Springer, 2010.

36. C. Costello, K. Lauter, and M. Naehrig. Attractive subfamilies of BLS curves for
implementing high-security pairings. In Progress in Cryptology – Indocrypt 2011,
volume 7107 of Lecture Notes in Computer Science, pages 320–342, Chennai, India,
2011. Springer.

37. R. Crandall and C. Pomerance. Prime Numbers: a Computational Perspective.
Springer, Berlin, 2001.

38. A. J. Devegili, M. Scott, and R. Dahab. Implementing cryptographic pairings over
Barreto-Naehrig curves. In Pairing-Based Cryptography – Pairing 2007, volume
4575 of Lecture Notes in Computer Science, pages 197–207. Springer, 2007.

39. R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small MOV
degree over finite prime fields. Journal of Cryptology, 18(2):79–89, 2005.

40. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curves.
In C.-S. Laih, editor, Advances in Cryptology – Asiacrypt 2003, volume 2894 of
Lecture Notes in Computer Science, pages 111–123. Springer, 2003.

41. J. Fan, F. Vercauteren, and I. Verbauwhede. Efficient hardware implementation
of Fp-arithmetic for pairing-friendly curves. IEEE Transactions on Computers,
61(5):676–685, 2012.

42. P.-A. Fouque and M. Tibouchi. Indifferentiable hashing to Barreto-Naehrig curves.
In Progress in Cryptology – Latincrypt 2012, volume 7533 of Lecture Notes in
Computer Science, pages 1–17, Santiago, Chile, 2012. Springer.

43. D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree
10. In F. Hess, S. Pauli, and M. Pohst, editors, Algorithmic Number Theory, volume
4076 of Lecture Notes in Computer Science, pages 452–465. Springer, 2006.

44. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224–280, 2010.

45. G. Frey, M. Müller, and H. Rück. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Transactions on Information Theory,
45(5):1717–1719, 1999.

46. G. Frey and H. G. Rück. A remark concerning m-divisibility and the discrete log-
arithm problem in the divisor class group of curves. Mathematics of Computation,
62:865–874, 1994.

47. L. Fuentes-Castañeda, E. Knapp, and F. Rodríguez-Henríquez. Faster Hashing to
G2. In A. Miri and S. Vaudenay, editors, Selected Areas in Cryptography – SAC
2011, volume 7118 of Lecture Notes in Computer Science, pages 412–430. Springer,
2011.

48. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
Algorithmic Number Theory Symposium – ANTS V, volume 2369 of Lecture Notes
in Computer Science, pages 324–337, Sydney, Australia, 2002. Springer.

49. S. D. Galbraith. Supersingular curves in cryptography. In C. Boyd, editor, Ad-
vances in Cryptology - Asiacrypt 2001, volume 2248 of Lecture Notes in Computer
Science, pages 495–513. Springer, 2001.

50. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

51. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng,
editor, Advances in Cryptology - Asiacrypt 2002, volume 2501 of Lecture Notes in
Computer Science, pages 548–566. Springer, 2002.

21

52. C. P. L. Gouvêa and J. López. Software implementation of pairing-based cryptog-
raphy on sensor networks using the MSP430 microcontroller. In B. K. Roy and
N. Sendrier, editors, 10th International Conference on Cryptology in India – In-
docrypt 2009, volume 5922 of Lecture Notes in Computer Science, pages 248–262.
Springer, 2009.

53. G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, and D. Jao. Efficient Implementation
of Bilinear Pairings on ARM Processors. In L. R. Knudsen and H. Wu, editors,
Selected Areas in Cryptography – SAC 2012, volume 7707 of Lecture Notes in
Computer Science, pages 149–165. Springer, 2012.

54. D. Hankerson, A. Menezes, and M. Scott. Software Implementation of Pairings.
In Identity-Based Cryptography, chapter 12, pages 188–206. IOS Press, 2008.

55. F. Hess, N. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Transac-
tions on Information Theory, 52:4595–4602, 2006.

56. A. Joux. A one-round protocol for tripartite Diffie-Hellman. In W. Bosma, editor,
Algorithm Number Theory Symposium – ANTS IV, volume 1838 of Lecture Notes
in Computer Science, pages 385–394. Springer, 2000.

57. E. Kachisa, E. Schaefer, and M. Scott. Constructing Brezing-Weng pairing friendly
elliptic curves using elements in the cyclotomic field. In S. D. Galbraith and K. G.
Paterson, editors, Pairing-Based Cryptography – Pairing 2008, volume 5209 of
Lecture Notes in Computer Science, pages 126–135. Springer, 2008.

58. K. Karabina and E. Teske. On prime-order elliptic curves with embedding degrees
k = 3, 4, and 6. In Proceedings of the 8th international conference on Algorithmic
number theory – ANTS-VIII, volume 5011 of Lecture Notes in Computer Science,
pages 102–117. Springer, 2008.

59. K. Lauter, P. Montgomery, and M. Naehrig. An analysis of affine coordinates for
pairing computation. In M. Joye, A. Miyaji, and A. Otsuka, editors, Pairing-Based
Cryptography – Pairing 2010, volume 6487 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2010.

60. E. Lee, H.-S. Lee, and C.-M. Park. Efficient and generalized pairing computation
on abelian varieties. IEEE Transactions on Information Theory, 55(4):1793–1803,
2009.

61. B. Libert and J.-J. Quisquater. New identity based signcryption schemes from
pairings. In Information Theory Workshop – ITW 2003, pages 155–158. IEEE,
2003.

62. P. Longa. High-Speed Elliptic Curve and Pairing-Based Cryptography. PhD thesis,
University of Waterloo, April 2011.

63. F. Luca and I. E. Shparlinski. Elliptic curves with low embedding degree. Journal
of Cryptology, 19(4):553–562, 2006.

64. S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised versions of the
ate and twisted ate pairings. In S. D. Galbraith, editor, Cryptography and Coding –
IMACC 2007, volume 4887 of Lecture Notes in Computer Science, pages 302–312.
Springer, 2007.

65. A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Pub-
lishers, Boston, USA, 1993.

66. A. J. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Transactions on Information Theory, 39:1639–
1646, 1993.

67. V. S. Miller. Short programs for functions on curves. IBM Thomas J. Watson
Research Center Report, 1986. http://crypto.stanford.edu/miller/miller.
pdf.

22

68. V. S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17(4):235–261, 2004.

69. S. Mitsunari. A fast implementation of the optimal ate pairing over BN curve
on Intel Haswell processor. Cryptology ePrint Archive, Report 2013/362, 2013.
http://eprint.iacr.org/.

70. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Transac-
tions on Fundamentals, E85-A(2):481–484, 2002.

71. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals, E84-A(5):1234–
1243, 2001.

72. P. L. Montgomery. Modular Multiplication Without Trial Division. Mathematics
of Computation, 44(170):519–521, 1985.

73. Y. Mori, S. Akagi, Y. Nogami, and M. Shirase. Pseudo 8-Sparse Multiplication for
Efficient Ate-based Pairing on Barreto-Naehrig Curve. In Pairing-Based Cryptog-
raphy – Pairing 2013. To appear.

74. M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On compressible pairings and
their computation. In S. Vaudenay, editor, Progress in Cryptology – Africacrypt
2008, volume 5023 of Lecture Notes in Computer Science, pages 371–388. Springer,
2008.

75. M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records for
cryptographic pairings. In Progress in Cryptology – Latincrypt 2010, volume 6212
of Lecture Notes in Computer Science, pages 109–123. Springer, 2010.

76. Y. Nogami, M. Akane, Y. Sakemi, H. Kato, and Y. Morikawa. Integer variable
χ-based ate pairing. In S. D. Galbraith and K. G. Paterson, editors, Pairing-Based
Cryptography – Pairing 2008, volume 5209 of Lecture Notes in Computer Science,
pages 178–191. Springer, 2008.

77. T. Okamoto and D. Pointcheval. The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In K. Kim, editor, Public Key Cryptography
– PKC 2001, pages 104–118, London, UK, 2001. Springer.

78. E. Ozturk, J. Guilford, and V. Gopal. Large Integer Squaring on Intel Architecture
Processors. Intel white paper, 2013.

79. E. Ozturk, J. Guilford, V. Gopal, and W. Feghali. New Instructions Supporting
Large Integer Arithmetic on Intel Architecture Processors. Intel white paper, 2012.

80. G. C. C. F. Pereira, M. A. Simplício, Jr., M. Naehrig, and P. S. L. M. Barreto.
A family of implementation-friendly BN elliptic curves. Journal of Systems and
Software, 84(8):1319–1326, August 2011.

81. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics
of Computation, 32:918–924, 1978.

82. K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In
M. Yung, editor, Advances in Cryptology- CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 336–353. Springer, 2002.

83. R. Sakai and M. Kasahara. Cryptosystems based on pairing over elliptic curve. In
Symposium on Cryptography and Information Security – SCIS 2003, pages 8C–1,
January 2003.

84. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
Symposium on Cryptography and Information Security – SCIS 2000, Okinawa,
Japan, January 2000.

85. M. Scott. A note on twists for pairing friendly curves. ftp://ftp.computing.dcu.
ie/pub/resources/crypto/twists.pdf, 2009.

23

86. M. Scott. On the efficient implementation of pairing-based protocols. In Liqun
Chen, editor, Cryptography and Coding – IMACC 2011, volume 7089 of Lecture
Notes in Computer Science, pages 296–308. Springer, 2011.

87. M. Scott. Unbalancing pairing-based key exchange protocols. Cryptology ePrint
Archive, Report 2013/688, 2013. http://eprint.iacr.org/2013/688.

88. M. Scott and P. S. L. M. Barreto. Compressed pairings. In M. Franklin, editor,
Advances in Cryptology – Crypto 2004, volume 3152 of Lecture Notes in Computer
Science, pages 140–156, Santa Barbara, USA, 2004. Springer.

89. M. Scott, N. Benger, M. Charlemagne, L. J. Domínguez Pérez, and E. J. Kachisa.
On the final exponentiation for calculating pairings on ordinary elliptic curves. In
H. Shacham and B. Waters, editors, Pairing-Based Cryptography – Pairing 2009,
volume 5671 of Lecture Notes in Computer Science, pages 78–88. Springer Berlin
Heidelberg, 2009.

90. M. Shirase. Barreto-Naehrig curve with fixed coefficient. IACR ePrint Archive,
report 2010/134, 2010. http://eprint.iacr.org/2010/134.

91. J. H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate Texts
in Mathematics. Springer, Berlin, Germany, 1986.

92. J. Jiménez Urroz, F. Luca, and I. Shparlinski. On the number of isogeny classes
of pairing-friendly elliptic curves and statistics of MNT curves. Mathematics of
Computation, 81(278), 2012.

93. F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

94. A. Weil. Sur les fonctions algébriques à corps de constantes fini. Comptes rendus
de l’Académie des sciences, 210:592–594, 1940.

95. E. Zavattoni, L. J. Domínguez-Pérez, S. Mitsunari, A. H. Sánchez, T. Teruya, and
F. Rodríguez-Henríquez. Software implementation of attribute-based encryption.
http://sandia.cs.cinvestav.mx/index.php?n=Site.CPABE, 2013.

96. F. Zhang and X. Chen. Yet another short signatures without random oracles from
bilinear pairings. IACR Cryptology ePrint Archive, report 2005/230, 2005.

97. F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings.
In Y. Zheng, editor, Advances in Cryptology – Asiacrypt 2002, volume 2501 of
Lecture Notes in Computer Science, pages 533–547. Springer, 2002.

98. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from
bilinear pairings and its applications. In F. Bao, R. Deng, and J. Zhou, editors,
Public Key Cryptography – PKC 2004, volume 2947 of Lecture Notes in Computer
Science, pages 277–290. Springer, 2004.

24

