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ABSTRACT
This paper addresses the problem of developing appropriate features
for use in direct modeling approaches to speech recognition, such
as those based on Maximum Entropy models or Segmental Condi-
tional Random Fields. We propose a feature based on the detection
of word-level templates which are discriminatively chosen based on
a mutual information criterion. The templates for a word are derived
directly from the MFCC feature vectors, based on self-similarity
across examples. No pronunciation dictionary is used, and the re-
sulting templates match closely to in-class examples and distantly
to out-of-class examples. We utilize template detection events as
input to a segmental CRF speech recognizer. We evaluate the en-
tire scheme on a voice search task. The results show that the use of
discriminative template based word detector streams improves the
speech recognizer’s performance over the baseline HMM results.

Index Terms— Discriminative Templates, Segmental Condi-
tional Random Fields, Speech Recognition

1. INTRODUCTION

Direct modeling for speech recognition has received considerable at-
tention in recent years. Direct models directly estimate the posterior
distribution P (w|x) of a sentence hypothesis w given the observa-
tion sequence x, unlike generative models which estimate the poste-
rior probabilities indirectly by estimating P (w)P (x|w). Among the
key advantages of direct modeling approaches are that they are inher-
ently discriminative, and provide a coherent framework to integrate
a large number of possibly redundant features. The promise of such
methods is that by adding sufficiently many informative features, we
will eventually be able to recover the underlying word sequence.

In speech recognition, early examples of the direct modeling ap-
proach include maximum entropy Markov models (MEMMs)[1] and
conditional random fields (CRFs) [2][3]. This past work is based on
log-linear models, but still uses features defined at the conventional
frame level. In later work, we have extended the direct modeling
approach to use segment level features, both at the word and utter-
ance level. In [4], we propose a flat direct model (FDM) which op-
erates at the utterance level and uses word-level template-matching
features. Two new classes of features based on phone and multi-
phone detection were introduced in [5]. Our FDM approach was
then generalized to continuous speech recognition with a Segmental
CRF (SCARF) based speech recognizer described in [6] [7]. In the
SCARF framework, a log-linear model is applied for each word in
turn as decoding proceeds, and the features are based on the detec-
tion of units such as phones, phone-classes, or multi-phones [5].
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In this paper, we extend our previous work by presenting a
method for extracting discriminative templates, and using them
as the basis of detector streams in the SCARF framework. These
templates are at the word level, and each one is explicitly designed
to match closely to in-class examples and distantly to out-of-class
examples. The use of discriminatively trained templates in speech
recognition has of course been explored very early on [8]. However,
this early work is restricted to whole-utterance models, and does not
address the use of word units; thus it is difficult to generalize to a
large vocabulary continuous speech recognition (LVCSR) task. In
recent template-based work such as that of [9], the authors explore
the use of a template based scheme in LVCSR, but do not address
the issue of discriminative training.

The rest of the paper is organized as follows. In Section 2, we
describe the process of extracting discriminative templates at the
word level. In Section 3, we describe the detection process which
uses the extracted templates to detect the presence/absence of words
in an utterance. In Section 4, we describe the experimental setup
to use the template based detector stream in a SCARF based speech
recognition model and present the results on a voice search applica-
tion. Finally in Section 5, we offer some concluding remarks.

2. FINDING DISCRIMINATIVE TEMPLATES
In this section we describe the steps involved in extracting discrimi-
native acoustic templates. While we focus on word-level templates,
extension to sub-word and multi-word units is also possible. Our
approach builds on previous work [10] in which we presented a pro-
cedure to identify common audio portions between repeated utter-
ances, based on the MFCC feature vectors alone. This is a maximum
likelihood approach in which each frame in the second utterance is
either explained as a noisy copy of some matched frames in the first
utterance, or as having been drawn from a background model. This
is illustrated in Figure 1. Both utterances are normalized to have zero
mean and unit variance; the background model is thus a single Gaus-
sian with those parameters. Matched frames are explained as being
drawn from a Gaussian whose mean is that of the matched frames
in the first utterance; the variance is the same as for the background
model. Dynamic programming is then used to find the optimal seg-
mentation such that the likelihood of explaining all the frames of the
second utterance under this model is maximized. For details of the
matching process, please refer to [10]. In the current framework,
we extend this procedure to extract acoustic templates from a train-
ing pool of utterances that contain the word of interest. The key is
that we obtain the matching of the frames in the first utterance to
the frames in the second utterance. We now show how to exploit this
matching process to measure the mutual information between frames
and words, and thus to extract templates that have the best discrim-



inative properties in the training set. We stress that these templates
are for arbitrary portions of utterances, and moreover the discrimi-
native training process operates directly on the feature vectors.
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Fig. 1. The maximum likelihood approach to finding common audio
segments between two utterances. Each frame of utterance 2 is ex-
plained either as a noisy copy of the matched frames in utterance 1,
or as coming from a background model.

2.1. A simple non-discriminative approach

Consider the task of extracting templates for the word wi. Let a set
of utterances Xi = {x1i, x2i . . . xNi} be drawn from the training
set such that they contain the word wi. We now describe a simple
algorithm to extract templates from this training set:

• Take each utterance xji in Xi and match it with every other
utterance in Xi.

• For each frame in xji count the number times it matched with
a frame in the second utterance.

• If the frame receiving the maximum number of votes gets
more than t1 votes, it is chosen as a template center.

• The set of frames neighboring the template center that re-
ceived more than t2 votes are chosen as the template Tj .

We illustrate these steps in Figure 2.
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Fig. 2. A simple approach to extract templates based on picking
frames that match well with other utterances in the training set.

This approach lets us extract those frames of the utterances that
matched well with most of the other utterances and hence are good
templates for representing word wi. Note that this process does not
require a prior segmentation of the utterance into words - because
all the examples contain a particular word, those frames belonging
to instances of that word will tend to accumulate the most matches.
This is still the case when two utterances occasionally share another
word. In the case that all utterances with the target word also occur
with another word (e.g. target “Francisco” always occurring with
“San”), the composite (e.g. “San Francisco”) is expected to be ex-
tracted.

While this approach often produces reasonable sounding exam-
ples of a word, there is no reason to believe that the templates thus
chosen are the best templates for distinguishing word wi from other
words in the vocabulary. The goal of the discriminative template ex-
traction is to pick templates that match closely with word wi while
not matching well with other words in the vocabulary.

2.2. Mutual information based approach

In order to extract discriminative templates for word wi, we will
seek frames that are not only frequently matched when we have in-
class utterances, but frames that are infrequently matched when we
have out-of-class utterances. Let us again consider the set of utter-
ances Xi = {x1i, x2i . . . xNi} to be drawn from the training set
such that that they contain the word wi. We call this the set of in-
class utterances, each of which with label l = 1. We also select
a set Yi = {y1i, y2i . . . yNi} of utterances that do not contain the
word wi. These out-of-class utterances have the label l = 0. In
order to select competitors that have portions which are confusable
with a target word, we use n-best lists. First, we find words that oc-
cur on the n-best lists of utterances containing target word wi. Then,
we select utterances which have these competitor words in their tran-
scripts, but not wi. A random selection of utterances without wi may
also be used. The algorithm for finding discriminative templates is
described below.
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Fig. 3. A mutual information based approach to extract discrimina-
tive templates using in-class and out-of-class utterances in the train-
ing set.

• Match each utterance xji in Xi with every other utterance
zk ∈ Xi\xij ∪ Yi.

• For each frame in xij , define the variable mk = 1 if the frame
matches some frame in utterance zk. mk = 0 otherwise.
Let lk denote the in-class/out-of-class label of zk. Count
the number of entries in the four distinct cases (lk, mk) =
{(0, 0), (0, 1), (1, 0), (1, 1)}.

• Compute the mutual information between the variable mk

and labels lk as in Equation 1.

MI(lk, mk) =
X

lk∈{0,1}
mk∈{0,1}

P (lk, mk)log

»
P (lk, mk)

P (lk)P (mk)

–
(1)

• The frame with the maximum mutual information is chosen
as the template center.

• All contiguous frames in the neighborhood of the template
center, having at least a fraction a times the maximum mutual
information are included in the template.
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Fig. 4. Equal error rates for different words - comparing the discrim-
inative templates and random templates.
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Fig. 5. Performance of the discriminative templates at different op-
erating points, compared to that of the random templates.

P (lk), P (mk) and P (lk.mk) can be estimated by counting the
entries for(lk, mk) = {(0, 0), (0, 1), (1, 0), (1, 1)}. We illustrate
these steps in Figure 3.

This selection process gives us the frames that have the max-
imum discriminative ability between the word wi and the other
words. Empirically, we have found that the selection process is also
more robust to the actual value of the thresholds used, allowing us
to use fixed values for all the words. This is due to the fact that the
mutual information measure varies more smoothly over neighboring
frames than the vote distribution.

2.3. Template ranking

In the previous section, we described a procedure for finding dis-
criminative templates; in this section, we describe a method for se-
lecting a small number of examples of each word for use in decod-
ing. Given a set of candidate templates Ti = {t1i, t2i . . . tNi} for
the word wi, we proceed to rank them according to a measure of
goodness that lets us pick those templates that can best separate the
in-class utterances from the out-of-class utterances. To do this, we

Number of 1 2 5 10 20 50
templates

Avg. EER (%) 45 34 28 25 24 22

Table 1. Effect of using different number of templates in the detec-
tion process.

again turn to the principle of mutual information as explained below.
We will use the fact that under the model described in [10], there
is a difference in likelihood between explaining all the frames in an
utterance zk with the background model, and the likelihood when
matches to the frames in a template t are allowed.

• Select a new set of in-class and out-of-class utterances Xi and
Yi for each word wi as before. This is a tuning set.

• For each template tji, force it to match with each in-class and
out-of-class utterance zk ∈ Xi ∪ Yi. Let ck denote the gain
in likelihood from matching and lk denote the label of zk as
before.

• Compute the mutual information between the variables c and
l as follows.

MI(c, l) =
X

k

log

„
P (ck|lk)

P (ck)

«
P (c), P (c|l = 0) and P (c|l = 1) are all modeled as Gaussian
distributions and their mean and variances are estimated from the
samples ck. The templates are ranked according to the mutual infor-
mation and the top n templates are chosen as the acoustic templates
for word wi.

3. TEMPLATE BASED DETECTOR STREAMS

Having defined a method to identify and rank discriminative tem-
plates, we now proceed to the problem of using the templates to
detect the existence of a word in a test utterance. Specifically, given
an utterance, the output will be a sequence of detected words and the
audio frame indices where they were detected. Our detection process
is based on the following thresholding scheme.

• Select a third set of in-class and out-of-class utterances Xi

and Yi for each word wi.

• For each template tji, force it to match (as described in Sec-
tion 2) with each in-class and out-of-class utterance zk ∈
Xi ∪ Yi. Let Ck = maxj(cj) be the maximum gain in like-
lihood gotten by using a template of word wi to explain the
frames of the utterance

• Compute the histogram of Ck for the in-class and out-of-class
examples and choose a threshold for a given false acceptance
rate or false rejection rate. Each word gets its own threshold.

Having fixed the thresholds for a given FA/FR rate, we proceed to
detect the word in a test utterance as follows. Match the templates for
a word with the utterance and find the maximum gain in likelihood
of matching among the templates of wi. If this gain is higher than the
threshold for wi, we detect the word wi in the test utterance. This
detector stream is incorporated in the SCARF speech recognition
framework.

4. EXPERIMENTAL SETUP AND RESULTS
We evaluate the efficacy of our template extraction scheme on a
voice search task. We extract templates for the most frequent 1000
words in the Windows Live Search for Mobile (WLS4M) dataset
[11]. This data consists of recordings of users asking for business



SCARF Baseline Oracle results Cheat Cheat Discriminative
features HMM results on n-best all words top 1000 words templates

Existence 85.9 93.0 90.8 90.1 86.0
Expectation 85.9 93.0 91.2 91.1 86.4

Both 85.9 93.0 91.2 91.2 86.6

Table 2. Sentence accuracies using the template detector stream in the SCARF speech recognizer.

listings, for example, “Walmart Superstore” or “Honda Dealership.”
In this section, we first evaluate the performance of the templates in
isolation from a speech recognition task, and then present the results
in an actual recognition setup. For the initial experiments presented
here, we used a small training set consisting of 45k utterances. The
test set consists of instances of the most frequent business requests,
and has 3623 utterances. In order to obtain the templates, we used
200 in-class and 200 out-of-class training examples at each stage of
the template extraction process.

In our first performance measure, the discriminatively extracted
templates are compared with templates that are randomly selected
occurrences of word wi (the randomly selected occurrences are
based on a forced alignment of the transcription). One measure of
template performance is the equal error rate (EER) between false
detections and false rejections for word occurrences in the test set.
This is illustrated in Figure 4 for a set of randomly selected words.
We see that the equal error rate produced by our discriminative ap-
proach is systematically lower than when randomly selected word
examples are used as templates, on a word-by-word basis. Averaged
over all the 1000 words, the equal error rate of the discriminative
templates is 5.8% better than the randomly selected templates. In
Figure 5, we present the FA/FR rates for random and discriminative
templates, averaged over all words. We see that the discriminative
templates are uniformly better at all operating points. For a given
FRR, the discriminative templates always have lower FAR than
the random templates. In Table 1, we show the sensitivity of the
detection process to the number of top templates retained for each
word, averaged over all words. We see that beyond 10 templates, the
gain in adding more templates per word is not significant. We thus
restrict ourselves to 10 templates in the rest of the analysis.

Once we have selected the templates for the top 1000 words, we
train a SCARF speech recognizer for the WLS4M task. We used
the template detections in association with two types of features:
existence and expectation. These features are defined in terms of
a hypothesized segmentation of the observations into words. Each
hypothesized word spans some block of observations. Existence
features are of the form: Do a word and detector unit co-occur in
a block? The expectation features model the Correct Accept/False
Reject/False Accept of a detector unit in a word hypothesis. For
example, if the phone “p” was expected in a block of observations
which have been labeled with the word “red,” the feature associ-
ated with the false accept of “p” would be true. For more details
of the features used in the SCARF framework, please refer to [7].
The SCARF framework also uses a built-in HMM baseline feature
so that we don’t perform worse than the baseline.

In Table 2, we present the results from incorporating the tem-
plate detector stream into the SCARF framework. The search strat-
egy was guided by word occurrences in n-best lists produced by the
baseline HMM decoding, so the oracle results on the n-best provide
an upper bound on the possible improvement. In order to estimate
the possible improvement by using template based detector streams
in SCARF, we performed two cheating experiments. In the first ex-
periment, we built a word detector that could detect all the words
with 100% accuracy. In the second experiment, we assumed that our

detector can detect only the top 1000 words accurately and does not
detect any other word. We see that restricting ourselves to the top
1000 words does not affect our accuracy in this task. However, we
see that these cheating experiment results still fall short of the oracle
upper bound. This is due to the inconsistent annotation of homo-
phones in the test data, e.g. Crown Plaza and Crowne Plaza. Having
established the improvement possible in using the perfect template
detector, we then proceed to evaluate our template detector stream
on the test set. We see an improvement of 0.7% over the baseline.

5. CONCLUDING REMARKS

We have presented a discriminative acoustic template extraction
scheme, and applied it to find examples of individual words. We use
these templates in the SCARF based speech recognition model and
show that we can improve over the baseline results. In the future one
could explore the possibility of training templates at different levels
(sub-word and multi-word) and for specific classes of words.
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