Tempe: An Interactive Data Science Environment for Exploration of
Temporal and Streaming Data

Danyel Fisher, Badrish Chandramouli, Robert Deline, Jonathan Goldstein,
Andrei Aron, Mike Barnett, John C. Platt, James F. Terwilliger, John Wernsing

Microsoft Research
Redmond, WA, USA 98052
{danyelf, badrishc, rdeline, jongold,
andreia, mbarnett, jplatt, jamest, johnwer}@microsoft.com

ABSTRACT

Over the last two decades, data scientists performed increas-
ingly sophisticated analyses on larger data sets, yet their tools
and workflows remain low-level. A typical analysis involves dif-
ferent tools for different stages of the work, requiring file trans-
fers and considerable care to keep everything organized. Tem-
poral data adds additional complexity: users typically must
write queries offline before porting them to production sys-
tems. To address these problems, this paper introduces Tempe,
a web application providing an integrated, collaborative envi-
ronment for both real-time and offline temporal data analysis.
Tempe's central concept is a persistent research notebook re-
taining data sources, analysis steps and results. Analysis steps
are carried outin script editor that uses alive programming ap-
proach to display interactive, progressively updated visualiza-
tions.

Tempe uses a temporal streaming engine, Trill [17], as its back-
end data processor. In the process of creating Tempe, we have
discovered new interactivity and responsiveness requirements
for Trill. Conversely, building around Trill has shaped the user
experience for Tempe. We report on this cross-disciplinary de-
sign process to argue that end user experience can be an inte-
gral part of creating a data engine.

1. INTRODUCTION

Data scientists have become the primary force behind data an-
alytics on production data, such as search logs, telemetry, and
business process data. Increasingly, data scientists find that
they need a broad and growing set of tools to process their data:
they manage the structure of data storage; they extract it into
analysis tools; they write ad-hoc scripts for data transfor-
mation and reshaping; they apply tools for statistics and ma-
chine learning; they collaborate with stakeholders and other
analysts; and they explore their data and communicate their re-
sults through visualizations and descriptions of methods.

Current work practice requires a suite of tools to pull this off,
with many different components. Collaborating with colleagues
may mean emailing scripts, sending installation instructions,
and setting data permission. Versioning often means digging
through archives of old text files. It is common to explore data
in a REPL (“Read-Eval-Print Loop”, such as R or Python), which
means that the tool does not produce a canonically correct
script—and may not run again if some critical bit of state was
lost.

To work in this sort of heterogeneous environment, data scien-
tists often work with small subsets, offline; they then rewrite
the code in a language that runs on a computation cluster to
scale up to streaming or large scale data. The code may then be
rewritten again for use in a real-time system.

To address these many issues, this paper introduces the Tempe
environment for exploratory data analysis of temporal data.
Tempe is a system designed to improve both individual data
scientist’s work practice and their ability to share and replicate
analysis results. To help individual data analytics, Tempe gath-
ers the necessary tools for analysis within a single user experi-
ence, much as an IDE does for software development. Tempe’s
user experience is based on the concept of a persistent research
notebook: every step a user performs and every result pro-
duced are saved automatically and kept indefinitely. This re-
duces the low-level clerical work of transferring, tracking, and
organizing files.

With large datasets, Tempe progressively computes and re-
ports analysis results, regardless of the size of the data sets: ra-
ther than waiting for large batch computations to complete be-
fore seeing results, a Tempe user sees instant query results that
are updated once per second as additional data is processed.
With streaming datasets, Tempe allows the user to interact
with streamed data either offline with archived data collec-
tions, or online with live streams.

To promote sharing and collaboration between analysts,
Tempe is implemented as a web application: data analysts ac-
cess Tempe through a web browser, and all data handling and
computation are performed on servers. As a result of this archi-
tecture, analysis artifacts are shared by default, and users all
share the same computing environment and tools. Analysts can
share results with colleagues by sending them a notebook
page’s URL; colleagues can concurrently edit a page’s content
to analyze data together.

Tempe was developed through a cross-disciplinary process:
the creators of the front-end requested unanticipated features
from the back-end data processing engine; conversely, the ca-
pabilities of the back-end inspired interesting front end fea-
tures and paradigms. This “bits-to-pixels” collaboration paints
an image of a highly cross-disciplinary future for systems soft-
ware development.

This paper makes two contributions. First, we describe the de-
sign and implementation of Tempe, an integrated, collaborative
web application for temporal and large-scale data analysis,

Add data ¥ Annotate Restart Configure Stop Clone Delete
1 Createc
sentiment compare e
FourCleanHours 35350 rows (100% of the total rows)
long DateTime string string
D CreatedAt Language Profilel
487300070719436192 7/10/2014 6:19:25 PM hitps//abs
487300071915270144 7/10/2014 6:19:25 PM hitp://abs
487300076399001601 7/10/2014 6:19:26 PM hittp//ph:
487300079465009152 7/10/2014 6:19:27 PM hitps//ph:
487300079821139968 7/10/2014 6:19:27 PM hittps//pb:
sentiment compare 487300070719486000 - 487364264639099000 7/10/2014 6:19:25 PM - 7/10/2014 10:34:30 PM https//abs

p=487318476575250000.00 0=2392000812502510.00

> wvar tenSec = TimeSpan.FromSeconds(38).Ticks;
» wvar s = FourCleanHours.AlterEventDuration(tenSec);

var xbox = s.AlterEventDuration(tenSec).Where(t => t.Topic == "XBox")
> .Aggregate(w => w.Average(x =»> x.SentimentScore));
var skype = s.AlterEventDuration(tenSec).Where(t => t.Topic == "Skype")
> .Aggregate(w => w.Average(x => x.SentimentScore));
~ wvar merged = xbox.Join(skype, (x,5) => new { x, s }).RealTime(true);
30+ .
25 ”,l'
20 = e h-r-,_.’—'—'\-l-—f‘"ﬂ
N J ~d{ "'n‘-L,\:
3.0+

230 03:31 :30 03:32 30 03:33 :30 03:34 :30

Figure 2. A browser screenshot of Tempe, showing a notebook page with an offline Twitter analysis.

with progressive data queries and pervasive data visualization.
Second, we discuss how the process of fulfilling these design
goals made for interesting cross-disciplinary collaboration.

2. SCENARIO

To illustrate Tempe’s user experience, we describe a familiar
scenario of a data scientist processing a Twitter feed. Tom is
working with a public relations team that is tracking their Twit-
ter traffic and wants to set up a dashboard for a handful of their
critical metrics. While his team knows a handful of the metrics
that they want to present, such as volume of tweets and senti-
ment on certain topics, they also want to investigate possible
correlates of these issues by looking at past performance.

To get started with his analysis, he visits http://tempe in his
web browser. On the left side of the page, he sees his collection
of analysis notebooks and notebook pages (Figure 1). Under the
“Twitter” notebook he clicks “New page” and titles it.

Tom has a stored archive from the Twitter gardenhose from the
last twenty-four hours in CSV format. When he adds it as a data
source, Tempe defines a schema for the data and generates a
class for reading data from that source: for delimited files, like
CSV or TSV, Tempe scans the file to define its own schema,

choosing column names from a header row (if present) and
column types based on the format of the data. He can, of course,
manually override any choice.

To help an analyst’s productivity, Tempe also automates
common tasks. When a data source is added to a notebook page,
Tempe asynchronously scans the data to provide useful facts
about each column, such as how many data are missing or badly
formatted; whether the data is sorted; how the data is
distributed. Tom can now proceed with his analysis. Tempe’s
editor provides immediate evaluation feedback, in addition to
typical editing features like code completion and parameter
prompts. After Tom enters the first statement, Tempe immedi-
ately displays a table below the statement. This table is a pro-
gressive visualization of the evaluation result. At first, this table
shows only a header row, representing the type of the result.
Then, at one second intervals, the table is updated to show
newly computed rows and the total number of rows computed
so far. The table visualization provides navigation controls to
allow Tom to browse through the results.Tom can now proceed
with his analysis. Tempe’s editor provides immediate evalua-
tion feedback, in addition to typical editing features like code
completion and parameter prompts. After Tom enters the first

statement, Tempe immediately displays a table below the state-
ment. This table is a progressive visualization of the evaluation
result. At first, this table shows only a header row, representing
the type of the result. Then, at one second intervals, the table is
updated to show newly computed rows and the total number
of rows computed so far. The table visualization provides navi-
gation controls to allow Tom to browse through the results.

While the data is flowing fine for his search for “Skype”, a sec-
ond search for “XBoz” isn’t returning any results. Tom realizes
that he had a typo in his query and corrects it. The display up-
dates instantly to show search results. Tempe’s “live program-
ming” experience allows any statement to be edited at any time.
Tempe cancels any obsolete running queries and selectively re-
computes queries to bring the onscreen results up to date.

Jane, one of Tom's colleagues, wants to connect his analysis to
the live Twitter feeds coming to their system. Jane has a small
C# library that connects directly to the Twitter stream. Jane
goes to the URL for Tom’s page, and presses Clone to generate
anew copy of the page with the same analysis. She presses Con-
figure and add her library to the script. She adds a few lines of
code to instantiate her Twitter observer class and turn it into a
stream of the same type as the offline data. With this new live
stream, she is able to reuse the remaining code in Tom'’s script.
The script automatically updates to start reading this live
streaming data. Now, anyone who visits her page sees the latest
results of the telemetry analysis.

3. BACKGROUND AND RELATED WORK
3.1 Studies of data analysts

There have been relatively few studies of the work practices of
data analysts. Kandel et al. [9] interviewed business intelli-
gence workers and identified three different personas: “hack-
ers”, who are comfortable writing code and using a wide variety
of tools in a variety of different languages; “scripters”, who pre-
fer to use structured data but create more sophisticated data
models; and “application users”, who tend to use prepared data
within dedicated analysis applications. Fisher et al. [7] inter-
viewed data analysts about their workflows and documented
their pain points, for example, transferring data is slow and
cumbersome, scripts run slowly and non-interactively, and it
can be difficult to reshape data between the different file for-
mats required by different tools. They describe an analyst’s typ-
ical workflow as winnowing large amounts of low-value data
down to small amounts of high-value data: from filtering and
aggregating, for example, using a map/reduce system; to mod-
eling, using machine learning and statistical tools; to plotting,
charting or reporting the final results of the analysis.

3.2 Tools for data analysis

The recent excitement in the press about “big data” or “big data
analytics” has been made possible by the current generation of
map-reduce tools [5], like Hadoop?, running on large clusters of
PCs. Many data analysts today implement map-reduce compu-
tations by using scripting notations like Sawzall [14] or Pig
Latin [13]. These notations allow an analyst to express analyses
in terms of high-level relational queries. Tempe uses a data pro-
cessing library, called Trill, which supports temporal data que-
ries, programmed through a high-level scripting language.

L http://hadoop.apache.org
2 http:/ /www.wolfram.com

Tempe scripts use types derived from the schemas of the im-
ported data sources. Finally, the goal of Tempe is also to cover
complete analysis workflows, including modeling, statistical
tests, and visualization.

Many data analysis tools use a research notebook metaphor,
going back to the early versions of Mathematica® Today, many
data analysts are adopting the IPython Notebook?, which pro-
vides an interactive Python interpreter with embedded visual-
izations. Although the [Python Notebook uses a web browser
as its front end, it is a desktop application rather than a web
application. Users, however, can share non-interactive versions
of their notebook pages on the web. Tempe provides a similar
scripting experience to these notebooks, but as a web applica-
tion. In contrast to the IPython Notebook, Tempe users share
fully interactive notebook pages, with no need to install soft-
ware locally. Wakari* is a new product that hosts I[Python Note-
book’s in Amazon EC2, which is closer to a central web applica-
tion, but silos each user’s interactive notebook behind a sepa-
rate pay wall.

Tempe also provides a different live programming experience
than the IPython Notebook or Mathematica. In these other
tools, the notebook’s content is treated as view on an inter-
preter session, which makes it possible to create notebook
pages that look incorrect. For example, if the user edits a note-
book page like this:

X = 3; x is 3
¥—=X%—+15
y = X; y is 4

(thatis, an increment statement is evaluated, then erased), then
y is bound to 4, which looks incorrect given the two remaining
statements on the page. Instead, Tempe’s live programming ex-
perience maintains the invariant that the evaluation results re-
flect the script’s current content, which we feel is less confus-
ing.

One aspect of a collaborative research is tracking workflow
provenance: the ability to know how data flows into results.
There have been both community efforts and technical efforts
to allow data analysts to share and replicate each other’s work.
The Open Provenance Model [26] is a well-known standard for
coarse-grained workflow provenance. The Lipstick [25] system
enables workflow provenance (in additional to traditional tu-
ple-level database-style provenance) in Pig Latin.

3.3 Analytics Systems

A number of big data analytics systems that support interactiv-
ity and exploration have been proposed in the database com-
munity over the last decade. The CONTROL project [23] from
Berkeley resulted in seminal systems such as Potter’s Wheel
[22] that provided better UX integration with support for ap-
proximate quick answers, but the focus was on building con-
strained interfaces (such as drop-down boxes and spreadsheet-
style interfaces) that support online aggregation. More re-
cently, there have been several efforts to make databases more
usable with better integration with the rest of the UI: For exam-
ple, dbTouch [20] supports a touch friendly interface to data-
bases, not focused on developing logic, targets traditional DB
back-end. QWiK [11] and DICE [21] are visualization front-ends

8 http://ipython.org/notebook.html
4 http://www.wakari.io

4 . N R 4 . . N\
Web Client Notebook Service Scripting Service
HTTP/ HTTP/
REST REST Roslyn | Data Views
Big Sky user interface » Notebook » User scripts S
. Data
i * Storage * i
Monaco | jQuery | D3 1 8 1 ML lib. | Trill Cache
Javascript environment | .NET environment
- J N J - J

Figure 3. Tempe’s architecture has three components: a Web Client that provides the user experience in a web browser; a
Notebook Service that stores the user-generated content; and a Scripting Service that provides a computing environment
for user scripts.

targeted towards OLAP style data cube exploration, UX integra-
tion enables pre-computation and fetches results in advance,
supports approximate progressive results.

In the big data ecosystem, SciDB [18] focuses on disk resident
array based data, and provides high-performance with scaled
out execution. They do not target real time queries, and their
temporal support is limited to traditional time-series. ScalaR
[19] is a visualization front-end that can work against SciDB as
well as other databases (they argue for decoupling the front-
end from the back-end). ScalaR provides visual querying capa-
bilities, but is not a REPL: they do not focus of the problem of
developing logic. Their current focus is on geographic and map
data. BlinkDB [24] supports interactive SQL queries (not real-
time or temporal) on large datasets, but does not focus on vis-
ualizations.

4. IMPLEMENTATION
4.1 System Architecture

Tempe is structured in three major components (Figure 2): the
Web Client implements the user experience; the Notebook Ser-
vice stores the user-generated content and multiplexes re-
quests from multiple clients; and the Scripting Service provides
the computing environment for the user’s scripts.

The Web Client is implemented in Javascript and uses several
existing components: jQuery®, a popular user interface toolkit
for the web; Monaco®, a source code editor, with functionality
similar to that of Microsoft Visual Studio or Eclipse, including
syntax highlighting and code completion; and D3.js [3]. The
Web Client is “thin”: it performs no data analysis computations,
butinstead handles user interface events and invokes the Note-
book Service’s REST-style interface [6].

The Notebook Service is a standard stateless web server re-
sponsible for storing and retrieving user-generated content,
like notebooks, notebook pages, data sources, and scripts. The
Notebook Service delegates changes to the user’s scripts to the
Scripting Service. It also stores the results that service returns,
so that analysis results, like tables and charts will be preserved
indefinitely.

The Scripting Service provides the computing environment for
scripts. It retains the state of a script's ongoing computation.
The Scripting Service is implemented using Microsoft Roslyn
[12], which provides an interpreter for the C# language. The
language that Roslyn interprets is a version of C# in which
source code can arbitrarily mix top-level definitions (classes,

5 http://www.jquery.com

structs, enums), method definitions, and statements. This mix-
ture makes the C# scripting language similar to other scripting
languages for data analysis, like R, MATLAB, and Python. The
Tempe Ul allows the user to link her choice of libraries to the
Roslyn interpreter session.

4.2 Live Programming

The heart of the Tempe user experience is the live program-
ming of scripts. Most data analysts are familiar with a read-
eval-print loop (REPL) experience, like that in R or Python, in
which the user iteratively enters a statement and waits to see a
printed response. To see alternative results, the user often re-
enters previous statements, making the necessary changes. In
contrast, Tempe’s live programming experience allows the user
to edit any part of the script text at any time, as she would in a
development environment. Tempe automatically re-evaluates
statements as necessary to bring the result visualizations up to
date with the text.

The implementation of live programming involves all three
components. The Web Client’s editor captures the user’s edits,
which are then sent to the Notebook Service for storage. Since
a script can be simultaneously edited by multiple people using
multiple Web Clients, the Notebook Service combines edits
from all Web Clients into a coherent script content. The Note-
book Service reports the new script content to the Scripting
Service.

The Scripting Service first parses the new script content into a
syntax tree, reporting any errors. It then uses the well-known
Levenshtein edit distance algorithm to find a minimal sequence
of edits to transform the old sequence of top-level statements
into the new sequence. Based on these edits, it first cancels any
obsolete ongoing queries. It then submits to the Roslyn inter-
preter both the changed statements and any subsequent state-
ments with data- or control-flow dependencies on these
changed statements. The computation of dependencies is a
conservative approximation, since a precise dependency graph
is undecidable.

Tempe uses the model-view-controller pattern [8] to visualize
execution results. Each statement that the Roslyn interpreter
executes results in a (potentially huge) .NET object. The Script-
ing Service creates a model of each .NET object, which it reports
back to the Notebook Service for storage. The Notebook Service
in turn reports the model to the Web Client, whose interactive
visualizations act as the view and controller. The nature of the
model depends on the user’s choice of view. For example, for a
table view, the model is a sample of rows; for a histogram view

6 Monaco has not yet been publicly released.

of categorical data, the model is an aggregated count per cate-
gorical value. In all cases, the model is of a bounded size, re-
gardless of the size of .NET object it summarizes.

4.3 Data Processing

For the parts of a script that perform queries over data, Tempe
uses Trill [17], a temporal streaming engine named for its goal
of querying a trillion (10*?) events per day. A description of
Trill is outside the scope of this paper (see [17] for details), but
we note that Trill is capable of high-performance streaming an-
alytics across the latency spectrum from offline (such as histor-
ical logs) to real-time. Tempe uses Trill to handle temporal que-
ries — both on real-time streams and offline logs. In addition,
Tempe takes advantage of Trill's temporal processing capabil-
ity to answer non-temporal queries progressively (with early
results), by reusing Trill's notion of time to instead mean query
computation progress [4]. A progressive query provides partial
answers while itis computing, as opposed to batch systems that
do not provide any feedback until the query has completed.

To keep track of progressive/temporal updates, the Notebook
Service polls the Scripting Service once per second for the latest
models, which are then pushed to any relevant Web Clients.
This design decouples three time rates — the rate at which
query results are computed, the rate at which results are sum-
marized, and the rate at which results are reported to the user.
This allows us to control the balance between latency (report-
ing updates quickly) and throughput (computing results in
large batches). The Notebook Service polls for progressive up-
dates until they are complete; it polls for temporal queries until
the user explicitly stops them.

5. CROSS-DISCIPLINARY, BITS-TO-PIXELS

The architecture discussed here comes about from the unusual
structure of the Tempe project: we chose to scope the project
“from bits to pixels”. The tasks in a data analyst’s workflow en-
compass a broad set of technical problems, including accessing,
organizing, transforming and visualizing data. To address these
problems, we brought together a diverse team. Our collabora-
tion includes experts in user interfaces, visualization, program-
ming languages, machine learning, and data systems. We also
worked closely with users, bringing out early prototypes fre-
quently to data scientists and incorporating data scientists into
the team as participant experts. To take the best advantage of
this broad expertise, we created our own software for any com-
ponent where we had innovative ideas—like temporal query
processing, live programming and progressive visualization—
and otherwise reused large components—like the C# inter-
preter and program editor.

In this section, we outline some of the ways that the design of
both the Tempe system and the underlying Trill query engine
were affected by each other’s design, constraints, and interac-
tion with users.

5.1 Progressive and Temporal Computing
The idea of progressive computation has been proposed in the
research community for a number of years. The CONTROL [23]
project, for example, showed that progressive results could
lead to a more responsive data environment, even as data
scales grew arbitrarily. We decided to experiment using a
streaming engine to implement a progressive computation.

When we brought Trill in as part of the Tempe project, Trill was
based on a notion of temporal data seen as segments with

paired start- and end-events. In a progressive computation,
however, the stream consists only of start-events: elements are
never removed from the stream. We were able to optimize Trill
for this scenario by creating special operators that work effi-
ciently over streams with no end-events. This property also al-
lowed Tempe to easily implement progressive data tables.

The user interface can also take advantage of the Trill engine:
“progress” is a first-class notion of Trill, and Tempe directly ex-
poses progress reports to the user. Tempe can show precisely
how much of the input goes into the current progressive state.

The nature of progressive computation, in turn, implies that
Tempe have an asynchronous scripting experience. Unlike
standard REPLs—in which the process fully evaluates a query,
then prints the results—Tempe provides continuous updates,
even as the user continues to the next query. Data results be-
come available when they are ready.

Performance Considerations: Designing Trill as a Tempe
component meant that we needed to ensure rapid computation
for large data jobs. Streaming engines can be slow, though, as
they process individual items and produce individual output.
Knowing that Trill’s front-end would be in the Tempe system,
we realized that we could accept latency on a human time scale:
the user interface only looks for updates once a second. Trill
batches data elements, trading off throughput for latency in or-
der to maintain responsiveness.

In exploratory work, data scientists often change their minds,
which means that many queries quickly become obsolete. This
context allows us to accelerate query cleanup. While earlier
versions of Trill would carefully clean up memory resources,
Tempe simply kills the Trill thread, allowing the OS to take care
of memory cleanup, at a substantial savings.

Temporal Computation: Trill's implementation of progres-
sive computation actually creates a continuous stream of
events. With this engine, it was straightforward to incorporate
temporal computations directly into the interface with few
changes. Because Tempe sees a disk-based stream the same
way it sees a live stream, providing a consistent user experi-
ence for both online and offline streams also came easily.

5.2 Stream Properties and Data Inference
Interface requirements and the core of the query engine inter-
acted closely in tracking stream properties. There are some
types of data that can be useful for the engine, but are not usu-
ally solicited from the user. For example, if the fact that a col-
umn is known to be categorical—to have a small cardinality—
than the engine can make decisions about compression,
grouped aggregation, and scale out. This data is often hard to
acquire, requiring an extra pass across the column.

Data scientists, however, also wants to know about cardinality:
it informs the analyses they choose to do and affects the sorts
of visualizations they draw on the data. As a result, the user has
astrong interest in helping label input columns as categorical—
or correcting the built-in inference system if it chooses incor-
rectly. Categorical labels are then carried along as stream prop-
erties, propagated through queries, and are fed both into the
interface and the engine, enhancing both experiences.

Similar to the categorical case, we are currently implementing
a facility to label a stream as a “signal.” A signal means that no
more than one value is defined for a given key at each time.
Again, this label benefits both the user and the engine. If we

know that a stream is a signal, we can visualize it in a more in-
tuitive form (e.g. line charts) and allow direct arithmetic com-
putations in the user interface (e.g., divide one stream by an-
other). We can also feed cues into the engine to optimize the
method of storage for signals.

Optimizing on Start-Edge Only: Trill ordinarily thinks of data
as segments with paired start- and end-events; although it is
capable of handling start-edge-only. With Tempe, we found
many use cases of progressive queries, where the stream con-
sisted only of start-events, i.e., elements are never removed
from the stream. We were able to optimize Trill for this sce-
nario by creating special operators that work efficiently over
streams with no end-events. This property also allowed Tempe
to easily implement Now optimized for start-edge-only, which
was necessary to implement progressive data tables.

Batched Computation: Knowing that the UI will require data
only so often—currently once a second—means that the com-
putation system can afford to batch up computations, as long as
it is at least as responsive as the UL User can choose batch
size—smaller batches for better latency (at the possible cost of
some throughput); larger batches vice versa.

5.3 Discussion

In this section, we have outlined several technical advantages
gained by close collaboration between the front-end and back-
end. Both sides have gained from this knowledge; designing
from “bits to pixel” has taught us a tremendous amount about
the opportunities available. More importantly, when it comes
to implementation decisions, having direct access to users
changes our priorities and design.

That said, this research approach requires care to keep from
“boiling the ocean”. In several cases, we were able to implement
our ideas as increments to existing mature components. We im-
plemented live programming while reusing an existing com-
piler/interpreter infrastructure; we implemented scripts as
rich media while reusing an existing code editor; and we imple-
mented progressive visualization using an existing visualiza-
tion toolkit. On the other hand, we ignored some popular exist-
ing technologies because they would have preemptively
blocked our innovations. In particular, we rejected the Hadoop-
based big-data stack in favor our own Trill temporal data en-
gine. Similarly we avoided the R interpreter, with its unsafe C-
based execution model in favor of C# and .NET. This means that
we have missed out on many of the community tools and easier
adoption path.

6. CONCLUSIONS

This paper introduces the Tempe integrated environment for
temporal data analyses. Tempe addresses two problems. For
individual analysts, it supports complete workflows within a
simple user interface, obviating the need to switch between dif-
ferent tools and to manage data interchange between them. For
research communities, Tempe’s web application architecture
makes sharing and retention of analyses the default.

The creation of Tempe came from a productive collaboration
between user interface and database researchers. We hope to
see more such cross-disciplinary collaborations in the future.

7. REFERENCES

[1] Barnett, M., Chandramouli, B., DeLine, R., Drucker, S., Fisher, D.,
Goldstein, J., Morrison, P., and Platt,]. “Stat! - An Interactive Ana-
lytics Environment for Big Data”, Proc. of the 2013 ACM SIGMOD

International Conference on Management of Data (demonstra-
tion), pages 1013-1016.

[2] Bevan,]., Whitehead, E.]., Jr., Kim, S., and Godfrey, M., “Facilitat-
ing software evolution research with Kenyon,” In Proc.
ESEC/FSE, 2005.

[3] Bostock, M., Ogievetsky, V., and Heer, J., “D3: Data-Driven Docu-
ments”, IEEE Trans. Visualization & Comp. Graphics (Proc. Info-
Vis), 2011.

[4] Chandramouli, B., Goldstein, J., and Quamar, A. “Scalable Progres-
sive Analytics on Big Data in the Cloud.” Proc. Intl. Conf. on Very
Large Data Bases (VLDB '14), 2014.

[5] Dean,].and Ghemawat, G., “MapReduce: simplified data pro-
cessing on large clusters,” in OSDI, 2004

[6] Fielding, R. T.and Taylor, R. N., “Principled Design of the Modern
Web Architecture”, ACM Transactions on Internet Technology
2(2): 115-150.

[7] Fisher, D, DeLine, R, Czerwinski, M., and Drucker, S., “Interac-
tions with Big Data Analytics”, ACM Interactions,, May 2012

[8] Gamma, E., Helm, R, Johnson, R, and Vlissides,]., Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[9] Kandel, S., Paepcke, A., Hellerstein, .M., and Heer, . “Enterprise
Data Analysis and Visualization: An Interview Study,” In. Proc.
IEEE Visual Analytics Science & Technology (VAST), Oct 2012.

[10] Meijer, E., “The World according to LINQ”, ACM Queue 9:8, Aug.
2011.

[11] Arnab Nandi: Querying Without Keyboards: CIDR 2013

[12] Ng, K., “The Roslyn Project: Exposing the C# and VB compiler’s
code analysis”, http://www.microsoft.com/en-us/download/de-
tails.aspx?id=27744

[13] Olston, C., Reed, B, Srivastava, U.,, Kumar, R., and Tomkins, A.,
“Pig Latin: a not-so-foreign language for data processing,” in
Proc. ACM SIGMOD Intl. Conf. on Management of Data, 2008

[14] Pike, R, Dorward, S., Griesemer, R, and Quinlan, S., “Interpreting
the data: Parallel analysis with Sawzall,” Sci. Program., vol. 13,
no. 4, 2005.

[15] Pérez, F., and Granger, B.E., “IPython: A System for Interactive
Scientific Computing”, Computing in Science and Engineering 9:3,
May/June 2007

[16] Rowstron, A., Narayanan, D., Donnelly, A., 0’Shea, G., Douglas, A.,
“Nobody ever got fired for using Hadoop on a cluster”. In 1st In-
ternational Workshop on Hot Topics in Cloud Data Processing,
2012.

[17] B. Chandramouli et al. The Trill Incremental Analytics Engine.
MSR Technical Report. http://aka.ms/trill-tr.

[18] P. Cudre-Mauroux et al. A Demonstration of SciDB: A Science-Ori-
ented DBMS. In VLDB, 20009.

[19] L. Battle et al. Dynamic Reduction of Query Result Sets for Inter-
active Visualization. In IEEE BigDataVis Workshop, 2013.

[20] Stratos Idreos and Erietta Liarou. dbTouch: Analytics at your
Fingertips. In CIDR, 2013.

[21] N. Kamat et al. Distributed and Interactive Cube Exploration. In
ICDE 2014.

[22] V. Raman and J. Hellerstein. Potter’s Wheel: An Interactive Data
Cleaning System. In VLDB, 2001.

[23] R. Avnur et al. CONTROL: Continuous Output and Navigation
Technology with Refinement On-Line. In SIGMOD, 1998.

[24] S. Agarwal et al. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In ACM EuroSys
2013.

[25] Y. Amsterdamer et al. Putting Lipstick on Pig: Enabling Database-
style Workflow Provenance. In VLDB, 2012.

[26] L. Moreau et al. The Open Provenance Model: An overview. In
IPAW, 2008.

8. DEMO WALKTHROUGH

We will bring an instance of the Tempe system as a demon-
stration for the conference. In our demonstration, we will be
able to show major interactive features of Tempe, including
live coding, sharing sheets and datasets, and both online and
offline temporal datasets. We will demonstrate the use of
Tempe against both a live stream of data from Twitter, and
from a smaller offline dataset. In each of these demonstra-
tions, we will:

 Load a notebook page to see archived results of the last time
the query was run

¢ Interactively modify the demonstration queries, such as al-
tering keywords or filters, and see updated results based on
the modified query

« Share results with another user running a second browser

Each of these demos will be kept in the same research note-
book; therefore, they can be executed at will.

8.1 Demo 1: Twitter Data Exploration

and Fusion

The first demo shows how Tempe can be used to explore tem-
poral data online and offline. We will begin with on a large
sample of Twitter data. During the course of the demo, we will
begin with one file containing sentiment keywords, and then
start a continuous stream from a second large file containing
tweets. We will join the stream with the sentiment scores, and
show dynamically create a histogram of distributions of sen-
timent on the tweet stream. We will produce several visuali-
zations based on this dataset. The dataset is temporal, and so
we can show how the data changes over time, and will draw
line charts showing the data varying.

We will then adapt the script we generated for this offline
data to an online data stream; if the network cooperates, we
will change from watching the query on archived data to see-
ing it on current data.

Figure 1, and the scenario above, are aspects of this demon-
stration.

8.2 Demo 2: Top-k Search Correlation
The second demo is a non-temporal data query called “top-k
search correlation” that operates over a sample of a 10TB
search log dataset. This query was created by users working
on a feature discovery task for a search engine. The query is
is run as a series of interactive LINQ expressions in the Trill
environment.

The user provides a keyword (e.g., “music”) as input parame-
ter, and the sequence of queries returns the top-k words most
closely correlated with the provided term. This is a two stage
process. The first stage uses the search data set as input and
partitions by user. For each user, we compute a histogram
that reports, for each word, the number of searches with and
without the input term, and the total number of searches. The
second stage job groups by word, and aggregates the histo-
grams from the first stage, computes a per-word goodness
metric, and applies a top-k operation to report the k highly
correlated words to the input term.

The query is expressed in LINQ and executed incrementally
by Trill in the backend. We show that the results converge on

the first few results quickly, allowing the user to make deci-
sions even after looking at a tiny percentage of the data.

8.3 Visitor Interactivity

Both of these demos are fully interactive. Visitors to the demo
can broadly update or modify the demonstration code. At sim-
plest, they can change parameters to the top-k search corre-
lation query and visualize these results interactively. They
can also tweak the query—altering its functions or its calls—
to learn about both the iterative exploration process and the
debugging experience.

Similarly, users will be able to alter the Twitter experiment,
including choosing new visualizations, adding or removing
keywords, and otherwise tweaking the query.

We will bring several other data sources so that users can is-
sue and visualize their own interactive queries.

	ABSTRACT
	1. INTRODUCTION
	2. SCENARIO
	3. BACKGROUND AND RELATED WORK
	3.1 Studies of data analysts
	3.2 Tools for data analysis
	1.1
	3.3 Analytics Systems

	1.
	4. IMPLEMENTATION
	4.1 System Architecture
	4.2 Live Programming
	4.3 Data Processing

	5. CROSS-DISCIPLINARY, BITS-TO-PIXELS
	5.1 Progressive and Temporal Computing
	5.2 Stream Properties and Data Inference
	5.3 Discussion

	6. CONCLUSIONS
	1.
	1.
	7. REFERENCES
	8. DEMO WALKTHROUGH
	8.1 Demo 1: Twitter Data Exploration and Fusion
	8.2 Demo 2: Top-k Search Correlation
	8.3 Visitor Interactivity

