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ABSTRACT 

It is usual in practice that recorded sounds are contaminated 
by stationary tones coming from power wiring (50/60 Hz or 
400 Hz and their harmonics), frame or line frequencies 
from a nearby TV or monitor, computer fans, hard disk 
drives, etc. They are mostly stationary, but their removal 
using a stationary noise suppressor results in notch filtering, 
removing the speech content at those frequencies, because 
the SNRs are usually low. In this paper we propose fast, 
real-time algorithm for removing constant tones while 
keeping intact the speech content. We build and adaptively 
update a model of the constant tones, extrapolating it for 
subtraction from the next frame. In our evaluations, the 
proposed algorithm reduces the amplitudes of such station-
ary tones up to 15 dB, without introducing artifacts such as 
nonlinear distortions or musical noises. This algorithm is 
applicable as pre-processor before a classic gain-based sta-
tionary noise suppressor.  
 
Index Terms — Signal Restoration, Speech Enhancement, 
Acoustic Signal Processing, Estimation, Extrapolation. 

1. INTRODUCTION 

Frequently speech recordings are contaminated by station-
ary tones. They usually come from power wiring, inade-
quate shielding or grounding of the microphone cables, or 
placement of the microphones near power lines or trans-
formers. In those cases the interference frequency is 
50/60 Hz or 400 Hz and their harmonics. Other kinds of 
stationary-tone interferences come form microphones posi-
tioned near TVs, monitors, or video cameras; the micro-
phones can capture interference at frame or line frequencies 
acoustically from transformers or electronically from the 
cables. Yet another source of this kind of interferences are 
noises coming from the acoustical environment, such as 
fans, computer hard drives, and air conditioning. Because 
of nonlinearities and room reverberation, these signals be-
have mostly as random zero mean Gaussian noise, but usu-
ally there are still predictable components. The frequencies 

of the predictable portion of these noises vary depending of 
the fan or hard disk spindle rotating speed. The common 
property of all of these signals is that they are practically 
stationary. In their time-frequency representations they 
show up as horizontal lines with constant amplitude. 

The most intuitive approach to solve this problem and 
to clean up the contaminated signal is to apply band pass 
filtering or notch filters tuned to the constant tones. These 
approaches remove speech signal components if the inter-
fering frequencies are within the speech band. If the speech 
signal is contaminated by single-tone interference, then a 
notch filter works well and the missing frequency is usually 
inaudible. If the contaminating signal has multiple harmon-
ics, then a set of notch filters or a comb filter may be 
needed to achieve significant filtering, and that can distort 
substantially the speech signal. 

Classic noise suppressors assume the noise is station-
ary zero mean Gaussian process and build a statistical 
model of the noise as vector of variances per frequency bin. 
The stationary tones have probability density function 
(PDF) that is usually not Gaussian. Using a Gaussian PDF 
as a model of these signals and some of the known suppres-
sion rules (Wiener [1] or Ephraim and Malah [2], etc.) re-
sults in complete suppression of the speech signals in these 
frequency bins, i.e. the noise suppressor converts to a notch 
filter for these frequencies.  

The problem of tracking frequencies in time-frequency 
representation is well studied. In [3] an ARCAP method is 
used (AR – autoregressive, CAP – Capone algorithm) to 
identify the spectral lines, followed by a Kalman filtering to 
track their movement. The method is illustrated with proc-
essing of avalanche signals. It is sensitive to noise and best 
results are obtained with forward-backward Kalman filter, 
which makes it inapplicable for real-time algorithms where 
low latency is desired. Improving the algorithm further [4] 
by adding trajectory smoothing with a Fraser filter still 
keeps the algorithm good for off-line processing only. The 
birth/dead time estimation of spectral lines is improved in 
this paper as well. In [5] a particle filter is used to perform 
optimal estimation in jump Markov systems for detection 
and tracking of spectral lines. The proposed time-varying 



autoregressive (TVAR) estimator is evaluated with syn-
thetic signals. It is computationally expensive and sensitive 
to the times of birth/death of spectral lines. In [6] image 
processing techniques are used to detect, model and remove 
spectral lines from time-frequency representation. All of 
these approaches solve problems that are more complex 
than necessary, and are mostly suitable for off-line process-
ing of the contaminated signals. 

In this paper we propose computationally inexpensive 
real-time algorithm for stationary-tone interference re-
moval, which is applicable as pre-processor to a conven-
tional noise suppressor. It is based on adaptive building and 
updating of a model of the constant tones with consequent 
extrapolation and subtraction from the next audio frame.        

2. MODELING AND EXTRAPOLATION 

We assume the contaminating signal as stationary or 
pseudo-stationary, i.e. its spectral changes are much slower 
than those of the speech signal. All the processing is done 
in frequency domain, as in most of the audio processing 
systems today, which makes the proposed algorithm easily 
pluggable into an existing frequency-domain noise suppres-
sion system. We process each frequency bin separately, 
assuming they are statistically independent, which is not 
quite true in this case, but proper measures are taken to 
reflect the nature of correlated neighbor bins.  

2.1. A model for the contaminating signal 

We consider the contaminating signal as a linear combina-
tion of sinusoidal signals and noise: 
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where L is the number of stationary tones, each with fre-
quency fi. Converting this signal to frequency domain 
yields the following model for the n-th audio frame: 
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where TW  is the Fourier image of the frame weighting 
function, T is the audio frame step, n is the frame number 
and k is the frequency bin.  

We note the following: 
• Due to the “smearing” of the spectral lines because of 

the weighting, bins neighboring the central bin (for 
each contaminating frequency) contain portions of the 
energy. 

• These neighboring bins will rotate in the complex 
plane (phase shift) from frame to frame with the same 
speed, which can be different than the speed of the 
each bin’s central frequency 2 /sj nTf Ke π− . 

These two aspects introduce additional complications in the 
extrapolation of the signal model for the next frame.  

2.2. Extrapolating the contaminating signal 

Assuming we have perfect estimation ( 1)ˆ n
kZ −  for frame 

(n-1), then the extrapolation for the n-th frame will be: 
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The second term is a complex number that represents the 
“speed” of rotation of our complex model from frame to 
frame. As it was noted in 2.1 this “speed” can be different 
than the “speed” of the central frequency of the bin. Be-
cause WT(k) decays quickly with increasing k, we can as-
sume that one frequency from the contaminating signal 
dominates in each frequency bin. In this case 
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where fI is the dominant frequency and (0, )Eλ  is an error 
term, modeled as zero mean Gaussian noise. As the domi-
nant frequency is unknown the extrapolation can be pre-
sented as: 
 ( ) ( 1) ( 1)ˆ ˆ ˆn n n

k k kZ Z Y− −=  (5) 

where ( 1)ˆ n
kZ −  is the contaminating signal estimation for 

frame (n-1), and ( 1)ˆ n
kY −  is the rotating “speed” of the model 

towards the next frame. Both components have additive 
Gaussian noise with variances Nλ  and Eλ  correspondingly. 

3. CANCELLATION AND MODEL UPDATE 

With speech signal ( )s t  presented, (1) takes the form of  
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If the speech signal spectrum is ( )n
kS , the representation in 

frequency domain of the n-th frame is  
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3.1. Contaminating signal cancellation 

In this case our estimation of the speech signal is 
 ( ) ( ) ( )ˆ ˆ ,n n n

k k kS X Z= −  (8) 
i.e. we just subtract the contaminating signal, estimated 
according to (5). The speech signal estimation contains the 
captured noise (0, )Nλ  and the cancellation adds addi-
tional noise component ~ (0, )Eλ  due to the approxima-
tions in the model and estimation errors. 



3.2. Updating the model 

In parallel with the contaminating signal cancellation, we 
should constantly update the contaminating signal model, 
which for each frequency bin consists of four elements: 
ˆ ( )Z k , ˆ( )Y k , ( )N kλ , and ( )E kλ  (from which only the first 

two are involved in the constant tones cancellation proc-
ess). The contaminating signal model is updated as follows: 

 ( ) ( )( )( ) ( 1) ( ) ( ) ( ) ( 1)ˆ ˆ ˆ1 1
k
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Z
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= , Zτ  is the adaptation time constant, and ( )n
kp  

is the probability that we have only contaminating signal in 
( )n
kX , i.e. the probability of speech absence. It can be pro-

vided by a voice activity detector (VAD), which produces 
per-bin probability estimation of speech presence. 

The additive noise variance is updated as follows: 
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The rotating speed estimation is updated in the same 
way: 
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tion time constant.  

4. EXPERIMENTAL RESULTS 

For frequency domain transformation we used the modu-
lated complex lapped transform (MCLT), which is similar 
to a windowed DFT filter bank and has been successfully 
used for many frequency-domain processing algorithms 
that require efficient signal reconstruction [7]. In our ex-
periments we used 16 kHz sampling rate, 16-bit precision, 
and a block size of 320 samples (40 ms frame duration, 
20 ms frame step). The algorithm was implemented first in 
Matlab, with necessary measures taken to prevent overflow 
and the models and probabilities were limited inside rea-
sonable boundaries. For computing the speech absence 
probability we used the VAD described in [8], which pro-
vides speech presence probability per frequency bin. With 
T = 20 ms we used update time constants 0.08Z sτ =  and 

0.08Y sτ = . They were adjusted using synthetic contamina-
tion tones, consisting of several sinusoidal signals and addi-

tive white noise. The frequencies of the sinusoidal signals 
were chosen to vary from the center frequency of a subband 
(say 1012.5 Hz) to the middle point between the centers of 
two subbands (say 1000.0 Hz). An important part of the 
algorithm verification were tests with white noise only (to 
verify that we do not suppress it – no predictable compo-
nent) and with clean speech – to verify that adaptation time 
constants are large enough to avoid canceling of the pitch 
and its harmonics from the speech signal. The initialization 
of the models was ˆ ( )Z k  with the first frame, 

2 /ˆ( ) sj kTf KY k e π−= . Brief experiments showed that using of 
VAD can be avoided assuming ( ) 1n

kp ≡ , but that would 
require more careful tuning of the adaptation time constants 
to avoid introducing distortions into the speech signal.  

4.1. Evaluation criteria 

As main evaluation criterion we choose the improvement in 
the signal-to-noise ratio (SNR). We believe that this is a 
better evaluation parameter than the suppression of the con-
taminating signal, because it reflects the added noise from 
estimation errors. All evaluation recordings were done with 
additional reference channel – signal from a close talk mi-
crophone. The reference close talk microphone was used 
only for signal/pause classification of the frames for better 
SNR estimation. The SNR is estimated as the proportion of 
the average energy of the signal and noise frames. A secon-
dary criterion was listening evaluation of the quality of the 
estimated speech signal.  

4.2. Results and discussion 

Once we achieved good performance with synthetic sig-
nals, we proceeded to evaluations with real signals. They 
were recorded in normal office noise and reverberation 
conditions: noise floor of ~50 dB SPL and T60=290 ms. The 
microphone was positioned 1.5 m from a human speaker, 
wearing a headset. The evaluation set of recordings con-
sisted of white noise, clean speech from the close talk mi-
crophone, speech with office noise, speech with office 
noise and loud buzzers of two types: 

1. high frequency ~2600 Hz, three harmonics; 
2. low frequency ~300 Hz, twenty harmonics.  

They were positioned 2 meters from the microphone. The 
suppression results are shown in Table 1. There is no sup-
pression for white noise and clean speech, as expected. 
Listening tests confirmed absence of audible distortions in 
the clean speech signal. For office noise (three computers 
with their fans and hard disk drives, air conditioning) the 
algorithm improves the SNR with almost 3 dB, removing 
the predictable components from the noise. The proposed 
algorithm suppresses the signals from the two buzzers up to 
15 dB. On Figure 1 we show the waveforms and the spec-
trograms of the input and output signals for Buzzer 1 case. 



The changes in the magnitude of the buzzer in the input 
signal are due to people moving in the room and changing 
the reverberation conditions. These changes cause some 
residuals in the cleaned signal, because the system needs 
time to adapt. Figure 2 contains the output signal from re-
cording where the buzzer was turned on at sixth second and 
shows the adaptation speed of the proposed algorithm. For 
less than four seconds the algorithm builds the contaminat-
ing signal models and converges to 99% of the final sup-
pression. The adaptation speed depends mainly on the time 
constants in the VAD, the proposed algorithm itself should 
converge in less than 0.24 sec.  

5. CONCLUDING REMARKS 

In this paper we proposed computationally efficient real-
time algorithm for removing stationary interfering tones 
from audio signals. Such tones can appear in the captured 
signal acoustically or electronically from the power lines, 
transformers, fans, hard disk drives, TV cameras and moni-
tors. The removal is based on cancellation of the stationary 
tones with an adaptively updated model. 

 
Our algorithm removes the contaminating tones with-

out introducing artifacts such as musical noise or nonlinear 
distortions. It can be used as pre-processor to a classic gain-
based noise suppressor. Because the algorithm reduces the 
predictable stationary part of the noise by up to 15 dB, it 
allows the classic noise suppressor to apply less noise re-
duction, which leads to less distortion and musical noise. 
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Figure 1. Processing example: speech in office condi-
tions, contaminated with Buzzer 1. Left: input; right: 
output. Top: waveforms, 3600 ms segment; bottom: 
spectrograms – frequency range 0-8 kHz, dynamic 
range 96 dB. 

Table 1. SNR improvement for various conditions. 
  Input     Output   Impro-
Recording Signal Noise SNR Signal Noise SNR vement
White noise   -13.43     -13.43  0.00
Clean speech -25.37 -60.44 35.07 -25.38 -60.75 35.37 0.30
Office noise -34.55 -44.62 10.07 -35.02 -47.98 12.96 2.89
Buzzer 1 -21.42 -21.69 0.27 -23.19 -39.35 16.16 15.89
Buzzer 2 -18.56 -20.52 1.96 -24.21 -39.96 15.75 13.79

 
 

Figure 2. Adaptation speed of the proposed algorithm. 
Buzzer 1 is turned on at second 6 and completely sup-
pressed at second 9.5. 


