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ABSTRACT 

 

Acoustic echo cancellation is one of the oldest applications 

of the adaptive filters and today part of each speakerphone. 

An important block of each acoustic echo canceller is the 

double talk detector. It blocks the adaptation of the filter 

when near end voice is present and thus preventing the 

adaptive filter from diverging from the optimal position. In 

this paper we present an improved version of coherence 

based double talk detector with improved precision com-

pared to the base algorithm.  

 

Index Terms — Acoustic echo cancellation, double talk 

detector, coherence  

 

1. INTRODUCTION 

 

Acoustic echo cancellers (AEC) [1] are designed to remove 

the captured loudspeaker signal from the microphone chan-

nel of a speakerphone or another telecommunication device. 

The AEC consists of an adaptive filter, which estimates the 

transfer path between the loudspeaker channel and the mi-

crophone channel, convolves the loudspeaker signal with 

this transfer path and subtracts it form the microphone 

channel. Under absence of near end speech the adaptive 

filter converges to the closest estimation of the transfer path. 

The precision of this convergence depends on the noise in 

the microphone channel. When we have a local speech the 

adaptive filter diverges from this optimal position. The pur-

pose of the double talk detector (DTD) is to detect the seg-

ments with the local speech and block the adaptation of the 

acoustic echo canceller. 

The generic DTD computes a certain statistical parame-

ter  , preferably data independent, which is compared with 

a threshold  . If the value is higher than the threshold, 

double talk is detected, if it is below – there is no double 

talk. The threshold value can be adjusted using the ROC 

(receiver operating characteristics) curves to provide maxi-

mum performance. Good overview for DTD evaluation cri-

teria is given in [2]. One of the first DTD algorithms is the 

Geigel algorithm, which evaluates the proportion of the 

largest magnitude of the microphone signal for a given time 

interval and the magnitude of the loudspeaker signal. The 

optimal threshold is highly variable and the reliability of the 

DTD is low. Cross-correlation based algorithms are consi-

dered more robust and reliable. The problem with this class 

of algorithms is that the cross-correlation function is not 

very well normalized and it is not quite robust when noise is 

present. A DTD algorithm using the normalized cross-

correlation function is derived in [3]. While more precise it 

is computationally expensive, which led to publishing a 

faster version of it [4] based on tracking with a Kalman fil-

ter. While substantially faster it is still computationally ex-

pensive. Instead of using the cross-correlation function as a 

statistical variable, the coherence function can be used [5]. 

The coherence function between the loudspeaker and mi-

crophone channels is easy to compute and is well norma-

lized. Values close to one mean that microphone and louds-

peaker signals are coherent and there is no local speech. 

Under presence of local speech the values of the coherence 

function decrease and approach zero, which makes it a good 

statistical parameter for DTD. Unfortunately the coherence 

function value decreases under the presence of noise or 

strong reverberation, which makes this method less suitable 

for cases when the microphone is away from the loudspeak-

er and/or high levels of noise are presented.  

In this paper we present a modified version of the cohe-

rence based DTD. When the loudspeaker signal is presented 

adaptively we track the maximal values of the coherence 

function and scale the decision threshold between zero and 

the maximal value. The new algorithm is more robust to 

noise and reverberation. It was evaluated against a data cor-

pus with wide range of noise levels and compared with the 

original version of the algorithm. The proposed approach 

improves the precision of the DTD by 5.5% relatively com-

pared to the original version of the algorithm.  

 

2. MODELING 

 

A schematic diagram of an AEC is shown in Figure 1. The 

far end signal  z t  is sent to the loudspeaker. The micro-

phone captures this signal convolved with the impulse re-

sponse of the transfer path speaker-microphone  h t . It 

captures the local voice  s t  and noise  n t . The transfer 

path local speaker-microphone is omitted for simplicity. The 

microphone signal is: 

          *x t z t h t s t n t   . (1) 



The acoustic echo canceller estimates the transfer path 

loudspeaker-microphone  ĥ t  and subtracts the estimated 

portion of the loudspeaker signal from the microphone sig-

nal. At the acoustic echo canceller output we have: 
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In this paper we consider processing in frequency domain 

and then the convolution converts to multiplication and we 

have: 
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Here k  is the frequency bin and n  is the frame number. 

The modeling described so far assumes that the audio frame 

is longer than the reverberation process, which is incorpo-

rated in  h t , and we model it with one tap filter for each 

frequency bin. This is not the case with real systems with 

typical frame duration of 10-30 ms and reverberation times 

of 200-400 ms. To accommodate the longer impulse re-

sponse the acoustic echo canceller uses an FIR filter with 

multiple taps for each frequency bin. This converts equation 

(3) to: 
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where L  is the number of taps in the FIR filter. Denoting: 
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the equation (4) can be rewritten in vector form: 
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The squared magnitude of the coherence function between 
( )n

Z  and ( )n
X for the frequency bin k  is: 
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where H

ABS AA  are the spectral densities. Then the statis-

tical parameter ( )n  for the entire frame can be computed as 

a weighted sum  ( ) 2 ( )
T

n n

ZX  W γ . Typically the weight-

ing vector W  is a band-pass filter and the statistical para-

meter is computed as a partial sum: 
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Then the statistical parameter is compared to a threshold   

to make the final decision: 
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 Here   introduces a small hysteresis to prevent “ringing” 

in the slopes. If 
 n

D  is 1 we have double talk detected in 

this frame, if zero – no double talk was detected.  

 

3. PROPOSED ALGORITHM 

 

The main problem with the algorithm above is that the sta-

tistical parameter 
   0,1
n

   goes to one only in close to 

perfect conditions: no noise and reverberation. When noise 

is added to the microphone signal the value of 
 n

  is higher 

than when a double talk is present, but doesn’t go to one and 

varies based on the noise and reverberation levels. This 

makes the optimal threshold   for one input SNR subop-

timal for another. In low SNRs the DTD stops to work at all.  

This is why we propose to adaptively track the maximal 

value of the statistical parameter: 
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Here T  is the audio frame duration, up  and down  are the 

two different time constants. If up down   this double time 

constant integrator will track the higher values of 
 n

 . Then 

the threshold can be estimated as: 

 
  minmax , .
n
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Here  0,1ABS   is the absolute threshold, MIN  is forcing 

the values of the threshold to stay above a certain minimum 

which can happen in very low SNRs. Under these conditions 

 
Figure 1. Schematic diagram of acoustic echo cancel-

ler. 



the threshold 
ABS  is close to optimal in wider range of 

SNRs. Illustration how the proposed algorithm works is 

shown in Figure 2. 

 

4. EXPERIMENTAL RESULTS 

 

The proposed algorithm was evaluated and compared with a 

the baseline algorithm using a data corpus containing two 

noise levels (40 and 50 dBC SPL, automotive noise), two 

levels of the near end and far end signals (60 and 54 dBC 

SPL at 1 meter), played by two high quality loudspeakers in 

normal office reverberation conditions  60 230 msRT  . 

The loudspeakers and the microphones formed a triangle 

with sides of one meter each. All combinations of the noise, 

near, and far end signal levels produced eight combinations. 

Training and testing sets with all of the combinations were 

recorded. The near and far end signals were human speech, 

ten sentences each, equally mixed male and female voices, 

with pauses between them shifted in a way to produce par-

tial and full overlap. The ground truth was established by 

running the clean near and far end speech signals trough a 

precise voice activity detector [6]. The binary decision 

“speech/no speech” for the two signals was compared and 

double talk marked for the frames where both VAD indi-

cated speech activity.  

The classification error was selected as evaluation pa-

rameter, defined as: 

 .100%.FP FN

Tot

N N

N



  (12) 

Here NFP is the number of false positives, NFN is the number 

of false negatives, and NTot is the total number of audio 

frames.  

The sampling rate was 16 kHz, 512 samples per audio 

frame, and we used overlap and add process as described in 

[7]. With the training set was conducted optimization to 

minimize the error rate by varying the values of the DTD 

parameters. After the optimization the values were 

0.55 sup  , 45 sdown  , 730 HzbegF  , 7200 HzendF  , 

0.95  , and 0.15MIN  . For the baseline algorithm the 

optimal threshold value was 0.89  . 

All further results were obtained against the testing set 

of recording. The results for the baseline and proposed algo-

rithms are shown in Table 1, the ROC curves – in Figure 3. 

The proposed algorithm has lower error rate and is better in 

reducing the false negatives, preventing better AEC to di-

verge during the double talk situations. 
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Figure 3. ROC curves 

Table 1. Results, baseline and proposed algorithms 

Algorithm Equations Error NFP NFN TTot 

Baseline (8),(9) 2.94% 575 511 36920 

Proposed (8),(10),(11),(9) 2.45% 590 313 36920 
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Figure 2. Coherence function and its tracking. 


