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ABSTRACT 

 

Acoustic echo cancellation is one of the oldest applications 

of adaptive filters and today is a part of each speakerphone. 

An important block of each acoustic echo canceller is the 

double talk detector. It blocks the adaptation of the filter 

when near end voice is present and thus preventing the 

adaptive filter from diverging from the optimal position. In 

this paper we present an improved version of coherence 

based double talk detector. It provides estimation of the 

double talk presence probability per bin and per frame and 

has better precision compared to the baseline algorithm.  

 

Index Terms — Acoustic echo cancellation, double talk 

detector, coherence  

1. INTRODUCTION 

Acoustic echo cancellers (AEC) [1] are designed to remove 

the captured loudspeaker signal from the microphone chan-

nel of a speakerphone or another telecommunication device. 

The AEC consists of an adaptive filter, which estimates the 

transfer function between the loudspeaker channel and the 

microphone channel, convolves the loudspeaker signal with 

this transfer function, and subtracts it from the microphone 

channel. Under absence of near end speech the adaptive 

filter converges to the closest estimation of the transfer 

function. The precision of this convergence depends on the 

noise in the microphone channel. When we have local 

speech the adaptive filter diverges from this optimal posi-

tion. The purpose of the double talk detector (DTD) is to 

detect the segments of local speech and block the adaptation 

of the acoustic echo canceller. 

The generic DTD computes a certain statistical parame-

ter , preferably data independent, which is compared with 

a threshold . If the value is higher than the threshold, dou-

ble talk is detected, if it is below – there is no double talk. 

The threshold value can be adjusted using the receiver oper-

ating characteristics (ROC) curves to provide maximum 

performance. A good overview for DTD evaluation criteria 

is given in [2]. One of the first DTD algorithms is the Geigel 

algorithm, which evaluates the proportion of the largest 

magnitude of the microphone signal for a given time inter-

val and the magnitude of the loudspeaker signal. The opti-

mal threshold is highly variable and the reliability of the 

DTD is low. Cross-correlation based algorithms are consid-

ered more robust and reliable. The problem with this class 

of algorithms is that the cross-correlation function is not 

very well normalized and it is not quite robust when noise is 

present. A DTD algorithm using the normalized cross-

correlation function is derived in [3]. While more precise it 

is computationally expensive, which led to publishing a 

faster version of it [4] based on tracking with a Kalman fil-

ter. While substantially faster this algorithm is still computa-

tionally expensive. Instead of using the cross-correlation 

function as a statistical variable, the coherence function can 

be used [5]. The coherence function between the loudspeak-

er and microphone channels is easy to compute and is well 

normalized. Values close to one mean that microphone and 

loudspeaker signals are coherent and there is no local 

speech. Under presence of local speech the value of the co-

herence function decreases and approaches zero, which 

makes it a good statistical parameter for DTD. Unfortunate-

ly the coherence function value decreases under the pres-

ence of noise or strong reverberation, which makes this 

method less suitable for cases when the microphone is away 

from the loudspeaker and/or high levels of noise are present.  

In this paper we present a modified version of the co-

herence based DTD. We build statistical models of the co-

herence function distribution, a classifier, and use first order 

HMM filter for smoothing. The new algorithm is more ro-

bust to noise and reverberation. It was evaluated against a 

data corpus with wide range of noise levels and compared 

with the original version of the algorithm. The proposed 

approach improves the precision of the DTD more than two 

times compared to the original version of the algorithm.  

2. MODELING 

A schematic diagram of an AEC is shown in Figure 1. The 

far end signal  z t  is sent to the loudspeaker. The micro-

phone captures this signal convolved with the impulse re-

sponse of the transfer function speaker-microphone  h t . It 

captures the near end voice  s t  and noise  n t . The trans-

fer function near end speaker-microphone is omitted for 

simplicity. The microphone signal is: 

          *x t z t h t s t n t   . (1) 

 



The acoustic echo canceller estimates the transfer path loud-

speaker-microphone  ĥ t  and subtracts the estimated por-

tion of the loudspeaker signal from the microphone signal. 

At the acoustic echo canceller output we have: 
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In this paper we consider processing in frequency domain 

where the convolution converts to multiplication and we 

have: 
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Here k  is the frequency bin and n  is the frame number. 

The modeling described so far assumes that the audio frame 

is longer than the reverberation process, which is incorpo-

rated in  h t , and we model it with a one tap filter. This is 

not the case with real systems with typical frame duration of 

10-30 ms and reverberation times of 200-400 ms. To ac-

commodate the longer impulse response the acoustic echo 

canceller uses an FIR filter with multiple taps for each fre-

quency bin. This converts equation (3) to: 
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where L  is the number of taps in the FIR filter. Denoting: 
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the equation (4) can be rewritten in vector form: 

    ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ .
TT
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The squared magnitude of the coherence function between 
( )n

Z  and ( )n
X for the frequency bin k  is: 
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where H

ABS AB  are the spectral densities. Then the statis-

tical parameter ( )n  for the entire frame can be computed as 

a weighted sum  ( ) 2 ( )
T

n n

ZX  W γ . Typically the 

weighting vector W  is a band-pass filter and the statistical 

parameter is computed as a partial sum: 
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Then the statistical parameter is compared to a threshold   

to make the final decision: 
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Here   introduces a small hysteresis to prevent “ringing” 

in the slopes. If 
 n

D  is 1 we have double talk detected in 

this frame, if zero – no double talk was detected.  

3. PROPOSED ALGORITHM 

The main problem with the algorithm above is that the sta-

tistical parameter 
   0,1
n

   goes to one only in close to 

perfect conditions: no noise and reverberation. When noise 

is added to the microphone signal the value of 
 n

  is higher 

than when a double talk is present, but doesn’t go to one and 

varies based on the noise and reverberation levels. This 

makes the optimal threshold   for one input SNR subopti-

mal for another. In low SNRs the DTD stops to work at all. 

When a loudspeaker signal is present, two hypotheses can 

be considered for the current frame and bin: 

    

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( )

1

: no double talk:

: double talk:

n n T n n

k k k k

n n T n n n

k k k k k

H X N

H X S N

 

  

H Z

H Z
. (10) 

We model the distribution of the statistical parameter 
( ) 2 ( )n

k ZX k  as Gaussian in both cases: 
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Here , , ,  and N N D D     are the means and variances of the 

statistical parameter without and with double talk. Then 

given value of the statistical parameter 
k , after applying 

the Bayesian rule, the probability to have double talk is: 

 
Figure 1. Schematic diagram of acoustic echo 

 canceller. 
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Here  1kP H  and    0 11k kP H P H   are the prior proba-

bilities, 
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hood ratio. The frame indexes are omitted for simplicity.  

The estimation so far was based on the assumption of 

statistically independent consecutive audio frames, which in 

the case of speech and music is not quite correct. To express 

this property explicitly, we model the sequence of frame 

states as a first-order Markov process. The full derivation is 

presented in [6] and the smoothed likelihood 
( )ˆ n

k  is: 

 

 

( )( 1)
0( ) ( ) ( ) ( )01 11

( )( 1)

100 10

ˆ       .

nn
kn n n nk

k k k knn

kk

P Ha a

P Ha a





 
     

 
 

 

    (14) 

Here 
01a  and 

10a  are the prior probabilities for changing the 

state,  
00 011a a   and 

11 101a a   are the prior probabili-

ties to stay in the same state. In general this is a smoothing 

filter, lower are the priors for change – higher is the smooth-

ing. After substituting 
( )ˆ n

k  in (13) the prior probabilities 

cancel nicely and for the probability for double talk in given 

bin and frame we have: 
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There are two main ways to combine the likelihoods 

from all frequency bins to estimate the likelihood for the 

entire frame. The first is the geometric mean, also known as 

the log-likelihood ratio test: 
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The second is the arithmetic mean: 
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The first expects that all frequency bins should have double 

talk to trigger double talk for the entire frame; the second 

can have high likelihood even if just a few frequency bins 

have double talk. The reality is somewhere in between: the 

speech signal is quite sparse, so (16) will not work well; on 

the other hand (17) is less robust to noise. We compute the 

likelihood ratio for the entire frame as a weighted sum of the 

geometric and arithmetic means: 
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hoping that with a properly selected value of the coefficient 

  we can combine the advantages of both approaches.  

Using the same methodology as above we derive the 

smoothing filter and the probability for double talk for the 

entire frame: 
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Here 
01b  and 

10b  are the prior probabilities for changing the 

frame state,  
00 011b b   and 

11 101b b   are the prior prob-

abilities to stay in the same frame state. The soft decision in 

(19) can be converted to a binary decision by comparing 

with a threshold according to equation (9).  

Once we have estimated the probabilities for double 

talk for each frequency bin and for the entire frame we can 

update the estimates for the means and variances: 
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Here T  is the audio frame duration, 
N  and 

D  are the ad-

aptation time constants. The adaptation speed also depends 

on the double talk probabilities.  

4. EXPERIMENTAL RESULTS 

The proposed algorithm was evaluated and compared with 

the baseline algorithm using a data corpus containing two 

noise levels (40 and 50 dBC SPL, automotive noise), two 

levels of the near end and far end signals (54 and 60 dBC 

SPL at 1 meter), played by two high quality loudspeakers in 

normal office reverberation conditions  60 230 msRT  . 

The loudspeakers and the microphone formed a triangle 

with sides of one meter each. All combinations of the noise, 

near, and far end signal levels produced eight recordings. 

Training and testing sets with all of the combinations were 

recorded separately. The near and far end signals were hu-

man speech, ten sentences each, equally mixed male and 

female voices, with pauses between them shifted in a way to 

produce partial and full overlap, i.e. double talk. The ground 

truth was established by running the clean near and far end 

speech signals trough a precise voice activity detector [7]. 

The binary decision “speech/no speech” for the two signals 

was compared and double talk marked for the frames where 

both VAD indicated speech activity.  

The classification error was selected as the evaluation 

parameter, defined as: 

 .100%.FP FN

Tot

N N

N
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
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Here NFP is the number of false positives, NFN is the number 

of false negatives, and NTot is the total number of frames.  



 

 

 
The sampling rate was 16 kHz, we used 512 samples 

per audio frame, and the overlap and add process was as 

described in [8] with 50% overlapping and Hann weight 

window. As the duration of the audio frame was 16 ms we 

used a ten taps filters for each frequency bin, i.e. L=10. 

With the training set an optimization was conducted to 

minimize the error rate by varying the values of the DTD 

parameters, using the same approach as described in [7]. 

The vector of the optimization parameters is: 

01 10 01 10, , , , , , , , ,beg end N Df f a a b b      V .     (23) 

Here begf  and endf  are the beginning and ending frequen-

cies to process in equations (8), (16), and (17) rounded to 

the closest frequency bins begK  and endK . As optimization 

criterion we selected to minimize the classification error 

after the binary decision, which is a function of the optimi-

zation parameters. Then: 

  arg minOPT


V V .        (24) 

The optimal values of these parameters are shown in Ta-

ble 1. Note the relatively high value of begf  – the optimiza-

tion program lifted it because of the high energy of the au-

tomotive noise in the lower part of the frequency band. For 

the baseline algorithm the optimal threshold value was de-

termined to be 0.960  after a similar optimization. 

      All further results were obtained against the testing set 

of recordings, which the optimization procedure hasn’t used. 

The results for the baseline and proposed algorithms are 

shown in Table 2, the ROC curves – in Figure 2. 

  

5. CONCLUSIONS AND FUTURE WORK 

The proposed algorithm has a lower error rate and is sub-

stantially better in reducing the false negatives, preventing 

AEC from diverging during the double talk situations. 

The proposed DTD algorithm provides estimation of 

DTD probability for each frequency bin separately. This 

makes possible controlling the AEC adaptation speed for 

each frequency bin separately based on DTD probability. 

This will keep the adaptation on for the frequency bins 

without double talk and improve the AEC parameters con-

sidering the sparse nature of the speech signal.  
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Table 2. Results, baseline and proposed algorithms 

Algorithm Error NFP NFN Ttot 

Baseline 2.94% 575 511 36920 

Proposed 1.26% 251 214 36920 

 

Table 1. Optimal values of the DTD parameters 

Parameter Value Unit 

 fbeg 853.33 Hz 

 fend 6090.00 Hz 

 a01 0.0000123   

 a10 0.0000433   

 β 0.285   

 b01 0.0000010   

 b10 0.0000035   

 η 0.95   

 τN 4.33 sec 

 τD 10.00 sec 

 

 
Figure 2. ROC curves 
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