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Abstract—The Gaussian distribution is the most commonly used 

statistical model of the speech signal. In this paper we propose 

more general statistical model for the distributions of the real 

and imaginary parts of the speech signal DFT coefficients and 

their magnitudes. Based on experimental measurements with the 

TIMIT database we have shown that the Generalized Gaussian 

Distribution holds well across frequency and audio frame size. A 

Weibull distribution is proposed to model the statistical behavior 

of the speech signal amplitude in the frequency domain. Estima-

tion of the distribution parameters from experimental measure-

ments corresponds well to the distribution of the real and imagi-

nary parts. We propose and evaluate several statistical models of 

various complexities. Overall these statistical models fit the actual 

measurements with a Jensen-Shannon divergence below 0.0012 

for real and imaginary parts and below 0.003 for magnitudes. 

The results presented in this paper are applicable for improving 

speech processing algorithms based on statistical signal 

processing. 

Keywords-speech statistical model, generalized Gaussian 

distribution, Weibull distribution. 

I.  INTRODUCTION 

Statistical models of the speech and noise signals play an 
important role in single channel speech enhancement, multi-
channel speech processing for microphone arrays, voice activi-
ty detectors, speech compression, and in many other statistical 
signal processing algorithms. The real and imaginary parts of 
the speech signal spectrum coefficients are very often modeled 
as independent and identically distributed zero mean Gaussian 
variables, which is motivated by the central limit theorem. 
Modeling the speech signal DFT coefficients as zero mean 
Gaussian processes is utilized in the derivation of most noise 
suppression algorithms: Weiner [1], short term spectral mini-
mum mean square estimators [2], and short term spectral log-
minimum mean square estimators [3]. As most of the suppres-
sion based algorithms actually estimate only the magnitude and 
take the phase from the noise corrupted signal, it is important to 
observe that under this assumption the speech signal magni-
tudes have Rayleigh distribution. In [4] the derived set of sup-
pression rules assumes Laplace and Gamma distributions of the 
speech signal spectrum. Later measurements [5] concluded that 
the speech signal distribution in time domain is frame size de-
pendent and has a super-Gaussian distribution, i.e. its PDF is 
more “peaky” than the bell-shaped Gaussian PDF. A step fur-
ther into using the super-Gaussian distribution of the speech 
signal is presented in [6], where the author fits several potential 
distributions to measured histograms of speech signal DFT 
coefficients and magnitudes and derives suppression rules for 

the generic distribution of the speech and noise signals. The 
Gaussian PDF carries the least information as it has the highest 
entropy. Thus the use of any other PDF is attractive as it carries 
more information. In [7] minimizing the entropy is used as an 
adaptation criterion for an adaptive beamformer.  

The goal of this paper is to provide more precise measure-
ments of the speech signal PDF as a function of the frequency 
and the frame size. We use Generalized Gaussian Distribution 
to model the distribution of the real and imaginary parts of the 
speech signal DFT coefficients, and propose using the Weibull 
distribution to model the distribution of the speech signal mag-
nitudes in frequency domain. Both distributions are dual para-
meters and in addition to variance have shape parameters 
which determine the “peakiness” of the distribution. We meas-
ure the shape parameters using a clean speech corpus and pro-
pose four models with various complexities.  

II. MODELING 

Let us assume that we have speech signal with an average 

power spectrum  
2
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. Further in this paper we 

will omit the frequency bin index  k  wherever it is possible. 

A. Real and imaginary parts of the DFT coefficients 

Since the DFT coefficients are complex numbers we can 
assume that the real and imaginary parts are zero mean, inde-
pendent, and identically distributed, i.e. they have the same 

variance 2s . A flexible model for the distribution is Genera-

lized Gaussian Distribution (GGD), defined in [8] and [9] with 
the PDF: 
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Here   is the scale parameter and   is the shape parameter. 

The mean is  , the variance is    2 3 1    , and     

denotes the Gamma function. When 2   GGD con-verges to 

a Gaussian, and at 1   the PDF converges to a Laplace dis-

tribution. For a zero mean distribution the scale parameter can 
be estimated from the average power spectrum: 
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B. Magnitudes of the DFT coefficients 

The distribution of the signal magnitudes is modeled with 
the powerful and flexible Weibull distribution [10], given by: 
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where   is the scale parameter and   is the shape parameter. 

The mean is  1 1    and    2 21 2 1 1         is 

the variance. When 2   the Weibull distribution converges 

to a Rayleigh, and at 1   it converges to an exponential dis-

tribution. The scale parameter can be estimated from the aver-
age power spectrum: 
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C. Fitting criterion 

The actual distributions of the speech signal can be meas-
ured as a histogram of the real and imaginary parts, or as a his-
togram of the magnitudes. The scale parameters   or   can 

be estimated from the signal power spectrum and used for 
normalization of the histograms. The distance between the two 
probability distributions is given by the Jensen-Shannon diver-
gence [11], which is a symmetrized and smoothed version of 

Kullback-Leibler divergence [12]  KLD p q : 
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The Kullback-Leibler divergence is defined as: 
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and measures the expected number of extra bits, required to 
code samples from q  when using a code based on p , rather 

than using a code based on q . Lower Jensen-Shannon diver-

gence  JSD  indicates a better fit of the model to the measured 

histogram. We are going to estimate the shape parameter   as:  

   arg min ||opt JSD p q


  . (7) 

Here p  is the measured distribution (the histogram) and q  is 

the distribution model, which depends on  . The same ap-

proach can be used to estimate the shape parameter   for fit-

ting the magnitudes distribution. 

III. EXPERIMENTAL RESULTS 

A. Speech corpus 

The clean speech corpus known as TIMIT [13] was selected 
for measuring the distribution of the speech signals. TIMIT 
contains 6300 utterances of clean speech sampled at 16 kHz 
with 16 bits precision. The corpus is conveniently split on 
training (~4 hours) and test (~1.5 hours) sets.  

B. Processing of the training data 

The set of frame sizes is selected to cover the most fre-
quently used frame sizes of 32, 40, 64, 80, 128, 160, 256, 320, 
640, and 1024 samples. These numbers are the length of a half 
size complex vector of the DFT coefficients, i.e. the frame du-
rations are from 4 to 128 milliseconds. Audio frames are with 
50% overlapping and weighted with Hann window – typical 
settings for most of the audio processing pipelines.  

Each file is converted to frequency domain with a given 
frame size and an energy based voice activity detector is used 
to select the frames with a speech signal. For each frequency 
bin the speech frames are processed as follows:  

 extract the real and imaginary parts and combine them;  

 compute the variance for each frequency bin, normalize; 

 build the histogram in the range from -4.6 to +4.6 times the 
deviation with a step of 0.1, leading to 93 bins. 

The same normalization and histograming process is re-
peated with the magnitudes of the DFT coefficients, except that 
the scale is from 0 to 4.6 times the deviation, leading to 47 
magnitude bins. Overall for each frame size we have 400 mil-
lion data points for the training set and 137 million data points 
for the test set.  

 
Figure 2. Speech signal magnitudes from analyzed speech signal in 

TIMIT. 

 
Figure 1. Distribution of the real and imaginary parts of the analyzed 

speech signal from TIMIT. 



 

The histograms from all files in the training set are com-
bined together and as a result for each frame size K  we have a 
matrix with dimensions x93K  for the real and imaginary parts 

and x47K  for the magnitudes. The measured distribution of 

the speech signal for a frame size of 256 samples is shown in 
Figure 1 and for magnitudes in Figure 2. It is well visible that 
the distribution of the speech signal is super-Gaussian, which 
leads to a magnitude distribution closer to an exponential rather 
than to Rayleigh. In addition the “peakiness” of the distribution 
is quite uniform in the middle and upper frequency range, but 
opens slightly towards the lowest part of the frequency band. 

For each frequency bin and frame size we computed the 
shape parameters   and   using (7), which results in the best 

fit of GGD or Weibull distributions respectively. We used a 
one dimensional version of the steepest gradient descent algo-
rithm, but practically any one dimensional optimization algo-
rithm can find the best solution. The histogram bins with zero 
values are excluded from the fitting process. The reason for this 
is that even in the speech frames most of the frequency bins do 
not contain a speech signal. As TIMIT is a very clean speech 
corpus these frequency bins contain close to zero values and 
fall into the zero histogram bins. The measured function 

 ,K f  for the speech signal is shown in Figure 3. It con-

firms the observation from the previous paragraph. The shape 

of the measured function  ,K f  is quite similar, as these two 

functions describe the same process. 

By combining all frequency bins we can compute the shape 

parameters as a function only of the frame size  K  and 

 K , shown in Figure 4. By averaging across frequencies we 

derive the frame size independent measurements of the shape 

parameter as a function of the frequency  f  and  f , 

shown in Figure 5. Finally, by combining all points we can 
measure single shape parameter, independent of frame size and 
frequency, which are 0.327   and 0.588  . 

C. Evaluation with the test data 

We have measured four models of the speech signal distri-
butions with various complexity, starting with single numbers, 
and ending with a two dimensional function of the shape para-
meters. For evaluation of these four models we used the test set 
in the TIMIT database. It was processed in the same way as the 
training set, and the resulting histograms are evaluated with 
distribution models, derived in the previous paragraph using 
Jensen-Shannon divergence as evaluation criterion. As a base 
line we use Gaussian and Laplace distributions for real and 
imaginary parts. The summary of the results is shown in Ta-
ble 1. Table 2 presents the results for frame size dependent 
estimations.  Figure 6 shows the histogram and the modeling 
PDF for magnitudes and frame size 256 samples. 

 
Figure 3. The shape parameter   as a function  

of the frequency and frame size. 

 
Figure 6. Speech signal magnitude and fitted distribution. 
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Figure 4. Shape parameters   and   as a function of the frame size. 
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Figure 5. Shape parameters   and   as a function 

of the frequency. 
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IV. DISCUSSION 

The results in Table 1 indicate that the more precise models 
presented in this paper outperform modeling of the speech sig-
nal with Gaussian and Laplace distributions. Using the same 
shape parameter for all frame sizes and frequencies still reduc-
es the Jensen-Shannon divergence by more than two magni-
tudes. Increasing the complexity of the model reduces the di-
vergence further, but using shape parameter as a function of 
two parameters is marginally better than the shape parameter as 
a function of only the frequency. The lowest average diver-
gence we achieved with the frame size dependent model. We 
conclude that the dependency of the shape parameters on the 
frame size is stronger than the dependency on the frequency. 
By increasing the model complexity to depend on both frame 
size and frequency the precision decreases, which is an indica-
tion of overtraining to the data in the training corpus. Using the 
frame size dependent models, shown in Table 2, is straightfor-
ward and trivial. The results in Table 1 are averaged using the 
same weight for all frequency bins.   

Similar measurements with various noise signals, not pre-
sented in this paper, confirmed that the best fit for the real and 
imaginary parts distribution of the noise spectra is a Gaussian 
distribution, which corresponds to a Rayleigh distribution of 
the magnitudes. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we presented four models of the distribution of 
the real and imaginary parts of the speech signal DFT coeffi-
cients and four models of the distribution of the magnitudes. 
The proposed models use the Generalized Gaussian and the 
Weibull distributions to describe the statistical parameters of 
the speech signal. They are more precise, compared to the 
Gaussian and Laplace distributions widely used today. Poten-
tial future steps are in two directions. The first is further im-
provement of the models. This includes more precise mea-
surements and using languages other than English. While the 
speech production apparatus is the same for all humans, it still 
has to be proven how well these models hold for other lan-
guages. The second direction is using these more precise 
models in speech enhancement, microphone array processing, 
speech compression, etc. While in statistical signal processing 
better distribution models lead to better results in general, the 
improvement in sound quality due to these more precise mod-
els still has to be verified in real life applications.  
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TABLE I.  RESULTS SUMMARY 

PDF Real& Imag Magni tudes 

Fitting   JSD    JSD  

 Gaussian 2.000 0.12242 2.000 0.23244 

 Laplace 1.000 0.06329 1.460 0.13430 

 One shape parameter 0.327 0.00164 0.588 0.00346 

 Frame size dependent 
 

0.00115 
 

0.00297 

 Frequency dependent 
 

0.00271 
 

0.00604 

 Both freq. and frame size 
 

0.00185 
 

0.00505 

 

TABLE II.  FRAME SIZE RESULTS 

Frame Real& Imag Magni tudes 

size   JSD    JSD  

32 0.307 0.00136 0.564 0.00348 

40 0.308 0.00147 0.565 0.00311 

64 0.313 0.00157 0.573 0.00255 

80 0.316 0.00156 0.577 0.00241 

128 0.316 0.00129 0.576 0.00242 

160 0.314 0.00110 0.573 0.00255 

256 0.313 0.00089 0.571 0.00312 

320 0.316 0.00086 0.574 0.00338 

512 0.330 0.00085 0.591 0.00365 

640 0.353 0.00083 0.617 0.00338 

1024 0.410 0.00093 0.680 0.00268 

 


