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Abstract 

Many image coders map the input image to a transform domain, and encode 
coefficients in that domain. Usually, encoders use previously transmitted 
samples to help estimate the probabilities for the next sample to be encoded. 
This backward probability estimation provides a better PDF estimation, with-
out need to send any side information. In this paper we propose a new method 
of encoding that goes one step further: besides past samples, it also uses in-
formation about the current sample in computing the PDF for the current 
sample. Yet, no side information is transmitted. The initial PDF estimate is 
based on a Tarp filter, but probabilities are then progressively refined for non-
zero samples. Results are superior to JPEG2000, and to bit-plane Tarp. 

1. Introduction 

Many image coders [1],[2],[3],[4] are based on mapping the input image into a transform 
domain, quantizing the samples in that domain, and sending the quantized samples to the 
decoder, using some type of entropy coding. The wavelet transform is particularly popular 
as the choice of transform, and will be used in this paper. Figure 1 illustrates a typical 
wavelet encoder. The wavelet coefficients are quantized (divided by a quantization step Q 
and then rounded to nearest integers), and the resulting indices are encoded without loss 
by an entropy encoder.  The entropy coder typically uses a probability distribution func-
tion (PDF) over the quantized values, and the number of bits it produces is close (typi-
cally within less than 1%) to the entropy of the PDF.  The PDF is computed adaptively 
from previously encoded coefficients (kept in the “store” box), by counting frequencies 
for each context, for example.  Higher compression is obtained by increasing Q, which 
decreases the entropy of the PDF, mostly because more coefficients quantize to zero. 

Performance of the coder is dependent essentially on the spatial transform (e.g., wave-
let), and on the quality of the PDF estimates provided by the “Adaptive PDF” box. In 
general, the “current pixel” is not used in computing the PDF, since it is not available at 
the decoder. This is one of the main contributions of this paper: we show that, in a sense, 
it is possible to exploit the current sample to enhance the quality of the estimated PDF. 
For that purpose, we use partial information about the current sample to refine the esti-
mate of its own PDF. 
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The basic idea is to transmit the information about the current sample in parts. More 
precisely, we first send the info regarding the current sample being zero or not. If it is 
zero, we are done and go to the next sample. If not, we then re-estimate the PDF to take 
into account the newly received info that the sample is not zero.  We propose a simple 
way of doing this without exploding the computational complexity requirements. 

In the next section we review the basics of partial information transmittal. In Section 3 
we review the Tarp filter and present our preliminary PDF estimator, which is based on a 
Tarp filter. In section 4 we present the details of the PDF estimation refinement, and its 
coupling with the arithmetic encoding process. In section 5 we present some experimental 
results, which show the superiority of the proposed algorithm to JPEG2000 and bitplane 
Tarp, on the Kodak reference set. Conclusions and final comments are presented in Sec-
tion 6. 

2. Partial Information Transmission 

Traditionally, we estimate a PDF based on the information already available at the de-
coder (to avoid side-information), and some pre-accorded signal model, of which both 
encoder and decoder are aware. For example, one may assume the wavelet coefficients 
have a zero-mean Laplacian PDF, and estimate the variance based on the previously 
transmitted samples.  

One interesting result of information theory is that partial information transmission is 
free. More precisely, if A⇒ B, then p(B|A)=1, and we can write: 

 ( ) ( | ). ( ) ( , ) ( | ). ( )p A p B A p A p A B p A B p B= = =  (1) 

and therefore: 

 I(A) = I(A|B)+I(B),  (2) 

where 2( ) log ( ( ))I A p A  is the amount of information in A. For example, assume x ∈ {1, 
2, 3, 4}, and has a PDF p(x) = {.5, .25, .125, .125}. The cost of directly sending the in-
formation x=4 is 3 bits. But the cost of sending the sequence {x>1, x>2, x>3} is the 

 

  
 

Figure 1. Simplified block diagram of a wavelet-based signal coder. 
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same, as long as all the information already transmitted is used to condition the subse-
quent probabilities. In the example, the cost of sending x>1 is one bit, since p{x>1} = .5. 
The cost of sending {x>2|x>1} is also one bit, and finally, the cost of sending {x>3|x>2} 
is also one bit. Note that the cost of {x=4|x>3} is zero bits, since that’s the only possibil-
ity for x, given that x>3. This result illustrated in this example is independent of the PDF, 
or the particular alphabet, as long as the entropy coder is perfect. In summary, and since 
arithmetic coding is nearly perfect, for all practical purposes partial information transmis-
sion is essentially free. 

 

3. The Tarp Filter 

The Tarp filter was introduced in [2] as a simple way of directly estimating the binary 
probabilities of each bit in a bit plane. With excellent performance in a simple structure, 
the Tarp encoder challenges the traditional notion that context needs to capture spatial 
structure of the surrounding pixels. Being an IIR filter, the Tarp filter has the nice prop-
erty of producing a long impulse response with low computational requirements. In [2] 
the Tarp filter was applied directly to the neighboring bits to produce an estimate of the 
probability of the current bit of each wavelet coefficient. Recent results by other research-
ers validate these surprising results [5].  

In this paper we use a Tarp filter to help estimate the probabilities of multilevel wave-
let coefficients (not in a bitplane fashion). In order to do that, we estimate the variance of 
each wavelet coefficient, based on its neighbors. We also use another Tarp filter to obtain 
a variance estimate based on the previous band, which helps in providing information 
about the region of the image not yet scanned in the current band. A PDF is then obtained 
based on that variance and an underlying model. In this section we give some details of 
our use of the Tarp filter, and, in Section 4 we will explain how we use this variance es-
timate to obtain our progressively refined PDF estimate. 
 

3.1. A simple 1-D filter for variance estimation 

To help understand the Tarp filter, we start by considering a one-dimensional scenario. 
We can build an estimate of the variance of the symbol to be encoded by using a simple 
first-order recursive filter: 

 [ ] [ ] [ ]( )21 (1 ) 1 ,t a t a v tσ σ= − + − −  (3) 

where σ[t] is the estimate of variance for sample v[t], v[t] is the value of the wavelet coef-
ficient at position t, and a is a learning rate parameter between 0 and 1, which controls 
how quickly the probability estimate adapts to the data. 

It is easy to show that σ[t] is the convolution of (v[t])2 with the filter impulse response 

[ ] (1 )tf t a a= −  for t > 0, and 0 otherwise. The parameter a can also be viewed as a 
smoothing factor; the noisier the data, the higher we should set the value of a. The main 
advantage of this algorithm is simplicity, since very few operations are involved.  
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In [2], the Tarp filter was used to directly compute the probability of a given bit being 
zero (or one). Here, we assume the wavelet coefficients have a certain PDF, say a Lapla-
cian distribution, and use the tarp filter simply to estimate the variance of the Laplacian 
for each wavelet sample.  

3.2. Combining four 1-D filters to create the Tarp 2-D filter 

If we generalize the simple filter discussed before to 2-D, scanning order becomes an is-
sue.  As in [2], we simply use the usual raster scanning for images, line-by-line, from left 
to right, trying to extract the maximum information from all previously seen pixels (i.e. 
located in a line above or located to the left of the current pixel).  This is done by using 
four 1-D filtering steps. The first filter goes from left to right and is similar to the 1-D fil-
ter described above.  The second filter goes from right to left, and is done after each full 
line has been processed.  The resulting probabilities are kept in a buffer.  The third filter 
goes from top to bottom for each column, using the probability computed in the previous 
line. Finally, a fourth filtering step is performed after the band is completely encoded, and 
will be used to encode/decode the next band of the same type (e.g., HL, LH, or HH). Dif-
ferently from the Tarp filter described in [2], we use a different learning parameter for the 
top to bottom (i.e., vertical) process. More precisely, we use aH=0.25 for the horizontal 
filtering and aV=0.5 for the vertical filtering, respectively. Also, to keep the symmetry of 
the process, the HL Wavelet band is rotated by 90 degrees before encoding.  

The computation of the Tarp filter is summarized by two sets of equations.  The first 
set implements the four 1-D filters: 

 2
1 1[ , ] [ 1, ] (1 )( [ 1, ])H H H Hi j a i j a v i jσ σ= − + − −  (4) 

 2
2 2[ , ] [ 1, ] (1 )( [ , ])H H H Hi j a i j a v i jσ σ= + + −  (5) 
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where σH1, σH2, σV1, and σV2 are the recursive estimates coming from the left, right, top 
and bottom, respectively.  

Note that σH2 and σV2 include non-causal samples, and therefore we must combine 
them in such way that guarantees causality. The filter σV1 is causal because it depends on   
σH2 of the previously transmitted line.  We first note that all four equations can be used if 
we refer to a lower resolution band, which has already been transmitted. Therefore, a 
causal variance estimate can be obtained as:  
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 [ , ] [ , ] (1 ) [ / 2, / 2],C CB C PBi j w i j w i jσ σ σ= + −  (8) 

where, wC is the relative weight for the variance estimate for the current band (we used 
wC=0.875 in our experiments), σCB is the variance estimate based on the current band, and 
σPB is the variance estimate based on the previous band of same nature (e.g., HL, LH, or 
HH), but at lower resolution (when available). Due to the progressive transmission across 
wavelet bands, σPB  is always causal because it is computed after the whole band has been 
transmitted.  It can be computed as: 

 ( )1 2

1
[ , ] [ , ] [ , ]

1PB V V V
V

i j a i j i j
a

σ σ σ
 

= + + 
 (9) 

The filter σCB is causal since we have already established that σH1 and σV1 are causal: 

 1 1[ , ] [ , ] (1 ) [ , ]CB V V V Hi j w i j w i jσ σ σ= + −  (10) 

where wV is a weighting factor, which we set experimentally to 0.4. 

In all the computations, initial conditions at the boundaries are given by an a priori esti-
mate of the variance of v[i,j].  
 

4. PDF estimation. 

Our encoder consists basically of a wavelet transform followed by a (non-adaptive) 
arithmetic encoder. Therefore, the coding efficiency will depend heavily on the quality of 
the PDF estimate provided to the arithmetic encoder. In other words, our basic task is to 
provide the arithmetic encoder with a good PDF estimate of the wavelet coefficients. A 
typical approach is to divide the samples in classes and let the arithmetic encoder adap-
tively estimate a PDF for each of these classes. These classes are generally based on the 
surrounding pixels that have already been transmitted, and therefore may include both 
variance and accurate positional information. For instance, the context could contain an 
edge, and the PDF can depend on where the current pixel lands with respect to this edge. 
One disadvantage of this method is that it may take a long time for the arithmetic encoder 
to build up significant data to reliably predict the PDF. This implies that the statistics 
have to be built over an extensive area of the image, with severe implications in robust-
ness to transmission errors. Instead, we follow here a much less data intensive path: we 
assume the PDF is Laplacian, and simply estimate the variance based on the previously 
transmitted samples. If robustness to errors is desired, one can easily reset the estimate at 
image blocks, therefore limiting the spreading of any eventual transmission errors. Fur-
thermore, we do not transmit a wavelet coefficient in a single step. Instead, we use the 
partial information transmission principle (described in Section 2) to progressively trans-
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mit each coefficient. And we refine our PDF estimate in between each partial information 
transmission. 

Figure 2 illustrates the basic procedure of encoding a wavelet coefficient. First, an es-
timate of the variance is done, based on a Tarp filter, as described in the next Section. We 
assume the PDF is a zero-mean Laplacian, i.e., 

 

 
 

Figure 2. Simplified block diagram of the encoding of one wavelet coefficient. 
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−

=  (11) 

where σ is the variance of the coefficient, after normalization by the quantization step. 
The first part of the progressive transmission is to send whether the quantized wavelet 
sample is zero or not. Since we use a uniform quantizer, the probability P(0) of the quan-
tized value q(a)=0 can be found by integrating (11) between -.5 and +.5, and is: 

 
1

2(0) 1P e σ
−

= −  (12) 

This probability of the coefficient being zero is computed, and used by an arithmetic en-
coder to encode this zero/non-zero information. If the coefficient is zero, we are done, 
and can proceed to the next sample. If not, we need to send the sign of the coefficient, as 
well as the value itself. After transmitting the sign, we can take the absolute value of the 
sample, and the Laplacian distribution becomes an exponential distribution. We can now 
encode the non-zero coefficient by using this exponential distribution. Nevertheless, be-
fore sending the actual value of the coefficient, we will use the information that the coef-
ficient is not zero to re-estimate the coefficient variance. In particular, we use a simple 
update, just to eliminate the cases where the initial variance estimate was excessively 
low: 

 
0.4

'
0.4

if

otherwise

σ σ
σ

>
= 


 (13) 

The value 0.4 was obtained experimentally, but did not seem to be particularly sensitive, 
and any value between 0.2 and 1 yielded similar results. 

Before sending the next symbol, we also estimate a maximum “expected” value. This 
has two objectives: First, it allows us another opportunity to re-estimate the variance, if 
the value is bigger than this maximum value. Second, it allows keeping the required pre-
cision of the arithmetic encoder under control. More precisely, higher values have lower 
probability, since we assume an exponential distribution for the non-zero samples. De-
pending on the estimated variance, and the particular wavelet coefficient, the probability 
of a certain value may become lower than the precision allowed by a finite precision 
arithmetic encoder. We limit the maximum value for this partial information transmission 
at: 

 - 2/Max_Coef = floor (- / 2.log(MIN_PROB/(1-e )));σσ  (14) 

where we used MIN_PROB = 2-11, so that the minimum probability for a symbol is at 
least 8 times higher than the probability precision used in our arithmetic encoder. In our 
experiments, we observed that the particular choice of MIN_PROB has negligible effect 
in the compression performance, but it allows to keep under control the precision required 
by the arithmetic encoder. 
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The probabilities of all symbols higher than Max_Coef are grouped into a single sym-
bol (i.e., an “escape code”). If an escape code is sent, than the variance is again re-
estimated, and the symbol is re-encoded. If the coefficient is still too large, the process 
may be iterated as many times as needed. 

The Tarp filter has low computational requirements and the proposed recursive PDF 
estimation and arithmetic encoding can be done in an efficient way. The estimated PDF is 
always an exponential, which means we can directly compute the cumulative probabilities 
for the current symbol, as required by the arithmetic encoder. In other words, we do not 
need to compute probabilities for each and every symbol. A careful implementation ex-
ploiting these properties of the encoder should have very low computational requirement. 

5. Experimental Results 

We have implemented the proposed encoder and evaluated its performance with the 
gray scale images from the same Kodak grayscale 768x512 image set used in [3], and 
compare the results to those of JPEG, PWC [3], bitplane Tarp [2], and JPEG2000.  For 
all codecs, intermediate bitstream files were generated and decoded, so the compressed 
file size included bookkeeping and format overheads. For each image, the usual 7-9 bior-
thogonal wavelet transform is computed, with 5 subband levels.  Furthermore, since we 
do not use context adaptive probability estimation, we do intra-band wavelet prediction. 
Each wavelet coefficient is predicted as  

 ˆ ˆ'[ , ] [ , ] [ 1, ] [ , 1]H Vv i j v i j v i j v i jβ β= − − − −  (15) 

where βH and βV depend on the wavelet band, and are +.125, and -.125 for the HL bands, 
-.125, and +.125 for the LH bands, and -.125, and -.125 for the HH bands. 

The variance estimate produced by the Tarp filters is then used by the (non-adaptive) 
arithmetic encoder to encode each wavelet coefficient, except that the variance may be re-
estimated in the process, as explained in Section 4.  For each non-zero symbol, the sign is 
coded independently in raw mode, i.e. without any compression. Note that this could be 
improved by using sign prediction [5].  
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Image JPEG PWC [3] JPEG2000 Tarp [2] PT-Tarp 

1 2.64 2.52 2.45 2.40 2.21 
2 1.27 1.04 1.06 0.98 0.94 
3 0.75 0.62 0.57 0.56 0.54 
4 1.30 1.05 1.06 0.98 0.96 
5 2.50 2.33 2.24 2.19 2.00 
6 1.92 1.74 1.69 1.62 1.54 
7 0.94 0.78 0.72 0.72 0.67 
8 2.80 2.58 2.45 2.45 2.29 

9 0.90 0.75 0.68 0.68 0.65 
10 1.06 0.87 0.81 0.80 0.75 
11 1.75 1.55 1.50 1.45 1.36 
12 1.03 0.85 0.79 0.78 0.75 
13 3.32 3.15 3.17 3.01 2.80 
14 2.26 2.01 2.00 1.89 1.76 
15 1.10 0.93 0.89 0.85 0.83 
16 1.35 1.14 1.11 1.06 1.02 

17 1.25 1.02 0.99 0.95 0.90 
18 2.26 2.02 2.02 1.91 1.84 
19 1.64 1.43 1.39 1.33 1.30 
20 0.93 0.78 0.72 0.72 0.71 
21 1.63 1.44 1.42 1.35 1.30 
22 1.69 1.49 1.50 1.40 1.35 
23 0.56 0.38 0.37 0.35 0.36 

24 2.02 1.87 1.80 1.76 1.66 
Average 1.62 1.43 1.39 1.34 1.27 

Table 2. Compression performance, in bits per pixel, of several grayscale 
image codecs, for a PSNR of 40 dB.  

A typical set of results for the image set are show in Table 2, for a peak signal-to-noise 
ratio (PSNR) of 40.0 dB (which leads to high visual quality, with essentially impercepti-
ble quantization artifacts for most images). Similar results are obtained at other PSNR 
settings.. 

 
We note that the Tarp-based codecs had the best compression performance for that 

group of codecs, in the Kodak image set. The average improvement over JPEG2000 is 
over 8%, putting in further evidence of the effectiveness of the PDF estimation without 
using context information. The improvement of around 5% over the original Tarp en-
coder [2] illustrates the effectiveness of the progressive information transmission ap-
proach when combined with multilevel wavelet encoding. 

 

6. Conclusion 

In [2] a very simple codec based on the Tarp filter was introduced. The probabilities of 
each bit were obtained directly from the previously transmitted bits and used to control a 
non-adaptive arithmetic coder. This result was important because it provides a new inter-



  10  

pretation of the relative importance of contextual information, since the Tarp filter does 
not incorporate accurate positional information (e.g. edge estimation) into the probability 
estimate. Because the Tarp filter in [2] operates directly on the bits, a new way of using it 
is necessary when encoding multilevel wavelet coefficients without using bitplanes. In 
this paper we cover that gap: we introduced a way of using a 2-D “Tarp” filter, to obtain 
probability estimates for multilevel wavelet coefficients. Instead of directly computing 
probabilities, we use the Tarp filter to predict the variance of the coefficient, and then use 
that to obtain a PDF estimate by using a PDF model. We have also shown how we can 
refine the PDF estimate during the transmission of a coefficient by using the partial in-
formation transmission principle.  

The Tarp filter has low computational requirements and the proposed recursive PDF 
estimation and arithmetic encoding can be done in an efficient way.  

Like the original Tarp, our encoder does not use of accurate positional information. 
The performance – around 8% better than JPEG2000 – is similar to much more complex 
encoders, which make use of this information. We believe incorporating this information 
into a Tarp encoder will yield even better results 
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