
Probabilistic Programs as Spreadsheet Queries

Andrew D. Gordon
Claudio Russo

Marcin Szymczak
Johannes Borgström

Nicolas Rolland
Thore Graepel
Daniel Tarlow

November 2014

Technical Report
MSR–TR–2014–135

Microsoft Research
21 Station Road

Cambridge, CB1 2FB
United Kingdom

Probabilistic Programs as Spreadsheet Queries

Andrew D. Gordon1,2 Claudio Russo1 Marcin Szymczak2

Johannes Borgström3 Nicolas Rolland1 Thore Graepel1 Daniel Tarlow1

1Microsoft Research 2University of Edinburgh 3Uppsala University

Abstract. We describe the design, semantics, and implementation of a proba-
bilistic programming language where programs are spreadsheet queries. Given
an input database consisting of tables held in a spreadsheet, a query constructs
a probabilistic model conditioned by the spreadsheet data, and returns an output
database determined by inference. This work extends probabilistic programming
systems in three novel aspects: (1) embedding in spreadsheets, (2) dependently-
typed functions, and (3) typed distinction between random- and query-variables.
It empowers users with knowledge of statistical modelling to do inference simply
by editing textual annotations within their spreadsheets, with no other coding.

1 Spreadsheets and Typeful Probabilistic Programming

Probabilistic programming systems [14, 17] enable a developer to write a short piece of
code that models a dataset, and then to rely on a compiler to produce efficient inference
code to learn parameters of the model and to make predictions. Still, a great many of the
world’s datasets are held in spreadsheets, and accessed by users who are not developers.
How can spreadsheet users reap the benefits of probabilistic programming systems?

Our first motivation here is to describe an answer, based on an overhaul of Tabular
[16], a probabilistic language based on annotating the schema of a relational database.
The original Tabular is a standalone application that runs fixed queries on a relational
database (Microsoft Access). We began the present work by re-implementing Tabular
within Microsoft Excel, with the data and program held in spreadsheets.

The conventional view is that the purpose of a probabilistic program is to define the
random-variables whose marginals are to be determined (as in the query-by-missing-
value of original Tabular). In our experience with spreadsheets, we initially took this
view, and relied on Excel formulas, separate from the probabilistic program, for post-
processing tasks such as computing the mode (most likely value) of a distribution, or
deciding on an action (whether or not to place a bet, say). We found, to our surprise,
that combining Tabular models and Excel formulas is error-prone and cumbersome,
particularly when the sizes of tables changes, the parameters of the model change, or
we simply need to update a formula for every row of a column.

In response, our new design contributes the principle that a probabilistic program
defines a pseudo-deterministic query on data. The query is specified in terms of three
sorts of variable: (1) deterministic variables holding concrete input data; (2) nonde-
terministic random-variables constituting the probabilistic model conditioned on input
data; and (3) pseudo-deterministic query-variables defining the result of the program
(instead of using Excel formulas). Random-variables are defined by draws from a set

of builtin distributions. Query-variables are defined via an infer primitive that returns
the marginal posterior distributions of random-variables. For instance, given a random-
variable of Boolean type, infer returns the probability p that the variable is true. In
theory, infer is deterministic—it has an exact semantics in terms of measure theory;
in practice, infer (and hence the whole query) is only pseudo-deterministic, as imple-
mentations almost always perform approximate or nondeterministic inference. We have
many queries as evidence that post-processing can be incorporated into the language.

Our second motivation is to make a case for typeful probabilistic programming in
general, with evidence from our experience of overhauling Tabular for spreadsheets.
Cardelli [7] identifies the programming style based on widespread use of mechanically-
checked types as typeful programming. Probabilistic languages that are embedded DSLs,
such as HANSEI [19], Fun [3], and Factorie [22], are already typeful in that they in-
herit types from their host languages, while standalone languages, such as BUGS [11]
or Stan [35], have value-indexed data schemas (but no user-defined functions). Still, we
find that more sophisticated forms of type are useful in probabilistic modelling.

We make two general contributions to typeful probabilistic programming.
(1) Value-indexed function types usefully organise user-defined components, such as
conjugate pairs, in probabilistic programming languages.

We allow value indexes in types to indicate the sizes of integer ranges and of array
dimensions. We add value-indexed function types for user-defined functions, with a
grid-based syntax. The paper has examples of user-defined functions (such as Action
in Section 6) showing their utility beyond the fixed repertoire of conjugate pairs in the
original Tabular. An important difficulty is to find a syntax for functions and their types
that fits with the grid-based paradigm of spreadsheets.
(2) A type-based information-flow analysis usefully distinguishes the stochastic and
deterministic parts of a probabilistic program.

To track the three sorts of variable, each type belongs to a space indicating whether
it is: (det) deterministic input data, (rnd) a non-deterministic random-variable defin-
ing the probabilistic model of the data, or (qry) a pseudo-deterministic query-variable
defining a program result. Spaces allow a single language to define both model and
query, while the type system governs flows between the spaces: data flows from rnd to
qry via infer, but to ensure that a query needs only a single run of probabilistic infer-
ence, there are no flows from qry to rnd. There is an analogy between our spaces and
levels in information flow systems: det-space is like a level of trusted data; rnd-space
is like a level of untrusted data that is tainted by randomness; and qry is like a level of
trusted data that includes untrusted data explicitly endorsed by infer.

The benefits of spaces include: (1) to document the role of variables, (2) to slice a
program into the probabilistic model versus the result query, and (3) to prevent acci-
dental errors. For instance, only variables in det-space may appear as indexes in types
to guarantee that our models can be compiled to the finite factor-graphs supported by
inference backends such as Infer.NET [23].

This paper defines the syntax, semantics, and implementation of a new, more typeful
Tabular. Our implementation is a downloadable add-in for Excel. For execution on data
in a spreadsheet, a Tabular program is sliced into (1) an Infer.NET model for inference,
and (2) a C# program to compute the results to be returned to the spreadsheet.

4

The original semantics of Tabular uses the higher-order model-learner pattern [15],
based on a separate metalanguage. Given a Tabular schema S and an input database DB
that matches S, our semantics consists of two algorithms.

(1) An algorithm CoreSchema(S) applies a set of source-to-source reductions on S to
yield S′, which is in a core form of Tabular without user-defined functions and some
other features.

(2) An algorithm CoreQuery(S′,DB) first constructs a probabilistic model based on
the rnd-space variables in S′ conditioned by DB, and then evaluates the qry-space
variables in S′ to assemble an output database DB′.

Our main technical results about the semantics are as follows.

(1) Theorem 1 establishes that CoreSchema(S) yields the unique core form S′ of a
well-typed schema S, as a corollary of standard properties of our reduction relation
with respect to the type system (Proposition 1, Proposition 2, and Proposition 3).

(2) Theorem 2 establishes pre- and post-conditions of the input and output databases
when DB′ = CoreQuery(S′,DB).

Beyond theory, the paper describes many examples of the new typeful features of
Tabular, including a detailed account of Bayesian Decision Theory, an important ap-
plication of probabilistic programming, not possible in the original form of Tabular. A
language like IBAL or Figaro allows for rational decision-making, but via decision-
specific language features, rather than in the core expression language. We present a
numeric comparison of a decision theory problem expressed in Tabular versus the same
problem expressed in C# with direct calls to Infer.NET, showing that we pay very little
in performance in return for a much more succinct spreadsheet program. As evidence
that Tabular is widely applicable an appendix lists over a dozen different models, eval-
uated on millions of rows of data, that are available in our download.

Structure of the Paper Section 2 motivates Tabular’s new syntax for functions and
queries with a worked example.

Section 3 presents our new design for Tabular, including its deterministic reduction
relation to transform to core form, without function calls or indexed models.

Section 4 introduces a source-to-source transformation that reduces programs to a
core form.

Section 5 introduces our system of dependent types, and formulates the algorithms
CoreSchema and CoreQuery, and states their correctness as Theorem 1 and Theorem 2.

Section 6 recalls the standard Bayesian framework for making decisions under un-
certainty, and shows how such decisions may be expressed in Tabular using rnd-space
variables for the probabilistic model, and qry-space variables to compute decisions.

Section 7 describes our implementation, including evaluations. Section 8 discusses
related work, and Section 9 concludes.

Additional details and proofs omitted from the main body of the paper are grouped
in an appendix.

Appendix A lists some builtin functions. Appendix B describes over a dozen exam-
ple models run using Tabular in Excel. Appendix C shows the C# code generated from
the Old Faithful clustering model.

5

Appendix D defines alpha-conversion on the syntax of Tabular, and shows some
syntactic properties of the reduction relations. Appendix E defines the semantics of Core
Tabular in detail, thus completing the sketch of the semantics in Section 5.3. Appendix F
gives proofs for Proposition 1, Proposition 2, and Proposition 3 stated in Section 5.

2 Functions and Queries, by Example

Primer: Discrete and Dirichlet Distributions To begin to describe the new features
of Tabular, we recall a couple of standard distributions. If array V = [p0; . . . ; pn−1] is a
probability vector (that is, each pi is a probability and they sum to 1) then Discrete[n](V)
is the discrete distribution that yields a sample i ∈ 0..n−1 with probability pi. The dis-
tribution Discrete[2]([1

2 ; 1
2]) models a coin that we know to be fair. If we are uncertain

whether the coin is fair, we need a distribution on probability vectors to represent our
uncertainty. The distribution Dirichlet[n]([c0; . . . ;cn−1]) on a probability vector V repre-
sents our uncertainty after observing a count ci−1 of samples of i from Discrete[n](V)
for i ∈ 0..n−1. We omit the formal definition, but discuss the case n = 2.

A probability vector V drawn from Dirichlet[2]([t + 1;h+ 1]) represents our un-
certainty about the bias of a coin after observing t tails and h heads. It follows that
V = [1− p; p] where p is the probability of heads. The expected value of p is h+1

t+h+2 ,
and the variance of p diminishes as t and h increase. If t = h = 0, the expected value
is 1

2 and p is uniformly distributed on the unit interval. If t = h = 10 say, the expected
value remains 1

2 but p is much more likely near the middle than the ends of the interval.

Review: Probabilistic Schemas in Tabular Suppose we have a table named Coins with a
column Flip containing a series of coin flips and wish to infer the bias of the coin. (The
syntax [for i < 2→1.0] is an array comprehension, in this case returning [1.0,1.0].)

Coins
ID Flip
0 1
1 1
2 0

table Coins (original Tabular)
V real[] static output Dirichlet[2]([for i < 2 →1.0])
Flip int output Discrete[2](V)

The model above (in original Tabular up to keyword renaming) is read as a prob-
abilistic recipe for generating the coin flips from the unknown parameter V, condi-
tioned on the actual dataset. The first line creates a random variable V = [1− p; p]
from Dirichlet[2]([1;1]), which amounts to choosing the probability p of heads uni-
formly from the unit interval. The second line creates a random variable Flip from
Discrete[n](V) for each row of the table and conditions the variable in each row to equal
the actual observed coin flip, if it is present. Each Tabular variable is either at static- or
inst-level. A static-variable occurs just once per table, whereas an inst-variable occurs
for each row of the table. The default level is inst, so Flip is at inst-level.

6

Now, suppose the data for the column Flip is [1;1;0]; the prior distribution of V
is updated by observing 2 heads and 1 tails, to yield the posterior Dirichlet[2]([2;3]),
which has mean 3

5 . Given our example model, the fixed queries of this initial form of
Tabular compute the posterior distribution of V, and write the resulting distributions as
strings into the spreadsheet, as shown below. The missing value in cell B6 of the Flip
column is predicted by the distribution in cell M6: 60% chance of 1, 40% chance of 0.
(Cells E2 and E3 show dependent types of our new design, not of the original Tabular.)

New Features of Tabular Our initial experience with the re-implementation shows that
writing probabilistic programs in spreadsheets is viable but suggests three new language
requirements, explained in the remainder of this section.

(1) User-defined functions for abstraction (to generalize the fixed repertoire of primi-
tive models in the original design).

(2) User-defined queries to control how parameters and predictions are inferred from
the model and returned as results (rather than simply dumping raw strings from
fixed queries).

(3) Value-indexed dependent types (to catch errors with vectors, matrices, and integer
ranges, and help with compilation).

Next, we sketch how our new design meets these requirements.

(1) User-Defined Functions The Coins example shows the common pattern of a discrete
distribution with a Dirichlet prior. We propose to write a function for such a pattern as
follows. It explicitly returns the ret output but also implicitly returns the V output.

fun CDiscrete
N int!det static input
R real!rnd static input
V real[N]!rnd static output Dirichlet[N]([for i < N →R])
ret mod(N)!rnd output Discrete[N](V)

In a table description, input-attributes refer implicitly to fully-observed columns
in the input database. On the other hand, a function is explicitly invoked using syntax
like CDiscrete(N = 2;R = 1), and the input-attributes N and R refer to the argument
expressions, passed call-by-value.

(2) User-Defined Queries To support both the construction of probabilistic models for
inference, and the querying of results, we label each type with one of three spaces:

(1) det-space is for fully-observed input data;
(2) rnd-space is for probabilistic models, conditioned by partially-observed input data;

7

(3) qry-space is for deterministic results queried from the inferred marginal distribu-
tions of rnd-space variables.

We organise the three spaces via the least partial order given by det < rnd and
det < qry, so as to induce a subtype relation on types. Moreover, to allow flows from
rnd-space to qry-space, an operator infer.D.yi(x) computes the parameter yi in qry-
space of the marginal distribution D(y1, . . . ,yn) of an input x in rnd-space.

For example, here is a new model of our Coins table, using a call to CDiscrete to
model the coin flips in rnd-space, and to implicitly define a rnd-space variable V for
the bias of the coin. Assuming our model is conditioned by data [1;1;0], the marginal
distribution of V is Dirichlet[2]([2;3]) where [2;3] is the counts-parameter. Hence, the
call infer.Dirichlet[2].counts(V) yields [2;3], and the query returns the mean 3

5 .

table Coins
Flip mod(2)!rnd output CDiscrete(N=2;R=1)(∗returns Flip and Flip V∗)
counts real[2]!qry static local infer.Dirichlet[2].counts(Flip V)
Mean real!qry static output counts[1]/(counts[1]+counts[0])

Our reduction relation rewrites this schema to the following core form.

table Coins
R real!rnd static local 1
Flip V real[2]!rnd static output Dirichlet[2]([for i < 2 →R])
Flip mod(2)!rnd output Discrete[2](V)
counts real[2]!qry static local infer.Dirichlet[2].counts(Flip V)
Mean real!qry static output counts[1]/(counts[1]+counts[0])

(3) Simple Dependent Types Our code has illustrated dependent types of statically-
sized arrays and integer ranges: values of T [e] are arrays of T of size e, while values of
mod(e) are integers in the set 0..(e−1). In both cases, the size e must be a det-space
int. (Hence, the dependence of types on expressions is simple, and all sizes may be
resolved statically, given the sizes of tables.) The use of dependent types for arrays is
standard (as in Dependent ML [38]); the main subtlety in our probabilitic setting is the
need for spaces to ensure that indexes are deterministic.

Primitive distributions have dependent types:

Distributions: Dspc : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T

Discretespc : [N : int!det](probs : real!spc[N])→mod(N)!rnd
Dirichletspc : [N : int!det](counts : real!spc[N])→ (real!rnd)[N]

User-defined functions have dependent types written as grids, such as the following
type QCDiscrete for CDiscrete:

N int!det static input
R real!rnd static input
V real[N]!rnd static output
ret mod(N)!rnd output

Finally, the table type for our whole model of the Coins table is the following grid.
It lists the rnd-space variables returned by CDiscrete as well as the explicitly defined
Mean. Attributes marked as local are private to a model or function, are identified up

8

to alpha-equivalence, and do not appear in types. Attributes marked as input or output
are binders, but are not identified up to alpha-equivalence, and are exported from tables
or functions. Their names must stay fixed because of references from other tables.

V real[2]!rnd static output
Flip mod(2)!rnd output
Mean real!qry static output

3 Syntax of Tabular Enhanced with Functions and Queries

We describe the formal details of our revision of Tabular in this section. In the next,
Section 4, we show how features such as function applications may be eliminated by
reducing schemas to a core form with a direct semantics.

Column-Oriented Databases Let t range over table names and c range over attribute
names. We consider a database to be a pair DB = (δin,ρsz) consisting of a record of
tables δin = [ti 7→ τi

i∈1..n], and a valuation ρsz = [ti 7→ szi
i∈1..n] holding the number of

rows szi ∈ N in each column of table ti. Each table τi = [ci 7→ ai
j∈1..mi] is a record of

attributes ai. An attribute is a value V tagged with a level `. An attribute is normally a
whole column inst(V), where V is an array of length szi and the level inst is short for
“instance”. It may also be a single value, static(V), a static attribute. The main purpose
of allowing static attributes is to return individual results (such as Mean in our Coins
example) from queries. The static attributes of a Tabular table can be implemented in
a relational store by introducing an auxiliary relation with a single row containing the
static attributes.

Databases, Tables, Attributes, and Values:

δin ::= [ti 7→ τi
i∈1..n] whole database

τ ::= [ci 7→ ai
i∈1..m] table in database

a ::= `(V) attribute value: V with level `
V ::= ? | s | [V0, . . . ,Vn−1] nullable value
`, pc ::= static | inst level (static< inst)

For example, the data for our Coins example is DB = (δin,ρsz) where δin = [Coins 7→
[Flip 7→ inst([1;1;0])]] and ρsz = [Coins 7→ 3].

In examples, we assume each table has an implicit primary key ID and that the keys
are in the range 0..szi−1. A value V may contain occurrences of “?”, signifying missing
data; we write known(V) if V contains no occurrence of ?. Otherwise, a value may be
an array, or a constant s: either a Boolean, integer, or real.

Syntax of Tabular Expressions and Schemas An index expression e may be a variable
x or a constant, and may occur in types (as the size of an array, for instance). Given a
database DB = (δin,ρsz), sizeof(t) denotes the constant ρsz(t). Attribute names c (but
not table names) may occur in index expressions as variables. A attribute type T can be
a scalar, a bounded non-negative integer or an array. Each type has an associated space
(which is akin to an information-flow level, but independent of the notion of level in
Tabular, introduced later on). (The type system is discussed in detail in Section 5.)

9

Index Expressions, Spaces and Dependent Types of Tabular:

e ::= index expression
x variable
s scalar constant
sizeof(t) size of a table

S ::= bool | int | real scalar type
spc ::= det | rnd | qry space
T,U ::= (S ! spc) | (mod(e) ! spc) | T [e] (attribute) type

space(S ! spc), spc space(T [e]), space(T) space(mod(e) ! spc), spc
spc(T), space(T) = spc

We write link(t) as a shorthand for mod(sizeof(t)), for foreign keys to table t.
The syntax of (full) expressions includes index expressions, plus deterministic and

random operations. We assume sets of deterministic functions g, and primitive dis-
tributions D. These have type signatures, as illustrated for Discrete and Dirichlet in
Section 2. In D[e1, . . . ,em](F1, . . . ,Fn), the arguments e1, . . . , em index the result type,
while F1, . . . , Fn are parameters to the distribution. The operator infer.D[e1, . . . ,em].y(x)
is described intuitively in Section 2. We write fv(T) and fv(E) for the sets of variables
occurring free in type T and expression E.

Expressions of Tabular:

E,F ::= expression
e index expression
g(E1, . . . ,En) deterministic primitive g
D[e1, . . . ,em](F1, . . . ,Fn) random draw from distribution D
if E then F1 else F2 if-then-else
[E1, . . . ,En] | E[F] array literal, lookup
[for x < e→ F] for-loop (scope of index x is F)
infer.D[e1, . . . ,em].y(x) parameter y of inferred marginal of x
E : t.c dereference link E to instance of c
t.c dereference static attribute c of t

A Tabular schema is a relational schema with each attribute annotated not just with
a type T , but also with a level `, a visibility viz, and a model expression M.

Tabular Schemas:

S ::= [(t1 = T1); . . . ;(tn = Tn)] (database) schema
T ::= [col1; . . . ;coln] table (or function)
col ::= (c : T ` viz M) attribute c declaration
viz ::= input | local | output visibility
M,N ::= ε | E |M[eindex < esize] | T R model expression
R ::= (c1 = e1, . . . ,cn = en) function arguments

10

For (c : T ` viz M) to be well-formed, viz = input if and only if M = ε . We only
consider well-formed declarations. The visibility viz indicates whether the attribute c is
given as an input, defined locally by the model expression M, or defined as an output by
the model expression M. When omitted, the level of an attribute defaults to inst. (We
define the formal relationship between a schema and its input and output databases in
Appendix E.3.)

Functions, Models, and Model Expressions A challenge for this paper was to find a
syntax for functions that is compatible with the grid-format of spreadsheets; we do so
by re-interpreting the syntax T for tables as also the syntax of functions. A function is a
table of the form T = [col1; . . . ;coln;(ret : T output E)]. A model is a function where
each coli is a local or an output. A model expression M denotes a model as follows:

– An expression E denotes the model that simply returns E.
– A function application T (c1 = e1, . . . ,cn = en) denotes the function T, but with

each of its inputs ci replaced by ei.
– An indexed model M[eindex < esize] denotes the model for M, but with any rnd
static attribute c replicated esize times, as an array, and with references to c replaced
by the lookup c[eindex].

Formally, functions are embedded within our syntax of function applications T R. In
practice, our implementation supports separate function definitions written as fun f T,
such as CDiscrete in Section 1 and CG in Section 6. A function reference (within a
model expression) is written f R to stand for T R.

Indexed models appear in the original Tabular, while function applications are new.

Binders and Alpha-Equivalence All attribute names c are considered bound by their
declarations. The names of local attributes are identified up to alpha-equivalence. The
names of input and output attributes are considered as fixed identifiers (like the fields
of records) that export values from a table, and are not identified up to alpha-equivalence,
because changing their names would break references to them.

Let inputs(T) be the input attributes of table T, that is, the names c in (c : T ` input ε).
Let locals(T) be all the local attributes of table T, that is, the names c in (c : T ` local M).
Let outputs(T) be all the output attributes of table T, that is, the names c in (c :
T ` output M) plus outputs(M), where the latter consists of the union of outputs(Ti)
for any applications of Ti within M. Let dom(T) be the union inputs(T)∪ locals(T)∪
outputs(T). Hence, the free variables fv(T) are given by:

fv((c : T ` viz M) :: T′), fv(T)∪ fv(M)∪ (fv(T′)\ ({c}∪outputs(M))) fv([]), {}

4 Reducing Schemas to Core Tabular

We define reduction relations that explain the meaning of function calls and indexed
models by rewriting, and hence transforms any well-typed schema to a core form. The
reduction semantics allows us to understand indexed models, and also function calls,
within the Tabular syntax. Hence, this semantics is more direct and self-contained than
the original semantics of Tabular [16], based on translating to a semantic metalanguage.

11

If all the attributes of a schema are simple expressions E instead of arbitrary model
expressions, we say it is in core form:

Core Attributes, Tables, and Schemas:

Core((c : T ` input ε)) Core((c : T ` local E)) Core((c : T ` output E))
Core([col1; . . . ;coln]) if Core(col1), . . . , Core(coln)
Core([ti = Ti

i∈1..n]) if Core(Ti) for each i ∈ 1..n

To help explain our reduction rules, consider the following function definition.

fun CG
M real!det static input
P real!det static input
Mean real!rnd static output GaussianFromMeanAndPrecision(M,P)
Prec real!rnd static output Gamma(1.0,1.0)
ret real!rnd output GaussianFromMeanAndPrecision(Mean,Prec)

The following mixture model, for a dataset consisting of durations and waiting times
for Old Faithful eruptions, uses three function applications and two indexed models.
Each row of the model belongs to one of two clusters, indicated by the attribute cluster;
the indexed models for duration and time give different means and precisions depend-
ing on the value of cluster. Since cluster is an output, Tabular allows missing values
in that column (and indeed they are all missing), but the qry-space assignment returns
the most likely cluster for each row as the result of the query.

table faithful
cluster mod(2)!rnd output CDiscrete(N=2)
duration real!rnd output CG(M=0.0, P=1.0)[cluster < 2]
time real!rnd output CG(M=60.0, P=1.0)[cluster < 2]
assignment mod(2)!qry output ArgMax(infer.Discrete[2].probs(cluster))

To eliminate compound model expressions from schemas such as this, we define
rules for the reduction of function applications and the operation of table indexing.

The relation T ` R o T1 means that T1 is the outcome of substituting the argu-
ments R for the input attributes of the function T, within an attribute named o. For
example, for the function application in the duration attribute, we have CG ` [M =
0.0, p = 1.0] duration CG1, where CG1 is as follows:

duration Mean real!rnd static output GaussianFromMeanAndPrecision(0.0, 1.0)
duration Prec real!rnd static output Gamma(1.0, 1.0)
duration real!rnd output GaussianFromMeanAndPrecision(duration Mean, duration Prec)

The inductive definition follows. Rule (APPLY INPUT) instantiates an input c with
an argument e; (APPLY SKIP) prefixes local and output attributes with o; and (APPLY
RET) turns the ret attribute of the function into name o of the call-site.

Inductive Definition of Function Application: T ` R o T1

(APPLY RET)

[(ret : T ` viz E)] ` [] o [(o : T ` viz E)]

(APPLY INPUT)
T{e/c} ` R o T1 dom(T)∩ fv(e) =∅
(c : T ` input ε) :: T ` [c = e] :: R o T1

12

(APPLY SKIP) (viz ∈ {local,output})
T{o c/c} ` R o T1 c /∈ fv(R)

(c : T ` viz E) :: T ` R o (o c : T ` viz E) :: T1

Next, we define T[e1 < e2] to be the outcome of indexing the static rnd variables
of a core table T, that is, turning each into an array of size e2, and references to those
variables into array accesses indexed by e1. For instance, CG1[cluster < 2] is equal to:

duration Mean real[2]!rnd static output [for < 2 →GaussianFromMeanAndPrecision(0.0, 1.0)]
duration Prec real[2]!rnd static output [for < 2 →Gamma(1.0, 1.0)]
duration real!rnd output GaussianFromMeanAndPrecision(duration Mean[cluster], duration Prec[cluster])

Table Indexing: T[e1 < e2]

[][e1 < e2], []
((c : T ` input ε) :: T)[e1 < e2], ((c : T ` input ε) :: T[e1 < e2])
((c : T ` viz E) :: T)[e1 < e2],

(c : T [e2] ` viz [for < e2→ E]) :: T{c[e1]/c} [e1 < e2]
if `= static and viz 6= input and rnd(T)

(c : T ` viz E) :: T[e1 < e2] if `= inst or viz = input or ¬rnd(T)

Below, we give inductive definitions of reduction relations on schemas, tables, and
model expressions. There are congruence rules, plus (RED INDEX) and (RED INDEX
EXPR) for indexed models, and (RED APPL) for applications. The latter needs addi-
tional operations T∧ ` and T∧viz, to adjust the model T of function body to the level `
and visibility viz of the call-site. These operators drop any output attributes to local, if
the callsite is local, and drop any inst-level attributes to static, if the callsite is static.

– Consider the 2-point lattice static < inst. Let T∧ ` be the outcome of changing
each (c : T `c viz M) in T to (c : T (`c∧ `) viz M). Hence, T∧ inst is the identity,
while T∧ static drops inst variables to static variables.

– Consider the 2-point lattice local< output. Let T∧viz be the outcome of changing
each (c : T ` vizc M) in T to (c : T ` (vizc ∧ viz) M). Hence, T∧ output is the
identity, while T∧ local drops output variables to local variables.

Judgments:

S→ S′ schema reduction
T→ T′ table reduction
M→M′ model reduction

Reduction Relations: S→ S′, T→ T′, M→M′

(RED SCHEMA LEFT)
T→ T′

(t = T) :: S→ (t = T′) :: S

(RED SCHEMA RIGHT)
S→ S′ Core(T)
(t = T) :: S→ (t = T) :: S′

13

(RED MODEL)
M→M′

(c : T ` viz M) :: T→ (c : T ` viz M′) :: T

(RED TABLE RIGHT)
T→ T′ Core(col)

col :: T→ col :: T′

(RED INDEX INNER)
M→M′

M[eindex < esize]→M′[eindex < esize]

(RED INDEX)
Core(T) fv(eindex,esize)∩ (dom(T)) =∅
(T R)[eindex < esize]→ (T[eindex < esize] R)

(RED INDEX EXPR)

E[eindex < esize]→ E

(RED APPL) (for Core(T))
((T∧ `)∧ viz) ` R o T1
(locals(T)∪ inputs(T))∩ (fv(T′)∪dom(T′)) =∅
(o : T ′ ` viz (T R)) :: T′→ T1@T′

.
The purpose of the side-condition on (RED APPL) is to avoid variable-capture after

reduction. The set outputs(T∧ viz) consists of the fields exported from the body of the
function. The set locals(T)∩ fv(T′) consists of the variables in T′ that are captured by
inlining the binders in T; there should be no more of these captures than expected by
the exports of the function body.

By using the above rules to expand out the three function calls and the two model
expressions in the Old Faithful example, we obtain the core model below:

table faithful
cluster V real[2]!rnd static output Dirichlet[2]([for i < 2 →1.0])
cluster mod(2)!rnd output Discrete[2](cluster V)
duration Mean real[2]!rnd static output [for < 2 →GaussianFromMeanAndPrecision(0.0, 1.0)]
duration Prec real[2]!rnd static output [for < 2 →Gamma(1.0, 1.0)]
duration real!rnd output GaussianFromMeanAndPrecision(duration Mean[cluster], duration Prec[cluster])
time Mean real[2]!rnd static output [for < 2 →GaussianFromMeanAndPrecision(60.0, 1.0)]
time Prec real[2]!rnd static output [for < 2 →Gamma(1.0, 1.0)]
time real!rnd output GaussianFromMeanAndPrecision(time Mean[cluster], time Prec[cluster])
assignment mod(2)!qry output ArgMax(infer.Discrete[2].probs(cluster))

Moreover, here is a screen shot (best viewed in colour) of the model in Excel.

14

5 Dependent Type System and Semantics

5.1 Dependent Type System

The expressions of Tabular are based on the probabilistic language Fun [4]. We signifi-
cantly extend Fun by augmenting its types with the three spaces described in Section 1,
adding value-indexed dependent types including statically-bounded integers and sized
arrays, and additional expressions including an operator for inference and operations
for referencing attributes of tables and their instances.

We use table types Q both for functions and for concrete tables. When used to type a
function Q must satisfy the predicate fun(Q), which requires it to use the distinguished
name ret for the explicit result of the function (its final output). When used to type a
concrete table Q must satisfy the predicate table(Q), which ensures that types do not
depend on the contents of any input table t (except for the sizes of tables). We only need
table(Q) to define a conformance relation on databases and schema types. The schema
type QCDiscrete is listed in Section 1 in a grid form, instead of the textual notation below.

Table and Schema Types:

Q ::= [(ci : Ti `i vizi)
i∈1..n] table type (ci distinct, vizi 6= local)

Sty ::= [(ti : Qi)
i∈1..n] schema type (ti distinct)

fun(Q) iff vizn = output and cn = ret.
model(Q) iff fun(Q) and each vizi = output.
table(Q) iff for each i ∈ 1..n, `i = static⇒ rnd(Ti)∨qry(Ti).

Free Variables: fv(Q)

fv([]) =∅
fv(((c : T ` viz)) :: Q) = fv(T)∪ (fv(Q)\{c})

Tabular typing environments Γ are ordered maps associating variables with their
declared level and type, and table identifiers with their inferred table types. The typing
rules will prevent expressions typed at level static from referencing inst level variables.

Tabular Typing Environments:

Γ ::=∅ | (Γ ,x :` T) | (Γ , t : Q) environment
γ([(ci : Ti `i vizi)

i∈1..n]), ci :`i Ti
i∈1..n Q as an environment

Next, we present the judgments and rules of the type system.

15

Judgments of the Tabular Type System:

Γ ` � environment Γ is well-formed
Γ ` T in Γ , type T is well-formed
Γ `pc e : T in Γ at level pc, index expression e has type T
Γ ` Q in Γ , table type Q is well-formed
Γ ` Sty in Γ , schema type Sty is well-formed
Γ ` T <: U in Γ , T is a subtype of U
Γ `pc E : T in Γ at level pc, expression E has type T
Γ `pc

o R : Q→ Q′ R sends function type Q to model type Q′ in column o
Γ `pc

o M : Q model expression M has model type Q
Γ `pc T : Q table T has type Q
Γ ` S : Sty schema S has type Sty

The formation rules for types and environments depend mutually on the typing rules
for index expressions. Only index expressions that are det-space and static-level may
occur in types. We write ty(s) for the scalar type S of the scalar s.

Rules for Types, Environments, and Index Expressions: Γ ` � Γ ` T Γ `pc e : T

(ENV EMPTY)

∅ ` �

(ENV VAR)
Γ ` T x /∈ dom(Γ)

Γ ,x :pc T ` �

(ENV TABLE) (table(Q))
Γ ` Q t /∈ dom(Γ)

Γ , t : Q ` �

(TYPE SCALAR)
Γ ` �
Γ ` S ! spc

(TYPE RANGE)
Γ `static e : int !det

Γ `mod(e) ! spc

(TYPE ARRAY)
Γ ` T Γ `static e : int !det

Γ ` T [e]

(INDEX VAR) (for `≤ pc)
Γ ` � Γ = Γ1,x :` T,Γ2

Γ `pc x : T

(INDEX SCALAR)
Γ ` � S = ty(s)

Γ `pc s : S !det

(INDEX MOD)
Γ ` � 0≤ n < m

Γ `pc n : mod(m) !det

(INDEX SIZEOF)
Γ ` � Γ = Γ ′, t : Q,Γ ′′

Γ `pc sizeof(t) : int !det

Formation Rules for Table and Schema Types: Γ ` Q Γ ` Sty

(TABLE TYPE [])
Γ ` �
Γ ` [] : []

(TABLE TYPE INPUT)
Γ ` T Γ ,c :` T ` Q

Γ ` (c : T ` input) :: Q

(TABLE TYPE OUTPUT)
Γ ` T Γ ,c :` T ` Q

Γ ` (c : T ` output) :: Q

(SCHEMA TYPE [])
Γ ` �
Γ ` [] : []

(SCHEMA TYPE TABLE)
Γ ` Q table(Q) Γ , t : Q ` Sty

Γ ` (t : Q) :: Sty

Subtyping allows det-space data to be used as rnd-space or qry-space data. The
preorder ≤ on spaces is the least reflexive relation to satisfy det≤ rnd and det≤ qry.
The default space is det, so when we write S or mod(e) as a type, we mean S ! det
or mod(e) ! det. We define a commutative partial operation spc∨ spc′, and lift this
operation to types T ∨ spc to weaken the space of a type.

16

Least upper bound: spc∨ spc′ (if spc≤ spc′ or spc′ ≤ spc)

spc∨ spc = spc det∨ rnd= rnd det∨qry = qry
(The combination rnd∨qry is intentionally not defined.)

Operations on Types and Spaces: T ∨ spc

(S ! spc)∨ spc′ , S ! (spc∨ spc′) T [e]∨ spc, (T ∨ spc)[e]
(mod(e) ! spc)∨ spc′ ,mod(e) ! (spc∨ spc′)

Given these definitions, we present the rules of subtyping and of typing expressions.

Rules of Subtyping: Γ ` T <: U

(SUB SCALAR)
Γ ` � spc1 ≤ spc2

Γ ` S ! spc1 <: S ! spc2

(SUB MOD)
Γ `static e : int !det spc1 ≤ spc2

Γ `mod(e) ! spc1 <: mod(e) ! spc2

(SUB ARRAY)
Γ ` T <: U
Γ `static e : int !det

Γ ` T [e]<: U [e]

As mentioned in Section 3, we assume a collection of total deterministic functions
g, including arithmetic and logical operators. Below, the scalar types all have the default
space of det. We have equality on integers, but not on reals. For each function symbol
g, we write g for its meaning as a total function on scalars.

Deterministic Primitives: gspc : (x1 : T1, . . . ,xn : Tn)→ T

(>)spc : (x1 : real!spc,x2 : real!spc)→ bool!spc
(>spc : (x1 : int!spc,x2 : int!spc)→ bool!spc
(=)spc : (x1 : int!spc,x2 : int!spc,)→ bool!spc
orspc : (x1 : bool!spc,x2 : bool!spc,)→ bool!spc
(−)spc : (x1 : real!spc,x2 : real!spc)→ real!spc
(−)spc : (x1 : int!spc,x2 : int!spc)→ int!spc

Here is a set of primitive distributions with their dependent signatures.

Distributions: Dspc : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T

Bernoullispc : (bias : real!spc)→ bool!rnd
Betaspc :: (a : real!spc,b : real!spc)→ real!rnd
Discretespc : [N : int!det](probs : real!spc[N])→mod(N)!rnd
Dirichletspc : [N : int!det](pseudocount : (real!spc)[N])→ (real!rnd)[N]
Gammaspc : (shape : real!spc,scale : real!spc)→ real!rnd
Gaussianspc : (mean : real!spc,variance : real!spc)→ real!rnd
VectorGaussianspc :
[N : int!det](mean : (real!spc)[N],covariance : real!spc[N][N])→
(real!rnd[N])

17

Lemma 1. Whenever Dspc : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T , each Ti is in
det-space, each Ui is in spc-space, and T is in rnd-space.

Proof: By inspection.

Typing Rules for Expressions: Γ `pc E : T

(SUBSUM)
Γ `pc E : T Γ ` T <: U

Γ `pc E : U

(INDEX EXPRESSION)
Γ `pc e : T E ≡ e

Γ `pc E : T

(DEREF STATIC)
Γ = Γ ′, t : Q,Γ ′′

Q = Q′@[(c : T static viz)]@Q′′

Γ `pc t.c : T

(DEREF INST)
Γ `pc E : link(t) ! spc
Γ = Γ ′, t : Q,Γ ′′ Q = Q′@[(c : T inst viz)]@Q′′

Γ `pc E : t.c : T ∨ spc

(RANDOM) (where σ(U),U{e1/x1} . . .{em/xm})
Drnd : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T
Γ `static ei : Ti ∀i ∈ 1..m Γ `pc Fj : σ(U j) ∀ j ∈ 1..n Γ ` �
{x1, . . . ,xm}∩ (

⋃
i fv(ei)) =∅ xi 6= x j for i 6= j

Γ `pc D[e1, . . . ,em](F1, . . . ,Fn) : σ(T)

(ITER) (where x /∈ fv(T))
Γ `static e : int !det
Γ ,x :pc (mod(e) !det) `pc F : T

Γ `pc [for x < e→ F] : T [e]

(INDEX)
space(T)≤ spc
Γ `pc E : T [e] Γ `pc F : mod(e) ! spc

Γ `pc E[F] : T ∨ spc

(INFER) (where σ(U),U{e1/x1} . . .{em/xm})
Dqry : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T
Γ `static ei : Ti ∀i ∈ 1..m Γ `pc x : σ(T) j ∈ 1..n
{x1, . . . ,xm}∩ (

⋃
i fv(ei)) =∅ xi 6= x j for i 6= j

Γ `pc infer.D[e1, . . . ,em].y j(x) : σ(U j)

(PRIM)
Γ ` � σi(T), T{E j/x j} j∈1..i−1 spc ∈ {det,rnd,qry}
g : (x1 : T1, . . . ,xn : Tn)→ T Γ `pc Ei : σi(Ti∨ spc) ∀i ∈ 1..n
{x1, . . . ,xn}∩ (

⋃
i fv(Ei)) =∅ xi 6= x j for i 6= j

Γ `pc g(E1, . . . ,En) : σn+1(T ∨ spc)

(IF)
Γ `pc E1 : (bool ! spc) Γ `pc E2 : T Γ `pc E3 : T space(T)≤ spc

Γ `pc if E1 then E2 else E3 : T ∨ spc

(ARRAY)
Γ ` � Γ `pc Ei : T ∀i ∈ 0..n−1

Γ `pc [E0, . . . ,En−1] : T [n]

18

For an example of (INFER), recall the expression infer.Dirichlet[2].counts(V) from
Section 1. Here m = n = 1, y1 = counts and U1 = real[N]!qry and σ = {2/N} and the
result type is σ(U1) = real[2]!qry. In (PRIM), notice that all the types Ti, T occuring in
the signature of the deterministic operator g are in det-space. Hence, the types Ti∨ spc
and T ∨ spc are well-defined.

Typing Rules for Arguments: Γ `pc
o R : Q→ Q′

(ARG INPUT)
Γ ``∧pc e : T Γ `pc

o R : Q{e/c}→ Q′

Γ `pc
o ((c = e) :: R) : ((c : T ` input) :: Q)→ Q′

(ARG OUTPUT)
Γ ` T Γ `pc

o R : Q{o c/c}→ Q′ c 6= ret

Γ `pc
o R : ((c : T ` output) :: Q)→ ((o c : T (`∧ pc) output) :: Q′)

(ARG RET)
Γ ` T

Γ `pc
o R : (ret : T ` output)→ (ret : T (`∧ pc) output)

For example, if QCDiscrete is the function type of CDiscrete from Section 1 we can
derive b :static real!rnd `instFlip (N = 2,alpha = b) : QCDiscrete→ Q′ where Q′, shown in
the grid below, represents the outputs of the function call. Since the inputs N and alpha
of CDiscrete are both static, arguments 2 and b are typed at level static∧ inst= static.

Flip V real[2]!rnd static output
ret mod(2)!rnd output

Next, we have rules for assigning a model type Q to a model expression M. (MODEL
INDEXED) needs the following operation Q[e] to capture the static effect of indexing:
It allows eindex to be in any space spc, but the typechecker might show a warning if
spc 6= rnd.

Indexing a Table Type: Q[e]

∅[e],∅
((c : T inst viz) :: Q)[e], (c : T inst viz) :: (Q[e])

((c : T static viz) :: Q)[e], (c : T static viz) :: (Q[e]) if viz = input or ¬rnd(T)
((c : T static viz) :: Q)[e], (c : T [e] static viz) :: (Q[e]) if viz 6= input and rnd(T)

The vectorized c cannot appear in Q when rnd(T), so Q[e] remains well-formed.

Typing Rules for Model Expressions: Γ `pc
o M : Q

(MODEL EXPRESSION)
Γ `pc E : T

Γ `pc
o E : [(ret : T pc output)]

(MODEL APPL)
Γ `pc T : Q fun(Q) Γ `pc

o R : Q→ Q′

Γ `pc
o T R : Q′

19

(MODEL INDEXED)
Γ `pc

o M : Q dom(Q)∩ fv(esize) =∅ Γ `pc eindex : mod(esize) ! spc

Γ `pc
o M[eindex < esize] : Q[esize]

Finally, we complete the system with rules for tables and schemas.

Typing Rules for Tables: Γ `pc T : Q

(TABLE [])
Γ ` �
Γ `pc [] : []

(TABLE INPUT)
Γ ,c :`∧pc T `pc T : Q

Γ `pc (c : T ` input ε) :: T : (c : T (`∧ pc) input) :: Q

(TABLE OUTPUT)
Γ ``∧pc

c M : Qc@[(ret : T (`∧ pc) output)] Γ ,γ(Qc),c :`∧pc T `pc T : Q

Γ `pc (c : T ` output M) :: T : Qc@((c : T (`∧ pc) output) :: Q)

(TABLE LOCAL) (where (dom(Qc)∪{c})∩ fv(Q) =∅)
Γ ``∧pc

c M : Qc@[(ret : T (`∧ pc) output)] Γ ,γ(Qc),c :`∧pc T `pc T : Q

Γ `pc (c : T ` local M) :: T : Q

Typing Rules for Schemas: Γ ` S : Sty

(SCHEMA [])
Γ ` �
Γ ` [] : []

(SCHEMA TABLE)
Γ `inst T : Q table(Q) Γ , t : Q ` S : Sty

Γ ` (t = T) :: S : (t : Q) :: Sty

5.2 Reduction to Core Tabular

Proposition 1 (Preservation).

(1) If Γ ` S : Sty and S→ S′ then Γ ` S′ : Sty.
(2) If Γ `pc T : Q and T→ T′ then Γ `pc T′ : Q.
(3) If Γ `pc M : Q and M→M′ then Γ `pc M′ : Q.

Proof: See Appendix F.2.

Proposition 2 (Progress). If Γ `pc S : Q either Core(S) or there is S′ such that S→ S′.

Proof: See Appendix F.3.

Proposition 3 (Termination). No infinite chain S0→ S1→ . . . exists.

Proof: See Appendix F.4

20

Algorithm 1: Reducing to Core Schema: CoreSchema(S)

(1) Compute S′ such that S→∗ S′ and Core(S′).
(2) Output S′.

As a corollary of our three propositions, we obtain:

Theorem 1. If ∅ ` S : Sty then CoreSchema(S) terminates with a unique schema S′
such that S→∗ S′ and Core(S′) and ∅ ` S′ : Sty.

Proof: By Proposition 2, if ∅` S : Sty and there is no S′ such that S→ S′, then Core(S).
By Proposition 3, there is no infinite chain S→ S1 → ··· → Si → The unique-
ness of S′ follows from the fact that the reduction rules are deterministic. Meanwhile,
∅ ` S′ : Sty follows from Proposition 1.

Although schemas define probabilistic models, reduction is deterministic because
it simply unravels model expressions into their core form, without any probabilistic
computation.

5.3 Semantics of Core Tabular (Sketch)

Following [4], we define a semantics based on measure theory for det and rnd-level
attributes, plus a set of evaluation rules for qry-level variables. For the sake of brevity,
we omit the precise definitions here, and instead sketch the semantics and state the key
theoretical result, illustrating it by example. We list the full details in Appendix E.

The denotational semantics of a schema S with respect to an input database δin is
a measure µ defined on the measurable space corresponding to this schema. In order
to evaluate the queries in the schema, we need to compute marginal measures for all
(non-qry) attributes of all tables. We do so dynamically by the query evaluation rules,
which construct for each table an environment ρ storing the marginal measures for all
random attributes, as well as values for non-random ones.

More precisely, our semantics for Tabular factors into an idealised, probabilistic de-
notational semantics (abstracting the details of approximate inference algorithms such
as Infer.NET and other potential implementations) and a mostly conventional opera-
tional semantics.

The denotational semantics interprets well-typed schema as inductively defined
measurable spaces, T[[S]]ρsz , and a (mathematical) function interpreting well typed schemas
P[[S]]δin

(τ,δ)
∈ T[[S]]ρsz as sub-probability measures describing the joint distribution µ of

random variables given the observed input database δin.
The relation δ `σ S ⇓ δout of our operational semantics takes as input marginal mea-

sures µi in σ for the tables and database (respectively), and the current operational en-
vironment δ (mapping qry and det attributes to values and rnd attributes to marginals),
and a schema. It returns an (output) database value δout : a nested map that assigns values
to each non-rnd attribute of the schema.

21

Algorithm 2: Query Semantics of Core Schema: CoreQuery(S,DB)

(1) Assume core(S), S= [(t1 = T1), . . . ,(tn = Tn)], and DB = (δin,ρsz).
(2) Let µ , P[[S]]δin

[]
(that is, the joint distribution over all rnd-variables).

(3) Let µi ,marg(µ, i,n) (that is, the marginal distribution for each table ti).
(4) Let σ̂ , [ti→ µ

i∈0..(n−1)
i].

(5) Return (δout ,ρsz) such that ∅ `σ̂ S ⇓ δout .

Theorem 2 below states that, given a well-typed schema and conforming database,
the composition of the denotational semantics and the deterministic evaluation relation
yields a well-typed output database (with the same dimensions). The notation DB |=in

Sty means that the database DB is a well-formed input to Sty; dually, DB |=out Sty means
that the database DB is a well-formed output of Sty.

Theorem 2. Suppose Core(S) and ∅ ` S : Sty and DB = (δin,ρsz) and DB |=in Sty.
Then algorithm CoreQuery(S,DB) returns DB′ = (δout ,ρsz) such that DB′ |=out Sty.

To illustrate, consider the Old Faithful schema shown in Section 4, together with an
input database (δin, [faithful 7→ 272]) with 272 rows (say) such as the following:

δin = [faithful 7→ [duration 7→ inst([1.9;4.0;4.9; . . .)]; time 7→ inst([50;75;80; . . .])]]

The final environment constructed by evaluation of the only table in this schema is:

[cluster V 7→ static(µDirichlet[2](1,1));
cluster 7→ inst([µ20; µ21; µ22; . . .]);
duration Mean 7→ static([µGaussian(0,1),µGaussian(0,1)]);
duration Prec 7→ static([µGamma(1,1),µGamma(1,1)]);
duration 7→ inst([µ50; µ51; µ52; . . .]);
time Mean 7→ static([µGaussian(60,1),µGaussian(60,1)]);
time Prec 7→ static([µGamma(1,1),µGamma(1,1)]);
time 7→ inst([µ80; µ81; µ82; . . .]);
assignment 7→ inst([0;1;1; ...])]

The output database is (δout , [faithful 7→ 272]) where δout contains those entries
from such environments which correspond to non-random attributes (that is, are not
measures). In our example, it is of the form:

δout = [faithful 7→ [assignment 7→ inst([0;1;1; . . .])]]

In this example, all of the inst arrays are of length 272.

6 Examples of Bayesian Decision Analysis in Tabular

To illustrate the value of query-space computations, we illustrate how they express a
range of decision problems. Decisions such as these cannot be expressed in the original

22

form of Tabular. Other probabilistic programming languages have built in constructs for
decision-making, whereas Tabular does so using ideas of information flow.

We describe how three example decision problems are written as Tabular queries.
The result of Bayesian inference is the posterior belief over quantities of interest, in-
cluding model parameters such as the rnd-space variable V in our coins example. These
inferences reflect a change of belief in light of data, but they are not sufficient for mak-
ing decisions, which requires optimization under uncertainty.

In Bayesian Decision Analysis, the decision making process is based on statisti-
cal inference followed by maximization of expected utility of the outcome. Following
Gelman et al. [10], Bayesian Decision Analysis can be described as follows:

(1) Enumerate sets D and X of all possible decision options d ∈D and outcomes x∈ X .
(2) Determine the probability distribution over outcomes x ∈ X conditional on each

decision option d ∈ D.
(3) Define a utility function U : X → R to value each outcome.
(4) Calculate the expected utility E[U(x)|d] as a function of decision option d and make

the decision with the highest expected utility.

In Tabular, the both the evaluation of the expected utility and the maximization can
be expressed as query expressions, thus making it possible to perform the entire process
of Bayesian Decision Analysis within the language.

(1) Optimal Betting Decisions Consider a situation in which to decide whether or not
to accept a given sports bet based on the TrueSkill model for skill estimation [18].
The following code shows the schema STrueSkill . Following [16], the tables Players and
Matches generate rnd-space variables for the results of matches between players, by
comparison of their per-match performances, modelled as noisy per-player skills.

table Players
Skill real!rnd output Gaussian(25.0,100.0)
table Matches
Player1 link(Players)!det input
Player2 link(Players)!det input
Perf1 real!rnd output Gaussian(Player1.Skill,100.0)
Perf2 real!rnd output Gaussian(Player2.Skill,100.0)
Win1 bool!rnd output Perf1 > Perf2
table Bets
Match link(Matches)!det input
Odds1 real!det input
Win1 bool!rnd output Match.Win1
p real!qry output infer.Bernoulli[].Bias(Win1)
U real[3]!det output [0.0;−1.0;Odds1 ∗ 1.0]
EU real[2]!qry output [U[0];((1.0 − p)∗ U[1])+ (p ∗ U[2])]
PlaceBet1 mod(2)!qry output ArgMax(EU)

Table Bets represents the decision theoretic part of the code and refers to Matches
together with the odds Odds1 offered for a bet on player 1 winning. Here, the two
decision options in D= {0,1} are to take the bet (PlaceBet1= 1) or not (PlaceBet1= 0),
and the three possible outcomes in X = {0,1,2} are abstain = 0, loss = 1 or win = 2.
The optimal decision depends on the odds: a risky bet may be worth taking if the odds
are good. The utility function U is given by money won for a fixed bet size of, say,
$1, so U(abstain) = 0.0, U(loss) = −$1.0, and U(win) = Odds1 ∗ $1.0. Variable p is

23

obtained from qry expression infer.Bernoulli.Bias(Win1) and represents the inferred
probability of a positive bet outcome. The qry variable PlaceBet1 is 1 if the expected
utility EU [1] = (1− p) · (−$1.0)+ p ·Odds1 ·$1.0 is greater than EU [0] = 0.0, that is,
betting is better than not betting. The ArgMax operator simply returns the first index (of
type mod(n)) of the maximum value in its array argument (of type real[n]). It returns
the decision delivering the maximum expected utility.

(2) Classes with Asymmetric Misclassification Costs Consider the task of n-ary classi-
fication with class-specific misclassification costs. We proceed by defining the schema
for a Naive Bayes classifier (see, for instance, Duda and Hart [9]), in terms of the func-
tion CG (from Section refsec:reduction) which represents a Gaussian distribution, with
static parameters assuming natural conjugate prior distributions. (A prior is called con-
jugate with respect to a likelihood if it takes the same functional form.)

Hence, we can write down the Naive Bayes model (for a simple gender classification
task) very succinctly as follows (using the indexed model notation from Section 3).

table People
g mod(2)!rnd output CDiscrete(N=2,R=1.0)
height real!rnd output (CG(M=0.0,P=1.0))[g<2]
weight real!rnd output (CG(M=0.0,P=1.0))[g<2]
footsize real!rnd output (CG(M=0.0,P=1.0))[g<2]
Us real[2][2]!qry static output [[0.0;−20.0];[−10.0;0.0]]
action mod(2)!qry output Action(N=2,UPT=Us,class=g)

The first four lines define a Naive Bayes model with Gaussian features height,
weight, and footsize, which are assumed to be distributed as independent Gaussians
conditional on knowing gender g. At this point, we could simply return the probability
vector infer.Discrete[2].probs(g): the probabilities that a person has either gender.

However, suppose we need to return a concrete gender decision and that for some
reason the cost of false positives differs from the cost of false negatives. Below we
encode how to decide whether to take the action of predicting the gender of 0 (female)
or 1 (male), given that: A false-positive (predict 1 but actually 0) costs 20. A false-
negative (predict 0 but actually 1) costs 10. A true-positive or true-negative costs 0. The
costs, expressed as negative utilities, are in the matrix Us.

The query defined by the model computes an action column, classifying each row,
taking into account the relative costs of false positives and false negatives. (It recom-
mends an action for all rows, even those already labelled with a gender.)

fun Action
N int!det static input
UPT real[N][N]!qry static input
class mod(N)!rnd input
probs real[N]!qry output infer.Discrete[N].probs(class)
EU real[N]!qry output [for p < N →Sum([for t < N →(probs[t] ∗ UPT[p][t])])]
ret mod(N)!qry output ArgMax(EU)

We see that the function evaluates N different expected utilities, one for each deci-
sion option. ArgMax returns the option delivering the maximum expected utility.

In terms of Bayesian Decision Analysis, the outcome space X is all (predicted class
(p), true class (t)) pairs, whose elements are given utilities by UPT. In the expected
utility (EU) computations, the Action function only sums over the N outcomes that are

24

consistent with the current p, that is, if the prediction is p, then the probability of any
outcome (p′, t) where p′ 6= p is 0 and can be dropped.

(3) F1 Score: Optimizing a more complex decision criterion We introduce another
model, the Bayes Point Machine, and use it to illustrate a more complicated utility
function, namely the F1 score. The F1 score is a measure of accuracy for binary classi-
fication that takes into account both false positives and false negatives.

table Data

.

.

.
ProbTrue real!qry output infer.Bernoulli[].Bias(Y)
Train bool!det input
table Ts
Th real!det input
Decisions bool[SizeOf(Data)] output [for d < SizeOf(Data)→d.ProbTrue > Th]
ETP real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& Decisions[d] then d.ProbTrue else 0.0])
EFP real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& Decisions[d] then 1.0 − d.ProbTrue else 0.0])
EFN real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& (!Decisions[d])then d.ProbTrue else 0.0])
EF1 real!qry output (2.0 ∗ ETP)/ ((2.0 ∗ ETP)+ EFP + EFN)
table Decisions
ChosenThID link(Ts)!qry static output ArgMax([for t < SizeOf(Ts)→t.EF1])
ChosenTh real!qry static output ChosenThID.Th
DataID link(Data)!det input
Decision bool!qry output ChosenThID.Decisions[DataID]

As can be seen from the full Tabular code in Figure 3 (in the appendix), in table Data
(abbreviated here), the data schema consists of seven real-valued clinical measurements
X0 to X6 and a Boolean outcome variable Y to be predicted. The model represents a
Bayes Point Machine [24] in which the prior over the weight vector W is drawn from a
VectorGaussian, and the label Y is generated by thresholding a noisy score Z which is
the inner product between the input vector and the weight vector W.

The set D of decision options is given in table Ts, which contains a number of pos-
sible thresholds Th for deciding on the test result depending on the marginal predictive
probability for the label queried, per data point, by the expression infer.Bernoulli[].Bias
(Y) in attribute ProbTrue. For each threshold, Decisions contains an array, indexed by
data points, containing the candidate decision for each data point. The columns ETP,
EFP, and EFN evaluate the expected number of true positives, false positives, and false
negatives, respectively, by summing the relevant marginal probabilities over test data,
which is valid due to linearity of the expectation operator. Finally, the approximate ex-
pected F1 score is calculated for each threshold using:

E[F1] = E
[

2 ·TP
2 ·TP+FP+FN

]
≈ 2 ·E[TP]

2 ·E[TP]+E[FP]+E[FN]
.

This is an approximation because the F1 score is a non-linear function in TP, FP, and
FN, and is employed here because it allows us to express the expectation in terms of
marginal probabilities which are available from our inference back end. Recent work
by Nowozin [27] has shown that approximations of this form yield good results.

25

Finally, the table Decisions determines the optimal threshold in the sense of ex-
pected F1 score and contains for each data point the labelling decision corresponding
to the chosen threshold.

To sum up, the examples of this section illustrate how user-defined queries in Tabu-
lar can express the combination of a probabilistic model and a complex decision crite-
rion in a succinct way in the context of the data schema.

7 Tabular Excel: Implementing Tabular in a Spreadsheet

Public releases of the Tabular add-in for Excel are available from http://research.

microsoft.com/tabular. The add-in extends Excel with a new task pane for author-
ing models, running inference and setting parameters of Infer.NET. A user authors the
model within a rectangular area of a worksheet. Tabular parses and type-checks the
model in the background, enabling the inference button when the model is well-typed.
Tabular pulls the data schema and data itself from the relational Data Model of Excel
2013. The results of inference and queries are then reported back to the user as aug-
mented Excel tables. Tabular Excel is able to concisely express a wide range of models
beyond those illustrated here (see Appendix B).

The implementation employs bi-directional type-checking to facilitate dependent
typing. The space attribute of a type is optional in the concrete syntax and can be in-
ferred from its definition. In indexed expressions, the second expression bounding the
index is optional: it can typically be inferred from the mod-type of the indexing ex-
pression. Type checking the Tabular schema results in a type-annotated schema. This
is elaborated to core form, eliminating all function calls and indexed models. The core
schema is then translated to an Infer.NET [23] factor graph, constructed dynamically
with Infer.NET’s (imperative and weakly typed) modelling API. Our (type-directed)
translation relies on and exploits the fact that all table sizes are known and that discrete
random variables, which may be used to index into arrays, have known support. More-
over, the space of any (explicit or implicit) array indexing expression is used to insert
the requisite Infer.NET switch construct when indexing through a rnd-space index (as
demonstrated in Appendix C.)

The Infer.NET API, though used to construct factor graphs, can also be viewed as an
API for constructing single-assignment, imperative programs with random expressions,
fixed-size arrays, bounded for loops and conditional statements (but not expressions).
Our compiler uses continuations to translate between the high-level functional language
of Tabular and a lower-level imperative representation that is finally interpreted as calls
to the Infer.NET API.

The fruits of Infer.NET inference are approximate marginal distributions for the
rnd-space bindings of the schema. Expressions in det and qry-space are evaluated by
interpretation after inference, binding input to the concrete data and rnd-level variables
to their inferred distributions. Thus qry-space expressions have access to the inputs,
deterministic values and distributions on which they depend. For compilation, the type
system ensures that the value of qry-space expression cannot depend on the particular
value of a rnd-space variable (only its distribution) and that all rnd-space variables can
be inferred prior to qry evaluation.

26

Extracting Standalone Online Inference Code Our users can also extract C# or Excel-
user-friendly Visual Basic source code to compile and run their models outside Excel.
(Appendix C lists the extracted code for model Faithful.) This supports subsequent
customization by Infer.NET experts as well as integration in standalone applications
independent of Excel. One of our internal users has extracted code in this way to per-
form inference on a large dataset with approximately 42 million entities and 46 million
relationships between them. Inference required 7.5 hours of processing time on a 2-core
Intel Xenon L5640 server with 96 GB of RAM. The extracted code is also useful for
debugging compilation and applications that need to separate learning (on training data)
from prediction (on new data). Tabular Excel performs one-shot learning and prediction
but incremental, online learning, a major advantage of Bayesian inference, appears to
be a simple extension.

Experiments Figure 4 lists a selection of models run in Tabular Excel, along with data
set sizes and run-times to indicate scale.

F1 Score for Mammography The following is direct comparison between the Tabular
Excel form of the Mammography model (Figure 3) with code for the same problem
written in C# using Infer.NET. We get the same statistical answers in both cases, though
there are differences in code speed. Initially, Tabular queries were (naively) interpreted,
not compiled; adopting simple runtime code generation techniques has allowed us to
reduce the qry time from 1601ms (interpreted) to 29ms (compiled), a 55x fold increase.
Simple optimizations like deforesting array summations may reduce times even further.
The handwritten C# model is slower on inference because it is effectively compiled and
run twice, once for training and another time for prediction.

data (LOC) model (LOC) decisions (LOC) inference (ms) query (ms)
Infer.NET 35 35 45 2968 6

Tabular 0 15 14 1529 1601/29

The C# code expresses the core of the model quite succinctly in around 14 LOC (as
Tabular does), but repeats it twice with only minor changes, once for the training data
and once for prediction from the learned posterior. The C# code does two rounds of
model construction and inference, once to infer the posterior on the training data, and
another to make the predictions on the test data, which leads to more than twice the time
spent in inference. The C# code for making decisions from the uncertain predictions is
roughly 3 times as long as the Tabular code, but is compiled and run at native speed and
thus 2 orders of magnitude faster than our qry-space interpreter but only 5 times faster
than our most recent qry space compiler that dynamically generates and executes code.

TrueSkill applied to NCAA football

Model Lang LOC Runtime (ms) Model log evidence
TrueSkill T 0 + 18 + 0 503 -491.95
TrueSkill IN 60 + 24 + 18 381 -491.95
HomeAdv T 0 + 21 + 0 663 -472.44
HomeAdv IN 60 + 28 + 19 484 -472.44
Leagues T 0 + 22 + 0 747 -445.81
Leagues IN 60 + 40 + 23 537 -445.81

27

Leagues
leagueId int!det input
skillModifier real!rnd output GaussianFromMeanAndPrecision(0.0,1.0)
Teams
teamId int!det input
leagueId mod(SizeOf(Leagues))!det input
individualSkill real!rnd output GaussianFromMeanAndPrecision(5.0,1.0)
skill real!rnd output individualSkill + leagueId.skillModifier
Matches
homeSkillAdvantage real!rnd static output GaussianFromMeanAndPrecision(0.0,1.0)
gameId int!det input
team1Id mod(SizeOf(Teams))!det input
team1Score int!det input
team2Id mod(SizeOf(Teams))!det input
team2Score int!det input
team1WasHome real!det input
team1HomeAdvantage real!rnd output team1WasHome ∗ homeSkillAdvantage
team1Perf real!rnd output GaussianFromMeanAndPrecision(

team1Id.skill + team1HomeAdvantage,1.0)
team2Perf real!rnd output GaussianFromMeanAndPrecision(

team2Id.skill,1.0)
team1Won bool!rnd output team1Perf > team2Perf

Fig. 1. Tabular NCAA TrueSkill model.

We use Tabular to recreate the model described in Tarlow et al. [36] and apply it
to NCAA Football (NCAAF) data from the 2013 season, which includes 845 matches
between 206 teams from 12 leagues. The model is an extended version of TrueSkill
that incorporates home field advantage and league information: these are modelled by
introducing latent variables that correspond to the home field advantage, and a separate
variable for each league representing the league’s strength. A team’s skill in a particular
game is then assumed to be a sum of its individual skill, the skill of the league that it is
in, and (if the team is the home team) the globally shared home field advantage. Beyond
these differences, the model is equivalent to TrueSkill.

We also implemented two simplified versions of the full model. In the first, we
eliminated the league-specific skills; in the second, we also eliminated the home field
advantage, which makes the model equivalent to standard TrueSkill. As a baseline, we
implemented the models in C# using Infer.NET directly. Figure 2 depicts the C# code
to construct the NCAA model, without the additional code required to read the data
and perform inference. In the previous table, we compare the Tabular implementations
to the C# implementations. In all three cases, the results of inference are identical in
terms of the inferred posteriors and the model evidence.1 A comparison of lines of code
needed to read the data, express the model and invoke inference by observing data is
also included, showing that the Tabular implementation allows the user to focus on
the task of expressing the model, leaving data manipulation to the runtimes. Although
the C# modeling code is not terribly long, it is quite obscure and requires relatively
sophisticated knowledge of C# generics and careful use of an imperative modeling API.

1 The model evidence or marginal likelihood is the probability of the observed output data under
the model. This quantity is commonly used to compare alternative models of the same data;
higher quantities correspond to better models.

28

public void InitializeModel TrueSkill (int numTeams, int numLeagues) {
evidence = Variable.Bernoulli (0.5).Named("evidence");
block = Variable.If (evidence);
nGames = Variable.New<int>().Named("nGames");
nTeams = Variable.New<int>().Named("nTeams");
nLeagues = Variable.New<int>().Named("nLeagues");
team = new Range(nTeams).Named("team");
game = new Range(nGames).Named("game");
league = new Range(nLeagues).Named("league");
var individualSkills = Variable.Array<double>(team).Named("individualSkills");
leagueSkills = Variable.Array<double>(league).Named("leagueSkills");
skills = Variable.Array<double>(team).Named("skills");
teamToLeague = Variable.Array<int>(team).Named("teamToLeague");
team1Id = Variable.Array<int>(game).Named("team1Id");
team2Id = Variable.Array<int>(game).Named("team2Id");
team1LeagueId = Variable.Array<int>(game).Named("team1LeagueId");
team2LeagueId = Variable.Array<int>(game).Named("awayLeagueIdx");
team1Won = Variable.Array<bool>(game).Named("team1Won");
team1WasHome = Variable.Array<double>(game).Named("team1WasHome");
var team1Skill = Variable.Array<double>(game).Named("team1Skill");
var team2Skill = Variable.Array<double>(game).Named("team2Skill");
var league1Skill = Variable.Array<double>(game).Named("league1Skill");
var league2Skill = Variable.Array<double>(game).Named("league2Skill");
var team1HomeAdvantage = Variable.Array<double>(game).Named("team1HomeAdvantage");
team1Perf = Variable.Array<double>(game).Named("team1Perf");
team2Perf = Variable.Array<double>(game).Named("team2Perf");
homeSkillAdvantage = Variable.GaussianFromMeanAndPrecision(0.0, 1.0);
leagueSkills [league] = Variable.GaussianFromMeanAndPrecision(0.0, 1.0).ForEach(league);
individualSkills [team] = Variable.GaussianFromMeanAndPrecision(5.0, 1.0).ForEach(team)

;
using (Variable.ForEach(team)) {

skills [team] = individualSkills [team] + leagueSkills[teamToLeague[team]];
}
using (Variable.ForEach(game)){

team1HomeAdvantage[game] = team1WasHome[game] * homeSkillAdvantage;
team1Perf[game] = Variable.GaussianFromMeanAndPrecision(skills[team1Id[game]] +

team1HomeAdvantage[game], 1.0);
team2Perf[game] = Variable.GaussianFromMeanAndPrecision(skills[team2Id[game]],

1.0);
team1Won[game] = (team1Perf[game] > team2Perf[game]);

}
block.CloseBlock();

}

Fig. 2. Infer.NET NCAA TrueSkill model, excluding data input, observation and inference code
(compare to Figure 1).

29

8 Related Work

Interest in probabilistic programming languages is rising as evinced by recent languages
like Church [13], a Turing-complete probabilistic Scheme with inference based on sam-
pling, and its relatives Anglican [37] (a typed re-imagination of Church) and Venture
[21] (a variant of Church offering programmable inference). Other recent works include
R2 [26], which uses program analysis to optimize MCMC sampling of probabilistic
programming, and Uncertain<T> [5], a simple abstraction for embedding probabilis-
tic reasoning into conventional programs that handle uncertain data.

To the best of our knowledge, few systems offer explicit support for decision the-
ory. IBAL’s [29] impressive framework aims to combine Bayesian inference and deci-
sion theory “under a single coherent semantic framework”. IBAL makes use of query
information and only computes quantities needed to answer specific queries. Other sys-
tems that extend probabilistic languages with dedicated decision theoretic constructs
are described in [8, 6, 25]. The main difference in our approach is that while our post-
processing can be used to implement decision theory strategies, decision theoretic con-
structs are not built into the language. This is a pragmatic choice. In general, decision
theory involves two intractabilities: computing expected utilities, and optimizing over
the decisions. IBAL and DT-ProbLog [6] have some general-purpose approximations,
but often problem-specific approximations are needed as in our F1 optimization exam-
ple or in [27]. It is not clear how these approximations fit into the above frameworks.
Tabular’s free-form post-processing design allows such bespoke approximations.

STAN [35] allows for post-processing of inference results, but only via separately
declared code blocks, rather than being conveniently mingled with the model or ab-
stracted in functions. Although STAN’s facilities are expressive and can include arbi-
trary deterministic and stochastic computations, they are restricted to computing per
sample quantities. In Tabular terms, this would correspond to computations restricted
to rnd-space which prevents the computation of the aggregate qry-space quantities re-
quired for Bayesian decision theory.

Figaro [30] supports post-inference decision-making, but via separate, decision-
specific language features, outside the core modelling language. Tabular, instead, uses
types to distinguish between operations available in different spaces (or phases) (such
as random draws in rnd space, optimization (ArgMax) and moments of distributions in
qry-space). Embedded DSLs such as Infer.NET [23], HANSEI [19] and FACTORIE
[22] enable arbitrary post-processing in the host language, but require knowledge of
both the host and the embedded language, which is typically much simpler.

Tabular is, to our knowledge, the first probabilistic programming language with
dependently typed abstractions. STAN and BUGS [11] do have value-indexed types,
but cannot abstract over indexes appearing in types.

We advocate types to help catch errors in probabilistic queries on spreadsheets.
There is a body of work on testing and discovering errors on spreadsheets. For example,
Ahmad et al. [1] propose unit-based types as a means of catching errors. To the best of
our knowledge, dependent-types have not previously been applied to spreadsheets.

Tabular was directly inspired by the question of finding a textual notation for the
factor graphs generated by InfernoDB [34] which constructs a hierarchical mixture-
based graphical model in Infer.NET [23] from an arbitrary relational schema. CrossCat

30

[33] is a related model, which handles single tables with mixed types (real, integer,
bool).

Finally, we list the main improvements in the present design of Tabular, compared
to the original publication [16].

– Determinacy annotations to help with compilation to Infer.NET.
– Just two levels, not three. Change of terminology to static/inst instead of h/w/xyz.
– Local variables subject to alpha-equivalence.
– Self-contained semantics at the Tabular level, ie, function types are tables too.
– Query expressions to determine how results of inference are returned (general-

izing query-by-latent-column and query-by-missing value), and now supporting
decision-making under uncertainty.

– Function definitions and function application for easy reuse of common idioms
(generalizing fixed set of primitive models).

– A system of dependent types in particular, sizes of arrays and integer ranges, to
detect certain errors and to streamline the syntax of indexed models.

– Implementation in spreadsheet (Microsoft Excel) rather than a database (Microsoft
Access).

9 Conclusions

We recast Tabular as a query language on databases held in spreadsheets.
We added user-defined functions with statically-checked value-dependent types. We

described its formal semantics and an implementation in Excel. We reported results on
a range of examples, including demonstrating that some decision-theoretic problems
previously solved by C# code can be solved by compact annotations in a spreadsheet.
Our work brings probabilistic programming to spreadsheet users with some knowledge
of statistics, but without needing them to write code beyond spreadsheet annotations.

This paper presents a technical evaluation of the design consisting of theorems about
its metatheory, demonstration of its expressiveness by example, and some numeric com-
parisons with the alternative of writing models directly in Infer.NET. Evaluating the
usability by spreadsheet users is important, but we leave that task for future work.

We have in mind several lines of future development. One limitation of our current
system is that data is modelled by map-style loops over data; to model time-series, it
would be useful to add some form of iterative fold-style loops. Another limitation is that
programs involve a single run of the underlying inference system: rnd-space determines
the model and its conditioning, and qry-space determines how the results are processed.
To support multiple runs of inference we might consider an indexed hierarchy of spaces
where infer moves data from rndi space to qryi space, and rndi+1 space can depend on
results computed in qryi space.

Finally, our approach could be applied to add user-defined functions to languages
such as BUGS or Stan, or to design typed-forms of universal probabilistic languages
such as those in the Church family.

Acknowledgement Dylan Hutchison commented on a draft. We thank Natalia Larios
Delgado and Matthew Smith for their feedback on our Excel addin.

31

References

[1] Ahmad, Y., Antoniu, T., Goldwater, S., Krishnamurthi, S.: A type system for
statically detecting spreadsheet errors. In: 18th IEEE International Conference
on Automated Software Engineering (ASE 2003), 6-10 October 2003, Montreal,
Canada. pp. 174–183 (2003)

[2] Billingsley, P.: Probability and Measure. Wiley, 3rd edn. (1995)
[3] Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Gael, J.V.: Measure

transformer semantics for Bayesian machine learning. Logical Methods in Com-
puter Science 9(3) (2013)

[4] Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Van Gael, J.: Measure
transformer semantics for Bayesian machine learning. In: European Symposium
on Programming (ESOP’11). LNCS, vol. 6602, pp. 77–96. Springer (2011)

[5] Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain<T>: A first-order type
for uncertain data. In: Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (March 2014), http://research.microsoft.
com/apps/pubs/default.aspx?id=208236

[6] Van den Broeck, G., Thon, I., van Otterlo, M., De Raedt, L.: DTProbLog: A
decision-theoretic probabilistic Prolog. In: AAAI (2010)

[7] Cardelli, L.: Typeful programming. Tech. Rep. 52, Digital SRC (1989)
[8] Chen, J., Muggleton, S.: Decision-theoretic logic programs. In: Proceedings of

ILP. p. 136 (2009)
[9] Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley &

Sons, New York, NY (1973)
[10] Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.:

Bayesian Data Analysis. Chapman & Hall, 3rd edn. (2014)
[11] Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for com-

plex Bayesian modelling. The Statistician 43, 169–178 (1994)
[12] Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)

Categorical Aspects of Topology and Analysis, Lecture Notes in Mathematics,
vol. 915, pp. 68–85. Springer (1982)

[13] Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: Uncertainty in Artificial Intelli-
gence (UAI’08). pp. 220–229. AUAI Press (2008)

[14] Goodman, N.D.: The principles and practice of probabilistic programming. In:
Principles of Programming Languages (POPL’13). pp. 399–402 (2013)

[15] Gordon, A.D., Aizatulin, M., Borgström, J., Claret, G., Graepel, T., Nori, A., Ra-
jamani, S., Russo, C.: A model-learner pattern for Bayesian reasoning. In: POPL
(2013)

[16] Gordon, A.D., Graepel, T., Rolland, N., Russo, C.V., Borgström, J., Guiver, J.:
Tabular: a schema-driven probabilistic programming language. In: POPL (2014)

[17] Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering (FOSE 2014). pp. 167–181 (2014)

[18] Herbrich, R., Minka, T., Graepel, T.: TrueSkilltm: A Bayesian skill rating system.
In: Advances in Neural Information Processing Systems (NIPS’06) (2006)

32

[19] Kiselyov, O., Shan, C.: Embedded probabilistic programming. In: Conference on
Domain-Specific Languages. pp. 360–384 (2009)

[20] Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences 22(3), 328–350 (1981)

[21] Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilis-
tic programming platform with programmable inference. arXiv preprint
arXiv:1404.0099 (2014)

[22] McCallum, A., Schultz, K., Singh, S.: Factorie: Probabilistic programming via im-
peratively defined factor graphs. In: Advances in Neural Information Processing
Systems (NIPS’09). pp. 1249–1257 (2009)

[23] Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.NET 2.5 (2012), microsoft
Research Cambridge. http://research.microsoft.com/infernet

[24] Minka, T.P.: A family of algorithms for approximate Bayesian inference. Ph.D.
thesis, Massachusetts Institute of Technology (2001)

[25] Nath, A., Domingos, P.: A language for relational decision theory. In: Proceedings
of the International Workshop on Statistical Relational Learning (2009)

[26] Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An efficient MCMC sam-
pler for probabilistic programs. In: AAAI Conference on Artificial Intelligence
(AAAI). AAAI (July 2014)

[27] Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-
union case. In: Proceedings of CVPR 2014 (2014)

[28] Panangaden, P.: Labelled Markov processes. Imperial College Press (2009)
[29] Pfeffer, A.: The design and implementation of IBAL: A general-purpose proba-

bilistic language. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Rela-
tional Learning. MIT Press (2007)

[30] Pfeffer, A.: Figaro: An object-oriented probabilistic programming language. Tech.
rep., Charles River Analytics (2009)

[31] Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science, Cam-
bridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University
Press (2013)

[32] Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL. pp. 154–165 (2002)

[33] Shafto, P., Kemp, C., Mansinghka, V., Gordon, M., Tenenbaum, J.B.: Learning
cross-cutting systems of categories. In: Proceedings of the 28th Annual Confer-
ence of the Cognitive Science Society (2006)

[34] Singh, S., Graepel, T.: Compiling relational database schemata into probabilistic
graphical models. CoRR abs/1212.0967 (2012)

[35] Stan Development Team: Stan: A C++ library for probability and sampling, ver-
sion 2.2 (2014), http://mc-stan.org/

[36] Tarlow, D., Graepel, T., Minka, T.: Knowing what we don’t know in NCAA Foot-
ball ratings: Understanding and using structured uncertainty. In: MIT Sloan Sports
Analytics Conference (2014)

[37] Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: Proceedings of the 17th International conference on
Artificial Intelligence and Statistics (2014)

33

[38] Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: Proceedings of the ACM SIGPLAN ’98 Conference on Programming Lan-
guage Design and Implementation (PLDI). pp. 249–257 (1998)

34

table Data
X0 real!det input
X1 real!det input
X2 real!det input
X3 real!det input
X4 real!det input
X5 real!det input
X6 real!det input
Mean vector!det static output VectorFromArray([for i < 7 →0.0])
CoVar PositiveDefiniteMatrix!det static output IdentityScaledBy(7,1.0)
W vector!rnd static output VectorGaussianFromMeanAndVariance(Mean,CoVar)
Noise real!det static output 0.1
Z real!rnd output InnerProduct(W,VectorFromArray([X0;X1;X2;X3;X4;X5;X6]))
Y bool!rnd output Gaussian(Z,Noise)> 0.0
ProbTrue real!qry output infer.Bernoulli[].Bias(Y)
Train bool!det input
table Ts
Th real!det input
Decisions bool[SizeOf(Data)] output [for d < SizeOf(Data)→d.ProbTrue > Th]
ETP real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& Decisions[d] then d.ProbTrue else 0.0])
EFP real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& Decisions[d] then 1.0 − d.ProbTrue else 0.0])
EFN real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& (!Decisions[d])then d.ProbTrue else 0.0])
EF1 real!qry output (2.0 ∗ ETP)/ ((2.0 ∗ ETP)+ EFP + EFN)
table Decisions
ChosenThID link(Ts)!qry static output ArgMax([for t < SizeOf(Ts)→t.EF1])
ChosenTh real!qry static output ChosenThID.Th
DataID link(Data)!det input
Decision bool!qry output ChosenThID.Decisions[DataID]

Fig. 3. F1 computation in Tabular on mammography data (complete model)

35

A Functions of a Standard Prelude

A.1 Conjugate Bernoulli

fun CBernoulli
hAlpha real!det static input
hBeta real!det static input
Bias real!rnd static output Beta(hAlpha,hBeta)
B bool!rnd output Bernoulli(Bias)

Type:

fun CBernoulli
hAlpha real!det static input
hBeta real!det static input
Bias real!rnd static output
B bool!rnd output

A.2 Conjugate Discrete

fun CDiscrete
N int!det static input
alpha real!rnd static input
V real[N]!rnd static output Dirichlet[N]([for i < N →alpha])
D mod N!rnd output Discrete(V)

Type:

fun CDiscrete
N int!det static input
alpha real!rnd static input
V real[N]!rnd static output
D mod N!rnd output

A.3 Conjugate Gaussian

fun CGaussian
hMean real!det static input
hPrec real!det static input
hShape real!det static input
hScale real!det static input
Mean real!rnd static output Gaussian(hMean,hPrec)
Prec real!rnd static output Gamma(hShape,hScale)
G real!rnd output Gaussian(Mean,Prec)

Type:

fun CGaussian
hMean real!det static input
hPrec real!det static input
hShape real!det static input
hScale real!det static input
Mean real!rnd static output
Prec real!rnd static output
G real!rnd output

36

A.4 Conjugate VectorGaussian

Our implementation contains a standard prelude of function definitions. To illustrate,
we give here the more complicated definition of a conjugate n-dimensional multivariate
gaussian, whose prior is an n-dimensional vector for the mean (a vector) and a (positive
definite) (n× n)-matrix for the covariance, with a Wishart prior (a multidimensional
Gamma distribution):

fun CVectorGaussian
N int!det static input
hMeanVectorPrecisionCount real!det static input
hWishartShapeConstant real!det static input
hWishartScaleConstant real!det static input
meanVector real[N]!det static local [for i < N →0.0]
precisionMatrix real[N][N]!det static local IdentityScaledBy(N, hMeanVectorPrecisionCount)
mean real[N]!rnd static output VectorGaussian(meanVector,precisionMatrix)
scale real[N][N]!rnd static local IdentityScaledBy(N,hWishartScaleConstant)
covariance real[N][N]!rnd static output WishartFromShapeAndScale(hWishartShapeConstant, scale)
y real[N]!rnd output VectorGaussian(mean,covariance)

The function above has the function type below.

N int!det static input
hMeanVectorPrecisionCount real!det static input
hWishartShapeConstant real!det static input
hWishartScaleConstant real!det static input
mean real[N]!rnd static output
covariance real[N][N]!rnd static output
y real[N]!rnd output

B Examples

Tabular Excel is able to concisely express a wide range of models beyond those illus-
trated here, including the relational DARE crowdsourcing model described in Gordon
et al. [16], hierarchical and multivariate linear regression, various recommenders (Block
Recommender,MatchBox, PCA), Latent Dirichlet Allocation (LDA) and classic classi-
fiers (NaiveBayes, BPM, Mammography). Figure 4 summarizes a selection of models,
with salient statistics.

Figures 5 and 6 show our mammography model making decisions on the mammog-
raphy dataset (with 11183 rows).

C Example: Extracted C# code for Faithful

The Tabular generated code for the Old Faithful example reveals the concision of Tabu-
lar models over Infer.NET ones (though a handwritten model would not be in A-normal
form and thus somewhat shorter). Note that the model is constructed imperatively using
C# using blocks to indicate the opening and closing of scopes for loops and condition-
als in the model. This code also illustrates and the various pragmas asserting the ranges
(sizes) of arrays, value ranges (bounds) of integers, and special Switch annotations, all
of which are necessary and inserted by our type-directed translation from Tabular (see
coloured occurrences of Range, SetValueRange and Switch below). While the method

37

model rows cells compile ms inference ms query ms algorithm iterations
DARE 12 565 34 465 301 11 722 0 / 0 EP 30

TrueSkill 20 100 60 100 5 738 0 / 0 EP 30
TrueSkill 2 010 000 6 010 000 97 43191 0 / 0 EP 30

TrueSkillBets 21 100 61 100 9 735 17 / 9 EP 30
Recommender 710 1130 50 5715 0 / 0 EP 30

NCAAF 1069 3826 113 495 0 / 0 EP 30
PCA 37 111 7 1063 0 / 0 EP 30
BPM 37 37 5 268 0 / 0 EP 30

LinearRegression 34 34 9 207 0 / 0 EP 30
Faithful 272 816 111 856 0 / 0 VMP 50

Matchbox 10 923 56 006 58 65968 0 / 0 EP 30
MammographyBPM 11 183 11 183 3 1586 0 / 0 EP 30

MammographyF1 22 386 22 366 11 1529 1601 / 29 EP 30
LDA 622 1 047 100 1791 0 / 0 EP 30

NaiveBayesQry 9 45 26 855 0 / 1 VMP 50

Fig. 4. Tabular examples: rows is sum of table sizes; cells is number of cells in output; compile
time is elaboration and translation to Infer.NET; inference time is Infer.NET compilation and
inference time; query time is post-processing of qry-level expressions (interpreted/compiled);
all times in ms. (machine config.: DELL Precision T3600, Intel(R) Xeon(R) CPU E5-1620 with
16GB RAM, Windows 8 Enterprise and .NET 4.0). The MammographyF1 example shows a 55x
speedup from adopting JIT-compiled qry-level processing.

Fig. 5. Mammography Model

38

Fig. 6. Mammography Results

is large, its signature is small and fairly easy to call from client code: it takes sizes, input
and output columns of the database as (in or out) parameters, one column at a time, in
schema order. (The typing of outputs could be tightened up further still.)

public static void Infer(MicrosoftResearch.Infer.IAlgorithm algorithm, int iterations ,
out Bernoulli out evidence,
int in faithful size ,
out object out faithful cluster V , out object out faithful cluster ,
out object out faithful duration Mean, out object out faithful duration Prec ,
double?[] in faithful duration , out object out faithful duration ,
out object out faithful time Mean, out object out faithful time Prec,
double?[] in faithful time , out object out faithful time) {
// construct the model
var evidence = Variable.Bernoulli (0.5D);
var evidenceBlock = Variable.If (evidence);
var v1 = Variable.Constant(2);
var v2 = new Range(v1);
var faithful size = Variable.New<int>();
var faithful range = new Range(faithful size);
var v3 = Variable.Constant(1D);
var faithful cluster V = Variable.DirichletSymmetric(v2, v3);
var faithful cluster = SetValueRange(Variable.Array<int>(faithful range), v2);
using (Variable.ForEach(faithful range)) {

var v4 = faithful cluster V ;
faithful cluster [faithful range] = Variable.Discrete (v4);

}
var v5 = v2.Clone();
var v6 = Variable.Array<double>(v5);
using (var v5Block = Variable.ForEach(v5)) {

var i 0 = v5Block.Index;
var v7 = Variable.Constant(0D);
var v8 = Variable.Constant(1D);
v6[v5] = Variable.GaussianFromMeanAndPrecision(v7, v8);

}
var faithful duration Mean = v6;
var v9 = v2.Clone();
var v10 = Variable.Array<double>(v9);
using (var v9Block = Variable.ForEach(v9)) {

var i 0 = v9Block.Index;
var v11 = Variable.Constant(1D);
var v12 = Variable.Constant(1D);

39

v10[v9] = Variable.Gamma(v11, v12);
}
var faithful duration Prec = v10;
var faithful duration = Variable.Array<double>(faithful range);
using (Variable.ForEach(faithful range)) {

var v13 = Variable.New<double>();
var v15 = Variable.Copy(faithful cluster [faithful range]);
var v16 = v2.Clone();
v15.SetValueRange(v16);
using (Variable.Switch(v15)) {

var v14 = faithful duration Mean[v15];
v13.SetTo(v14);

}
var v18 = v13;
var v19 = Variable.New<double>();
var v21 = Variable.Copy(faithful cluster [faithful range]);
var v22 = v2.Clone();
v21.SetValueRange(v22);
using (Variable.Switch(v21)) {

var v20 = faithful duration Prec [v21];
v19.SetTo(v20);

}
var v24 = v19;
faithful duration [faithful range] = Variable.GaussianFromMeanAndPrecision(v18, v24);

}
var faithful duration size = Variable.New<int>();
var faithful duration range = new Range(faithful duration size);
var faithful duration indices = SetValueRange(Variable.Array<int>(faithful duration range),

faithful range);
var faithful duration subarray = Variable.Subarray(faithful duration ,

faithful duration indices);
var v25 = v2.Clone();
var v26 = Variable.Array<double>(v25);
using (var v25Block = Variable.ForEach(v25)) {

var i 0 = v25Block.Index;
var v27 = Variable.Constant(60D);
var v28 = Variable.Constant(1D);
v26[v25] = Variable.GaussianFromMeanAndPrecision(v27, v28);

}
var faithful time Mean = v26;
var v29 = v2.Clone();
var v30 = Variable.Array<double>(v29);
using (var v29Block = Variable.ForEach(v29)) {

var i 0 = v29Block.Index;
var v31 = Variable.Constant(1D);
var v32 = Variable.Constant(1D);
v30[v29] = Variable.Gamma(v31, v32);

}
var faithful time Prec = v30;
var faithful time = Variable.Array<double>(faithful range);
using (Variable.ForEach(faithful range)) {

var v33 = Variable.New<double>();
var v35 = Variable.Copy(faithful cluster [faithful range]);
var v36 = v2.Clone();
v35.SetValueRange(v36);
using (Variable.Switch(v35)) {

var v34 = faithful time Mean[v35];
v33.SetTo(v34);

}
var v38 = v33;
var v39 = Variable.New<double>();
var v41 = Variable.Copy(faithful cluster [faithful range]);
var v42 = v2.Clone();
v41.SetValueRange(v42);
using (Variable.Switch(v41)) {

var v40 = faithful time Prec [v41];
v39.SetTo(v40);

}

40

var v44 = v39;
faithful time [faithful range] = Variable.GaussianFromMeanAndPrecision(v38, v44);

}
var faithful time size = Variable.New<int>();
var faithful time range = new Range(faithful time size);
var faithful time indices = SetValueRange(Variable.Array<int>(faithful time range),

faithful range);
var faithful time subarray = Variable.Subarray(faithful time , faithful time indices);
evidenceBlock.CloseBlock();
// observe variables using [in] parameters
faithful size .ObservedValue = in faithful size ;
faithful duration size .ObservedValue = mixture.ValueCount(in faithful duration);
faithful duration indices .ObservedValue = mixture.Indices(in faithful duration);
faithful duration subarray .ObservedValue = mixture.Values(in faithful duration);
faithful time size .ObservedValue = mixture.ValueCount(in faithful time);
faithful time indices .ObservedValue = mixture.Indices(in faithful time);
faithful time subarray .ObservedValue = mixture.Values(in faithful time);
// infer variables to set [out] parameters
var inferenceEngine = new MicrosoftResearch.Infer.InferenceEngine(algorithm);
inferenceEngine .NumberOfIterations = iterations ;
inferenceEngine .OptimiseForVariables = new IVariable[] {

evidence ,
faithful cluster V ,
faithful cluster ,
faithful duration Mean ,
faithful duration Prec ,
faithful duration ,
faithful time Mean ,
faithful time Prec ,
faithful time };

out evidence = inferenceEngine .Infer <Bernoulli >(evidence);
out faithful cluster V = inferenceEngine .Infer (faithful cluster V);
out faithful cluster = inferenceEngine .Infer (faithful cluster);
out faithful duration Mean = inferenceEngine .Infer (faithful duration Mean);
out faithful duration Prec = inferenceEngine .Infer (faithful duration Prec);
out faithful duration = inferenceEngine .Infer (faithful duration);
out faithful time Mean = inferenceEngine .Infer (faithful time Mean);
out faithful time Prec = inferenceEngine .Infer (faithful time Prec);
out faithful time = inferenceEngine .Infer (faithful time);

}
}

D Scoping and Alpha-Equivalence

In this appendix, we give formal definitions of scoping and alpha-equivalence for Tab-
ular, and assert some basic properties relating reduction and scoping.

Inputs, Locals and Outputs:

inputs((c : T (` input) ε)) = {c}
inputs((c : T (` local) M)) =∅
inputs((c : T (` output) M)) =∅ otherwise

locals((c : T (` input) ε)) =∅
locals((c : T (` local) M)) = {c}
locals((c : T (` output) M)) =∅
outputs((c : T (` input) ε)) =∅
outputs((c : T (` local) M)) =∅
outputs((c : T (` output) M)) = {c}∪outputs(M) otherwise

41

outputs(ε) = {}
outputs(E) = {}
outputs(T R) = outputs(T)\{ret}
outputs(M[eindex < esize]) = outputs(M)

dom(T) = inputs(T)∪ locals(T)∪outputs(T).

Free Variables: fv(R) and fv(M) and fv(T):

fv([]) =∅
fv((c = E) :: R) = fv(E)∪ fv(R)

fv(ε) =∅
fv(E) = fv(E)
fv(T R) = fv(T)∪ fv(R)
fv(M[eindex < esize]) = fv(M)∪ fv(eindex)∪ fv(esize)

fv([]) =∅
fv(((c : T ` viz M) :: T) = fv(T)∪ fv(M)∪

(fv(T)\ ({c}∪outputs(M)))
fv([]) =∅
fv((t = T) :: S) = fv(T)∪ fv(S)

We define alpha-equivalence of tables as the least congruence closed under the
following rule:

(c : T ` local M) :: T = (c′ : T ` local M) :: (T{c′/c})
if c′ /∈ outputs(M)∪ fv(T)

In general, we identify all phrases of syntax up to alpha-equivalence, and write
φ = φ ′ to mean phrases φ and φ ′ are identical up to alpha-equivalence. See Appendix D
for the detailed formal definition of alpha-equivalence.

Substitution: col{E/c} and T{E/c} and M{E/c}
T{E/c}= [col1{E/c}; . . . ;coln{E/c}]
where T= [col1; . . . ;coln] and fv(E)∩dom(T) =∅

The side-conditions define substitution as a partial function.

Lemma 2. If fv(E)∩ (inputs(T)∪outputs(T)) =∅ then T{E/x} is well-defined.

We define alpha-equivalence following Andrew Pitts[31, p. 133].

Transposition for tables: (a b)T

(a b)((c : T A M) :: T) =
(b : (a b)T A (a b)M) :: (a b)T if c = a
(a : (a b)T A (a b)M) :: (a b)T if c = b
(c : (a b)T A (a b)M) :: (a b)T otherwise

42

(a b)[] = []

Transposition for models: (a b)M

(a b)ε = ε

(a b)E = (a b)E
(a b)(T R) = ((a b)T) ((a b)R)
(a b)(M[eindex < esize]) = ((a b)M)[(a b)eindex < (a b)esize]

Transposition for column types: (a b)T

(a b)(S ! d) = (S ! d)
(a b)(mod(e)) =mod((a b)e)
(a b)(T [e]) = (a b)T [(a b)e]

Transposition for table types: (a b)Q

(a b)((c : T A) :: Q) =
(b : (a b)T A) :: (a b)Q if c = a
(a : (a b)T A) :: (a b)Q if c = b
(c : (a b)T A) :: (a b)Q otherwise

(a b)[] = []

Transposition for expressions: (a b)E, interesting cases

(a b)(sizeof(t)) =


sizeof(b) if t = a
sizeof(a) if t = b
sizeof(t) otherwise

(a b)(E.c) =


((a b)E).b if c = a
((a b)E).a if c = b
((a b)E).c otherwise

Variables (Free and Bound): vars(T) and vars(Q)

vars(S ! d) =∅
vars(mod(e) ! d) = vars(e)
vars(T [e]) = vars(T)∪vars(e)
vars([]) =∅
vars(((c : T A)) :: Q) = {c}∪vars(T)∪vars(Q)

Alpha equivalence for scalar types: T1 =α T2

(ALPHAEQ SCALAR)

S ! d =α S ! d

43

(ALPHAEQ MOD)
e1 =α e2

mod(e2) =α mod(e2)

(ALPHAEQ ARRAY)
T1 =α T2 e1 =α e2

T1[e2] =α T2[e2]

Alpha equivalence for table types: Q1 =α Q2

(ALPHAEQ FIELD TYPE)
T1 =α T2 Q1 =α Q2

(c : T1 (` viz)) :: Q1 =α (c : T2 (` viz)) :: Q2

(ALPHAEQ EMPTY TYPE)

[] =α []

Alpha equivalence for arguments: R1 =α R2

(ALPHAEQ ARGEXPR)
e1 =α e2 R1 =α R2

(c = e1) :: R1 =α (c = e2) :: R2

(ALPHAEQ ARGEMPTY)

[] =α []

Alpha equivalence for model expressions: M1 =α M2

(ALPHAEQ MODELEXPR)
E1 =α E2

E1 =α E2

(ALPHAEQ MODELAPPL)
T1 =α T2 R1 =α R2

T1 R1 =α T2 R2

(ALPHAEQ MODELINDEXED)
M1 =α M2 E1 =α E2 e3 =α e3

M1[E1 < e3] =α M2[E2 < e4]

Alpha equivalence for tables: T1 =α T2

(ALPHAEQ LOCAL)
T1 =α T2 M1 =α M2 (c1 c)T1 =α (c2 c)T2
c /∈ vars(c1,c2,T1,T2)

(c1 : T1 (` local) M1) :: T1 =α (c2 : T2 (` local) M2) :: T2

44

(ALPHAEQ FIELD)
T1 =α T2 M1 =α M2 T1 =α T2 viz 6= local

(c : T1 (` viz) M1) :: T1 =α (c : T2 (` viz) M2) :: T2

(ALPHAEQ EMPTY)

[] =α []

Properties of the Reduction System Reduction preserves the exports of a table:

Lemma 3. (1) If S→ S′ then outputs(S) = outputs(S′).
(2) If T→ T′ then outputs(T) = outputs(T′).
(3) If M→M′ then outputs(M) = outputs(M′).

Lemma 4. If T→ T′ then inputs(T) = inputs(T′).

As usual, reduction cannot introduce new free variables:

Lemma 5. (1) If S→ S′ then fv(S′)⊆ fv(S).
(2) If T→ T′ then fv(T′)⊆ fv(T).
(3) If M→M′ then fv(M′)⊆ fv(M).

Lemma 6. (1) If S→ S′ and S→ S′′ then S=α S′′.
(2) If T→ T′ and T→ T′′ then T=α T′′.
(3) If M→M′ and M→M′′ then M =α M′′.

Proof: By inspection of the inference rules.

E Semantics of Core Tabular

In this appendix, we present in detail the denotational semantics for probabilistic at-
tributes of Tabular, as well as a set of rules for evaluating qry attributes and computing
the output database corresponding to a given program and its input values.

E.1 Measure theory semantics

Monadic Semantics of Tabular schemas Following the work of pioneers including
Kozen [20], Giry [12], and Ramsey and Pfeffer [32], we base the semantics of our
probabilistic language on measure theory.

The standard definition of a measurable space is a pair (Ω ,Σ) where Ω is a set of
possible outcomes, and Σ ⊆P(Ω) is a σ -algebra, that is, Σ is a set that (1) contains ∅
and Ω , and (2) is closed under complement and countable union and intersection.

– Let ∗, ({()},{{()},∅}).
– We use the notation σΩ (S), when S ⊆P(Ω), for the least σ -algebra over Ω that

is a superset of S.

45

– Given two measurable spaces (Ω1,Σ1) and (Ω2,Σ2), we can compute their product
as:

(Ω1,Σ1)× (Ω2,Σ2), (Ω1×Ω2,σΩ1×Ω2{A×B | A ∈ Σ1,B ∈ Σ2})

– Define (Ω ,Σ)0 , ∗.
– For n > 0, define (Ω ,Σ)n by (Ω ,Σ)n+1 , (Ω ,Σ)× (Ω ,Σ)n.

For each closed type T we define a measurable space T[[T]] as follows. The set
σR({[a,b] | a,b ∈ R}) in the definition of T[[real]] is the Borel σ -algebra on the real
line, which is the smallest σ -algebra containing all closed (and open) intervals. Given
two measurable spaces (Ω1,Σ1) and (Ω2,Σ2), there is a product, the measurable space
(Ω1,Σ1)× (Ω2,Σ2), whose set of outcomes consists of pairs (ω1,ω2) where ωi ∈ Ωi.
Hence, the notation T[[T]]n represents an array type by the n-fold product of T[[T]].

The measurable space of a table is defined recursively as a product of the first col-
umn of the table (which is itself a product space in case of inst-level columns) and the
rest of the table, or the trivial space ∗ in case of an empty table. Similarly, the measur-
able space of a schema is the product of the space of the first table and the rest of the
schema, or ∗ if the schema is empty.

In the probabilistic and query semantics for Tabular, we assume an input database
DB = (δin,ρsz), where ρsz is a map containing the table sizes, and δin is a map storing
the values of input columns (indexed by table and column names).

Closed Types, Tables, and Schemas as Measurable Spaces: T[[T]]ρsz , T[[T]]ρsz
t , T[[S]]ρsz

T[[bool!spc]](B,P(B))
T[[int!spc]]ρsz = (Z,P(Z))
T[[real!spc]]ρsz = (R,σR({[a,b] | a,b ∈ R}))
T[[mod(n)!spc]]ρsz = ({0},{{0},∅}) where n≤ 0
T[[mod(n)!spc]]ρsz = (0..n−1,P(0..n−1)) where n > 0
T[[mod(sizeof(t))!spc]]ρsz = (0..ρsz(t)−1,P(0..ρsz(t)−1))

T[[T [n]]]ρsz = ∗ where n≤ 0
T[[T [n]]]ρsz = T[[T]]nρsz where n > 0
T[[T [sizeof(t)]]]ρsz = T[[T]]ρsz(t)

ρsz

T[[[]]]ρsz
t , ∗

T[[(c : T ` input ε) :: T]]ρsz
t , T[[T]]ρsz

t
T[[(c : T ` viz E) :: T]]ρsz

t , T[[T]]ρsz
t if space(T) = qry

T[[(c : T static viz E) :: T]]ρsz
t , (T[[T]]ρsz)× (T[[T]]ρsz

t) if space(T) 6= qry

T[[(c : T inst viz E) :: T]]ρsz
t , (T[[T]]ρsz(t)

ρsz)× (T[[T]]ρsz
t) if space(T) 6= qry

T[[[]]]ρsz , ∗
T[[(t = T) :: S]]ρsz , (T[[T]]ρsz

t)× (T[[S]]ρsz)

Lemma 7. Consider a closed type T . If T[[T]] = (Ω ,Σ) then Ω = {V |∅ `pc V : T}.

Proof: The proof is by induction on the size of T .

46

Next, we recall standard definitions of measure and integration. (See, for example,
Panangaden [28] for a readable introduction.)

– A measure µ on a measurable space (Ω ,Σ) is a function Σ → R+ ∪{∞} that is
countably additive, that is, µ(∅) = 0 and if the sets A0,A1, . . . ∈ Σ are pairwise
disjoint, then µ(∪iAi) = ∑i µ(Ai). We write |µ| , µ(Ω). It is called a probability
measure if |µ|= 1, and a sub-probability measure if |µ| ≤ 1. If r≥ 0, we write r ·µ
for the measure such that (r ·µ)(A) = r(µ(A)).

– If µ is a measure on (Ω ,Σ), and f is a non-negative (measurable) function Σ →R,
we write

∫
f (x) dµ(x) for Lebesgue integration of f with respect to µ .

– The (independent) product (µ1×µ2) of two measures is also definable [2, Sec. 18],
and satisfies (µ1×µ2)(A×B) = µ1(A) ·µ2(B).

– Hence, we can define an (independent) product sequence[µ1, . . . ,µn] of n mea-
sures such that sequence[µ1, . . . ,µn] (A1×·· ·×An)= µ1(A1)sequence(µ2, . . . ,µn)
for n > 0 and sequence([])= ∗.

Recall that a tagged value a is either static(V) or inst(V) where V is an array of
values. The measure theory semantics makes use of the following data structures:

Data structures used in the probabilistic semantics:

δ ::= [ti 7→ τi
i∈1..n] schema-level environment

For continuous observations, we need a relation stating when two values are approxi-
mately (that is, up to some finite precision) equal. The expression on the left-hand side
is always taken from a database, so it can be either empty or a tagged value.

Rules of Matching: a�V ′ where known(V ′)

(MATCH ?)

`(?)�V

(MATCH FLOAT)
r = round(s)

`(r)� s

(MATCH SCALAR)
ty(s) ∈ {bool, int}
`(s)� s

(MATCH ARRAY)
`(Vi)�V ′i ∀i ∈ 0..n−1

`([V0; . . . ;Vn−1])� [V ′0; . . . ;V ′n−1]

We define the operators of the probability monad, an operation for conditioning by
filtering, and a function sequence, which takes an array of probability distributions,
and yields a probability distribution over arrays, defined as the product distribution of
the distributions in the array.

Probability Monad and Conditioning:

(µ >>= f) A,
∫

f (x)(A)dµ(x) monadic bind
(returnV) A, 1 if V ∈ A, else 0 monadic return
([a�V]µ)A, µ(A) if (a�V), else 0 conditioning by filtering

47

Lemma 8. (returnV >>= f) = f (V).

Proof: Let gS(x) = f (x)(S). Since for every S, gS is a measurable function, there ex-
ists an increasing sequence of measurable simple functions (i.e. admitting only a finite
number of values) {gS,m} which coverges pointwise to f , i.e. gS(x) = limm→∞ gS,m(x)
for all x. Thus, for every S,

∫
gS dµ = limm→∞

∫
gS,mdµ .

Each simple function h can be represented as ∑
n
i=1 αi1Ai , where α1, . . . ,αn are the

values taken by h, Ai = h−1(αi) for all i and 1A(x) is then standard indicator function,
returning 1 if x ∈ A and 0 otherwise. The Lebesgue integral for h then is defined as∫

hdµ = ∑
n
i=1 αiµ(Ai).

Now, let gS,m =∑
nS,m
i=1 αS,m,i1AS,m,i for every S, m. Then,

∫
gS,m dµ =∑

nS,m
i=1 αS,m,iµ(AS,m,i).

Thus, for µ = returnV (i.e. µ(A) = 1A(V)), we have:

returnV >>= f = λS.
∫

f (x)(S)dµ(x)

= λS.
∫

gS(x)dµ(x)

= λS.
∫

gS dµ

= λS. lim
m→∞

∫
gS,m dµ

= λS. lim
m→∞

nS,m

∑
i=1

αS,m,iµ(AS,m,i)

= λS. lim
m→∞

nS,m

∑
i=1

αS,m,i1AS,m,i(V)

= λS. lim
m→∞

gS,m(V)

= λS.gS(V)

= λS. f (V)(S)

= f (V)

as required.

Lemma 9. If ∅ `pc V : T then returnV is a probability measure on T[[T]]ρsz .

Proof: First, we need to show that returnV is indeed a measure. For this, we require
the following properties:

– (returnV)∅ = 0
Trivial- there is no V such that V ∈∅.

– If A1,A2, . . .∈Σ are pairwise disjoint, then (returnV)(
⋃

Ai)=∑i(returnV)(Ai).
Since the sets A1,A2, . . . are pairwise disjoint, V cannot belong to more than one
set. Thus, ∑i(returnV)(Ai) = 1 if V ∈ Ai for some i, 0 otherwise. As V ∈ Ai for
some i if and only if V ∈

⋃
Ai, the required equality holds.

48

Finally, we have to show that the measure returnV is a probability measure, i.e. that
|µ|= µ(Ω) = 1, where T[[T !spc]] = (Ω ,Σ).

We have µ(Ω) = 1 if V ∈Ω , else 0. By lemma 7, Ω = {V ′|∅ `V ′ : T}. Hence, by
the assumption ∅ `V : T , we have V ∈Ω , which implies µ(Ω) = 1, as required.

Therefore, returnV is a probability measure on T[[T]].

Lemma 10. If µ is a probability measure on T[[T]]ρsz and f (V) is a probability measure
on T[[U]]ρsz whenever ∅ `pc V : T , then µ >>= f is a probability measure on T[[U]]ρsz .

Proof: Let T[[T]] = (ΩT ,ΣT) and T[[U]] = (ΩU ,ΣU).
As before we need to show that the three properties of probablilty measures hold:

– (µ >>= f)(∅) = 0
By lemma 7, ΩT = {V |∅ `V : T}, which implies that f (x) is a measure for all x ∈
ΩT , and so f (x)(∅) for all x. By a property of Lebesgue integral,

∫
f (x)(∅)dµ(x)=

0, as required
– If A1,A2, . . . ∈ Σ are pairwise disjoint, then (µ >>= f)(

⋃
Ai) = ∑i(µ >>= f)(Ai)

(i.e.
∫

f (x)(
⋃

Ai)dµ(x) = ∑i
∫

f (x)(Ai)dµ(x)).
Since f (x) is a measure for all x∈ΩT , we have f (x)(

⋃
Ai) = ∑i f (x)(Ai) by defini-

tion of a measure. Then, the countable additivity property of the Lebesgue integral
yields

∫
∑i f (x)(Ai)dµ(x) = ∑i

∫
f (x)(Ai)dµ(x). This gives (µ >>= f)(

⋃
Ai) =

∑i(µ >>= f)(Ai), as required.
– |(µ >>= f)|= 1, i.e. (µ >>= f)(ΩU) = 1

We have (µ >>= f)(ΩU)=
∫

f (x)(ΩU)dµ(x). Since f (x) is a measure on (ΩU ,ΣU)
for every x∈ΩT , we have f (x)(ΩU) = 1 for all x∈ΩT . Thus, f (x)(ΩU) is a simple
function of x which can be written as 1 ∗1ΩT , and by definition of the Lebesgue
integral for a simple funciton,

∫
1∗1ΩT dµ = µ(ΩT). Since µ is a probability mea-

sure on (ΩU ,ΣU), we have µ(ΩT) = 1, as required.

E.2 Well-definedness of measures

In the following definition, ρsz(T) denotes T with each expression of the form sizeof(t)
replaced with ρsz(t).

Size Substitution in Types and Column Type Expansion

[[T]]static,tρsz , ρsz(T)
[[T]]inst,tρsz , ρsz(T)[ρsz(t)]

In order to specify the desired properties of the semantics of schemas, we need to
define a conformance relation, which states that a given database or compound evalua-
tion environment is valid with respect to the given schema type or typing environment.

49

The judgment Γ ` (δ ,ρsz) means that the names of all the tables in Γ are present
in the map of table sizes ρsz and in the schema-level evaluation environment δ , and
that the maps stored in δ under these identifiers conform to the table types in Γ . The
judgment Γ ` (δ ,τ,ρsz, t), in addition to the above, states that all other variables in Γ

must occur in τ , and the values stored for them in τ must inhabit their types in Γ (types
are expanded to array types for inst-level variables).

The judgment t 7→ τ |=io
ρsz Q means that the values in the valuation environment

(which may be a part of a database) check against the types in Q, while (δ ,ρsz) |=io Sty
states that all tables in Sty have corresponding entries in the database δin.

Conformance Relations:

io ::= in | out polarity
(δ ,ρsz) |=io Sty database (δ ,ρsz) conforms to schema type Sty
t 7→ τ |=io

ρsz Q io-table W size ρsz(t) conforms to table type Q
Γ ` (δ ,ρsz) environment Γ makes sense for (δ ,ρsz)
Γ ` (δ ,τ,ρsz, t) environment Γ makes sense for (δ ,τ,ρsz, t)

Conformance Rules:

(CONF SCHEMA)
ti 7→ τi |=io

ρsz Qi ∀i ∈ 1..n

([ti 7→ τi
i∈1..n],ρsz) |=io [(ti : Qi)

i∈1..n]

(CONF TABLE IN)
I = { j ∈ 1..m | (viz j = input)∨ (viz j = output∧ rnd(Tj))}
∅ `` j Vj : [[Tj]]

` j ,t
ρsz viz j = input⇒ known(Vj) ∀ j ∈ I

t 7→ [c j 7→ ` j(Vj)
j∈I] |=in

ρsz [(c j : Tj ` j viz j)
j∈1..m]

(CONF TABLE OUT)
O = { j ∈ 1..m | spc(Tj) 6= rnd}
∅ `` j Vj : [[Tj]]

` j ,t
ρsz known(Vj) ∀ j ∈ O

t 7→ [c j 7→ ` j(Vj)
j∈O] |=out

ρsz [(c j : Tj ` j viz j)
j∈1..m]

(CONF TABLE ALL)
O = { j ∈ 1..m | spc(Tj) 6= qry}
τ(c j) = ` j(Vj) ∅ `` j Vj : [[Tj]]

` j ,t
ρsz ∀ j ∈ O

t 7→ τ |=all
ρsz [(c j : Tj ` j viz j)

j∈1..m]

(VAL EMPTY SCHEMA)

∅ ` (δ ,ρsz)

(VAL TABLE SCHEMA)
(t 7→ δ (t)) |=all

ρsz Q t ∈ dom(ρsz) Γ ` (δ ,ρsz)

Γ , t : Q ` (δ ,ρsz)

(VAL EMPTY TABLE-EXPR)

∅ ` (δ ,τ,ρsz, t)

50

(VAL TABLE TABLE-EXPR)
(t 7→ δ (t)) |=all

ρsz Q t ∈ dom(ρsz) Γ ` (δ ,ρsz)

Γ , t : Q ` (δ ,τ,ρsz, t)

(VAL VAR TABLE-EXPR)
τ(c) = `(V) ∅ `` V : [[T]]`,tρsz Γ ` (δ ,τ,ρsz, t)

Γ ,c :` T ` (δ ,τ,ρsz, t)

The semantics of an expression E is a probability measure P[[E]]i(τ,δ), where i is the
index of the row of the table in which the expression resides. This index is set to 0,
and not taken into account, for expressions in static columns. The semantics of a table
T with name t is a sub-probability measure P[[T]]t,τ

(τ,δ)
, where τ is the part of the input

database corresponding to this table, δ a map storing the values of non-qry columns
of all previous tables and τ the current table-level environment (initially equal to []).
Finally, the semantics of a schema S is a sub-probability measure P[[S]]δin

δ
where δ adds

values to the schema-level valuation environment in the recursive calls (and is equal to
[] initially).

Given a closed well-typed primitive D[n1, . . . ,nm](V1, . . . ,Vn) of closed type T , we
assume a finite measure µD[n1,...,nm](V1,...,Vn) on measurable space T[[T]]. We also assume
a global map ρsz storing sizes of tables in the database.

Semantics of Expression E as a Measure P[[E]]i(τ,δ) on T[[T]]:

We assume that z,z1, . . . ,zn do not occur free in E,F,F1,E1, . . . ,En,x,τ .

evaliρsz(s) = s Evaluation of index expression
evaliρsz(x) =

match τ(x) with static(V1)→V1| inst(V2)→V2[i]
evaliρsz(sizeof(t)) = ρsz(t)

P[[E]]i(τ,δ) , P[[E]]i where
P[[e]]i , return evaliτ,ρsz(e)
P[[[E0; . . . ;En−1]]]

i , P[[E0, . . . ,En−1]]
i(z1, . . . ,zn)[return [z1; . . . ;zn]]

P[[E[F]]]i , P[[E]]i >>= λ z.P[[F]]i >>= λw.return z[w]
P[[if E then F1 else F2]]

i , P[[E]]i >>= λ z.if z then P[[F1]]
i else P[[F2]]

i

P[[[for x < e→ F]]]i ,
sequence (map (λv.P[[F]]i(τ@[x 7→static v],δ)) (0..(n−1))) if evaliρsz(e) = n

P[[g(E1, . . . ,En)]]
i , P[[E1, . . . ,En]]

i(z1, . . . ,zn)[return g(z1, . . . ,zn)]
P[[D[e1, . . . ,em](F1, . . . ,Fn)]]

i ,
P[[F1, . . . ,Fn]]

i(z1, . . . ,zn)[µD[n1,...,nm](z1,...,zn)] for evaliρsz(e j) = n j

P[[E1, . . . ,En]]
i(z1, . . . ,zn)[·],

P[[E1]]
i >>= λ z1.P[[E2]]

i >>= . . . >>= λ zn−1.P[[En]]
i >>= λ zn.[·]

P[[t.c]]i , returnmatch δ (t).c with static(V)→V

51

P[[E : t.c]]i , P[[E]]i >>=
λ z.returnmatch δ (t).c with inst([V0, . . . ,Vn−1])→Vz if ρsz(t) = n

Lemma 11. If Γ ` (δ ,τ,ρsz, t) and Γ `pc Ei : Ti and f (V1, . . . ,Vn) is a probability mea-
sure on T[[U]]ρsz when ∅ `pc Vi : ρsz(Ti) for each i ∈ 1..n,then

(1) If pc = static and P[[Ei]]
0
(τ,δ) is a probability measure on T[[Ti]]ρsz for each i ∈

1..n, then P[[E1, . . . ,En]]
0
(τ,δ)(z1, . . . ,zn)[f (z1, . . . ,zn)] is a probability measure on

T[[U]]ρsz .
(2) If pc = inst and j < ρsz(t) and P[[Ei]]

j
(τ,δ)

is a probability measure on T[[Ti]]ρsz for

each i∈ 1..n and 0≤ i≤ ρsz(t)−1, then P[[E1, . . . ,En]]
i
(τ,δ)(z1, . . . ,zn)[f (z1, . . . ,zn)]

is a probability measure on T[[U]]ρsz .

Proof: By induction on n. For clarity, let us invert the list of arguments of f and write
P[[En, . . . ,E1]]

i
(τ,δ)(z1, . . . ,zn)[f (zn, . . . ,z1)].

– Case n = 1: P[[E1]]
i
(τ,δ)(z1, . . . ,zn)[f (z1)]

By assumption, P[[E1]]
i
(τ,δ) is a probability measure on τ(T), and for all V such

that ∅ ` V : τ(T), f (V) us a probability measure on T[[U]], so by lemma 10,
P[[E1]]

i
(τ,δ)(z1, . . . ,zn)[f (z1)] is a probability measure on T[[U]].

– Case n > 1: P[[En, . . . ,E1]]
i
(τ,δ)(z1, . . . ,zn)[f (zn, . . . ,z1)]

We have P[[En, . . . ,E1]]
i
(τ,δ)(z1, . . . ,zn)[f (zn, . . . ,z1)] =

P[[En]]
i
(τ,δ) >>= λ zn.P[[En−1]]

i
(τ,δ) >>= . . . >>= λ z1. f (zn, . . . ,z1), where P[[Ei]]

i
(τ,δ)

is a probability measure on T[[τ(Ti)]] for all i.
Let g(x) = P[[En−1, . . . ,E1]]

i
(τ,δ)(z1, . . . ,zn)[f (x,zn−1, . . . ,z1)] =

P[[En−1]]
i
(τ,δ) >>= . . . >>= λ z1. f (x,zn−1, . . . ,z1). Now, take an arbitrary Vn such

that ∅`Vn : τ(Tn) and let hVn(zn−1, . . . ,z1)= f (Vn,zn−1, . . . ,z1). By assumption, for
all Vn−1, . . . ,V1 such that ∅ ` Vi : τ(Ti), hVn(Vn−1, . . . ,V1) is a probability measure
on T[[U]]. Thus, by induction hypothesis,
g(Vn) = P[[En−1, . . . ,E1]]

i
(τ,δ)(z1, . . . ,zn)[hVn(zn−1, . . . ,z1)] is a probability measure

on T[[U]].
Therefore, by lemma 10, P[[En, . . . ,E1]]

i
(τ,δ)(z1, . . . ,zn)[f (zn, . . . ,z1)] =

P[[En]]
i
(τ,δ) >>= g is a probability measure on T[[U]].

In the following, we expect that the expression E is used in a table t: we have that
the expression E is well-typed in environment Γ , and the judgment Γ ` (δ ,τ,ρsz, t)
says that the table types in Γ type the tables in δ , and the attribute types in Γ type the
earlier attributes in τ , with inst-level attributes of size ρsz(t).

Lemma 12. If Γ `pc E : T and T is in det or rnd-space and Γ ` (δ ,τ,ρsz, t).

(1) If pc = static, we have that µ = P[[E]]0(τ,δ) is a probability measure on T[[T]]ρsz .

52

(2) If pc = inst and 0 ≤ i ≤ ρsz(t)− 1, we have that µ = P[[E]]i(τ,δ) is a probability
measure on T[[T]]ρsz .

(3) If T is in det-space there is closed V such that µ = returnV .

Proof: By induction on the derivation of Γ `pc E : T , with appeal to lemma 10.

Semantics of Table T as a Measure P[[T]]t,τin
(τ,δ)

:

P[[[]]]t,τin
(τ,δ)

, return ()

P[[(c : T ` viz E) :: T]]t,τin
(τ,δ)
, P[[T]]t,τin

(τ,δ)
if space(T) = qry

P[[(c : T ` input ε) :: T]]t,τin
(τ,δ)
, P[[T]]t,τ

(τ@[c→τin(c)],δ)
P[[(c : T static local E) :: T]]t,τin

(τ,δ)
,

P[[E]]0(τ,δ) >>= λx.P[[T]]t,τin
(τ@[c→static(x)],δ) >>= λy.return (x,y)

P[[(c : T static output E) :: T]]t,τin
(τ,δ)
,

P[[E]]0(τ,δ) >>= λx.([τin(c)� x]P[[T]]t,τin
(τ@[c→static(x)],δ))>>= λy.return (x,y)

P[[(c : T inst local E) :: T]]t,τin
(τ,δ)
,

µ >>= λx.P[[T]]t,τin
(τ@[c→inst(x)],δ) >>= λy.return (x,y)

(where µ = sequence([for i < ρsz(t)→ P[[E]]i(τ,δ)])
P[[(c : T inst output E) :: T]]t,τin

(τ,δ)
,

µ >>= λx.([τin(c)� x]P[[T]]t,τin
(τ@[c→static(x)],δ))>>= λy.return (x,y)

(where µ = sequence([for i < ρsz(t)→ P[[E]]iτ]

Lemma 13. If Γ `inst T : Q and table(Q) and Γ ` (δ ,τ,ρsz, t) and (t 7→ τ) |=ρsz
in Q,

then P[[T]]t,τin
(τ,δ)

is a subprobability measure on T[[T]]ρsz
t .

Proof: By induction on the derivation of Γ `inst T : Q, with appeal to lemma 10.

Finally, to define the probabilistic semantics of Tabular schemas, we first need
additional definitions: an operator Bind, which takes a (concrete) table τ and its de-
scription T and a list of values (represented as a nested pair V s) and returns a map
τ ′ = Bind(T,V s,τ), obtained from τ by adding a corresponding value to every non-qry
local or output attribute.

Auxiliary definition: Bind(T,V s,τ) = τ ′

Bind([],(),τ), []
Bind((c : T ` input ε) :: T,(V,V s),τ), (c 7→ τ(c)) :: Bind(T,V s,τ)
Bind((c : T ` viz E) :: T,(V,V s),τ), Bind(T,V s,τ) if space(T) = qry
Bind((c : T ` viz E) :: T,(V,V s),τ), (c 7→ ` V) :: Bind(T,V s,τ) if space(T) 6= qry

Semantics of Schema S as a Measure P[[S]]δin
δ

:

P[[[]]]δin
δ
, return ()

P[[(t = T) :: S]]δin
δ
, P[[T]]t,δin(t)

([],δ)
>>= λx.P[[S]]δin

δ@[t→(Bind(T,x,δin(t))]
>>= λy.return (x,y)

53

Lemma 14. If Γ ` S : Sty and Γ ` (δ ,ρsz) and (δin,ρsz) |=in Sty, then P[[S]]δin
(δ)

is a
subprobability measure on T[[S]]ρsz .

Proof: By induction on the derivation of Γ ` S : Sty with appeal to lemma 10.

E.3 Query semantics

In the previous subsection, we have shown how to compute a measure from a schema
and a database. Here, we show how we can use this measure to evaluate queries included
in this schema.

As before, we first need to define auxiliary operators and data structures. Here, marg
returns the marginal for the given component of the measurable space norm simply
normalizes a measure (we assume |µ| 6= 0 and consider the measure not well-defined
otherwise).

Auxiliary definitions

marg(µ, i,n), µ >>= λ (x0,(. . . ,(xn−1,()) . . .).return xi
norm(µ) = µ

|µ|

Additional data structures used in the query semantics

σ ::= [ti 7→ ρi
i∈1..n] map of marginals for a schema

ρ ::= [ci 7→ qi
i∈1..n] map of marginals for a table

q ::= `(µ) | `([µ1, . . . ,µn]) tagged measure or array of measures

In order to evaluate queries in a schema with respect to a measure, we first need
to compute the marginals of that measure for all the rows of measurable columns in
that schema. Below, we present an algorithm for marginalizing a measure, and through-
out this section we assume that the input σ to the query semantics is the map of the
marginals.

The function measurables, used in the algorithm, returns an ordered list of names
of columns whose domains are parts of the measurable space of the given table, that is,
all local and output attributes not at level qry.

Measurable columns of a table:

measurables([]), []
measurables((c : T ` input ε) :: T),measurables(T)
measurables((c : T ` viz E) :: T),measurables(T) if space(T) = qry
measurables((c : T ` viz E) :: T), c :: measurables(T) if space(T) 6= qry

The algorithm also makes use of a simple auxiliary function isInst returning true
if and only if a given column is at inst level in the given table. Its formal definition is
ommitted, but would be straightforward to write down. To keep the notation cleaner, we
do not make explicit the dependence of m on i.

54

Measure marginalization: marginalize(S,ρsz,µ)

(1) Assume Core(S) and S= [(t1 = T1), . . . ,(tn = Tn)]
(2) For all i ∈ 1..n:

Let µi =marg(µ, i−1,n) and [c1, . . . ,cm] =measurables(Ti)
(3) For all j ∈ 1..m:

Let µi j = norm(marg(µi, j−1,m))
If isInst(Ti,c j) then:

qi j = inst([ν0, . . . ,νρsz(t)−1]), where νk =marg(µi j,k,ρsz(t))
Else:

qi j = static(µi j)
(4) Let ρi = [c j 7→ qi j

j∈1..m]
(5) Let σ = [ti 7→ ρi

i∈i..n]
(6) Return σ .

With these definitions in place, we can now define the query semantics for Tabular
programs. To this end, we require rules for evaluating deterministic expressions as well
as extracting the parameters of inferred distributions. We also define rules for evaluating
tables, which create a map storing all deterministic expressions in a given table, as well
as rules for evaluating schemas. The output of a schema evaluation contains valuations
for all deterministic attributes of a schema, rather than just valuations for queries. This
is purely for mathematical convenience—it would be straightforward to filter the output
at the end.

Our query implementation depends on deterministic but approximate inference al-
gorithms in Infer.NET. In our semantics of queries, we write approx(µ,D, [V ′1, . . . ,V

′
m])

as an abstraction of these algorithms, subject to the following assumption.

Assumption: Abstraction of Approximate Inference:

Suppose D : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T .
Suppose µ is a probability measure on T[[T{V ′1/x1} . . .{V

′
m/xm}]].

We assume approx(µ,D, [V ′1, . . . ,V
′
m]) computes [yi 7→Vi

i∈1..n]
such that the measure µD[V ′1,...,V

′
m](V1,...,Vn) approximates µ .

In the definitions below, we assume an input database (δin,ρsz), as well as an envi-
ronment σ̂ mapping tables to corresponding marginal measures, constructed from the
output of the probabilistic semantics.

Expression evaluation: δ ;ρ; i ` E ⇓V

(QUERY INFER STATIC DIST) (where j ∈ 1..n)
δ ;τ;ρ; i ` ek ⇓V ′k ∀k ∈ 1..m ρ(x) = static(ν)
approx(ν ,D, [V ′1; . . . ;V ′m]) = [yk 7→Vk

k∈1..n]

δ ;τ;ρ; i ` infer.D[e1, . . . ,em].y j(x) ⇓Vj

55

(QUERY INFER INST DIST) (where j ∈ 1..n)
δ ;τ;ρ; i ` ek ⇓V ′k ∀k ∈ 1..m ρ(x) = inst([ν0, . . . ,νl−1])
approx(νi,D, [V ′1; . . . ;V ′m]) = [yk 7→Vk

k∈1..n]

δ ;τ;ρ; i ` infer.D[e1, . . . ,em].y j(x) ⇓Vj

(QUERY VAR STATIC)
τ(x) = static(V)

δ ;τ;ρ; i ` x ⇓V

(QUERY VAR INST)
τ(x) = inst([V0, . . .Vn−1])

δ ;τ;ρ; i ` x ⇓Vi

(QUERY CONST)

δ ;τ;ρ; i ` s ⇓ s

(QUERY PRIM)
δ ;τ;ρ; i ` E j ⇓Vj ∀ j ∈ 1..n

δ ;τ;ρ; i ` g(E1, . . . ,En) ⇓ g(V1, . . . ,Vn)

(QUERY IF TRUE)
δ ;τ;ρ; i ` E1 ⇓ true δ ;τ;ρ; i ` E2 ⇓V

δ ;τ;ρ; i ` if E1 then E2 else E3 ⇓V

(QUERY IF FALSE)
δ ;τ;ρ; i ` E1 ⇓ false δ ;τ;ρ; i ` E3 ⇓V

δ ;τ;ρ; i ` if E1 then E2 else E3 ⇓V

(QUERY ARRAY)
δ ;τ;ρ; i ` E j ⇓Vj ∀ j ∈ 0..n−1

δ ;τ;ρ; i ` [E0, . . . ,En−1] ⇓ [V0, . . . ,Vn−1]

(QUERY INDEX) (where j ∈ 0..n−1)
δ ;τ;ρ; i ` E ⇓ [V0, . . . ,Vn−1] F ⇓ j

δ ;τ;ρ; i ` E[F] ⇓Vj

(QUERY ITER)
δ ;τ;ρ; i ` F{ j/x} ⇓Vj ∀ j ∈ 0..n−1

δ ;τ;ρ; i ` [for x < n→ F] ⇓ [V0, . . . ,Vn−1]

(QUERY DEREF STATIC)
δ (t)(c) = static V

δ ;τ;ρ; i ` t.c ⇓V

(QUERY DEREF INST)
δ ;τ;ρ; i ` E ⇓ k
δ (t)(c) = inst[V0, . . . ,Vρsz(t)−1]

δ ;τ;ρ; i ` E : t.c ⇓Vk

(QUERY SIZEOF)
ρsz(t) = n

δ ;τ;ρ; i ` sizeof(t) ⇓ n

Table Evaluation: t;δ ;τin;ρ ` T ⇓ τ

(VAL EMPTY)

t;δ ;τin;ρ ` [] ⇓ []

(VAL INPUT)
t;δ ;τin,(c→ δin(t)(c));ρ ` T ⇓ τ

t;δ ;τin;ρ ` (c : T ` input ε) :: T ⇓ τ@[c 7→ δin(t)(c)]

(VAL RANDOM) (where space(T) = rnd)
t;δ ;τin;ρ ` T ⇓ τ

t;δ ;τin;ρ ` (c : T ` viz E) :: T ⇓ τ

(VAL QUERYORDET STATIC) (where space(T) 6= rnd)
δ ;τin;ρ;0 ` E ⇓V
t;δ ;τin,(c→ static(V));ρ ` T ⇓ τ

t;δ ;τin;ρ ` (c : T static viz E) :: T ⇓ τ@[c 7→ static V]

(VAL QUERYORDET INST) (where space(T) 6= rnd)
δ ;τin;ρ(t); i ` E ⇓Vi ∀i ∈ 0..(ρsz(t)−1)
t;δ ;τin,(c→ inst([V0, . . . ,Vρsz(t)−1]));ρ ` T ⇓ τ

t;δ ;τin;ρ ` (c : T inst viz E) :: T ⇓ τ@[c 7→ inst([V0, . . . ,Vρsz(t)−1]])

56

Schema evaluation: δ `σ S ⇓ δout

(QUERY SCHEMA EMPTY)

δ `σ [] ⇓ []

(QUERY SCHEMA TABLE)
t;δ ;∅;σ(t) ` T ⇓ τt
δ ,(t→ τt) `σ S ⇓ δout

δ `σ (t = T) :: S ⇓ δout@[t→ τt]

E.4 Algorithm for Query Evaluation and Conformance Relation

By combining the query evaluation rules with the probabilistic semantics, we can fully
define an algorithm for computing a map of query results from a schema, with respect
to a given database:

Algorithm 2: Query Semantics of Core Schema: CoreQuery(S,DB)

(1) Assume core(S) and DB = (δin,ρsz).
(2) Let µ , P[[S]]δin

[]
(that is, the joint distribution over all rnd-variables).

(3) Let σ =marginalize(S,ρsz,µ).
(4) Return (δout ,ρsz) such that ∅ `σ S ⇓ δout .

In order to prove the key theoretical result about the evaluation algorithm, we need
three more conformance relations. The judgment ρ `ρsz

t T says that the map of marginals
ρ contains measures corresponding to all columns of T named t, and that these measures
are subprobability measures on the right measurable spaces. The statement σ `ρsz S
states that all tables in S have corresponding maps of marginals in σ . Finally Γ `ρsz

t ρ

is similar to the first judgment, except that it checks conformance of ρ to a typing envi-
ronment.

New conformance rules

ρ `ρsz
t T ρ conforms to T

σ `ρsz S σ conforms to S
Γ `ρsz

t ρ ρ makes sense in Γ

Conformance Rules for Maps of Marginals : ρ `ρsz
t T, σ `ρsz S

(MARG SCHEMA)
σ(ti) `ρsz

ti Ti ∀i ∈ 1..n

σ `ρsz [(t1 = T1), . . . ,(tn = Tn)]

(MARG TABLE)
IS = { j ∈ 1..m | space(Tj) = rnd∧ ` j = static}
II = { j ∈ 1..m | space(Tj) = rnd∧ ` j = inst}
ρ(c j) = static(µ j) and µ j is a subprobability measure on T[[Tj]]

ρsz(t)
ρsz ∀ j ∈ IS

ρ(c j) = inst([µ j,0, . . . ,µ j,ρsz(t)−1) and
µ j,0, . . . ,µ j,ρsz(t)−1 are subprobability measures on T[[Tj]]

ρsz(t)
ρsz ∀ j ∈ II

ρ `ρsz
t [(c j : Tj ` j viz j)

j∈1..m]

57

(CONF MARG)
IS = { j ∈ 1..n | space(Tj) = rnd∧ ` j = static}
II = { j ∈ 1..n | space(Tj) = rnd∧ ` j = inst}
ρ(c j) = static(µ j) and µ j is a subprobability measure on T[[Tj]]

ρsz(t)
ρsz ∀ j ∈ IS

ρ(c j) = inst([µ j,0, . . . ,µ j,ρsz(t)−1) and
µ j,0, . . . ,µ j,ρsz(t)−1 are subprobability measures on T[[Tj]]

ρsz(t)
ρsz ∀ j ∈ II

(ti : Qi)
i∈1..m,(c j :` j Tj)

j∈1..n `ρsz
t ρ

To prove that CoreQuery returns a database conforming to the type of the given
schema for a well-formed input, we first need to show that the reduction of the queries
in the schema actually terminates and returns a result. To this end, we need the following
three lemmas, which are analogues for progress lemmas for reduction systems.

Lemma 15. – If Γ `static E : T and Γ ` (δ ,τ,ρsz, t) and Γ `ρsz
t ρ , then there is a V

such that δ ;ρ;0 ` E ⇓V .
– If Γ `inst E : T and Γ ` (δ ,τ,ρsz, t) and Γ `ρsz

t ρ and i ∈ 0..ρsz(t)− 1, then there
is a V such that δ ;ρ; i ` E ⇓V .

Proof: By induction on the derivation of Γ `static E : T and Γ `inst E : T .

Lemma 16. If Γ `inst T : Q and Γ ` (δ ,τ,ρsz, t) and Γ `ρsz
t ρ and ρ `ρsz

t T, then there
is a τ such that t;δ ;τ;ρ ` T ⇓ τ .

Proof: By induction on the derivation of Γ `inst T : Q, with appeal to Lemma 15.

Lemma 17. If Γ ` S : Sty and Γ ` (δ ,ρsz) and σ `ρsz S, then there exists a δout such
that δ `σ S ⇓ δout .

Proof: By induction on the derivation of Γ ` S : Sty, with appeal to Lemma 16.

Subsequently, we have to prove that if a schema can be evaluated into an output
map, then this map matches the type of the schema. To show that, we need three more
lemmas, akin to the standard type preservation results.

Lemma 18. If Γ `` E : T and δ ,τ;ρ; i ` E ⇓V ,then ∅ `` V : [[T]]`,tρsz .

Proof: By induction on the derivation of Γ `` E : T .

Lemma 19. If Γ `inst T : Q and t;δ ;τ;σ ` T ⇓ τ ,then t 7→ τ |=out
ρsz Q.

Proof: By induction on the derivation of Γ `inst T : Q, with appeal to lemma 18.

Lemma 20. If Γ ` S : Sty and δ `σ S ⇓ δout and Γ ` (δ ,ρsz) , then (δout ,ρsz) |=out Sty.

58

Proof: By induction on the derivation of Γ ` S : Sty, with appeal to lemma 19.

Finally, we have to show that marginalize returns a map of marginals conforming to
the database schema.

Lemma 21. If µ is a subprobability measure on T[[S]]ρsz , then there exists a unique σ

such that σ =marginalize(S,ρsz,µ). Moreover, σ `ρsz S.

Proof: The existence and uniqueness of σ follow from the fact that marginalize is
deterministic and marginalization is well-defined.

The result σ `ρsz S follows from the definition of the measurable space.

Restatement of Theorem 2 Suppose Core(S) and ∅ ` S : Sty and DB = (δin,ρsz)
and DB |=in Sty. Then algorithm CoreQuery(S,DB) returns a unique DB′ = (δout ,ρsz)
such that DB′ |=out Sty.

Proof: Since we have ∅ ` S : Sty and δin |=in
ρsz Sty by assumption, and ∅ ` ([],ρsz)

follows trivially, Lemma 14 says that P[[S]]δin
[]

is a subprobability measure on T[[S]]ρsz .
Thus, by Lemma 21, there is a unique σ such that σ = marginalize(S,ρsz,µ), which
satisfies σ `ρsz S. By Lemma 17 there exists a δout such that ∅ `σ S ⇓ δout . This δout is
unique, since the algorithm CoreQuery is deterministic. This shows that the algorithm
terminates and returns a unique output database.

The desired conformance result DB′ |=out Sty for DB′ = (δout ,ρsz) follows directly
from Lemma 20.

F Proofs for Section 5

We give proofs for Proposition 1, Proposition 2, and Proposition 3.

F.1 Basic properties of the type system

Lemma 22 (Scoping).

(1) If Γ `pc M : Q then fv(M)⊆ dom(Γ) and fv(Q)⊆ dom(Γ).
(2) If Γ ` T : Q then fv(T)⊆ dom(Γ) and fv(Q)⊆ dom(Γ).
(3) If Γ ` S : Sty then fv(S)⊆ dom(Γ) and fv(Sty)⊆ dom(Γ).

Proof: The proof is by induction on the depth of the derivations.

Lemma 23 (Derived Judgments).

(1) If Γ ` T then Γ ` �.
(2) If Γ `pc E : T then Γ ` T .
(3) If Γ `pc M : Q then Γ ` Q.

59

(4) If Γ ` T : Q then Γ ` Q.
(5) If Γ `pc R : Q→ Q′ then Γ ` Q and Γ ` Q′.
(6) If Γ ` S : Sty then Γ ` Sty.

Proof: By induction on the depth of the derivations.

Lemma 24. If Γ `pc T : Q then dom(Γ)∩dom(Q) =∅.

Proof: By induction on the derivation of Γ `pc T : Q

Lemma 25. If Γ `pc E : T and x ∈ fv(E) then (x :` T ′) ∈ Γ with `≤ pc for some ` and
T ′.

Proof: By induction on the derivation of Γ `pc E : T .

Subtyping is reflexive and transitive:

Lemma 26.

(1) If Γ ` T then Γ ` T <: T .
(2) If Γ ` T <: T ′ and Γ ` T ′ <: T ′′ then Γ ` T <: T ′′.

Proof: By induction on the derivations.

Since every column has a type annotation, tables and schemas have unique types, if
they exist.

Lemma 27 (Unique Types).

(1) If Γ ` T : Q and Γ ` T : Q′ then Q = Q′.
(2) If Γ ` S : Sty and Γ ` S : Sty′ then Sty = Sty′.

Proof: By inductions on the derivations.

F.2 Proof of Proposition 1

First, we need some additional definitions and lemmas:

Converting Table Types to Environments: γ(Q), γ(T)

γ([]),∅ γ((c : T ` viz) :: Q), c :` T,γ(Q) γ((c : T (` viz) E) :: T), c :` T,γ(T)

Definition 1. We say that Γ2 ≤ Γ1 if and only if dom(Γ2) ⊆ dom(Γ1) and all variables
in dom(Γ2) have levels not lower in Γ1 than in Γ2.

Lemma 28. If Core(T) and Γ2 ` � and Γ1 `pc T : Q and dom(Γ2)∩ dom(T) = ∅ and
Γ1 ≤ Γ2, then Γ2 `pc T : Q.

60

Proof: By induction on the depth of derivation of Γ1 `pc T : Q.

Lemma 29. If Core(T) and Γ `pc T : Q, then γ(Q)≤ γ(T∧ pc).

Proof: By induction on the depth of derivation of Γ `pc T : Q.

Lemma 30. (1) If Γ `pc E : T and x /∈ Γ , and Γ `U, then Γ ,x :` U `pc E : T .
(2) If Γ `pc R : Q→ Q′ and x /∈ Γ , and Γ `U, then Γ ,x :` U `pc R : Q→ Q′

Proof:

(1) By induction on the derivation of Γ `pc E : T .
(2) By induction on the derivation of Γ `pc R : Q→ Q′.

Lemma 31. If Γ ,c :`∧pc T `pc T : Q and Γ ``∧pc e : T , then Γ `pc T{e/c} : Q{e/c}

Proof: Follows directly from the previous lemma

Lemma 32. Appending Columns to Tables
If Γ `pc (c : T (` viz) E) : Q1 and Γ ,c :`∧pc T `pc T : Q2, then Γ `pc (c : T (` viz) E) ::

T : Q1@Q2.

Proof: By case analysis on the typechecking rules for tables. Q1 obtained by using an
empty table as tail.

Lemma 33. Type of Multiple Concatenated Columns
If Γ ,c1 :`1∧pc T1, . . . ,ci−1 :`i−1∧pc Ti−1 `pc (ci : Ti (`i vizi) Mi) : Qi for all i ∈ 1 . . .n

and Γ ,c1 :`1∧pc T1, . . . ,ci−1 :`i∧pc Ti `pc T : Q, then Γ `pc [(ci : Ti (`i vizi) Mi)
i∈1...n]@T :

Qi∈1...n
i @Q

Proof: By induction on n, with appeal to Lemma 32.

Lemma 34. If (T∧ local) ` R o T1 and Γ ``∧pc T R : Q, then Γ `pc T1 : []

Proof: By definition of T∧ viz, all columns of T∧ local must have visibility input or
local. As applying a function to arguments converts all its input columns to local ones,
and leaves local columns unchanged, all columns of T1 must be at level local.

The statement Γ ``∧pc T R : Q must have been derived using (MODEL APPL):
(MODEL APPL)
Γ ``∧pc T : Q1
fun(Q1)
Γ ``∧pc R : Q1→ Q

Γ ``∧pc (T R) : Q

61

Thus, the result Γ `pc T1 : [] follows by simple induction: from Γ ``∧pc R : Q1→Q,
we get Γ ` �, so by (TABLE EMPTY), Γ `pc [] : []. Now, let T1 = (c : T ` local E) :: T′′
. We get Γ `` E : T from the derivation of either Γ ``∧pc T : Q1 or Γ ``∧pc R : Q1→Q,
depending on whether c is an input or not in T. From Γ ``∧pc T : Q1, we also get c /∈Γ .
By applying the induction hypothesis and lemma 30, we obtain Γ `` E : T and c /∈ Γ .
Thus, by (TABLE LOCAL), we get Γ `pc (c : T ` local E) :: T : [].

Lemma 35. If Γ `pc T : Q, then Γ `pc T[eindex < esize] : Q[esize].

Proof: z By induction on the derivation of Γ `pc T : Q, using the definitions of T[eindex <
esize] and Q[esize].

Notation for substituting column names: (T)[a/b], (Q)[a/b]

((b : T (` viz) E) :: T)[a/b], (a : T (` viz) E) :: (T[a/b])
((c : T (` viz) E) :: T)[a/b], (c : T (` viz) E) :: (T[a/b]) if c 6= b
((b : T (` viz)) :: Q)[a/b], (a : T (` viz)) :: (Q[a/b])
((c : T (` viz)) :: Q)[a/b], (c : T (` viz))) :: (Q[a/b]) if c 6= b
[][a/b], []

Lemma 36. If ((T1 ∧ `)∧ viz) ` R o T2 ands Γ `` (T1 R) : Q, then γ(Q[o/ret]) ≤
γ(T2)

Proof: The judgment Γ `` T R : Q must have been derived using (MODEL APPL):
(MODEL APPL)
Γ `` T1 : Q′

fun(Q′)
Γ `` R : Q′→ Q

Γ `` (T1 R) : Q
By lemma 29, γ(Q′) ≤ γ(T1). By the definition of ′, we have γ(((T1 ∧ `) ∧

viz)[o/ret]) = γ(T2).
Also, note that dom(((T1 ∧ `)∧ viz)[o/ret]) = dom(T1[o/ret]). Now, we just need

to show that dom(Q[o/ret]) ⊆ dom(T1[o/ret]) and that levels of all columns in Q are
greater or equal to levels of corresponding columns in (T1 ∧ `)∧ viz. The first part
is trivial, since Q′ contains a subset of columns of T1, and by the typing rules for
arguments, Q contains only the output columns of Q′. As for the levels, by table and
argument checking rules, columns of Q have the levels of T1 with those greater then `
reduced to `. Meanwhile, by definition of join, columns of (T1 ∧ `)∧ viz also have the
same levels as those in the original table T1 with those greater than ` reduced to `. This
concludes the proof.

62

Lemma 37. If Core(T), (T∧ `) ` R o T1 and Γ `` (T R) : Q′ and the last column of
T is at level `, then Γ `` T1 : Q′[o/ret].

Proof: By (MODEL APPL), this theorem can be rewritten as:
If Core(T), (T∧ `) ` R o T1 and Γ `` T : Q and Γ `` R : Q→ Q′ and dom(T)∩

dom(Γ) =∅ and fun(T) and the last column of T is at level `, then Γ ` T1 : Q′[o/ret].
We prove the rewritten version by induction on the depth of derivation of (T∧ `) `

R o T1.

– Case:
(APPLY OUTPUT)

[(ret : T (` viz) E)] ` [] o [(o : T (` viz) E)]
• Subcase viz = output:

(TABLE OUTPUT)(for Core tables)
Γ1 `` E : T

Γ1 `` (ret : T ` output E) : (ret : T ` output)

(ARG OUTPUT)
Γ ` T Γ `` R : []→ []

Γ `` R : (ret : T (` output))→ (ret : T (` output))
Here, T1 = [(o : T (` viz) E)] and Q′ = (ret : T (` viz)), so the result follows
trivially.

• Subcase viz = local:
Impossible (fun(T) implies that last column must have visibility output).

– Case:
(APPLY ARG DET) (for T in det-space)
((T′{e/c})∧ `) ` R′ o T1 c /∈ fv(R′) dom(T∧ `)∩ fv(e) =∅
(c : T ((`′ ∧ `) input) ε) :: (T′∧ `) ` [c = e] :: R′ o T1

(TABLE INPUT)
Γ ,c :`

′∧` T `` T′ : Q0

Γ `` (c : T `′ input ε) :: T′ : (c : T (`′∧ `) input) :: Q0

(ARG INPUT DET) (for T in det-space)
Γ ``′∧` e : T Γ `` R′ : Q0{e/c}→ Q′

Γ `` (c = e) :: R′ : (c : T (`′ input)) :: Q0→ Q′

We need: Γ ` T1 : Q′[o/ret].
To use the induction hypothesis, we need to show that the following statements
hold:
• (T′{e/c})∧ ` ` R′ o T1

Given by the first assumption of (APPLY ARG DET).
• Γ `` T′{e/c} : Q0{e/c}

Follows by applying lemma 31 to the assumption of (TABLE INPUT) and the
first assumption of (ARG INPUT DET).

• Γ `` R′ : Q0{e/c}→ Q′

Given by second assumption of (ARG INPUT DET).

63

• dom(T′{e/c})∩dom(Γ) =∅
Follows directly from the assumption dom((c : T `′ input ε) :: T′)∩dom(Γ) =
∅.

• fun(T′{e/c}) :
Follows trivially from the assumption fun((c : T `′ input ε) :: T′)

• Last column of T′ is at level `:
Follows from the same property of (c : T `′ input ε) :: T′

Thus, by induction hypothesis, we get Γ `` T1 : Q′[o/ret], as required.
– Case:

(APPLY ARG RND QRY) (for T in rnd or qry-space)
T′∧ ` ` R o T′1 c /∈ fv(R) dom(T′)∩ fv(e) =∅
(c : T ((`′∧ `) input) ε) :: (T′∧ `) ` [c = e] :: R o (c : T ((`′∧ `) local) e) :: T′1
(TABLE INPUT)
Γ ,c :`

′∧` T `` T′ : Q0

Γ `` (c : T `′ input ε) :: T′ : (c : T (`′∧ `) input) :: Q0

(ARG INPUT RND QRY) (for T in rnd or qry-space)
Γ ``′∧` e : T Γ `` R′ : Q0→ Q′

Γ `` (c = e) :: R′ : (c : T (`′ input)) :: Q0→ Q′

We need: Γ ,c :`
′∧` T ` (c : T ((`′∧ `) local) e) :: T′1 : Q′[o/ret].

To use the induction hypothesis, we need to show that the following statements
hold:

• T′∧ ` ` R′ o T1

Given by the first assumption of (APPLY ARG RND QRY).
• Γ ,c :`

′∧` T `` T′ : Q0

Given by the assumption of (TABLE INPUT).
• Γ ,c :`

′∧` T `` R′ : Q0→ Q′

Follows from applying lemma 30 to the second assumption of (ARG INPUT
RND QRY) (c /∈ Γ follows from well-formedness of the environment in the
first assumption of (TABLE INPUT).

• dom(T′)∩dom(Γ) =∅
Follows directly from the assumption dom((c : T `′ input ε) :: T′)∩dom(Γ) =
∅.

• fun(T) :
Follows trivially from the assumption fun((c : T `′ input ε) :: T′)

• Last column of T′ is at level `:
Follows from the same property of (c : T `′ input ε) :: T′

Thus, by induction hypothesis, we get Γ ,c :`
′∧` T `` T1 : Q′[o/ret], which gives

Γ `` (c : T ((`′∧ `) local) E) :: T′1 : Q′[o/ret] by (TABLE INPUT)
– Case (APPLY EXPR):

(APPLY EXPR)
(T′∧ `) ` R o T′1 c /∈ fv(R)

(c : T (` viz) E) :: (T′∧ `) ` R o (c : T ((`∧ `′viz) E) :: T′1

64

• Subcase viz = output:
(TABLE OUTPUT) (for Core tables)
Γ ``′∧` E : T
Γ ,c :`

′∧` T `` T′ : Q0

Γ `` (c : T `′ output E) :: T′ : ((c : T (`′∧ `) output) :: Q0)

(ARG OUTPUT)
Γ ` T Γ `` R : Q0→ Q′0
Γ `` R : ((c : T `′ output) :: Q0)→ ((c : T (`′∧ `) output) :: Q′0)
To apply the induction hypothesis, we need to show:
∗ (T′∧ `) ` R o T′1

Given by the first assumption of (APPLY EXPR).
∗ Γ ,c :`

′∧` T `` T′ : Q0
Given by the second assumption of (TABLE OUTPUT).
∗ Γ ,c :`

′∧` T `` R : Q0→ Q′0
Follows by applying lemma 30 to Γ `` R : Q0→ Q′0.

∗ dom(T′)∩dom(Γ) =∅.
Follows from the assumption dom((c : T `′ output E) :: T′)∩dom(Γ) =
∅.

∗ fun(T′)
Follows from fun((c : T `′ output E) :: T′).

∗ Last column of T′ is at level `.
Follows from the fact that the last column of (c : T `′ output E) :: T′ is at
level ` (note that T′ is not empty).

Hence, by induction hypothesis, we obtain Γ ,c :`
′∧` T ` T1 : Q′0[o/ret], and so

by (TABLE OUTPUT), Γ `` (c : T (`′∧`) output E) ::T′ : ((c : T (`′∧ `) output) ::
Q′0[o/ret])

• Subcase viz = local:
(TABLE LOCAL)
Γ ``′∧` E : T
Γ ,c :`

′∧` T `` T′ : Q0 c /∈ fv(Q0)

Γ `` (c : T `′ local E) :: T′ : Q0
First, we need to show:
∗ (T′∧ `) ` R o T′1

Given by the first assumption of (APPLY EXPR).
∗ Γ ,c :`

′∧` T `` T′ : Q0
Given by the second assumption of (TABLE LOCAL).

∗ Γ ,c :`
′∧` T `` R : Q0→ Q′0

Follows vy applying lemma 30 to the assumption Γ `` R : Q0→ Q′0.
∗ dom(T′)∩dom(Γ) =∅.

Follows from the assumption dom((c : T `′ local E) :: T′)∩dom(Γ) =∅.
∗ fun(T′)

Follows from fun((c : T `′ local E) :: T′).
∗ Last column of T′ is at level `.

Follows from the fact that the last column of (c : T `′ local E) :: T′ is at
level ` (note that T′ is not empty).

65

Hence, by induction hypothesis, we obtain Γ ,c :`
′∧` T ` T1 : Q′0[o/ret], and so

by (TABLE LOCAL),
Γ `` (c : T (`′∧ `) local E) :: T′ : Q′0[o/ret])

Restatement of Proposition 1

(1) If Γ ` S : Sty and S→ S′, then Γ ` S′ : Sty
(2) If Γ `pc T : Q and T→ T′ then Γ `pc T′ : Q.
(3) If Γ `pc M : Q and M→M′ then Γ `pc M′ : Q.

Proof: By simultaneous induction on the depth of derivations of S→ S′, T→ T′ and
M→M′.

– Case:
(RED SCHEMA LEFT)
T0→ T′0
(t = T0) :: S1→ (t = T′0) :: S1
Here, Γ ` S1 : Sty must have been derived with (SCHEMA TABLE):
(SCHEMA TABLE)
Γ `inst T0 : Q Γ , t : Q ` S1 : Sty′

Γ ` (t = T0) :: S1 : (t : Q) :: Sty′

We have T0 → T′0 and Γ `inst T0 : Q, so Γ `inst T′0 : Q by induction hypothesis.
Thus, by (SCHEMA TABLE),

Γ ` (t = T′0) :: S1 : (t : Q) :: Sty′

– Case:
(RED SCHEMA RIGHT)
S1→ S′1 Core(T0)

(t = T0) :: S1→ (t = T0) :: S′1
Again, Γ ` S : Sty must have bene derived with (SCHEMA TABLE):
(SCHEMA TABLE)
Γ `inst T0 : Q Γ , t : Q ` S1 : Sty′

Γ ` (t = T0) :: S1 : (t : Q) :: Sty′

By induction hypothesis, Γ , t : Q ` S′1 : Sty′, so (SCHEMA TABLE) gives:

Γ ` (t = T0) :: S′1 : (t : Q) :: Sty′

– Case:
(RED RIGHT STEP)
T1→ T′1
col :: T1→ col :: T′1
In this case, T= col :: T1, and we need to split on col:

66

• Subcase col= (c : T (` input ε)):
(TABLE INPUT)
Γ ,c :`∧pc T `pc T1 : Q1

Γ `pc (c : T ` input ε) :: T1 : (c : T ` input) :: Q1
Applying the induction hypothesis to the assumption of (RED RIGHT STEP)
and (TABLE INPUT) gives:

Γ ,c :`∧pc T ` T1 : Q1

Thus, by (TABLE INPUT), we obtain directly:

Γ `pc (c : T (` inputε)) :: T′1 : (c : T ` input) :: Q1

as required.
• Subcase col= (c : T (` local M)):

(TABLE LOCAL)
Γ ``∧pc M : Qc@[(ret : T ` output)]
Γ ,γ(Qc),c :`∧pc T `pc T1 : Q1 c /∈ fv(Q1)

Γ `pc (c : T ` local M) :: T1 : Q1
Applying the induction hypothesis to T1 → T′1 and the second assumption of
(TABLE LOCAL) gives:

Γ ,γ(Qc),c :`∧pc T `pc T′1 : Q1

Hence, by using (TABLE LOCAL) again, we obtain:

Γ `pc (c : T ` local M) :: T′1 : Q1

• Subcase col= (c : T (` output M)):
(TABLE OUTPUT)
Γ ``∧pc M : Qc@[(ret : T ` output)]
Γ ,γ(Qc),c :`∧pc T `pc T1 : Q1

Γ `pc (c : T ` output M) :: T1 : Qc@((c : T (`∧ pc) output) :: Q1)
Applying the induction hypothesis to T1 → T′1 and the second assumption of
(TABLE OUTPUT) gives:

Γ ,γ(Qc),c :`∧pc T `pc T′1 : Q1

Thus, (TABLE OUTPUT) gives:

Γ `pc (c : T ` output M) :: T′1 : Qc@((c : T (`∧ pc) output) :: Q1)

– Case:
(RED MODEL)
M→M′

((c : T A M)) :: T1→ ((c : T A M′)) :: T1
We need to split on A:

67

• Subcase A = ` local:
(TABLE LOCAL)
Γ ``∧pc M : Qc@[(ret : T (`∧ pc) output)]
Γ ,γ(Qc),c :`∧pc T `pc T1 : Q1 c /∈ fv(Q1)

Γ `pc (c : T ` local M) :: T1 : Q1
Applying the induction hypothesis to M → M′ and the first assumption of
(TABLE LOCAL) gives:

Γ ``∧pc M′ : Qc@[(ret : T (`∧ pc) output)]

Thus, by (TABLE LOCAL):

Γ `pc (c : T ` local M′) :: T1 : Q1

• Subcase A = ` output:
(TABLE OUTPUT)
Γ ``∧pc M : Qc@[(ret : T ` output)]
Γ ,γ(Qc),c :`∧pc T `pc T1 : Q1

Γ `pc (c : T ` output M) :: T1 : Qc@((c : T (`∧ pc) output) :: Q1)

By applying the induction hypothesis to M→ M′ and the first assumption of
(TABLE OUTPUT), we get:

Γ ``∧pc M′ : Qc@[(ret : T (`∧ pc) output)]

Hence, by (TABLE OUTPUT):

Γ `pc (c : T ` output M) :: T1 : Qc@((c : T (`∧ pc) output) :: Q1)

– Case:
(EQ APPL VARIABLE) (for Core(T f))
((T f ∧ `)∧ viz) ` R o T1
(locals(T f)∪ inputs(T f))∩ fv(T2) =∅
(o : T ` viz (T f R)) :: T2→ T1@T2
Split on viz:
• Subcase viz = local

Here, the (TABLE LOCAL) rule takes the form:
(TABLE LOCAL)
Γ ``∧pc (T f R) : Qc@[(ret : T (`∧ pc) output)]
Γ ,γ(Qc),o :`∧pc T `pc T2 : Q2 o /∈ fv(Q2)

Γ `pc (o : T ` local (T f R)) :: T2 : Q2
We need: Γ `pc T1@T2 : Q2.
The first condition of (EQ APPL VARIABLE) gives ((T f ∧ `)∧ local) ` R o
T1, and the first condition of (TABLE LOCAL) states that Γ ``∧pc (T f R) :
Qc@[(ret : T (`∧ pc) output)]. Also, T1 here must be at level `, which implies
T1∧ `= T1. Thus, by lemma 36, we have γ(Qc@[(c : T (`∧ pc) output)])≤
γ(T1∧ `) and so Γ ,γ(Qc@[(c : T (`∧ pc) output)])≤ Γ ,γ(T1∧ `),

68

As the second condition of (TABLE LOCAL) gives Γ ,γ(Qc@[(c : T (`∧ pc) output)])`pc

T2 : Q2 and it follows from the second assumption of (EQ APPL VARIABLE)
that dom(γ(T1))∩dom(T2) =∅, lemma 28 gives Γ ,γ(T1∧ `) `pc T2 : Q2.
Now, since ((T f ∧`)∧ local) ` R o T1 and (T f R) is well-typed in Γ , lemma
34 yields Γ `pc T1 : []. Hence, the desired result Γ `pc T1@T2 : Q2 follows by
lemma ??.

• Subcase viz = output
Here, (TABLE OUTPUT) and (EQ APPL VARIABLE) become:
(TABLE OUTPUT)
Γ ``∧pc (T f R) : Qc@[(ret : T (`∧ pc) output)]
Γ ,γ(Qc),o :`∧pc T `pc T2 : Q1

Γ `pc (o : T ` local (T f R)) :: T2 : Qc@[(o : T (`∧ pc) output)] :: Q1

(EQ APPL VARIABLE) (for Core(T f))
(T f ∧ `) ` R o T1
(locals(T f)∪ inputs(T f))∩ fv(T2) =∅
(o : T ` output (T f R)) :: T2→ T1@T2
Thus, by applying Lemnma 37 to the first conditions of (TABLE OUTPUT) and
(EQ APPL VARIABLE), we obtain:

Γ `pc T1 : Qc@[(o : T (`∧ pc) output)]

Now, by similar reasoning as above, we get Γ ,γ(T1∧ `) `pc T2 : Q1.
Thus, applying lemma ?? to the above result and the second assumption of
(TABLE OUTPUT) gives:

Γ `pc T1@T2 : Qc@([(o : T (`∧ pc) output)] :: Q1)

as required.
– Case:

(EQ INDEX) (where fv(eindex,esize)∩ (dom(T f)) =∅)
eindex and esize contain no random Core(T f)

(T f R)[eindex < esize]→ (T f [eindex < esize] R)
Here, Γ `pc (T f R)[eindex < esize] : Q must have been derived with:
(MODEL INDEXED)
eindex and esize contain no random
Γ `pc (T f R) : Q′ locals(Q′)∩ fv(esize) =∅
Γ `pc eindex : mod(esize) ! spc

Γ `pc (T f R)[eindex < esize] : Q′[esize]
In turn, the last rule applied in the derivation of Γ `pc (T f R) : Q′ must have been
(MODEL APPL)
Γ `pc T f : Q′′

Γ `pc R : Q′′→ Q′

fun(Q′′)
dom(T f)∩dom(Γ) =∅
Γ `pc T f R : Q′

69

Now, by Lemma 35, we have Γ `pc T f [eindex < esize] : Q′′[esize] which, combined
with the fact that Γ `pc R : Q′′[Esize]→ Q′[Esize]$ (as indexing does not affect
argument types) gives Γ `pc (T f [eindex < esize] R) : Q′[esize], by applying (MODEL
INDEXED) again.

– Case:
(EQ INDEX INNER)
M→M′

M[eindex < esize]→M′[eindex < esize]
Γ `pc M[eindex < esize] : Q must have been derived with:
(MODEL INDEXED)
eindex and esize contain no random
Γ `pc M : Q′ locals(Q′)∩ fv(esize) =∅
Γ `pc eindex : mod(esize) ! d

Γ `pc M[eindex < esize] : Q′[esize]
By induction hypothesis, Γ `pc M : Q′ Hence, by (MODEL INDEXED):

Γ `pc M′[eindex < esize] : Q′[esize]

F.3 Proof of Proposition 2

As usual, we need to state and prove some additional lemmas first:

Lemma 38. If Γ `` E : T , then fv(E)⊆ dom(Γ) and fv(T)⊆ dom(Γ).

Proof: By straightforward induction on the depth of derivation of Γ `` E : T .

Lemma 39. If Core(T) and Γ `pc T : Q then dom(T)∩dom(Γ) =∅.

Proof: By straightforward induction on the depth of derivation of Γ `pc T : Q.

Lemma 40. If Γ `` T R : Q, then all columns of Q have visibility output.

Proof: The last rule in derivation of Γ `` T R : Q must be (MODEL APPL), whose sec-
ond assumption is Γ `` R : Q→ Q′. The lemma can then be easily proved by induction
on the depth of derivation of Γ `` R : Q→ Q′.

Lemma 41. If Core(T) Γ `` T R : Q′, then for any o and viz 6= input, there is T1 such
that ((T∧ `)∧ viz) ` R o T1

Proof: The judgment Γ `` (T R) : Q′ must have been derived with (MODEL APPL):
(MODEL APPL)
Γ `` T : Q fun(Q) Γ `` Q→ Q′

Γ `` T R : Q′

70

Thus, the statement of the lemma can be reformulated as follows:
If Core(T) and Γ `` T : Q and fun(Q) and Γ `` R : Q→ Q′ then for any o and

viz 6= input, there is T1 such that ((T∧ `)∧ viz) ` R o T1
This version of the lemma can be proven by induction on the derivation of Γ `` T :

Q:

– Case:
(TABLE INPUT) (version for Core tables)
Γ ,c :`

′
T ` T0 : Q0

Γ ` (c : T `′ input ε) :: T0 : (c : T `′ input) :: Q0
• Subcase space(T) = det:

Here, Γ `` R : Q→ Q′ must have been derived using:
(ARG INPUT DET) (for T in det-space)
Γ ``′∧` e : T Γ `` R0 : Q0{e/c}→ Q′

Γ `` ((c = e) :: R0) : ((c : T `′ input) :: Q0)→ Q′

By lemma 31, Γ ` T0 {e/c} : Q0 {e/c}. Thus, by the induction hypothesis, there
is a T2 such that ((T∧`)∧viz) ` R o T2. By lemma 38, fv(e)⊆ dom(Γ), and
by lemma 39, dom(Γ)∩dom(T0) =∅, which gives fv(e)∩ fv(T0) =∅. Since
c /∈ fv(Γ), we know that c /∈ R0. Hence, (APPLY ARG DET) gives

(c : T ((`′∧ `) input) ε) :: ((T0∧ `)∧ viz) ` [c = e] :: R0 o T2

• Subcase space(T) 6= det:
(ARG INPUT RND QRY) (for T in rnd or qry-space)
Γ ``′∧` e : T Γ `` R0 : Q0→ Q′

Γ `` ((c = e) :: R0) : ((c : T `′ input) :: Q0)→ Q′

By lemma 30, Γ ,c :`
′∧` T `` R0 : Q0 → Q′, so the induction hypothesis gives

((T0∧ `)∧Q) ` R0 o T2 for some T2.
By lemma 38, fv(e) ⊆ dom(Γ), and by lemma 39, dom(Γ)∩ dom(T0) = ∅,
which gives fv(e)∩ fv(T0) =∅.
Since c /∈ dom(Γ), we also know that c /∈ fv(R0).
Therefore, by (APPLY ARG RND QRY), we have

(c : T (`′∧`) input ε) :: ((T0∧`)∧viz)` (c= e) :: R0 o (c : T (`′∧`) input E) ::T2

as required.
– Case:

(TABLE LOCAL) (version for Core tables)
Γ ``′∧` E : T
Γ ,c :`

′∧` T `` T0 : Q c /∈ fv(Q)

Γ ` (c : T `′ local E) :: T : Q
Again, we have Γ ,c :`

′∧``` R : Q→ Q′ by lemma 30, so the induction hypothesis
gives ((T0∧ `)∧ viz) ` R0 o T2 for some T2.
As c /∈ fv(R) follows from the same reasoning as in the previous case, the rule
(APPLY EXPR) gives

(c : T (`′∧ `) local E) :: ((T0∧ `)∧ viz) ` R o (c : T (`′∧ `) local E) :: T2

71

– Case:
(TABLE OUTPUT) (version for Core tables)
Γ1 ``

′
E : T

Γ ,c :`
′
T ` T0 : Q0

Γ1 ` (c : T `′ output E) :: T0 : ((c : T `′ output) :: Q0)

In this case, Γ `` R : Q→ Q′ must have been derived with
(ARG OUTPUT)
Γ ` T Γ `` R : Q0→ Q′0
Γ `` R : (c : T (`′ output)) :: Q0→ (c : T ((`′∧ `) output)) :: Q′0
Now, since the first column of T is at level output, it might also be the last column
(i.e. T0 = [] and c = ret). Thus, we need to consider two subcases:
• If T0 = [], then T= [(ret : T `′ output E)] and (T∧`)∧viz= [(ret : T (`′∧ `) viz E)].

Thus, by (APPLY OUTPUT),

[(ret : T (`′∧ `) viz E)] o [(o : T (`′∧ `) viz E)]

• If T0 6= [], then (T∧ `)∧ viz = (c : T (`′∧ `) viz E) :: ((T0∧ `)∧ viz).
By using lemma 30 again, we get ((T0 ∧ `)∧ viz) ` R0 o T2 for some T2
by induction hypothesis. Thus, the induction hypothesis states that((T0 ∧ `)∧
viz) ` R o T2 for some T2. As c /∈ fv(R) follows from the same reasoning as
in the previous cases, we have:

(c : T (`′∧ `) viz E) :: ((T0∧ `)∧ viz) ` R o (c : T (`′∧ `) viz E) :: T2

Lemma 42. If Γ `pc M[eindex < esize] : Q′, then there is M′ such that M[eindex <
esize]→M′.

Proof:
By induction on the depth of derivation of Γ ` M[eindex < esize] : Q (where Q′ =

Q[esize]):
(MODEL INDEXED)
eindex and esize contain no random
Γ `pc M : Q locals(Q)∩ fv(esize) =∅
Γ `pc eindex : mod(esize) ! d

Γ `pc M[eindex < esize] : Q[esize]

– Case M = E: Here, by (RED INDEX EXPR), we have:

E[eindex < esize]→ E

– Case M = T R: In this case, (EQ INDEX) gives:

(T R)[eindex < esize]→ (T[eindex < esize]) R

72

– Case M = M0[E1 < e2]:
The second assumption of (MODEL INDEXED) gives:

Γ `pc M0[e1 < e2] : Q

Thus, by induction hypothesis, there exists M′′ such that:

M0[e1 < e2]→M′′

Hence, by (EQ INDEX INNER):

(M0[e1 < e2])[eindex < esize]→M′′[eindex < esize]

Lemma 43. If Γ `pc T : Q either Core(T) or there is T′ such that T→ T′.

Proof: By induction on the depth of derivation of Γ `pc T : Q

– Case:
(TABLE INPUT)
Γ ,c :`∧viz T `pc T0 : Q0

Γ ` (c : T ` input ε) :: T0 : (c : T (`∧ viz) input) :: Q0
By induction hypothesis, either Core(T0) or there exists a T′0 such that T0→ T′0.
If Core(T0), then Core((c : T ` input ε) :: T0), by definition of Core.
If T0 → T′0 for some T′0, then, since Core((c : T ` input ε)) by the definition of
Core, (RED RIGHT STEP) gives

(c : T ` input ε) :: T0→ (c : T ` input ε) :: T′0
– Case:

(TABLE LOCAL)
Γ ``∧pc M : Qc@[(ret : T ` output)]
Γ ,γ(Qc),c :`∧pc T `pc T0 : Q0 c /∈ fv(Q0)

Γ `pc (c : T ` local M) :: T0 : Q0
By induction hypothesis, either Core(T0) or there exists a T′0 such that T0→ T′0.
• If Core(T0), and M = E then Core((c : T ` local M) :: T0), by definition of
Core.

• If M = E and T0→ T′0 for some T′0, then, as Core((c : T ` local E)), by (RED
RIGHT STEP) we get

(c : T ` local E) :: T0→ (c : T ` local E) :: T′0
• If M = T f R then by Lemma 41, ((T f ∧ `)∧ local) ` R c T1 for some T1.

Also, Lemma 40 states that all columns of Qc are at level output. As the
derivation of Γ `` (T f R) : Qc@[(ret : T ` output)] requires Γ ` T f : Q f
for some Q f , we have dom(T f)∩ dom(Γ) = ∅ by Lemma 39, which implies
(locals(T f)∪ inputs(T f))∩ dom(Γ ,γ(Qc),c :` T) = ∅. Hence, by Part 2 of
Lemma 22, we have (locals(T f)∪ inputs(T f))∩ fv(T0) =∅.
Thus, (EQ APPL VARIABLE) gives

(c : T ` local (T f R)) :: T0→ T1@T0

73

• If M =M0[eindex < esize], then, by Lemma 42, there exists M′ such that M0[eindex <
esize]→M′, and so, by (RED MODEL),

(c : T ` local M0[eindex < esize]) :: T0→ (c : T ` local M′) :: T0

– Case:
(TABLE OUTPUT)
Γ ``∧pc M : Qc@[(ret : T (`∧ pc) output)]
Γ ,γ(Qc),c :`∧pc T `pc T0 : Q0

Γ `pc (c : T ` output M) :: T0 : Qc@((c : T (`∧ pc) output) :: Q0)

By induction hypothesis, either Core(T0) or T0→ T′0 for some T′0.
• If Core(T0), and M = E then Core((c : T ` output M) :: T0).
• If M = E and T0 → T′0 for some T′0, then Core((c : T ` output E)), and so

(RED RIGHT STEP) gives:

(c : T ` output E) :: T0→ (c : T ` output E) :: T′0

• If M = T f R then Lemma 41 says that T f ∧ ` ` R c T1 for some T1. Also,
Lemma 40 states that all columns of Qc are at level output. As the derivation
of Γ `` (T f R) : Qc@[(ret : T ` output)] requires Γ ` T f : Q f for some Q f ,
we have dom(T f)∩dom(Γ) = ∅ by Lemma 39, which implies (locals(T f)∪
inputs(T f))∩ dom(Γ ,γ(Qc),c :` T) = ∅. Hence, by Part 2 of Lemma 22, we
have (locals(T f)∪ inputs(T f))∩ fv(T0) =∅.
Thus, (EQ APPL VARIABLE) gives

(c : T ` output (T f R)) :: T0→ T1@T0

• If M =M0[eindex < esize], then, by Lemma 42, there exists M′ such that M0[eindex <
esize]→M′, and so, by (RED MODEL),

(c : T ` output M0[eindex < esize]) :: T0→ (c : T ` output M′) :: T0

– Case:
(TABLE EMPTY)
Γ ` �
Γ ` [] : []
Obviously, Core([]) (this follows from the definition of Core for a table with n = 0
columns).

Restatement of Proposition 2 If Γ `pc S : Sty either Core(S) or there is S′ such
that S→ S′.

Proof: By induction on the derivation of Γ `pc S : Q.

74

– Case:
(SCHEMA [])
Γ ` �
Γ ` [] : []
Here, obviously, Core([]).

– Case:
(SCHEMA TABLE)
Γ `inst T : Q table(Q) Γ , t : Q ` S0 : Sty

Γ ` (t = T) :: S0 : (t : Q) :: Sty
By lemma 43, either Core(T) or there exists a T′ such that T→ T′. By induction
hypothesis, either either Core(S) or there exists a S′ such that S→ S′.
If Core(T), then :
• If Core(S0), then Core((t = T) :: S0)
• If S0→ S′0, for some S′, then by (RED SCHEMA RIGHT), (t = T) :: S0→ (t =

T) :: S′0
If T→ T′, then, by (RED SCHEMA LEFT), (t = T) :: S0→ (t = T′) :: S0

F.4 Proof of Proposition 3

To prove termination of reduction, we construct a non-negative measure that is reduced
by the reduction relation S→ S′. The measure counts the function applications and
model expressions.

Measure on S reduced by→: m(S), m(T), m(M)

m([]) = 0
m((t = T) :: S) = m(T)+m(S)

m([]) = 0
m((c : T (` viz) M) :: T) = m(M)+m(T)

m(T R) = 1
m(M[eindex < esize]) = 1+m(M)
m(E) = 0

Now we need to show that this measure is decreasing, by proving the following
lemma:

Lemma 44. (1) If M→M′ then m(M′)< m(M)
(2) If T→ T′ then m(T′)< m(T)
(3) If S→ S′ then m(S′)< m(S)

Proof:

(1) By induction on the depth of derivation of M→M′

75

– Case:
(RED INDEX) (where fv(eindex,esize)∩ (dom(T)) =∅)
eindex and esize contain no random Core(T)
(T R)[eindex < esize]→ (T[eindex < esize] R)
m(RHS) = 1 < 2 = m(LHS), as required.

– Case:
(RED INDEX EXPR)

E[eindex < esize]→ E
m(RHS) = 0 < 1 = m(LHS), as required.

– Case:
(RED INDEX INNER)
M1→M′1
M1[eindex < esize]→M′1[eindex < esize]
By induction hypothesis, m(M′1)< m(M1). Thus, m(RHS) = 1+m(M′1)< 1+
m(M1) = m(LHS), as required.

(2) By induction on the depth of derivation of T→ T′

– Case:
(RED APPL VARIABLE) (for Core(T))
((T0∧ `)∧ viz) ` R o T1
(locals(T0)∪ inputs(T0))∩ (fv(T′0)∪dom(T′0)) =∅
(o : T ′ ` viz (T0 R)) :: T′0→ T1@T′0
Since Core(T1) by the definition of , we have m(T1)= 0 and so m(T1@T′0)=
m(T′0).
Thus, m(RHS) = m(T′0)< 1+m(T′0) = m(LHS), as required.

– Case:
(RED MODEL)
M→M′

(c : T ` viz M) :: T1→ (c : T ` viz M′) :: T1
Part 1 of the lemma gives m(M′)< m(M). Thus, m(RHS) = m(M′)+m(T1)<
m(M)+m(T1) = m(LHS), as required.

– Case:
(RED TABLE RIGHT)
T1→ T′1 Core(col)

col :: T1→ col :: T′1
By induction hypothesis, m(T′1)< m(T1). Also, by definition of Core, we have
m(col) = 0.
Hence, m(RHS) = m(T′1)< m(T1) = m(LHS), as required.

(3) By induction on the depth of derivation of S→ S′
– Case:

(RED SCHEMA LEFT)
T→ T′

(t = T) :: S1→ (t = T′) :: S1
By part 2, we have m(T′)< m(T).
Hence, m(RHS) = m(T′)+m(S1)< m(T)+m(S1) = m(LHS), as required.

76

– Case:
(RED SCHEMA RIGHT)
S1→ S′1 Core(T)
(t = T) :: S1→ (t = T) :: S′1
By induction hypothesis, we have m(S′1) < m(S1). Also, Core(T) implies that
m(T) = 0.
Thus, m(RHS) = m(S′1)< m(S1) = m(LHS), as required.

Restatement of Proposition 3 No infinite chain S0→ S1→ . . . exists.

Proof: Such a chain would contradict the fact that our non-negative measure is reduced
by the reduction relation.

77

